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One of the basic sets of functions in number theory is the set of 

arithmetic functions, namely functions whose domain is the po~itive 

integers Within this set, the multiplicative functions playa 

fundamental role . The mUltiplicative functions are arithmetic 

functions that satisfy the additional property that 

f(a) feb) = f(ab) for (a, b) =1 , (1) 

where (a, b) denotes the greatest common divisor of the integers a 

and b. In this paper, I will describe how multiplicative functions an: 

naturally when one considers quantum systems which are , 

essentially, generalizations of Einstein's oscillator model of solids. It 

will then follow that a variety of very natural physical consideration 

will correspond to some standard mathematical constructions, and 

physical reasoning will lead to various basic mathematical results . 

These results shed useful light on the relationship between physic 

and mathematics . Overall, the idea that quantum systems provide c 

natural arena for number theoretic considerations is a very promisin 

one, rich in its potential applications. Already there has been some 

work in this general area [1,2,3] Typical results previously obtainec 

include the explanation of the Mobius inversion formula by means of 

supersymmetry, and the suggestion of how the validity of the 

Riemann hypothesis [4] might be ascertained by studying certain 

quantum mechanical systems . The isomorphism introduced in this 

paper between multiplicative functions and certain quantum operator 

therefore seems qUite worthwhile, as it extends the basis from whid 

one can continue to understand from new vantage points, and to 

obtain new results in, both number theory and physics 

To begin, consider first Einstein's model for the specific heat of 

solids [5]. Let Hose represent the Hamiltonian for a single one

dimensional quantum harmonic oscillator, then Einstein treated the 

Dirichlet Convolu tion, 
and - , 
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ABSTRACT 

The number theoretic notions of multiplicative functions and of 
DIrIchlet convolution are shown to have natural physical 
interpretations in the context of certain quantum systems, the 
prototype of which is Einstein's oscillator model of solids. Various 
number theoretic results are obtained using physical insights, 
and Dirichlet convolution is shown to correspond to the 1055 of 
information when distinguishable excitations are treated as 
indistinguishable . An especially appealing feature is that the 
concepts involved are both mathematically fundamental and 
physically natural 
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Hamiltonian of a solid as a set of non-interacting oscillators, three 

non-interacting oscillators acting at each lattice site. Thus the full 
3# 

Hamil tonian is HsolJd =L 1(;, where Hj =Hose for all j =1, 2, . . , 3 N 1 
If=l 

In this paper, I will consider generalizations of this system. In 
00 

particular, I will consider the Hamiltonian H = L Hk , where each Hk 
k=1 

is any quantum mechanical Hamiltonian with a purely discrete 

spectrum . In contrast to Einstein's model, all the Hk's can, and In 

general will, be different from one another. Such a system is a very 

simple example of a quantum field theory . For simplicity, we will 

always take the Hk to be Hamiltonians for one-dimensional systems. 

However, considering d-dimensional Hamiltonians is a straightforward 

generalization, should one wish (or have) to deal with degeneracies . 

will refer to the individual Hk's as the "site Hamiltonians" and to H 

as the" full Hamiltonian". In contrast to Einstein's model, all the Hk 's 

can, and in general will, be different from one another. 

To make contact with number theory, we label states as follows. 

Denote the prime numbers in order of increasing magnitUde as PI, 

P2 , P3, etc Thus, PI = 2, P2 = 3, P3 =5, etc. The Hilbert space 1e of 

H is the tensor product of the Hilbert spaces 1e k of the individual Hk 

Label the eigenstates of Hk in order of increasing energy as I(p;) n >, 

n =0,1,2, ... ; thus the ground state of Hk is 11>, the first excited 

state of Hk is Ipk >, and I(p;) nl > has higher energy than I(p;) n2 > 

whenever nl> n2 . Then one can employ the notation that the 

eigenstates of the full Hamiltonian H are IN>, where if the prime 
00 

decomposition of N= n(p;) nk for the non-negative integers 11k, the 
k=1 

IStrictly speaking, one should write lxlx . xl XH XIx· . 1 in the summationJ 
rath~r than Hj' but it will be cl~arer simply to I~ave such matters implicit. 

4 

state IN> is defined as 
00 

IN> = ® I(p;) nk > (2) 
k=1 

(On the left side of (2) is a state in :Je ; on the right side of (2), the 

same state is written as the tensor product of states, with one state 

in each of the Hilbert spaces :Je k .) With these definitions and 

conventions, the states IN>, N=1,2,3, .. , span the full Hilbert 

space of the Hamiltonian H 2 For convenience, we always take our 

states to be normalized. 

Of course, since the site Hamiltonians are non-interacting, the 

partition function of the full system is just the product of the 

constituent partition functions, 
00 00 

Z= tr e-~H = n tr e-~Hk = n Zk (3) 
k=l k=1 

Furthermore, there is also a very natural set of operators, namely 
ro 

operators A such that A =® Air., where each Air. is an operator 
k=1 

acting on the Hilbert space of the Hamiltonian Hk Thus, for example 
00 

<NIAIN> = TI«p;)nkIAkl(p;)nk> (4) 
k=l 

I will call an operator A that decomposes a la (4) a multiplJcative 

operator . For convenience, I will always consider mUltiplicative 

operators which are diagonalized in the energy eigenstate basis I am 

using; this simplification will be sufficient for the purposes of this 

paper. The simplest example of a multiplicative operator is exp(-I)H) 

this fact is related to (3). 

(Often in quantum mechanics one considers operators a such tha 

one has an equation analogous to (4), but with the infinite product 

replaced by an infinite sum. These operators correspond to additive 

2Any state that would correspond to a divergent .nfmite value of Nin this 
scheme is a non-phYSical stale of infinite energy. 
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functions Given such an operator a, one can construct an operator 

A = exp(a) which does obey (4).3) 

The above set-up has not been required because the physics is 

complicated . Quite the opposite is true. the physics is remarkably 

simple. It is merely that the labelling of states used above is 

unconventional that it has taken a few paragraphs to lay the 

groundwork. If the reader is comfortable with the labelling of states 

used, the remaining results will follow quite straightforwardly. This 

labelling of states is important, as it is the tool we use to identify the 

positive integers in a natural way with quantum states, and hence to 

relate arithmetic number theory to quantum mechanical systems . 

Given a quantum system as described above, with states labelled 

as indicated, it is possible to define an arithmetic function 

A(N) = <NIAIN> (5)
<lIAll> 

Remember that A is a mUltiplicative operator The key observation IS 

that the requirement that the individual site Hamiltonians be non

interacting implies that the function A(N) is a multiplicative 

function I (The normalization in (5), ie, dividing by the vacuum 

expectation value <liAil>, is neces'o,\[ y here . ) Note that two integers 

N1 and N2 are relatively prime if and only if the corresponding states 

iN1> and IN2> are such that every site that is excited in iNt> is in its 

ground state In IN2>, and vice versa. By (4), then, A(N) is a 

multiplicative function, according to the definition (1) . Conversely, 

for any mUltiplicative function A(N), one can define a multiplicative 

operator A that, when used in (5), reproduces A(N); in particular, 

3In conSidering invariances, operators such as a correspond to generators of the 
algebra which generate infinitesimal transformations, while operators such as A 
correspond to group elements which implement finite transformations . 
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one can define A by 

<NIAIM> = A(N)oN,M (6) 

Thus there is a correspondence between multiplicative functions 

and certain quantum operators in systems of non-interacting site 

Hamiltonians . (For real-valued multiplicative functions, these 

operators are observables) While interesting in and of itself, this 

result is also important for the power it gives one to devise physical 

arguments to obtain number theoretic results 

Suppose there are two multiplicative operators A and B, when 

are these two operators equivalent? Clearly, it is necessary that for 

all ~, 

tr A e-~H = tr B e-~H (7) 

However, since the constituent Hamiltonians in H are independent, A 

and B will be equivalent if and only if at each site A and B have 

identical thermal expectation values, i. €' . , provided that, for all 

positive ~ and all positive integers k, 
co 00 

I < (p.0 n iA e-~HI(p,,J n > =I «p.0 niBe-~Hi (p.0 n > (8) 
n=1 n=1 

Mathematically, (8) implies that two multiplicative functions are 

identical whenever 
co co

I A(pn) ...,-~Epn = I B(pn) .,-~Epn , (9) 
n=l n=l 

for the set of real numbers EN corresponding to the spectrum of any 

system of site Hamiltonians (EN;: <Ni HI N » . 

This result (9) generalizes a well-known mathematical result 

Define the Bell series modulo p (p is a prime number) associated with 

the function A to be [6) 
co 

Ap(x) =2: A(pn) xn (10) 
n=1 

In the special case in which the site Hamiltoman Hk corresponds to a 
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harmonic oscillator of frequency wk (with the ground state energies 

normalized to zero), the energy eigenvalue of the state IN> is simply 

w N For this system, the two sides of (9) become the Bell series 

modulo p associated with A and B, respectively . Consequently, uSing 

this harmonic oscillator system, we see that the two operators A and 

B are equivalent, and thus that the two multiplicative functions A 

and B are equivalent, provided that the functional equality 

Ap(x) = Bp(x) (11) 

holds for every pnme p. Thus we obtain the standard number 

theoretic result that two multiplicative functions A and Bare 

identical if and only if for each prime p their Bell series are equal 

[6] We note also that (8) actually provides a generalization of Bell 

series and results about them, as the harmonic oscillator system IS 

only one of an infinite number of Hamiltonians for which the 

considerations of this paper apply . 

We now consider a more general scenario. Consider a situation in 

which one has two Hamiltonians if and fI, such that if and N are 

formally the same, each built out of an identical set of site 

Hamiltonians . At site k, the Hamiltonian is the sum Hk +ilk , with the 

two terms duplicating each other. We imagine that there is a 

quantum number (such as flavor) that distinguishes between the 

excitations of if and N, but that this quantum number has no (or 

negligible) other effect on the physics 

Now consider two physicists, one who has an experiment that 

can distinguish between the excitations of if and 11, and one who 

has an experiment that cannot . To make this idea more specific, 

imagine that physicist #1 is aware that there are two types of 

creation operators, say at and b', while physicist #2 believes there is 

8 

only one type of creation operator, say ct. So physicist #2 will 

c tinterpret any aT or b' excitation as another excitation 

The first physicist might independently measure two observables 

(or other operators) . f, which acts on the Hilbert space ie of if; and 

g, which acts on the Hilbert space i of 11 . Both f and g are taken 

to be multiplicative operators in their respective Hilbert spaces , and 

to be diagonalized by the energy eigenstates Of course the full Hilbert 

space is the tensor product of these two constituent Hilbert spaces, 

and in this space one can consider the operator f@g. The thermal 

expectation value of this operator is given by 

tr[f exp(-~H)] tr[g exp(-~fI))
<f®g> (12)

tr[(:'xp(-~if)] tr[exp(-~1I)] 

Now what can the second physicist measure? This physicist is 

unable to distingu is h between the excitations of if and H, and so can 
~ ~ 

only measure operators without reference to Hand H. The second 

physicist would label the states of the system by integers IN>; but 

each of these states would, in general, correspond to several sta tes 

which are distinguishable only to the first physicist . 

To be more precise, the first physicist would label states as 

IN, N>, where the integer N (N) refers to the state in the Hilbert 

space Ie (i), according to the numbering scheme introduced in the 

previous portion of this paper. The second physicist would call this 

same state IN> , where N = N-N The fact that this mapping from 

states IN, N> to states IN> is many-to-one reflects the loss of 

information in going from the first to the second physicist's 

experiments 

We are now led to the natural question . What operator for the 

second physicist is equivalent to the operator f€lg? And what are its 
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properties? We first discuss these questions physically" and then 

provide number theoretic interpretations of the results . 

Let us denote by • the operator to which f@g reduces in the 

second physicist's experiment Then it is clear that 

<NltIN> = A ~ <N, Nlf@gIN, N> 
NxN =N 

A ~ <NlfIN><NlgIN> (13) 
NxN=N 

where the sum is restricted to those values of Nand N whose 

product is N. Furthermore, the thermal expectation values of these 

operators have to be related by 

<t>~ = <f) . <g) , (14) 

where < >~ is the thermal expectation value at inverse temperature ~ 

in the full system, and < >; « >;) is the thermal expectation value 

restricted to the Hilbert space it (X) . 

Finally, we note that the operator t is itself also a multiplicative 

operator whenever f and g are In the Hilbert space constructed by 

physicist #2, t still does not couple independent sites, and it is clear 

that, under the labelling of states used by physicist #2, t meets all 

the conditions to be a multiplicative operator The detailed discussion 

of physicist #1 is, in fact, essentially superfluous in recognizing that t 

is a multiplicative operator. 

We now translate these results into mathematical terms . Upon 

defining the three anthmetic functions ¢(N) = <Nlt\N>/<llt\l>, 

feN) = <NlfIN>/<llfll>, and g(N) = <NlgIN>/<1IsI1>, we see from 

(13) that (switching to the conventional mathematical notation) 
<Xl 

4>(N) = "') f(d)g(N/d) , (15)
dfN 

where" I d IN" means the sum over all integers d that are divisors 

of N The composition law given in (15) is called Dirichlet convolution 
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by mathematicians, Dirichlet convolution is conventionally denoted by 

*, and so (15) may be rewritten as <l> = I-g . Thus we see that 

Dirichlet convolution has a natural physical interpretation, it arises In 

the situation in which there is a quantum number that distinguishes 

between two systems that are otherwise indistinguishable , and one 

wishes to compare the results of a physicist who is sensitive to this 

distinction with the results of a physicist who is unaware of it. (Of 

course, historically, one expects that objects thought identical will 

later turn out to be distinguishable, but not the other way around I ) 

I t was noted above tha t • is itself a m ul ti plica tive opera tor as 

long as f and g are . Mathematically, then, this becomes the 

statement that the function ¢ is multiplicative whenever / and g are, 

1. e., that the Dirichlet convolution of two multiplicative functions 15 

itself a mUltiplicative function . It is quite illuminating to have a 

physical under standing of this result . It is worth noting that this 

mathematical result is one of the reasons multiplicative functions play 

a special role in number theory, it enables the multiplicative 

functions to form a group under Dirichlet convolution 

[n addition, result (14) is a generalization of a famous result In 

the theory of Dirichlet convolution. One can re-write (14) as 

tr[.exp(-~(H+H))) = tr [f exp(-~H)) tr [gexp(-~H)) , (16) 

uSing the fact tha t 

tr[exp(-~(H+H)) = tr[exp(-~H)) tr [exp(-f3H)) (17) 
A ~ 

Let us specialize to Hamiltonians JI and JI such that the state 

IN, N> has energy w[log(N)+log(N)] In this case, in all three 

Hilbert spaces H, fe , and ;e , the state 1M> has energy wlogM For 

this particular system, (16) reduces to

I hg(n) (18)= I£0l· Irl4 
n=l n )=1 j S k=l k~ 
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where 5=~W, and where we have invoked the result (15) that 

q,= f-g The infinite sums in (18) are called Dirichlet senes, 1. e, 

"Lk:l {g( k) / kS}" is the Dirichlet series associated with the function 

g. Thus the result (18) is the statement that the Dirichlet series of 

the convolution of two mUltiplicative functions is equal to the product 

of the Dirichlet series of the two multiplicative functions One should 

note also that (18) is just a special case of the more general result 

(14), and so, once again. this time in the guise of equation (14). 

quantum mechanics has led us to a generalization of a standard 

number theoretic result. 

It is worth observing that (18) is true for all arithmetic functions 

land g. not just mUltiplicative ones. The attentive reader will notice 

that nowhere in the arguments leading to (18) was it essential for I 

and g to be multiplicative; that was only essential for the claim that 

<p is multiplicative Hence there is no undue restriction in the results 

given above The interested reader can work out the details 

Thus we have seen that some of the central ideas of arithmetic 

number theory have simple physical interpretations and motivations. 

In this paper, I have shown that the notion of a multiplicative 

function arises naturally when considering systems that consist of 

several non-interacting sites. The prototype of all such systems IS 

Einstein's oscillator model which he used to compute the specific heats 

of solids. Furthermore. I have shown that composing two functions 

by means of Dirichlet convolution represents the loss of information 

when one neglects a quantum number that distinguishes between 

what is otherwise a twofold degeneracy. Furthermore, on physical 

grounds we obtained the results that the Dirichlet convolution of two 

multiplicative functions is itself a multiplicative function. and that 

the product of the Dirichlet series of two arithmetic functions is the 
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Dirichlet series of the Dirichlet convolution of the two functions. These 

results, along with those of [1,2,3]' clearly justify the claim that 

arithmetic number theory has a very natural relationship to the 

physical properties of quantum systems. Importantly, not only is 

there a mapping between number theoretic and physical concepts, 

but also ideas which are natural and/or important in one language 

are likewise natural and/or important in the other language 

This is a very promising situation In results such as (8) and 

(14), physical reasoning has led not just to the standard number 

theoretic results (which arise when one considers certain particular 

Hamiltonians), but in fact to generalizations of those results. Thus 

there is every reason to expect that continued application of physical 

ideas to number theory will lead to a fresh understanding of number 

theory Similarly, the long history of number theory has produced 

many deep results, and these, in turn, should have an impact on 

physics. It is already known, for example, that the mathematical 

theory of partitions can be used to obtain examples of bose-fermi 

equivalence, as well as to study the spectrum of states in string 

theory. With the continued development of identifications between 

arithmetic number theory and quantum mechanics such as is 

described in this paper, the prospects are promising for continued 

fruitful cross-fertilization 

thank Mitchell Spector for some discussions on number theory. 

After this work was completed, but before it was written up, [2,3] 

were brought to my attention. In particular, [2] mentions the 

relation between multiplicative functions and a lack of interactions. 
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