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ABSTRACT 

We fc,rmulate stochastic noncontextual hidden variable theories. In such theories the 

hidden st:).te ~ specifies, not definite values, but expectation values A(~), ... of observables 

A, ... and noncontextuality means that A(~) is independent of which ot:ler commuting 

observables commuting with A are measured together with A. We show via lJell inequalities 

that such theories conflict with quantum theory and propose a two photon experimental 

test. We also show that for a single particle of spin (2ft - 1)/2, quantum violation of 

classical noncontextuality grows exponentially with n. 
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Stochastic noncontiextual hidden variable theories. Let Al (a1), "', An(an) be dy­

namical variables corr.~sponding to different degrees of freedom of a given physical system, 

the settings of the apparatus measuring A;(aj) being denoted by aj. In quantum theory 

the dynamical variables are represented by observables A,(ail, with 

(1) 


In a hidden variable theory, the state of the system may.be characterized by variables A 

(which may include the quantum state vector as well), with p(A) being their probability 

distribution obeying 

p(A) ~ 0, IdA p(A) = 1 (2) 

For given A, the dynamical variables have expectation values A1 (A, a1), A2(A, a2), "', 

An(;\, an), noncontextuality implying that Ai depends only on A and ai, but not on aj 

with j =Fi. We assume that by the very definition of the Ai, IAil' :51 (e.g. Ai = +1 for 

transmission through a. polarizer and -1 for non transmission) , and hence that 

(3) 

Further, in complete an.alogy to Bell's argument for local stochastic theories8 we define non­

contextual stochastic theories to be those in which JtA;(A, a17 a2) = A1(A, al) A2(A, a2). 

To motivate this, suppose that A,(;\, ai) is the average over hidden variables Ai of the ap­

paratus which measures Ai to be Ai(A, Ai, ail. Noncontextuality requires that Al (A, A17 at) 

and the probability distribution P1 (A1) of A1 must be independent of which commuting 

variables are measured together with A1 and in particular of A2, a2. Hence 



The n-variable correlation {unction thus has the representation, 

P(at, a2,' • · , a,,) = jd>. p(>.) ft A.(>', ail· (4) 
i=1 

The corresponding quantum correlation function in a state "p is 

n 

[P(al, a2,"', an)]", = ("pI IT A,(a,)I1/1)· (5)
,=1 

As we show below, Bell's work applied to the above formulation entails the following 

theorem. 

Theorern. There exist quantum systems {or which some experimentally verifiable quantum 

predictiol1s cannot be reproduced by any no,ncontextualstochastic hidden variables model; 

i.e. there exist quantum states "p such that 

(6) 


On the other hand it is obvious that the representation for n-variable correlation func­

tions assumed {or stochastic noncontextual hidden variable theories necessarily holds in any 

classical theory. Hence the noncontextuality inequalities derived below yield a quantitative 

measure of the amount by which quantum theory must violate any classical theory. 

Proof of the theorem for two spin 1/2 particles and an experimental test of 

noncontextuality. Let ii1 and ii2 be the Pauli spin operators for two particles. Then 

(7) 

if ab a2, hI, b2 are unit vectors obeying ai 1. bi, i.e., a1·b1 = ilJ .b2 = O. Notice that Eq. (7) 

is not rela.ted to locality. Let us denote a = {at, a2}, b = {b1,b2}, and A(a) = ii1· al ii2'~; 
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then A(a) has eigenvalues ±1, and [A(a), A(b)] = 0. Hence, in a stochastic noncontextual 

hidden variable theory we must have the correlation function P(a, b) obeying· (4) with 

(A(A, a»' :$ 1. This lea.ds to Bell's inequalities, 

I.P(a,b) P(a,b')1 + IP(a',b) +P(a',b')1 :$ 2, (8) 

provided that ii;, 1- bi' ii;, 1- b~, i.i~ 1- bi' i( 1- b~ for i = 1 and 2. On the other hand 

quantum mechanics gives in the singlet state 'f/J, 

(P(a:.b))Q.M. = {'f/JIA(a)A(b)I'f/J} = (al x bd .(a, x b2). (9) 

The orthogonality conditions on a, b are obeyed if we choose 61 , bi, a2 and a, along the 

negative z-axis, ht = hi = a, = i.i2 = (0,0, -1), and th~ remaining vectors in the z -1/ 

plane. In particular, the choice a1 = (1,0,0), ~ = (0,-1,0), ~ = (-1/V2,1/V2,0), b2= 

(1/V2, 1/y'2, 0), leads to 

I{P(a,b) -- P(a,b')}Q.M.1 +I{P(a',b) +P(a',b')}Q.M.1 = 2V2, (10) 

which violates the noncontextuality inequality by a factor v'2. This proves the announced 

theorem. For experime.ntal purposes, a two photon version of the violation of noncontex· 

tuality by quantum mechanics might be more practical to test for the two photon state, 

¢ = (lz}ly) -Iy}lz}) /v'2, where Iz} and 11/} denote photon states plane polarized along z 

and 11 axes respectively. Replacing if by the 3 x 3 photon spin operator f which equals if 

for z and y components of photon spin wave function and has zeros on the third row and 

third column, we obtain as before Eq. (9), which violates the Bell inequalities 'following 

from noncontextuality by a factor 0, for the choice of a, b, a' ,b' given already. 

The experiment (Fig. 1) with a two-photon source of the kind used in Ref. 7 or 8 

will provide a test of the quantum superposition principle against the classical idea of 

noncontextual realism in a situation where locality is not the issue9 • 
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Power Law Violation of Classical Behaviour For a Particle of RiCh Spin. A strik­

ing consequenc!e of the above formulation of stochastic noncontextual theories (entirely 

outside the scope of Bell's locality theorem) is the following result. For a single particle of 

spin 5 = (2" - 1)/2, where n = 1,2,3, ..., quantum theory violates noncontextual realism 

by a factor (5 +1/2)1/2 if n is odd, and (5 +1/2)1/2/../2 if n is even. 

A particle with spin 5 may be described quantum mechanically by means of a (25 +1) 

component wave function 1/1 in a suitable orthonormal basis 10 >. When 25 + 1 = 2", 

we may choose the labels 0 to be n-tuples: Q =mlm2 .. .mn , where m, = ±1 (or simply 

m, = ±). Thus 

a 

Consider the Hermitean operators Ai(ai) with matrix elements 

(o'IAi(a,)lo) = (iT· ~)mim. II Dmimj, i = 1, ... n, (11) 
i#i 

,._, , d th.... P u1i t . .hw ere Q := ml ... m", an e 0' are a ma nces, I.e. 

Then A:(ai) equals the unit matrix and hence each A,(a,) has eigenvalues ±1. Further, 

for i =1= j, 

(a'IAi(ai)Aj(aj)la) = (at. ~)m~mi(at. ilj)mjmj IT 6m~m., 
Ic#;',j 

which shows that the A1(al),'.' ,An(an) are mutually commuting operators. Hence we 

obtain the representation (4) for their correlation function in stochastic noncontextual 

theories. 
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We now derive inequalities on linear combinations of the correlation functions P(a1,' .. , an) 

using the methods of ~fRS4,6. Consider 

F(n) = IIn 

[A,(a,) + i71,A,(aDl, A(n) = (F(n) + F(n)t) /2,B(n) = (F(n) - F(n)t) /(2i). 

'=1 (12) 

where 71, = ±1. Then,A~n) = (1/JjA(n)j1/J), B~n) = (1/JjB(n)I1/J) involve only linear combi­

nations of quantum correlation functions in the state 1/J. Their hidden variable analogues 

are 

(13) 

F(n)(~) = II
n 

[A,(~, a,) + i71,Ai(~' aD] . (14) 
,=1 

Since the A(n)(~) and B(n)(~) are linear functions of each of the arguments Ai(~' ai) 

and A,(~, aD their manma and minima on varying the arguments between -1 and +1 

must be reached on th~: boundary, i.e., for each argument = ±1. It follows that 

(15) 

where 

Pn= 2(n-1)/2 for n odd; Pn = 2n/2 for n even. (16) 

We now show that these nonco'ntextuality inequalities can be violated by quantum corre­

lations. Choose all 71, =: +1, all ii, = z, all a~ = iJ, and for 11/J > consider the choices 

14>± >= (I + + ... + > ±il- - ... - » /-12, Ix± >= (I + ... + > ±I- ... - > )/-12. 
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Then, 

(17) 

hence the quantum mechanical expectation values A~n) and B~n) equal ±2n
-

1 for 1/J = X± 

and tP± rt~spective1y, violating the noncontextuality bounds (15) by a factor 2(N.-l)/2, with 

N = n fo1" n odd, and N = n -1 for n even, as announced. We expect that the result for 

even n can be improved following the methods of Ref.5 and that similar violations could 

be proved also for S f:. (2n - 1)/2. 

Consequences for Measurement Theory. The above power law violation of classical 

behaviour for a single particle is qualitatively new with respect to the MRS violations for 

n spin 1/2 particles. The MRS violations arise from quantum states which are superposi­

tions of distinct states of a macroscopic number of particles. Since such 'grotesque' states 

have not been observed in nature, one possibility is that such states undergo spontaneous 

localization jumps as in certain measurement theorieslO thus removing the exponential 

departure from classical behaviour. The jumps proposed in Ref. 10 have Significant prob­

ability only for a large number of particles. In contrast the growing power law violations 

here reported are for a single particle of high spin; modifications of quantum theory more 

general than Ref. 10 are needed to avert these large violations. 

We thank S.S. Jha for informing us of Ref. 11 which discusses elliptic pola.rizers needed 

for the experiment proposed here, and Gisin and Peres for informing us of their work.6 
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Figure Caption 

Fig. 1. 	Schematic diagram of experimental apparatus to test the noneontextuality inequality. 

The source S emits two photons in the polarization state (lz)ly) -ly)lz)/V2, along 

-z and +z·axis. The left photon goes through an elliptic polarizer measuring El -al = 

Tl := ±1, and then through another elliptic polarizer measuring El · '&1 :::-: 81 = ±1. 

The right photon similarly goes through two channel elliptic polarizers l.oeasuring 
... ..... .... ..... 	 ...... 
Ih · a, = T, = ±1, and lJ, · 6, = 8, = ±1. Here, al .L bt and a, .L 62, Detectors 

on the left and right are wired to measure 24 = 16 coincidence counts NrllJi.r'J'" and 

hence P(a,6) =' 2: TI T,S18 , Nrltlll1r2112/ 2: Nr161tr2t62' 
rl ,1J1,r2,1J2 
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