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Abstract

We quantize the linearized gravitational wave which arises from quantum fluctuations in the
Power-law inflationary universe described by the Brans-Dicke gravity in the Einstein frame and
obtain the power spectrum of the gravitational wave. As aresult, we find that the obtained power
spectrum of background gravitational wave differs from the previous result in the literature,
which is calculated on the base of the analogy to the power spectrum of scalar field.
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1 Introduction

Since the anisotropies of the cosmic microwave background (CMB)
were discovered by the COBE measurement([1], many authors have been
interested in the background gravitational wave produced in the infla-
tionary universe [2]. They suspect that the origin of the anisotropies 1s
not only the density (scalar) perturbations but also the Sacks-Wolfe ef-
fect by the primordial gravitational waves. Unfortunately, we know that
for the simplest standard (exponentially) nflation model, the contribu-
tion to CMB anisotropy from the density (scalar) perturbations is much
greater than the one from the background gravitational wave [3]. We
must investigate more complicated inflation models, e.g., the power-law
inflation model [4]. However, many works [5] are short of detailed cal-
culation based on the explicit description of the cosmological evolution
of universe in the case of the power-law inflation models. Therefore, we
consider a concrete cosmological evolution model which is described by
the Brans-Dicke (BD) gravity (6] in the Einstein frame, and explore this
subject in great detail.

Adopting the BD gravity, we naturally obtain the cosmological evo-
lution of the expanding nniverse, which has the power-law inflation (a

/2 ~ p) and matler

Y~ nl_z?, 4 > 1), radiation dominating (¢ o ¢
dominating (a o t*/7 ~ ?) epoch. Here a is the scale factor and 7 is the
conformal time. In ihis case, as well as the other power-law inflation cases
[5], the power spectrum of gravitational wave is enhanced in the long wave
length region. However, we find that the enhancement factor relative to

the power spectrum in the standard (exponential) inflationary universe
is not ("T”)% which is usually used [3], but (Tin);’ where H is Hubble
constant at the inflation epoch and n; is the conformal time at the end
of the inflation. In other words, the previous result is (—Hm)]T ~ 105
times greater than our result. Note that this difference has influence on
the npper himit of the GUT mass, which can be inferred from refs. [2].
Contents of this paper are as {ollows. In section 2 we review the BD
gravity and provide onr power-law inflation model. In section 3 we explain
the background gravitational wave and its quantization. In section 4 we
investigate the power spectrum of the background gravitational wave.

The final section 5 is devoted to concluding remarks.

2 Power-law inflation

In this section we briefly review the power-law inflation. However,
there are several versions of power-law inflation model [4]. We especially
investigate the model using the BD gravity in the Einstein frame. The
action for the BD gravity in the Einstein frame takes the form
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where ¥ is the BD scalar field, ¥, is the BI) parameter which has mass
dimension, and £, (¢) is the Lagrangian density of matter fields which
lead to the first order phase transition.

We consider the homogeneous BD scalar field ¥ and the homogeneous
1sotropic universe described by the spatially flat FRW metric:

ds® = a@m?(—dn? + dz* + dy’ + dz?), (2)

where 7 is the conformal time. The equation of motion for ¥ and the
Einstein equation are

§+220 = 2 (-2 )£, (). (3)
N\ 871G 2y
(2) = e 58+ enl-Tma0)}, @

where the overdot denotes 2 47 and H,.(¢) is the Hamiltonian density of the
matter fields. We assume that the Lagrangian and Hamiltonian density
are given by

Lm(¢) =~ _[uét"’[‘f HM(¢) = A'I&‘JL"Tv n <7, (5)
La(¢) =~ 0, Hu(d) xxa™, 7, <p <7y (6)
Lam(¢) =~ 0, Hu(¢) xa™, 1, <, (7)

at the inflation (n < n;), radiation dominating (7, < n < 7,) and matter
dominating (7, < n) epochs, respectively. Here Mgyt is the GUT mass
which is taken to be 10'® GeV [7].



To obtain the scale factor a(n) and the BD scalar field ¥, we impose the
conditions that the scale factor, its first p-derivative and the amplitude
of the BD scalar field are continuous at the transition time, 7 = 1, or 7,.
Then the scale factor and the BD scalar field are

1_'7_
3y - 1) -
- _h_ : 8
a( { ET— (=m)¢ n<m (8)
a(m) v 1
= ) - (2= =)m), <n<m (9
(_,;1)(7,_1)(71 ( 7)Th) m<n<m, (9)
g (n=(4—2)m +n)
= S J - 11 . m <7, (10)
A(=m)y=1" (m—-(2-3)m)
U = Yyln (%?)i n <, (11)
= Ym), m <, (12)

where ¥ = 41G¥o* (> 1), h = \/@Méwﬂ(a(ﬁ and ar is an integration
constant. To determine the integration constant a;, we impose the fol-
lowing condition that the effective time-dependent gravitational constant
Gejs(n) coincides with the presently observed value G

Goypim) = e 2VmilboG = (@VG (13)
ef ar 3
= G =(1.22x10" GeV)™? (14)

where 1, denotes the present time. From this condition (14), we see
ar = a(m).

Now we can express the times 7,, 7o in terms of the time 7, from
the following physical considerations. We demand that the reheating
temperature at the end of the inflation is T = 10'¢ GeV ~ 1.16 x 10%
K and that the temperature at which the matter density is equal to the
radiation density is T ~ 6.72x 10K. According to the standard Big Bang
cosmology the relation a x T = constant persists during the cosmological
evolution [8]. From this relation we determine 7, and 7, as

m o~ =17 x 10y, (15)
no ~ —5.4x10%p,. (16)

Note that »; has a negative value.

3 Background gravitational wave

In this section we consider a deviation from the spatially flat FRW
metric, which is denoted by a(n?h;;. We focus our attention to the case
that the deviation h;; exhibits the background gravitational wave in the
weak fleld approximation. The approximate action for the deviation takes

the form (167G = 1)
{ (%) - (Vh”f}, 1)

where A7T is a nonvanishing component of a transverse traceless part of
the deviation hy; [8].
From eq.(17), we easily perform the quantization of this system [9].

2
Saow = /d"ra(;)

As a result, the field operator 77 is given by

e ok  ge .
W7 = [ e {Amee™ 4 A ™) )

where the wave number £ is the comoving wave number, and A; and Al
are annihilation and creation operators, respectively, which satis{y the
following commutation relations:

[A, AL] = 6©OE — k), (19)

[Ax, Aw] = [AL, AL] = 0. (20)

Note that the vacuum state [0 > is defined by A;|0 >= 0.
The mode functions u, are the solutions of the equation of motion:

. a .
uk+25uk+kzuk=0, (21)
where the overdot denotes fy—). We can explicitly solve this equation of

motion (21) at the three stages of the expanding universe in our model,
i.e., the inflation(I), radiation dominating(R) and matter dominating(M)
epochs. The positive frequency parts of the mode functions are

ﬁ AV (])

- Hyi (-2),
2’61/2 a(z) 217—1)( ) (22)

Up(z) =



7 —all = 3) Yo

R
UL (z) = y 23
k( 2k1/2 a(z) \/’ _(2_ _)21 ( )
27 —a(l = 1)(z22 — (2~ 2)21)
o) = 47 HY oD, (28)
YA
where we have taken a new time variable z defined by z = kn, and

H and H® are the Hankel functions. We also define that z, = &n
and z, = kn,. The above equations (22)-(24) satisfy the normalization
condition in the canonical quantization:

/a(n) [ukc"‘ 7 8,, [uT ~ik Fdz = 1(27r)36(3 (k- 1;) (25)
If the Bunch-Davies vacuum [10], which gives the same short-distance
behavior as the one defined in the Minkowski space-time, is chosen for

the initial condition, the mode functions are

I

Uk(z) = up, z < zy, (26)
_ IR R+ /,}IR(uk) , 21 <2< 29, (27)
= eyl + BT, 25 e (28)

where «, 8 are the Bogoliubov coefficients which are given by

y g | 2=k

IR ~ t v —_ = o plR

of e T (=) =8, (29)
29-1

M~ 59(3—_:)_) 5 < 2 > y—1 { L s 781N 2q 21-27}
“ - 4\/— (’)’—1) (1+ 222)6 + 4222 ¢ ’
~(8™M)", (30)
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where I'(-) is a gamma function, and we have used the approximation,
z; K zj.
4 The power spectrum

The power spectrum of the relic gravitational wave at the present time
zg = kno, which is directly related to observations, is defined by

I o
A gy = 167rG(2 )3/d3re“"<O|hTr(r,zo)hTT(0,zo)l0 >, (31)

3 M2 IM 2\, M 2
S+ 187 )y ol

+2Re{a™(B™M) (i)} (32)

From eq.(24) and eq.(30), we get _
e () () (3)
Ahyp; = B — | = Ahk)g (33
P.J. \'/7_|' AJ'( v — ) H k S.1 ( )
1

_ 20y | 3y 2\
VU 7(7—1)< > s W

where Ah(x)g is the power spectrum of background gravitational wave

produced in the standard (exponential) inflationary universe [11], which
is given by AA(K)p 1 ly—oo, and H is defined by \/?M?;UT. This power
spectrum is shown in Fig.1 and Fig.2. Here we identify the present Hubble
horizon with 6000Mpc (>~ 1.6 x 107!® Hz). When 7 > 1, the power
spectrum AA(k)p ;. at the horizon scale (zp =~ 2) is about 105 times
greater than Ah(k)g ;.

5 Conclusion and Discussion

We have investigated the background gravitational wave produced in
the power-law inflationary universe described by BD gravity in the Ein-
stein frame. As a result, we have obtained the power spectrum Ahk)p;,
which is about 105 times greater than Ah(k)g; at horizon scale.

Our present result differs from the previous calculations by many au-
thors [5]. They obtained the power spectrum for 7 3> 1

2H\7
Ab(kypr ~ (T) Ahk)g g, (35)

on the analogy of the power spectrum of scalar field. They concluded
that the power spectrum Ah(k)p ; at the horizon scale is about 10% times
greater than Ah(x)s .

The difference arises from the treatment of integration constant aj;.
Assuming that h =~ H, ie., a5 =~ 1, from eq.(33) we would get the same



result. However, this assumption a; ~ 1 is wrong in our model because
{from eq.(13) the eflective gravitational constant is

G filro) = a(;.)_TZG ~ 105 x ¢ # G (36)

That 1s, to obtain the correct power spectrum, we need to provide a con-
crete cosmological evolution model of universe and to solve the equations
of motions carefully. We must not use the analogy of the scalar field to
simplify this problem.
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Figure captions

Fig.1

The power spectrum of the background gravitational wave Ah) is
plotted as a function of the frequency, &/2, for v = 50.

Fig.2

The amplitude of the background gravitational wave whose wave length
is equal to the horizon size is plotted as a function of the power index 7.
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