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Abstract 

We quantize the linearized gravitational wave which arises from quantum fluctuations in the 
Power-law inflationary universe described by the Brans-Dicke gravity in the Einstein frame and 
obtain the power spectrum of the gravitational wave. As a result, we find that the obtained power 
spectrum of background gravitational wave differs from the previous result in t he literature, 
which is calculated on the base of the analogy to the power spectrum of scalar field. 
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1 Introduction 

Since the anisotropies of the cosmic microwave backgroun d (CMS ) 

were discovered by the COBE measurement[l]' many authors have been 

interested in the background gravitational wave produced in the infla­

tionary universe [2]. They suspect that t he origin of the aniso tropies is 

not only t he density (scalar ) perturbations but also t he Sacks-Wolfe ef­

fect by t he primordial gravitational wavcs. Unfortunately, we know that 

for the simplest standard (exponentially) inflation model, the contribu­

tion to CMB anisotropy from the density (scalar) perturbations is much 

g reater than the one from the background gravit ational wave Pl. We 

must investigate more complicated infla tion models, e.g. , tl le p ower-law 

i nflation model [4.1 . However , many works [5] are shorl of detai led cal­

culat ion based on the explicit descripti on of the cosmological evolution 

of universe in the case of t he power-l aw infl ation models. Therefore , we 

consider a concrete cosmological evolution model which is described by 

the Brans-Dicke (BD) gravity [6] in the Ei nstein frame, and explore thi s 

subjecl in great detail. 

Adopting the BD gravity, we natu rally obtain t he cosmological evo­

lution of t he expanding uni verse, which has the power-law inflation (a ex 

t l 2t"Y ~ 172-:" I > I), radi ation dominating (a 0:: / ~ 71) and maHe r 

domi nating (a 0:: [2/3 ~T)2 ) epoch. Here a is the scale factor and 71 is the 

conformal Lime. In this case, as well as t.he other power-law inflation cases 

[5] , the power spectrum of gTiwi tational wavc is enhanced ill t he long wave 

lengt h region. However, we find that the enhancement factor relative to 

the power spectrum in the standard (exponential) in fl ati onary universe 
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is no1 e:):; which is usually used [5], but ( -t~I) :; ' where H is Hub ble 

constant aL the inftat ion epoch and 711 is the conformal t ime at the end 
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of t he inflation. In oilH'r words, the previous result is (- H 171 ):; :::: 10 ") 

t imes greater than our result. Note thal th IS di fference has influence on 

t he upper limit of t he GUT mass , ,"'hich can be inferred from refs .. [2] . 

Conten ts of this paper are as foLlows. In section 2 we review the B0 
gravity and provide our power- law infl at ion model. In section 3 we explain 

the background gravitational wave and its quan tization . In section 1.\ we 

investigate t he power specl rum of t he background gravitational wave. 

The final section 5 is devoted to concluding remarks. 

2 Power-law inflation 

In this section we briefly review the power-law inflation. However, 

there are several versions of power-law inflation model [4] . We especially 

investigate the model using the BO gravity in the Einstein frame. The 

action for the BD gravi ty in the Einstein frame takes the form 

J { R 1 v 2III }
5= d4 xFg 16rrG-;;/JojJIlIovlll+exP(-IlIo )Lm(¢), (1) 

where III is the BD scalar field, 1110 is the SO parameter which has mass 

dimension , and Lm(¢) is the Lagrangian density of matter fields which 

lead to the first order phase transition. 

We consider the homogeneous SO scalar field III and the homogeneous 

isotropic universe described by the spatially flat FRW metric: 

ds 2 = a( ~ )2 ( -d17 2 + dx 2 + dy2 + dz2), (2) 

where 71 is the conformal time. The equation of motion for III and the 

Einstein equation are 

.. a. -2a2 2III 
III + 2-IlI = -;;:;- exp(--;r;-)Lm(¢ ). (3 ) 

a '*'0 '*'0 

(a) 2 8rrG 2 {I . 2 2w }-;; = -3-a 2111 +exp(-W )1-{m (¢) , (4) 
o 

w here the over dot denotes f,:, and 1-{m (¢) is the Hamiltonian densi ty of the 

matter fields. We assume that t he Lagrangian and Hamiltonian density 

are givcn by 

Lm (¢ ) :::: -M~UT ' 1-{m(¢) :::: .M6uT' 71 < 71" (5) 

Lm (¢) :::: 0, 1-{m(¢) 0:: 0,-4, 17. < 17 < 71" (6) 

Lm(¢) :::: 0, 1-{m(¢) 0:: a-3 , 71, < 17 , (7) 

at the inflation (17 < 17d , radiation dominating (T)l < 71 < 712 ) and matter 

domina.ting (172 < 71) epochs , respectively. Here MGUT is the GUT mass 

which is taken to be 10 16 GeV [7]. 
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To 0 btain the scale factor a(n) and the BD scalar field W, we impose the 

conditions that the scale factor , its first I)-derivative and the amplitude 

of the BD scalar field are continuous at the transition time, I) = 1)1 or 1)2' 

Then the scale factor and the BD scalar field are 
....l. ­

3(/ _1)2 h(-1)) } ' -' 
a(n) 1) < 1)1, (8){ ,(31 - 1) 


~(-'-)(1) - (2 - ~ )1)1), 1)1 < 1) < 1)2, (9)

(-171) ,- 1 , 

~(_'_) (I) - (4 - ~)1)1 +1)2)2 
1/2 < 1), (10)

4(-1)1) , - 1 (1)2 - (2 -1.)1)1) , 

( a(n))~Wen) Woln -;;; , 1) < 1)11 ( 11 ) 

= W(n,) , 1)1 < 1), (12) 

where, == 4rrGW02 (> 1), h == flMluT(al)~ an,d aT is an integration 

constant. To determine the integration constant aT, we impose the fol­

lowing condition that the effective time-dependent gravitational constant 

Ge!f(f1) coincides with the presently observed value G; 

-2 

e-21j1(T)Q)/IjIOG = (a~~)) 1 G,Ge// (no ) (13) 

G = (1.22 X 1019 GeVt 2
, (14) 

where 1)0 denotes the present time. From this condition ( 14 ), we see 

aT = a(n,) . 

Now we can express the times 1)2, 1)0 in terms of the time 1)1 from 

the following physical considerations. We demand that the reheating 

temperature at the end of the inflation is Tl = 10 16 GeV ~ 1.16 x 1029 

K and that the temperature a t which the matter density is equal to the 

radiation density is T2 ~ 6.72 x 104K. According to the standard Big Bang 

cosmology the relation a x T = con stant persists during the cosmological 

evolution [8] . From this relation we determine 1)2 and 1)0 as 

1)2 -1. 7 x 10 24 1)1, (15 ) 

1)0 -5.4 x 10261) 1' (16) 

Note that 1)1 has a negative value. 

3 

3 Background gravitational wave 

In this section we consider a deviation from the spatially flat FRW 

metric, which is denoted by a(n)2h jj • We focus our attention to the case 

that the deviation h jj exhibits the background gravitational wave in the 

weak field approximation . The approximate action for the deviation takes 

the form (161rG == 1) 

2 {(8hTT )2 ,SBGW = Jd1 x a(;) ----ary - C'IlhTT)2 } (17) 

where hTT is a nonvanishing component of a transverse traceless part of 

the deviation hjj [8]. 
From eq.(17), we easily perform the quantization of this system [9]. 

As a result, the field operator hTT is given by 

·TT _ / 00 cPk {' ifx ' t. -ifx}
h - -00 (2rr)3/2 AkUk(n)e +Akuk(n)e , (18) 

where the wave number k is the comoving wave number, and Ak and At 
are annihilation and creation operators , respectively, which satisfy the 

following commutation relations: 

[Ak, ,11,] = 8(3)(k - f), (19) 

" 't ' t 
[Ak' Ak,] = [Ak' Ak,] = O. (20) 

Note that the vacuum state 10 > is defined by Ak 10 >= O. 
The mode functions Uk are the solutions of the equation of motion: 

2G k2 0.. • (21 )Uk + -Uk + Uk = , 
a 

where the overdot denotes ~. We can explicitly solve this equation of 

motion (21) at the three stages of the expanding universe in our model, 

i.e., the inflation(I), radiation dominating(R) and matter dominating(M) 

epochs. The positive frequency parts of the mode functions are 

'rr FzH (I) _ , (-z),Uk(z) = V" -- 2..:z.=.!.... (22)
- 2k 1/ 2 a(z) 2(1-1) 
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,fi -ZI (1 - ;) Hr)(Z-(2-~)',)
U~(z) = (23)

2k l 
/ 

2 
Q(.,) Jz - (2 - ;)Zl' 

M 2,fi - zl(l-;)(Z2-(2-;)zl) (2) 

U k (0) = k l / 2 2 3/ 2 H~ (z-(4-~)Z'+Z2)' (24) 
Q(.,) (Z - (4 - ;)ZI +Z2) 

where we have taken a new time variable Z defined by Z == kT), and 

HY) and HS2) are the Hankel functions. We also define that ZI == kT)1 

and Z2 == kT)2. The above equations (22)- (24) satisfy the normalization 

condition in the canonical quantization: 

JQ('1)2[ukeik.i'] 8'1 [u!,e- ik-'i']d3x = i(27rfo(3)(k - kl). (25 ) 

If the Bunch- Davies vacuum [10] , which gives the same short-distance 

behavior as the one defined in the Minkowski space-time, is chosen for 

the init ial condition, the mode functions a.re 

Ud z ) 	 ur, Z<ZI, (26) 

a [Ru~ + j3JR(u~r, ZI < Z < Z2, (27) 

a JM u;: + pJM (u~lr, Z > Z2. (28) 

where a , f3 are the Bogoliubov coefficients which are given by 

IR ~ --(-'-)r(i 'Y ~) ( _ 2 )~ ~ aTR 
a 4 	r:;; 1 2h-1) f.J , (29) 

y 7r ,- -zl 

aIM ~ r(~) (_'_) (_2_) ~ {(I + _l_' )eiZ2 + i sin ; 2 e2iZ2 } , 

4,fi / - 1 - ZI 2Z2 4Z2 

~ -(131M 
)", 	 (30) 

where f( . is a gamma function, and we have used the approximation, 

ZI « Z2· 

T he power spectrum 

The power spectrum of the relic gravitational wave at the present time 

Zo == k'f/o , which is directly related to observations, is defined by 

k3 
: • 

6.h 
2

(k) == 167rG (27r )3 Jd3re,kr < OlhTT(r ,zo)hTT(O, zo)IO >, (31 ) 

5 

k
3 

[ 1M 2 TM 2 M 2 
167rG (27r)3 (10' 	 I + 113 I )Iuk (zo)1 

+2Re{a™ (t3™l"( U~ (Z<»))2}]. (32) 

From eq.(24) and eq.(30) , we get 

~ 2r(~) (3(, -1)2) ~ (h) (2h) '~1 
6.h(k)P.J 	= c / (3/ _ 1) H k 6.h(k)ST,(33) 

2r(~) 3({ - 1)2 ( 2 ) ,:'1 6.h 
r:;; (3 1) - (k)ST., (34) 

y7r / ,- -ZI 

where tl h(k)Sr. is the power spectrum of background gravitational wave 

produced in t he standard (exponential) inflationary universe [ll], which 

is given by 6.h(k)p.T. I -,.~oo, and H is defined by /¥M&UT' This power 

spectrum is shown in Fig.1 and Fig.2. Here we identify the present Hubble 

horizon with 6000Mpc (c::: 1.6 x 10- 18 Hz). When / » 1, the power 
27 

spectrum 6.h(k) p.J at the horizon scale (zo c::: 2) is about 10'1 times 

greater than tl h(k)S.r.. 

5 Conclusion and Discussion 

We have investigated the background gravitational wave produced in 

the power-law inflation'ary universe described by BD gravity in the Ein­

stein frame . As a result, we have obtained the power spectrum 6.h(k)P.T, 

which is about 10'=;' times greater than 6.h(k)Sl at horizon scale. 

Our present result differs from the previous calculations by many au­

thors [5]. They obtained the power spectrum for I » 1 

2H 1. . 

6.h(k)p.J ~ ( T 	)' 6.h(k)SJ, (35) 

on the analogy 	of the power spectrum of scalar field . They concluded 
n 

that the power spectrum 6.h(k)Pl at the hori zon scale is about 10'1 times 

greater than 6.h(k)S.l' 

The difference arises from the treatment of integration constant QT . 

Assuming that h c::: H, i.e., OJ c::: 1, from eq.(33) we would get the same 
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result. However , t his assumption a I ~ 1 is wrong in our model because 

from eq.( 13 ) the elTect ive grav itat ional constant is 

-2 i'2 

G.jf (ZO) = Q(z1l 0 G ~ 10' x 0 =I- O. (36) 

T hat is, to obtain the ooTTed power spectrum, we need to provide a con­

cre te cosmological evol ution model of universe and to solve the equations 

of motions carefully. We must not use the analogy of the scalar field to 

simplify this problem. 
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Figure captions 

Fig.1 

The power spectrum of the background gravitational wave 6h(k) is 

plotted as a function of the frequency, k/2rr, for, = 50. 

Fig.2 

The amplitude of t he background gravitational wave whose wave length 

is equal to the horizon size is plotted as a function of the power index ,. 
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