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The high temperature behavior of a class of surface models with exponentially decaying non-local potentials is studied. The exis-

tence of a phase in which fluctuations in the interface described by the wodel grow logarithmically with the separation between the points 

of observation is proved. Since these models presumably possess a low temperature phase with uniformly bounded fluctuations, this establishes 

the occurrence of a roughening transition for these models. The possible extension of these results to models of surfaces with overhangs is 

briefly discussed. 
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transformation to rewrite the model as a spin system whose CQrrelations may be bounded by complex translations. The lower bound combines a 

Mayer expansion with renormalization group ideas. 
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I. l. Background 

This thesis is concerned with the study of a class of models 

obtained by introducing non-local potentials into the solid on solid 

(SOS) model. A certain class of such potentials is shown to be made up 

of "irrelevant operators" in the sense that there exists a high temper-

ature "Kosterlitz Thouless" phase in which fluctuations inthe height 

of the interface described by the model grow logarithmically with the 

separation between the points of observation. More specifically, we 

prove the existence of a range of inverse temperature, B, wherein there 

exist positive constants cu(B,JJ and cL(8,JJ such that 

~ <(h -h J
2

>, ~ c (8,J)£n(l+lxl> 
0 x ll u 

(I. l) 

In addition to extending the class of models in which a roughening 

transition is known to occur, we show in the next section that these 

models represent a first step toward understanding the existence of 

roughening transitions in models of surfaces with overhangs, like the 

1 

three dimensional anisotropic Ising model. A heuristic but enlightening 

argument that such models should possess a roughening transition was 

given by Burton, Cabrera and Frank [10]. Consider an Ising model on a 

cubic lattice. Choose coordinate axes so that the z = O plane lies 
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between the two center planes of spins. Choose boundary conditions so 

that the boundary spins are forced to be +l if the site under consid-• 

eration lies above the z = O plane, and -1 if it lies be.low the 

z = 0 plane. At temperature T = 0 we expect all randomness to be 

"frozen" out of the system and we get a separation into two regions with 

all up or dawn spins. This gives a flat interface between the two 

phases, and is represented in Figure l(a). 

Now consider what happens when we raise the temperature slightly 

above zero. In the layer of spins just above the boundary between the 

two phases, we expect the effects of positive spins from above the in-

terface to approximately cancel the effects of negative spins from 

below. Thus this plane should behave like a two dimensional Ising 

model, which for sufficiently small temperature still possesses a net 

magnetization, and gives rise to a nearly flat interface, as depicted 

in Figure l(b). In Figure l(c) we examine what happens in this model 

for temperatures above the critical temperature of the two dimensional 

Ising model, but below the bulk critical temperature for the three 

dimensional Ising model. Although far from the z = 0 plane, we still 

expect a net magnetization, whose sign depends on whether we are in the 

upper or lower half of the system, near the interface, where the 

behavior is similar to the two dimensional Ising systems, the net mag-

netization will disappear, and the interface between the two phases 

will become quite convoluted. This signals the occurrence of the 

roughening transition. 

For the two dimensional Ising model, this argument predicts that 

the interface should remain rough even at very low temperatures, a fact 
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Figure I.l. The Burton, Cabrera and Frank argument. 
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which was verified by Gallavotti [16). 

Our proof of the lower bound of (I.l) combines the renormalization 

group method of Frohlich and Spencer (14,15] with Mayer expansion tech

niques. The mathematical understanding of the renormalization group is 

still at a preliminary stage, but its uses to date fall into two broad 

categories. In the first of these, the effect of some transformation 

on the dynamical function of the theory (e.g., the Hamiltonian of a 

statistical mechanical system) is considered. Fixed points of this 

(renormalization group) transformation are sought in some appropriate 

function space, and then critical exponents, scaling relations, and 

other information about the system near its critical point may be 

derived. Examples of systems in which this procedure has been carried 

out are provided by [6, 11, 12, 18, 19, 20, 21). 

In the second group of studies, more modest goals are pursued. In 

these works the inductive ideas which underly the renormalization group 

are used to control some aspect of the theory in a finite volume, but 

one does not attempt to answer the more difficult questions, such as 

whether or not this inductive procedure leads to a renormalization 

group fixed point. Examples of this sort of use of renormalization 

group ideas are provided by [2, 3, 5, 14, 15, 24]. 

The lower bound of the present work falls into the second class of 

renormalization group studies. Our models are first rewritten as a 

"gas" of interacting charge densities. Unfortunately, certain of these 

charge densities possess very large entropy factors which make correla

tions in these models difficult to estimate. We control these entropy 

factors by using the complex translation technique, developed by 

4 ) 
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Frohlich and Spencer [15], to extract some fraction of the self-energy 

of these charges on larger and larger distance scales. This inductive 

procedure is closely tied to the renormalization group [28, 29). The 

small factors which result from this procedure are shown to dominate 

the entropy of the charge densities for some range of temperature. Be

cause of the non-local potentials present in our model, long range in

teractions exist between the renormalized charge densities. The 

principle contribution of this section of the thesis is to show how the 

Mayer expansion techniques [9, 27], useful in the study of systems far 

from a critical point, may be used here to control the interactions in 

this critical model. 

5 

The upper bounds we prove on fluctuations in these models combine 

the complex translation techniques of McBryan and Spencer [30) with the 

duality transformation [15, 31) relating the sos and discrete Gaussian 

models to two dimensional spin systems with nearest neighbor interac

tions. The duality transformation depends on the fact that the interac

tions between columns in the SOS model involve only nearest neighbor 

sites and hence it is not immediately obvious how these ideas would be 

applicable to models which contain non-local potentials. It is demon

strated that although one cannot transform these models into spin sys

tems with strictly nearest neighbor interactions, the dual transform of 

the partition function of the perturbed SOS model can be written, using a 

Mayer expansion combined with the algebraic formalism of (4, 7, 17,25,26) 

as a two dimensional spin system with a set of very complicated non

local interactions. Despite these complications, the Mayer expansion 

yields sufficient control over the potentials that one generates to 
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prove the logarithmic upper bound. 

In both the upper and lower bound, the use of the Mayer expansion 

is somewhat novel in that one has less control over the state about 

which one is expanding than is typically the case. Usually, one expands 

about an exactly solvable (e.g., ideal gas) state, or about some state 

over which one has strong control by means of a cluster expansion. In 

the present case neither of these applies. It seems that the applic-

ability of the expansion is not much affected by this restriction, how-

ever, but rather one just limits the sort of questions one is allowed 

to ask about the resulting system. 

) ) 
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I.2. The Definition of the Models 

We now define the class of models we consider. Let A be a square 

region in lR 
2

, centered at the origin, of side length (2m+l), m EZ: • 

We shall require for technical reasons that > A , where 
0 

is 

the number of sites in z: 2 n A, and A is some 0(1) constant defined 
0 

in Appendix I. We consider models whose partition functions are given by 

The sum over {h}, 

-s I I h. -h. / 
<. '> l. J I e l.,J 

{h} 

runs over all configurations of 

' h. = 0 
l. 

on Z:
2

, whi' ch obey h b t e oundary conditions 

(2.1) 

integer valued fields 

for all sites 

Here, and throughout this work, <i,j> will denote a pair 

of nearest neighbor sites in 
2 z: . Because of our boundary conditions, 

the sum over nearest neighbor pairs may be thought of as running over 

all pairs in z: 2
, or merely over those pairs which intersect A. The 

sum over X c A runs over all connected sets of plaquettes in the dual 

lattice, z: 2* ( Z:+ ~) 2 , which are contained in A. The non-local 

potentials V~(·) are assumed to depend only on the values of the 

field {h} at sites in z: 2 
n x. We denote this restriction of the 

field configuration by {h}/ x· 
Our results require that the functions 

restrictions. Specifically we require 

(a) Inversion Symmetry: We assume that 

obey certain 

is invariant under 

the change in the field configuration, {h} + -{h}. 
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(b) 

(c) 

Nearest Neighbor Dependence: We assume that depends 

not on the absolute values of the field {h}lx but only on 

the differences in height at adjacent sites in z
2 

n x. 

Referring to Figure 2 this means that depends only 

on h1-h2 , h
2
-h

3
, and h

3
-h4 . We denote this fact by writing 

(in a slight abuse of notation) 

(2.2) 

V~({h} Ix> s exp(-JlxJ), independent of {h}. 

We shall also assume in .hapter IV that unless 

JxJ ~ 3. This, however, is not a real restriction since if 

~({h}lx> ~ 0 for lxl = 1,2 we can always absorb these potentials 

into y the set with Jy I = 3 and X c Y, and then re-

define J if necessary. 

We now discuss the origin of these models. Previous to this work 

the only models in which the existence of a roughening transition had 

been rigorously demonstrated were the Discrete Gaussian and SOS models 

[15]. These models both attempt to describe the behavior of surfaces--

presumably at the interface between two phases of some system. In each 

case the shape of the interface is specified by associating to each 

site in 21:
2 an integer and assuming that the integer h. 

l. 
specifies 

the height of the interface at the point i. These models possess two 

crucial restrictions. First, they prohibit direct interaction between 

lattice sites more than one lattice spacing distant from one another. 

) ) 
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(a) 

(b) 

Figure I. 3. Sections of interfaces: (a) An interface for the sos model. 
(b) Because of the overhangs, this interface could not appear in the 
sos model. 

) ) 

Second, they do not allow for any overhanging parts of the interface. 

Our models certainly overccrne the first of these restrictions and 

since, as we shall see below, these two restrictions are related, our 

results represent a first step towards removing the second restriction 

as well. 

One more realistic model for interfaces is provided by the three 

dimensional Ising model introduced in Section 1. In this case the in-

terface is the Peierls contour separating the upper and lower halves 

of the system. As Figure 1 shows these interfaces do have overhangs. 

One might expect on heuristic grounds that the effect of overhanging 

configurations would be similar to that of the non-locaJ potentials 

Certainly the sort of overhangs allowed depend on the shape of the 

remainder of the interface, just because of the requirement that the 

interface be non-intersecting. 

Consider the statistical mechanical model obtained in the following 

fashion. An interface in the sos model may be represented as a con

nected set of plaquettes in ( i) *. Because of our boundary conditions, 

there is a horizontal plane whose intersection with the interface con-

tains an infinite number of plaquettes. Call this plane.the zero 

plane. Let A be the square of side length 2m+l centered at the 

origin of the zero plane. Given an interface specified by the set of 

plaquettes r, define 

r w {vertical plaquettes in r} =walls of r ; 

{horizontal plaquettes in r whose projection into the zero 

plane intersects A} :: floors of r. 

11 
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These geometrical constructions are similar to those of [8, 13]. In 

this representation, the Boltzman factor of the SOS model becomes 

-BH(I') 
e =e 

where lfwl denotes the number of plaquettes in the walls of f. One 

then defines an overhang to be some closed connected set of plaquettes, 

I, whose projection, P(I), onto the zero plane is contained in A. One 

defines the allowed interfaces in our new model by inserting overhangs 

into sos interfaces. Given some SOS interface r, and a collection of 

non-intersecting overhangs {r
1

, •.• ,rk}, we define an interface 
k k 

f' = f U {ur. }\u{f n I.}, provided such an interface is an allowed interface 
1 J 1 J 

for the phase separated Ising model, and provided f" = (furj)\(fnrj) 

is not an allowed interface for the SOS model for any j = l, ... ,k and 

rw n rj ~ ~. for any j = l, ... ,k. we assign r• a statistical weight 

-slrwl -BJzlr~I 
= e • e 

This corresponds to the Boltzman factor of the interface in an anis-

otropic Ising model whose coupling in the x and Y directions is 1, 

and whose coupling in the z direction is J z Summing over all sets 

of insertions consistent with a given SOS interface and then sum-

ming over all possible sos interfaces, one arrives at a partition 

function of the form (2.1). One can then ask to what extent the con-

ditions (2.2) are verified for the non-local potentials we generate in 

this procedure. Conditions (2.2) (a) and (2.2) (b) are satisfied. Condi-

tion (a) reflects the fact that the number, shape, and size of the over-

hangs which can be inserted into a given interface are unchanged if 

) 
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one inverts the whole interface. Similarly, condition (b) is just a 

reflection of the fact that one can translate the whole SOS interface 

(or some section of it) vertically, without changing the kind of over-

hangs which one can attach to it. Condition (c) is the one where our 

estimates break down at present. The assumed exponential decay is valid. 

It arises from the fact that any overhang must contain at least twice 

as many horizontal plaquettes as the number of plaquettes in P(I). 

Since 
k 
UP(!.) 
1 J 

tor of 

VJ ( •) 
x is associated with sets of overhangs for which 

= x, and since each horizontal plaquette carries with it a fac
-SJ 

e z, we obtain decay of the sort claimed in (2.2) (c), with 

proportional to SJ . z The problem which arises is that this decay is 

not uniform in {h}. The reason for this can be seen in Figure 3(b). 

J 

As the vertical "wall" into which we insert the overhang becomes higher 

and higher, the number of places available to insert the overhang 

grows, and thus should also grow. This is found to be the case. 

This is the principle restriction which prevents one from applying the 

results of this thesis to the anisotropic Ising model. It should be 

noted that opposing this growth in the non-local potentials due to the 

increasing height of the walls is the fact that the SOS part of the par-

tition function becomes exponentially small as the height of the walls 

becomes large. Work is in progress which attempts to exploit this fact. 
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I.3. Statement of Results and Notational Conventions 

We now state our principle results on the correlations in models 

whose finite volume partition function is given by (2.1). 

Theorem I.l. There exist constants 0 < 8
1 

< 8
2 

and J
0

(8
1

J > 0 such 

that for 8 E ($
1

,8
2

) and all J > J
0

(8
1
l, there exist positive con-

stants cu(8,J) and cL($,J) such that if x = (n,o) Ell: 
2 

with 

0 < n < IAl
118

, one has 

(3 .1) 

This theorem establishes the existence of some range of inverse 

temperatures wherein (for J sufficiently large) the fluctuations in 

the interface described by the model grow logarithmically with the 

separation between the points of observation. Heuristically one would 

not expect that once the surface became "rough" further increase in 

temperature (decrease in Bl would cause the surface to become "smooth" 

again. Thus one would expect to be able to take 8
1 

0 in Theorem 

I.l. The fact that this is not the case appears to be a technical lim-

itation of the method used to renormalize the nonlocal potentials. 

The restriction in this theorem that requires the site x to lie 

on the horizontal axis is not an essential one. It could be removed at 

the expense of complicating the proof of theorem. 

Theorem I.l follows from the next two results. 

Theorem I. 2. There exist constants 0 < 8 < 8 
1 2 

and such 

14 
) ) 

that for all 8 E (8
1

,8
2

l and J > J
1 

(8
1
), there exists a constant 

such that for all sites x E z 2 
with lxJ $ JAJ l/B one 

has 

<e 
£ (h -h ) 

0 x > 
A~ 

2 
£ cL(8,J)£n(l+JxJ) 

e 

(By JAJ we mean the number of sites in z2 
n A.) 

(3. 2) 

Theorem I.3. For every 8 > 0 there exists a constant J2 (8) > 0 such 

that for all J > 

such that for all 

<e 

J2(8) there exists a positive constant, cu (8 ,J), 

(n,o) 2 
with 0 < n < JAJ 1/8 one has x = E z 

2 
£ (h -h ) 

0 x > 
A 

E c ($,J)£n(l+JxJl 
$ e u (3. 3) 

Furthermore, Cu(8,J) may be uniformly bounded by some constant K(8), 

for all J > J 2 (8). A few remarks are in order. 

( 1) Theorem I. l follows from Theorem I. 2 and Theorem I.3 by sub-

tr acting one from both sides of inequality (3. 2) and (3. 3) ' expanding 

to third order in dividing by 
2 

and taking the limit E, £ , £ + 0. 

Note that in both cases, the term proportional to £ on the l.h. s. of 

(3.2) and (3.3) vanishes due to the invariance of these models under 

{h} + -{h}. 

(2) The constant J
0

(8
1

l in Theorem I.l may be taken to be 

max(J
1

(8
1
), sup J

2
(8)). 

$E (8
1

, 8
2

) 

(3) Although the details of the proof have not been worked out, 

15 
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slight extensions of the results of (7, 8, 13] should lead to a proof 

of the existence of a "smooth" low temperature (large Bl phase for 

these models, which would be characterized by some x-independent con-

stant K' with 

(4) The bounds of (3.1) are uniform in the volume A of the 

system. One may therefore construct (if necessary by considering some 

subsequence of regions the infinite volume limit for these 

models, and the stated bounds hold for that limit as well. Note further 

· · h Ix I < I ' 1
118 

di' sappears. that in this limit the restriction t at " 

(5) Our methods work equally well for perturbations of the dis-

crete Gaussian model. All the above results hold if we replace the 

models defined by (2.1) by models with finite volume partition func-

tions 

l e 
{h} 

(3.4) 

(6) Note that the SOS model is just the J ~ ~ limit of the 

models defined by (2.1). Thus one has 

Corollary I.4. For every B > 0, there exists a constant K($) such 

that for all x (n,o) E '6,2, with I 1
1/8 . . 0 < n < A , the fluctuations in 

the SOS model are bounded by 

<(h -h )2> $ K($)J1.n(l+lxll 
0 x /\ 

(3.5) 

This estimate complements the lower bound on fluctuations in this 

) 
16 

) 

model, proven by Frohlich and Spencer (15]. We shall in fact, for ease 

of exposition, prove Corollary I.4 first and then extend the proof to 

include the models with non-local potentials. 

We close this chapter with some comments on notation. 

(1) At numerous points in the proofs of these theorems, it will 

be necessary to introduce constants independent of B and J. These 

will be generically denoted as c, c' , .... They need not denote the 

same constant in their different appearances. 

(2) At a number of points in the proofs in later chapters, the 

phrase "for J sufficiently large" appears. This should always be in-

terpreted as "there exists Ji <Bl > 0 (with i 1,2 depending on the 

context) such that for all J >Ji($) the above statement is true." 

Similarly the phrase, "for B sufficiently small" means "there exist 

the above 

statement is true." 

(3) The notation lrl will mean "cardinality of the set r •II 

Any deviations from this usage will be noted. 

(4) For convenience we suppress the dependence of the potentials 

on J, i.e., we write V~C-l = Vx(•) · 

(5) There are a large (but finite) number of situations in this 

thesis in which we will be required to choose J. ($) 
i 

large (i is 

again either 1 or 2) and 8
2 

> 8
1 

> O small. In order to see that 

these choices may all be made consistently, we take 8
1 

= 8
2
/2. Then 

choose the 8
2 

which appears in Theorem I.2 to be the minimum of all 

the choices of 8
2

, it was necessary to make in the course of the proof 

17 



of the theorem. We then choose J
1

(S1l to be the maximum value of 

J 1 <B1l among the choices we had to make in the course of the proof of 

the theorem, given the value of B
1 

chosen above. Similarly, in 

Theorem I.3 we choose J 2 (8) to be the maximum among the finite number 

of choices of J 2 (8) we made in the course of proving the theorem. 

(6) In referring to equations within a given chapter we shall give 

only the section number, and the equation number within that section 

(e.g., (2.2) refers to equation 2 in section 2 of this chapter). In 

referring to equations in other chapters, we shall precede the section 

and equation numbers by a chapter number (e.g., (II.2.2) refers to 

equation 2 in section 2 of chapter II). Similar considerations apply 

to figure numbers. 

18 
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CHAPTER II 

THE MAYER EXPANSION FOR THE LOWER BOUND 

In this chapter we prove Theorem I.2. The proof breaks naturally 

into four sections. In the first section, we exchange our integral 

variables {h} for the continuous variables {¢}. The estimate of 

Theorem I.2 is shown to follow from an estimate on a ratio of partition 

functions in the {¢} variables. The second section describes the re-

normalization of these partition functions using the method of complex 

translations developed by F;~hlich and Spencer [15). We diverge from 

their treatment because one cannot write the sum which results from the 

renormalization procedure as a product over "renormalized" but inde-

pendent charge densities, due to the non-local potentials v ( ·). 
x 

This 

problem is solved in Section 3, where the renormalized charge densi-

ties are decouplied from one another via a Mayer expansion. The form 

of this expansion is similar to that of [27). The output of the expan-

sion is then exponentiated using algebraic techniques like those of [4, 

7, 17, 25). 

The exponentiated expression leads to a positive measure. to which 

we apply Jensen's inequality in Section 4 .. Using bounds which come 

from the convergence of the Mayer expansion, we demonstrate the 

requisite lower bound on the ratio of partition functions. 
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II.l The Sine-Gordon Transfo:anation 

In this section we rewrite the partition function of (I.2.1) as an 

integral of analytic functions. The first step is to replace the func-
-13/ h.-h. / v ({hll > 

tions e i J and e x x in the partition function with 

analytic functions whose values are equal to those of the above func-

tions when their arguments are real and integral. The functions we use 

come from the following propositions. 

Proposition II.l (Frohlich and Spencer [15]). There exists a function 

("') · d · th t · )Im"')< const.f3-l/3 , wh;ch If3 ~ , analytic an non-zero in e s rip ~ • 

satisfies 

Here, 

(a) I (!P=n) = e-f3/n), for all nEZ, 
f3 

(b) If3(•) is even, positive and real on the real axis, 
1/3 

(c) )I
13

CiP+ia)/If3CiPl) s e 13 g(a), for all a with 

I I -1/3 a s canst. f3 , 

(d) 1::m log If3CiP+ia) I s cf3
113

(g(a)+l), with ca constant inde

pendent of iP and 13, for all a with )a) s const.8-l/3 , 

m = 1,2. (1.1) 

0 < g(a) 

2 
!canst. a 

s I 2n)a/ canst. e 

)a/ s 1 

1 s )a) -1/3 s canst. f3 

Define functions 

l 
20 

) 

sin
2
nCiP.-¢.+h.-h.) 

= l VX({h})xl IT 2 i J i 2J 
{h}I : <i,j>cx 1T CiP.-iP.+h.-h.) x i J i J 

h. = constant 
i 

for some icx 

(1.2) 

Because of (I.2.2) (b), VXC{iP}/x> is independent of the site icX at 

which we choose to fix the value of the field hi' and also of the 

value of h. which we choose. 
i 

Proposition II.2. The functions Vx(•) satisfy 

(a) VX(.) is analytic in each of its arguments, 

(bl Vx({iP}/x> =VxC-{iP}lx>· 

(c) Vx(•) depends in fact only on the differences in the value of 

the field iP at nearest neighbor sites contained in X, not 

on the absolute value of iP at any site, 

(d) Vx({iP=n})x> = VX({n})x> if each niE{n}/X is an integer. 

(1. 3) 

Proof. Properties (a)-(c) follow by inspection of the definition (1.2). 

sin
2

nx Property (d) follows because ~-2~2- is equal to 1 if x=O, and zero 
1T x 

for any other integral value of x. Conditions (1.1) (a) and (1.3) (d) 

insure that (I.2.1) may be rewritten as 

l IT If3(h.-hJ.) 
{h} <i,j> i 

Recall that our boundary conditions require that h. _ O for 
i 

(1. 4) 
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Rewrite (1.4) via the Pois~on surrunation fonnula as: 

00 

(Tifdlj\)(~ l o(ljli-mi)) 
1 1 rn.=- oo 

J. 

00 

(TI/d¢.)TI(l+2 l cos2Tim.¢.) TI IS(¢-¢.) 
i 

1 
i m.= 1 1 1 

<i,J> 
1 

J 
J. 

( 1. 5) 

Here, TI runs over all sites in z 2nA. Now use the multipole expan-
i 

sion of [15] to rewrite the last expression. Define a charge density, 

p, to be a function on Z: 2 nA, which takes values in 21!Z. We define 

an ensemble N of charge densities to be a collection of charge 

densities with disjoint support. 

Theorem II. 3 (Frohlich and Spencer [ 15] ). There exists a set of en-

sembles of charge densities, {N}, and a set of positive constants 

{cN} such that 

00 

nc 1+2 l cos271'm. ¢.) 
m = 1 J J 

j 

J:cN TI (l+K(p)cosljl(p)) 
N pcN 

( 1.6) 

) 
22 

Here, ljl(p) = l ¢.p(i). 
icA 

1 
The charge densities p 

) 

in each N 

(a) If p 7' p' then dist(p,p') 2' M[min(dA(P),dA(P')]a, 

(b) if p
1

cpE:N satisfies dist(p
1

,p-p
1

) 2' 2Md(p
1

J<\ then 

Q(p
1

) 7' O and 2Mdist(f.1,Acla. 2' dist(p
1

,p-p
1
l, 

satisfy: 

(c) the constants K ( p) satisfy 0 < K(p) ~ n (4p(i)) 4 •eS(p) 

iEsupp p 
n(p) 

where 0 < s (p) < C• L"k,(P) for some constant c. Here, 
k=O 

n(p) is equal to 

the minimal number of 2kx2k squares necessary to cover 

supp p. 

In this theorem, Q(p) - l P{i),dist(p,p') 
iE:i: 2 

( 1. 7) 

distance between the 

support of p and p', M and a. are constants with 3/2 < a. < 2 and 

M > 1, and 

Jd(p) =diameter of supp p if Q{P) = 0 

{max[dist(p,Acl ,d(p)] if Q(p) 7' 0 

Proof. An outline of the proof of this theorem is provided in 

Appendix II. 

( 1. 8) 

Now perform the Sine-Gordon transformation on the unnormalized 
£(h -h ) 

0 x 
expectation ZA<e >A' as well as on the partition function arriv-

ing at 
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Here, d].J <¢) 
A 

Define the function 

(1.10) 

c0 is the inverse of minus the two dimensional Laplacian with Dirichlet 

boundary conditions on ati. and f(i) = oi,O - oi,x 

Lemma II.4. 

with 

£(0 -o ) 
0 x 

1 \rl ii; (<jl+o) (p) e:ccpo-<P) l l ( 2) ( II K ( p) e p ) e 
r {r;} p€r 

l vx < {cp+o} Ix> 
x eXcfi. ( TI 

<i ,j> 

(1.11) 

The sum over r runs over all subsets of N, and L runs over all 
{ 1;} 

r; = ±1, p € r. ZN(O,O) is exactly the same expression with oi = 0, 
P e:ccpo-cpx) 

and the observable e deleted. 

Proof. The lenuna follows from a change of variables 

(1.13) 

in the numerator of (1.9). Such a change of variables respects our 

boundary conditions. One obtains 

) 
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e:(h -h ) 
0 x 

>A 

) 

e:(oo-ox)+e:C<Po-<Px> 
LCNf II (l+cos(¢+0) (p)) •e 
N P£N 

II 
<i,j> 

( 1.14) 

To obtain (l.12), first expand the product over p € N. This yields 

the sum over r. Then rewrite the cosine functions as exponentials, 

giving rise to the factors of and the sum over {r;}. The 

denominator in ( 1.11) is obtained by expanding the product over p in 

the partition function and rewriting the cosine functions as exponen-

tials, but not translating by o. 

The remainder of the chapter will be devoted to proving 

Theorem II.5. For any ensemble of charge densities N satisfying con-

ditions (1.7) (a)-(c), there exists 0 < 81 < 82 and J 1 C81) > 0, inde

pendent of N, such that for all 8 € C81 ,8
2

l and J > J 1 C81), there 

exists a constant k(8,J) independent of N such that 

-e:
2
k(8,J)ln(l+\xl) -2e:

2 
~ e •e (1.15) 

Furthermore, k(8,J) can be made arbitrarily small by making 

• 

sufficiently small and J 1 (81) sufficiently large. This theorem, 

coupled with (1.11) and the fact that ZN(O,O) > 0, which we demonstrate 

later in this chapter, yields 

(1.16) 
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Since 

a -a 
0 x 

) 

(1.17) 

for some C > 0, a fact which we demonstrate in Appendix I, Theorem I.2 

follows immediately upon application of Lemma II.4 and Theorem II.5. 

) 
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II.2 Renormalization via Complex Translation 

In this section we renormalize the expressions for ZN(O,£) and 

ZN(0,0) by the method of complex translations. We follow closely [15]. 

The renormalization proceeds in an inductive fashion on increasing scales 

of size 2k. Let N be some ensemble of charge densities. We first 

0 
pEN 20 choose ap (·)' the translating functions for each on the scale. 

Divide the support of each pEN into two subsets Tp 
1 

and Tp 
2 

such 

that no site in Ti is a nearest neighbor of any site in Ti. Let T6 

be either 

i = 1,2. 

choose 

We 

distance 

sk <P> be 

k > 1. We 

fying 

and 

or Ti dep~nding on which one has 2.ETP p
2

(i) largest for 
J . 

2 l. 
IP(jll;;;i,1 for jEsupp p, ljETP P (i);;;i,1;2lsupp Pl· Now 

0 

Since 

continue 

s~ales. 

a
0 

(i) 
p 

to choose 

Borrowing 

! : 
our 

the 

some minimal covering 

sgn p(i) 

translating 

notation of 

of supp p 

then choose sk <P> ~sk <P> to be 

dist (s' ,A cl ~ 2k+ 2 

if 

(2.1) 

if 

functions on larger and larger 

Frohlich and Spencer, let 

by squares of size 2k x 2k' 

the squares s' E Sk (p) satis-

(2. 2) 

(for k=O we set )Sk(p)j =A0 (p) =\supp pj.) 

The first restriction insures that we only translate charged components 

27 



l 

of p (see (1.7) (b)) while the second makes sure that we don't trans-

late so close to the edge of A that we violate our boundary condi-

tions. 

Let k
0 

some p " N. 

be the first k > 0 for which sk (p) is non-empty for 
0 

Let s' be an element of Sk (p), and assume for sim-
0 

plicity that s' is centered at the origin, and let s' be the square 

of side length 2k
0

, also centered at the origin. Define 

0 if I ii 2: 12· 2k 

a_kS I (j) 
k SI 

)ln
2
[/2jij-1 •2k] if 2k l2·2k Y(sgn qp s I ii s 

p 

Yln/'2Csgn 
ks' 

qp ) if Ji! s 2k (2. 3) 

where p(i) 
iE (supp p)ns' 

Repeat this procedure 
_kosi _kos:2 

for each s' f: Sk (p). Note that the sup-
0 

ports of ap and ap are disjoint if si ~ s2 by (2.2). 

Finally define 

(2. 4) 

The choice of translating functions on successively larger length 

scales is similar to this, the only difference being that one must 

exercise some caution not to destroy the renormalization which has al-

ready taken place on shorter scales. For this purpose some further 

notation is introduced (see [ 15)). 

28 
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Let D(p) 
? 

be all those sites in Z - contained in a disk in lR 2 

of radius 2dA(p) centered at a point x(p) such that supp pc D(p) 

and dist(supp p,ao(p)) = dA(p). Here ao(p) refers to the outer 

boundary of D ( p) • 

Now consider some and some Let 

(2.5) 

Let { ".i_,.Q,} be the connected components of U 1o(p). Heuristically, 
PEN 

we just choose {E
1

,.Q,} so that we cover the support of all the trans-

lating functions for "little" charge densities close to s'. Define 

if i t { E } 
l,.Q, 

if iEE for some .Q, where i.Q, = x(p) l,.Q, 

in the definition of D(p) • and p 

is the largest (i.e.• maximal 

dA (p)) charge density in Nl 

which intersects E 1, .Q, (2.6) 

For all neutral p's (i.e., Q(p) = O) one continues this 

process until JSk(p) J = 1. If Q(p) i 0, we continue up to a scale 

k = ln2 [dist(p.Acl] - 3. Now proceed to the renormalization itself. 

Lemma II.6. Fix some integer k 2: O. After the renormalization has 

been performed on all scales less than or equal to 2k, one has 
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Z(o,e:l 

with 

q 
k,p 

) 

k 

x [ n 
<i, j> 

I 0 (¢.-¢.+o.-o.+i l l ~ (am(i)-am(j))] 
µ 1 J 1 J pEf m=O p p p 

y I l lp(i) I + Yln2/2 l 
PEr iE'f pe:r 

0 

k 
I l hm,s'I 

m=l s'ES'(p) p 
m 

Proof. The proof is by induction. 

• (2. 8) 

Case 1: k = 0. The analyticity of the functions IS(¢) and VX({¢}lxl 

allows one to make the change of variables 

in the expression for ZN(o,e:) if the constant Y in (2.1) is not 

chosen too large. (We shall choose Y = cllnSJ, which by Proposition 

II.l is a permissible choice.) Thus 

Eq. (2.9) to be continued 

) 
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i l ~ (a
0

(0)-a
0

(x)) - I ~
2 l a

0
(i) 

x e PEf p p p x e PEf piEsupp a~ p 

x IT I 0 (¢.-¢.+o.-o. + i l ~p(a0p(i)-a0p(j)) x (IT d¢.) 
<i, j> µ 

1 J 1 J pEf icA 1 

(2. 9) 

Using 
2 

~p = 1, and substituting the definition (2.1) for into 

(2.9), and also using the definition of dµA(¢), we obtain (2.7) for 

the case k = 0. 

case 

Assume (2.7) holds for all k ~ n, n > 0. 

k = n+l, we make the change of variables 

¢). + ¢). + iL~ an+l 
p µ p 

To obtain (2.7) for the 

(2.10) 

We must check that this doesn't carry us outside the analyticity 

domain of the functions This is guaranteed by the observation 

that if for some nearest neighbor bond <i, j> 

a~(jl] i 0, then 

n 
one has l l [a~(i) -

p m=O 
Thus no function IS(•) 

is translated more than once. Since by (2.3), (2.6) and Proposition 

II.l, a single translation doesn't carry us outside the analyticity 

domain of the functions Is(•), (2.10) is an allowed change of vari

ables. Substituting (2.10) into (2.9) and using the definition of 

leads to (2.7). 

The effect of the translations on the functions and 

on the Is(•) functions is straightforward. we examine how this 
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change affects the exponential factor 

By the definition of our translating functions, 

supp P. Also, z;;2 
p 1 so that 

(2.11) 

We recall that 

expression for 

l p(i). 
iES 1 

q in (2.8). 
k,p 

This leads immediately to the 

We now prove that no IB(•) function is translated more than 

am(j) 'I 0 for some m::;n Eqs. (2.1)-(2.4) 
p 

once. Assume that am (i) 
p 

imply that <i,j> intersects the disk of radius 2•2m centered on 

some square si E S~<P1 ) for some p
1 

E r. 

there is some change density P2 E r with 

Now assume that 

for some £, and 

a~+l(j) 'I 0, this implies 
2 

The triangle inequality implies 

If 

) 
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) 

(2.12) 

for a> 3/2 and M > 6. This implies that <i,j> does not intersect 

the disk of radius 2•2m centered on si E S~(p1 ) for any m s n. 

This contradiction proves the stated result. 

Continue the renormalization process up to a scale 

This is greater than p E N, so 0 for all 

p E N, m > k. Define 

Corollary II. 7. 

l 
I 0 (¢.-¢.+o.-o.+irz;; [a (i)-a (j)]J 

µ 1 J 1 J p p p p 
<i,j>nA 

Iii ( ¢+o+H a ) 
p p p 

(2.13) 

Proof. Since no functions is translated more than once, the 

first equality is immediate. It will prove convenient later to have 

a more explicit form for i(¢+o+H a ) . 
p p 

Let 

0,0 = { <i, j> 
p 

{ <i, j > 

The discussion above implies that 

(2.14) 

¢ unless k1 This 
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implies 

) 

rr[ rr rr 
P m=O <i,j>: 

<i,j>Elf' 
p 

Ia(~.-~ +o.-o.+i~ [a (i)-a (jJ)l] 
1-'l.]l.J pp p 

I 0 (~.-~.+a.-a.) · 
µ l. J l. J 

(2.15) 

Comparison with (2.13) implies that i(~+O+iz;a) p p is equal to the 

quantity in square brackets. 

Now define 

and 

(2 .16) 

We obtain, upon combining Lemma II.6 and Corollary II.7, 

Proposition II.8. 

I jrj i~(~+O)(p)-q 

l + l ( Tl K(p)e p e pi(~O+i~ a) 
r {~} p"r P P 

(2.17) 

) 
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where q = q Xhis is the form from which we shall start the Mayer ex-
p n(pl ,p· 

pansion in the next section. We also note that since all our translating 

) 
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functions were chosen independently of the observable, one may immediately 

write down an analogous formula for ZNIO,O). 

Proposition II.8'. 

J 
I I i ~ < ~' < P> -q 

ZN(O,O) = l l + r ( IT K(p)e p e pi(~H a ) 
r {z;} pEf P P 

(2.18) 



l 

II.3. The Mayer Expansion 

In this section we perform a Mayer expansion on expressions 

(2.17) and (2.18). This expansion is exponentiated yielding a positive 

measure. 

The motivation for this expansion lies in the observation that if 

it were not for the non-local potentials, the integrand in (2.17) would 

factorize, yielding 

(3 .1) 

Because of the exponential falloff of Vx(•) we expect corrections to 

(3.1) to be small, for widely separated charge densities p. The 

Mayer expansion allows us to write (2.17) as an exactly factorized part, 

plus corrections. One then expands a second time, this time isolating 

the correction term, and creating in the process new corrections. This 

inductive procedure eventually terminates and yields an expression of 

the form (3.1) but with functions Q(P,¢+0,£) which are much more com-

plicated than those which occur in the Vx(•) - 0 case. 

Begin by ordering the charge densities in N in an arbitrary 

fashion. Define inductively a sequence of interpolated potentials. 

Definition. Let rk c N, k ~ l, ••• ,n, and let l;a(rkl _ 

Define a series of convex sums of potentials by 

s 
~vx 

1
<¢:ia(f1J;ia(f2ll 

l i; a . 
p<e:f p p 

k 

(3. 2) 

) 
~b 

and by induction 

sl ... s -1 
s ~vx n (¢:ia(f1J+ ••• +ia(f 1 i ;ia(r )+ia(f 

1
)) 

n n- n n+ 

(3.3) 

Armed with these definitions, we turn to a consideration of the N 

dependent part of the integrand of expression (2.17). For fixed r 

define 

l ~vx<¢+o:il;a<rll 
l (~) )ri [IT R(p,¢+o,I; ,£)JeXcA , (3.4) 

{I;} pd p 

with 

R(p,¢+o,1; ,£) 
p 

ii; <¢+ol (pl i£1; (a (0)-a (x)) -"q 
K (pl e p e P P P e P x i ( q,+o+il; a ) . 

p p 
(3. 5) 

we 

Let p' be the minimal charge density with respect to the above order-

ing. We decouple P' from the remainder of the system using the fun-

damental theorem of calculus. This yields 
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I ci> Ir! [ rr RCp,¢+o,z:; ,e:>) 
{ z:;} pEf p 

I (t1vxc¢+o:H ,a ,l+llvxC¢+o:il;aCf\p'))) 
xcA P P 

x e 

+ I +lrl[rr RCp.ip+o,z:; ,e:>]J
1
ds1 cd! > 

{ z:;} pe:r P o 1 

s 
I t1vx 

1
C¢+o:iz:; ,a ,;il;a(f\p')) 

xcA P P 
x e (3.6) 

Evaluate the derivative using (3.2) obtaining 

l [t1v (lj>+o:il; ,a ,+il;a(f\p'))-b.Vx C¢+o:H ,ap,) 
x cA xl P P 1 p 

1 

s 
l LIV 

1
c¢+o:il; ,a , ;il;a(f\p')) 

) 

XcA X p p 
- llvx

1
C¢+o:iz:;aCf\p')) e • (3.7) 

Notice that any term in the sum over x
1 

vanishes unless x
1 

intersects both supp ap' and supp a(f\p'). This follows since if 

LIVX (lj>:il;a(f\p')) so that the corresponding term in (3.7) vanishes. 
1 

If x1 intersects supp ap' but not supp a(f\p'), LIVX (lj>:il;a(f\p')) 
1 

0 and LIVX (lj>:il; ,a ,+il;a(f\p')) = LIVX (lj>:il; ,a ,) 
1 p p 1 p p 

and again the 

term in (3.7) vanishes. The general situation is covered by the follow-

) 
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ing lemmas. 

Definition 

-6Vx(¢:il;a(f£)+ ••• +il;a(fm-l))+6Vx(¢:il;a(f £+l)+ ••• +il;a(fm-l)) 

if £ :S m - 2, 

if £ = m - 1. 

(3. 8) 

Lemma II.9. 6VxC¢:il;a(f£)+ ••• +il;a(fm)) 

and X n supp a(fm) ~ ¢. 

O unless X n supp a(f£) ~ ¢ 

Proof. If £ = m - 1, the lemma follows from our discussion of 

d sl 
(ds

1
>vx above. If £ :s m - 2 assume that x n supp a(f£) = ip. 

vanishes. 

and 

6Vx(¢:il;a(f£+l)+ ••• +il;a(fm-l)) and once again the sum vanishes. 

Then 
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Lemma II .10. The interpolated potentials satisfy 

n+l 
l 6 v x ( ¢: ia ( r . ) ) 

j=l J 

n k 

+ l l sm ..• sk•f>Vx<¢:ia(fm)+ •.. +ia(fk+l)) 
k=l m=l 

(3 .9) 

Proof. The proof again is by induction. Assume it is true for all 

k ~ n - 1. (By (3.2) it is true for n = 1.) Then, 

sl ... s -1 
s 6V n (ljl:ia(f

1
)+ ... +ia(f 

1
l ;ia(f uf +l)) 

n x n- n n 

[ 

sl ... s -1 
+ (1-s) tiv n (ljl:ia(f

1
l+ ... +ia(f 

1
> ;ia(f ll 

n x n- n 

Applying the induction hypothesis gives 

n-1 ( 
s \ s ... s 

1 
6Vx<¢:ia(f )+ ... +ia(f ur +lll n l m n- m n n 

m=l 

-f>V (ljl:ia(f )+ ... +ia(f ») 
X m n 

n-1 k 
+ l l sm ... sk6Vx<¢:ia(fm)+ ... +ia(fk+lll 

k=l m=l 

(3 .10) 

Eq. (3.11) to be continued 

) 

n+l 
+ l tivx(¢:ia(f.ll 

j=l J 
(3.11) 

Note that 

(3 .12) 

Furthermore, 

(3 .13) 

Substituting (3.12) and (3.13) into (3.11) completes the proof. 

Corollary II.11. 

n 

kil (sk ... sn-ll6Vx<¢:ia(fn<ml)+ ... +ia(fn+1>> (3 .14) 

Proof. This follows by differentiating (3.9). 

With this information in hand, let us return to the task of expand-

ing Rr. Recall that by combining (3.6) and (3.7) we had demonstrated 

that 



) 

R = r 

(3 .15) 

Let P' = rl. Then choose r2 = {p E f\f l:X n supp apt ~}. according 

to which term in the sum over x
1 

we are considering. We noted that 

all terms with f
2 

= ~ vanish so we ignore this possibility. Now in-

troduce a second decoupling parameter, s2' and decouple r2 u rl from 

f\(f
2

ur
1
J. Continuing this process, we arrive at 

Proposition II.12. For any n ~ 2 one may write 

x (rrR(p,ip+o,1; ,£))x ~ (s (m) ... sm_2tivx (ip+o;i i'.;a(r (m,>+ •.• +ii'.;a(fm))] 
p p m=2 n m-1 n 

( 
S1···Sk-l . . . l llVX (ip+o:ii'.;a(f1)+ ••. +ii'.;a(fk_1 l ;ii'.;a(fk)) 

xcA 
xe 

+llVx(ip+o:il;a(f\fk \ ••• \f1l] 

Eq. (3.16) to be continued 
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(3 .16) 

Here n is a tree function, i.e., a function on the integers less 

than or equal to k satisfying n(£) < £. we adopt the convention 

that when n(m) = m-1 the product of s-factors is set equal to one. 

Finally, fk+l is defined inductively as all those charge densities, 

Proof. The proof is by induction. By (3.6) and (3. 7) the lemma holds 

for n = 2. Assume that it is true for all k less than or equal to 

n-1. Then interpolate the exponential factor in the second term of 

(3.16), isolating r . 
n 

Under this operation the exponential part of 

the second term in (3.16) becomes 

( 
sl ... s -1 I tivx n (¢+o:il;a(f

1
)+ ••• +il;a(f _

1
);ii'.;a(f )) + 

XcA n n 
e 

J
l [ d s 1 · · · s l 

+ odsn xJA dsn (llVx n(ip+o;ii'.;a(fl)+ .•• +ii'.;a(fnl ;ii'.;a(r\fn \ ••• \fl)) 

Eq. (3.17) to be continued 
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The first terrn of (3.17) becomes the k = n part of the first term of 

(3.16) while the second, after application of Corollary II.11, yields 

the second terrn of (3.16) in the case k = n. This completes the proof. 

One continues the decoupling process until f is depleted. This 

must happen after a finite number of steps since JrJ is finite and 

each rk is non-empty. One then uses the fact that LWx C<f>+cr: ia ( cj>l) = 0 

to write the second terrn of (3.16) as the k = n part of the first one. 

Defining all terrns in the sum with higher values 

has 

Corollary II .13. 

l 
k=l 

L l · ··l Lrds1 .•• dsk-l <t> lrJ 
{s} x1 xk_1n o 

x [ n R(p,~cr.s ,£>) 
pd p 

of k to be 

x ~ [snc l ... s _AV ccp+cr:isacr c l )+ ••. +isacr )) 
m=2 m m T xm-l n m m 

zero, one 

(3.18) 
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II.4 The Cluster Formalism 

Having completed the decoupling procedure we introduce the cluster 

formalism. 

Definition. A cluster, Y, consists of 

(a) an integer k;;;.l, 

(b) a collection of k - 1 connected sets of plaquettes in 

2 * CZ l n /\, {x
1

, •.•• xk_
1

}. 

(c) a tree function n. 

(d) for each integer Q,, 1 ~ Q, ~ k a non-empty subset of r r , Q,, 

satisfying rQ,nrQ,,=¢ for Q,tQ,' andwith 

r 1 =minimal p € UQ, r Q, with respect to the ordering 

of N defined above. 

(e) for each integer Q,, 1 ~ Q,< k, an interpolation parameter 

sQ,€[0,1]. 

Definition. We define a cluster function Q(Y,cj>+O,£) as 

Q(Y,cj>+O,£) , · ( 1) Ir CY> I [ J L 2 n R(p,cp+o,s
0

,£J 
{s}r CY> pEr CY> 

(4.1) 

1 
sl .•. sk-1 I 

exp L t;.vx Ccj>+o:isaCf1J+···+isa(f );isa(f))r. 
Xe./\ k-I k I 

(4.2) 

Here, f (Y) means k 
UQ,=l rQ,' and the sum over {s}f(Y) runs over 

sp = ±1 for all p € r (Y). Define r 1 (Y) = r 1 = p I. 
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Using (4.2) we may rewrite (3.18) as 

I Q(Y,cp+o,£>Rr\r<Y> 
Y:f(Y)Cf 
f

1 
(Y)=p' 

where we have compressed our notation so that 

00 

I I 
Y:f(Y)Cf n 
f 

1
=p' 

1 

J ds 1 , ... ,dsk-l 
0 

(4. 3) 

(4.4) 

One now applies the Mayer expansion to Rr\f(Y)" This time we choose 

f
1 

to be the minimal p in f\f(Y). The clusters generated in this 

expansion must satisfy a compatibility condition with respect to those 

generated in the first expansion, namely, 

for all Y2 generated in the expansion of Rr\f(Y )" 
1 

Repeating this 

procedure until r is exhausted we arrive at the expression 

I 
(Yl, ... ,Ym) 

all Yt's compatible 

r1(Y1)<f1 (Y2)< ... <r1 (Yml 

U~ f(Yt)=f 

m 

n Q(Yt.<ji+O,£) 
£=1 

(4.5) 

(4.6) 

We remove the compatibility conditions on the sum over clusters as 

in [4,7,16,25]. Define 

(4. 7) 

otherwise 
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Remove the restriction that r <Y i < r CY > < ... < r <Y i 
.Ll 12 l.m 

by summing 

over ordered sets of rn clusters and introduce a factor of l/m! to 

compensate for overcounting. Remove the restriction that U~ f (Y £) = f 

by summing over all r. We then obtain, 

[ 
m ] [ I n Q<Yi.<l>+o,£) n 

(Y , ... ~) i=l (i,j) 
1 m 

U(Y. ,Y. )] . 
l. J 

(4.8) 

The product over (i. j) runs over all pairs of integers in {l, ... ,m}. 

Define A(Y
1

,Y 2 l =U(Y 1 ,Y2) -1, and expand the product over pairs of 

clusters. The resulting expression may be exponentiated (see the 

references listed for details) and one finally obtains 

Proposition II.14. There exist 

I r 
1 

exp { ~ l m! 
m=l ( ) 

m 
{ n A<t> n 

gEG tEg £=1 
c 

Q(Yt,<j>+O,£)}. 

(4.9) 

Here, Ge is the set of connected graphs on vertices Y
1

, ... ,Ym. The 

product over runs over all legs in a given graph, and A(i) :oA(Y.,Y.) 
l. J 

where Y. and Y. are the vertices which terminate £. The restrictions 
l. J 

to small B and large J arise from the fact that if these conditions 

are not met, the sums in (4.9) may not be convergent, rendering the 

manipulations leading to this form meaningless. We .shall see in the 

following section that these conditions insure absolute convergence of 

the sums over clusters 
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From (2.17) one has immediately 

Corollary II.15. There exist 0 < 1\ < $
2 

and J l (S
1

) > 0 such that for 

all SECS
1

,S
2

l and J>J
1

CS
1

l onehas 

J e
e:(<j>o-<j>x) l "' 

exp l 
m=l 

1 -x 
m! 

n A(JI,))( ~ Q(YQ,,<j>+O,E))] ldV~(<j>+O) . 
R-Eg £=1 ) 

(4.10) 

One may repeat the above procedure for ZN(0,0) and one obtains 

Corollary I I .15' • Under the conditions of the previous corollary 

(4.11) 

We conclude this section with the following observation. 

Lemma II.16. Q(Y,<j>,e:) is a real function of <P and E. 

Proof. Consider a term in (4.2) with fixed {i;;}f(Y) = {i;;•}f(Y), which 

we denote T({l,;'}r(Y)). We shall show that 

(4.12) 

- lrcYl J-1 Since Q(Y,<j>,e:) may be rewritten as a sum of 2 pairs of terms 

of the form 

2 Re T({l,;'}r(Y)) (4.13) 

) 
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it is a sum of real functions and hence real. 

To prove (4.12), we show that T({i;;}f(Y)) is a product of factors 

all of which possess the property that their complex conjugate is equal 

to the same function with {i;;•}f(Y) changed to -{i;;•}f(Y)" By (2.15) 

and Proposition II.l(b) we h?Ve 

and thus 

i(<j>+il,;'a) 
p p 

(4.14) 

(4.15) 

Since Vx(·) is an analytic function which is real for real values of 

its arguments, and invariant under {<)>}-+-{<)>} one has 

V C{<j>+il,;'a }I ) x p p x ;/ C{<j>-il,;'a }Ix> x p p 
(4.16) 

The functions are sums of Vx(·) 

functions and hence inherit property (4.16). Thus each of the factors in 

T({l,;'}r(Y)) possesses this property, and the proof is complete. 
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II. 5 Jensen's Inequality and the Proof of Theorem II.5 

In this section we apply Jensen's inequality (4.10) to derive the 

lower bound of Theorem II.5. The first step is embodied in 

Proposition II.17. There exist O < 8
1

<82 and J 1 CB1l>0 such that for 

all BE (8
1

, B
2

l and J > J 
1 

CB
1 
l, the measure 

is finite. Furthermore, 

(5.1) 

n I 0 (¢.-¢.) 
<i ,j> " l. J 

(5.2) 

is invariant under the global change of variables {¢} ~ -{¢}. 

Proof. Finiteness of the measure comes from the following convergence 

lemma, whose proof is delayed until a later chapter. 

Lemma I I. 18. There exist 

and and every charge density 

By the lemma, 

such that for 

p
0 

E f, one has 

(5. 3) 

Equation (5.4) to be 
continued 
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~ exp~ l l pEN 

~ explNJ 

Similarly by (1.2), 

let.., lvx({ip} Ix> I}~ ec' · IAI ' 

iC:X 

where the last inequality follows by 

l Jvx<{¢} Ix> I ~ l -J!xl 12 ~ ~I !xi e 
Xf=A: xcA: m=l m 
iC:X iC:X 

~ 

lxt =3 

-JI x I Ix I , Ix I e ·c ·C 

~ c" 

) 

(5.4) 

(5. 5) 

(5.6) 

if J is sufficiently large. The first inequality follows from (1.2) 

while the second is the standard Peierls estimate. Since dµA(¢) is a 

finite measure, J dV~(¢) ~ e!NJ+c"IAIJ dµA(¢l <oo. Note that IB(ljl) 

IS(-¢). Thus the invariance of ( 5. 2) under {¢} ~ -{¢} follows from 

Q(Y,¢,Ol = Q(Y,-¢,Ol which we now demonstrate. 

Recall that 

Q(Y,-ljl,O) L (i)lrcYl I[ n R(p,-¢,r; .o>] 
{i;}f(Y) pEf(Y) p 

k 
x n lsci···s 2 .ciVx <-¢:ir;acr<ll+···+ii:;a(flll 

m=2 Tl m m- m-1 Tl m m 

x 
~ sl ••. sk-1 l 

exp lk tivx (-ljl:ir;a<rll + •.. + ii:;acrk-1) ;ii:;a(fk)) ~ 

(5. 7) 
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The definition of R ( ·, ·, ·, ·) implies 

(5.8) 

Similarly, the invariance of the potentials {¢}-+ -{¢} 

implies 

t::,V (-¢:iz;;acr ( >l+···+iz;;acr >> 
X T) m m 

t::,V (¢:-iz;;acr > - ••• - iz;;acr » 
X T) (m) m 

(5.9) 

and 

sl, .•. ,sk-1 
t::,vx (¢:-iz;;acr1 > - ··• - iz;;acrk_1 l;-iz;;acrk» • 

(5.10) 

Substitute (5.8), (5.9), and (5.10) into (5. 7). Now change variables in 

thesumover {z;;}f(Y) to {z;;•}=-{z;;}. Summingover 

valent to summing over z;;p = ±1. Thus the r.h.s. of 

z;;• = ±1 is equip 

(5. 7) becomes 

k 
x n 

m=2 
[sn(m) ·•• sm_ 2 /:::,VX (ljl:iz;;'a(f ( )) + ••• +iz;;'a(f ))] 

., m-l T) m m 

Q(Y,ljl,O) (5.11) 

This completes the proof of (5.2). 

) 
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We take the following le!llllla from [15]. 

Lemma II.19. For S sufficiently small 

I 0 (¢.-¢ .+cr .-cr.) 
I-' l. J l. J 

) 

(5 .12) 

We do not reproduce the proof of this lemma, but merely note that it 

follows easily from Proposition II.l(d) and Taylor's Theorem with 

remainder. Note also, that the invariance of IS(¢) under {¢}-+ -{¢} 

insures that IS(ljl)/IS(ljl) is odd under this same transformation. 

Combining (5.1) and (4.10) we see that 

l 
00 

x exp L ;! L L 
m=l (Y

1
, ••. ,Y )(gEG 

m c 

x [ n 
<i,j> 

(5.13) 

The integrand of this expression is positive and thus we use Lemma II.18 

to bound it from below by replacing the ratio of IS(•) functions by 

exp l L 
<i,j> 

where 

IS(¢i-¢j) 

IS (ljli-ljlj) 
(5 .14) 
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N 
Combining (5.1) and (3.9) we obtain ZN(O,O) = JavA(¢). Apply Jensen's 

N 
inequality in the measure dVA(¢) to obtain 

Lemma II.20. For B sufficiently small and J sufficiently large one 

has 

~exp[(+)·J~ I 
dVA(¢) txc11. 

00 

+ I ;, 
m=l • 

- ; Q(YR, 1 ¢,o)J 
t=l 

This follows by noting that 

N 
co.-o.) av,<¢> 

l. J ll 

(5 .15) 

0 

since the integrand is in both cases an odd function under {¢} +- {¢}. 

We now deal with the two remaining sums. Consider the simpler of 

the two first. 

Lemma II.21. There exist 0 < 8
1 

< B
2 

and J
1 

<8
1

> > 0 such that for 

.BE<B
1

,B
2

> and J>J
1

CB
1

> thereexists c'(J) with 

lf[J11 vx<{¢+o}lx> - vx({¢}1x>] dV~(¢) I 
~~~~~~~~~~~~~~~~-~ 

Jav~<¢> 

2 
c' (J)llCloll

2 
(5 .16) 

where c' (J) can be made arbitrarily small by taking J sufficiently 

) ) 

Proof. Consider the definition (1.2) of VX({¢+o}jx>· By Taylor's 

Theorem with remainder we see that 

where f (x) 

constant in 

hi fixed 

A 
+ caoijlf' (Cl¢ij+Clhijl + -l- (Clo .. > 

2
f" (Cl¢ .. +Clh .. +A0 Clo .. >! 

iJ iJ l.J l.J I 

sin 
2
rrx 

_2_2_ 
TI X 

and \
0 

is some 

[O,l]. Note that there exists a constant B 

lf(Cl¢ .. + Clh .. ) I ~BC(()¢ .. + Clh .. ) 
l.J l.J l.J l.J 

(5.17) 

(Clo .. dependent) 
l.J 

such that 

If' <Cl¢ .. + Clh .. > I ~ Be< Cl¢ .. + Clh .. > 
l.J l.J l.J l.J 

(5.18) 

and 

with 

C(x) = l 1
12 

x 

(5.19) 

if lxl>l 

The explicit expression for f' (Cl¢ .. + Clh .. ), coupled with the fact that 
l.J l.J 

55 



) 

y vx({ah}lx>f' (dlj> .. rdh . . ) 
{ahJ Ix 1J 1J 

n 
<i• ,j •>ex 

<i',j');Ki,j> 

- ~ vx({Clh}lx>f'(-Cl¢ .. +Clh .. J 
{ah'.flx 1J 1J 

n 
<i',j'>cx 

<i' ,j '>i<i,j) 

f(-3¢ .. +Clh .. ) 
1J 1] 

(5. 20) 

By the sum over {Clh} j X we mean a sum over { h} IX with the height of 

some column in X fixed. By (5.20) one has 

I J [ Y vx<{Clh}lx> (Clo .. Jf' (Cllj> .. +Clh .. J 
<i,j>cx {ahJjx 1

J 1J 1J 

n f(Cllj> .. +ah .. )] dVAN (lj>) 
<i',j')cx 1 J 1 J 

<i' ,j '>i<i,j> 

0 (5.21) 

Combining this with (5.17) we see that 

(5.22) 

consists of 3lx/_1x1-1 terms , (where 1x1 denotes the number of 

nearest neighbor pairs in X) each of which has at least two factors of 

(3oij). Consider any such term, e.g. 

f{ah~I vx<{Clh}lx> [<· ~>ES fCCl¢i1j1 
x 1 1']1 1 

) 
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where sl u s2 lJ s3 = {set of nearest neighbor pairs <i, j) in x} , 

I Clo .. I < £ / R-n B I · c, independent of 
1J 

i, j or x. This follows from the inequality c
0 

~ CF, where CF is 

the covariance with free boundary conditions at infinity, and then 

standard estimates on the free covariance. Combining this observation 

with the fact that f (-) 

find that 

f I ( .J are bounded by 8·C(Cl¢ .. +Clh .. ) , we 
1] 1J 

57 

~ e-Jlx/ L n ccaip .. +ah .. i-e 
{Clhljx <i,j>cx 1J 1J 

(5.24) 

(by (I.2.2) (b)) 

provided J is sufficiently large. This in turn implies that (5.23) is 

bounded by 

(5.25) 

sufficiently large that for BE CB
1

, B
2
l 

one has, 

(5.26) 

The factor of comes from bounding the number of terms like (5.23) 

in (5.22). Then 



) 

lx.k J l;x({cjl+o}jxl - ;x<{¢}jx>l dV~(¢l I 

c <i, ~>c::i\.{ } I J rV, 1(¢-><> l Ix' - V, I (;JI x" dv~ I¢l I~ 
sup I Clo. , . , !=I Clo .. I 

J. J l.J 
<i' ,j •>ex 

c l l 
<i • j >c::!\. x : 

<i,j>cx 

(5. 27l 

In the second inequality we applied (5.23l and (5.26l and in the last step 

we used the Peierls estimate to bound the sum over X's containing a 

given bond. This completes the proof of Lemma II.21. 

The more difficult part of (5.13l is bounded by 

Proposition II.22. There exist 0 < B1 < B2 and J
1 

<B
1

l > 0 such that for 

all BE<B
1

.B2l and J>J1 (8
1
), there exists a constant n>o such that 

~ r(1 -J/8 

"'re + 
(5. 28) 

The proof of this lemma is postponed until Chapter v. 

Note that Proposition II.22, Proposition II.20 and Lemma II.21 

combine to give 

) 
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with 

- 2 -c (8,Jl II Cloll 2 
~ e 

c (8,Jl 
-D/64 I £,n BI 

(c•B + e-J/9 + e + c' (J)) 

The proof of Theorem II.5 is completed by noting that 

2 2 2 I I llClo\1
2 

C E (£,n Bl c"·£,n(l+ x ) 

This yields 

) 

(5.29) 

(5. 30) 

(5. 31) 

with k(8 ,Jl = c" (fo Bl 2 • c (8 ,Jl , which is precisely the bound of (1.15 l . 

Equation (4.30l is proved by noting that 

I 
<i,j> 

(O .-O. l 2 

J. J 

Here CF is the Green's function of minus the two-dimensional lattice 

Laplacian with free boundary conditions at infinity. For a further dis-

cussion of the Dirichlet covariance see Appendix I. By <·,·> we mean 

the ordinary L 2 inner product for functions on z: 2 n /\. Finally, 

2[CF(O,Ol -CF(O,xl) C 2c'".£,n(l+lxll (5.33) 

by standard estimates. This completes the proof of (5.3ll. 
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CHAPTER III 

AN UPPER BOUND ON CORRELATIONS IN THE SOLID ON SOLID MODEL 

In this chapter we prove logarithmic bounds on the fluctuations of 

the interface of the solid on solid model. The proof combines a duality 

transformation [15, 31] with the complex translation technique of 

McBryan and Spencer [30]. 

Consider the SOS model on a two-dimensional square lattice, whose 

finite volume partition function is 

l 
{h} 

-Blh.-h.I 
n e l. J 

<i,j> 

(1.1) 

We take boundary conditions with for i It /\. The product runs 

over all nearest neighbor pairs in We assume that /\ is a square 

centered at the origin, and by IAI we mean the number of points in 

z2 n /\. The main result is the bound of Corollary I. 4. There exists a 

constant K CB> such that 
u 

<ch - h ) 2>, ~ K ( B) Q.n ( 1 + I x I ) 
0 x ii u 

This follows from the more general bound of 

Theorem III.l. For every G > o, and 

0 < n < I/\ 1118 , there exists a constant 

such that for all 0 < £ < £
0 

03> one has 

x = 

K ((3) > 0 
u 

(I. 3.5) 

with 

and a constant 

(1.2) 

) 
60 
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Corollary I.4 follows immediately from this bound by subtracting one 

from both sides of (1.2) and expandi~g to third order in £. The term on 

the l.h.s. of (1.2) which is first order in £ vanishes due to the 

synunetry of the sos model under {h}+-{h}, and the bound (I.3.5) follows 

upon dividing by £
2 

and taking the limit £+0. 

Proof. The proof requires a change to dual variables. Consider the 

unnormalized expectation 

) 
{h} 

e 
E(h -h) 

0 x 
-Blh.-h.I 

n e l. J (1. 3) 

<i,j> 

Let y be the path running from 0 to x . We also let Y denote the set 

of lattice bonds in y. It will be clear from the context which meaning 

is desired. Rewrite the unnormalized expectation as 

l n 
{h} <rn,k>Ey 

n 
<i,j> 

-Blh.-h. I 
l. J 

e • 

We adopt the convention that the bonds <rn,k> are directed, with the 

positive direction either up or to the right. 

The duality transformation consists of exchanging our "site" 

(1.4) 

variables for "bond" variables n .. = h. - h.. The bond variables n .. 
l.J l. J l.J 

are not independent. They must satisfy the constraint that their sum 

around any plaquette be equal to zero. The origin of this restriction 

becomes obvious when we consider that n .. 
l.J 

is just the lattice gradient 

of the {h} field so that ¢ ~od! = ¢ Vhod! = O. 

Let I(i*,<i,j>) be the incidence function which is +l when the 

bond <i,j> is contained in the boundary of the plaquette associated 

with the site i* in the dual lattice and is oriented in the positive 

direction, -1 if it is oriented in the negative direction, and 0 if 
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- 'i 'i - .1 

1- - -1- - - -1-

I I I I 

.________ ===z====•===z====,•====z=-==+--~~~--1 
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I 

.1 

-1- -

-1- -

x 

-1- -.- -

Figure III.l. The original lattice, ~ , the dual lattice, -- , and 
the bonds y, == . 

k j m 

• i* • j* 

b n 

Figure III.2. Representative sites in the original and dual lattices. 
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if <i,j> does not lie in the boundary of ·* l. • 

) 

The coboundary operator V, defines a function (on sites of the dual 

lattice) 

<Vnl (i *l I(i* ,<i,j>Jn .. 
l.J 

(See [l, 22]for a concise explication of these lattice operations.) 

For the site i* in Figure 2 one just has 

CVnl <i*l 

We may sum over the bond variables as if they were independent provided 

we enforce the constraints on their sums by introducing Kronecker 

6-functions for each plaquette which are non-zero only when (Vnl (i*l = 0. 

E(h -h ) 
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< 0 x > 
z/\ e /\ l n 

{n} <k,DEy 

£nk£ -Bin .. J 

e n e l.J n <60,(Vnl(i*JJ. 
<i,j> i*E/\* 

(1. 5) 

/\* is the set of all sites in the dual lattice z2* = (Z + 1/2) 2 such 

that the plaquette associated with this site touches /\. Note that our 

boundary conditions translate into the restriction that n .. 
l.J 

vanish for 

all bonds <i, j> c /,c. Throughout this chapter and the next "starred" 

quantities (e.g., i*, <i*,j*>J refer to the dual lattice and unstarred 

quantities refer to the original lattice. Rewrite (1.5) using 

6 
o,n 

One obtains 

1 
271 

271 J d8ein8 
0 

(1.6) 



I [ n 
{n} i *€/\. 

From Figure 2 we see that each 

once with a positive sign when 

2n d8i*] 
f 2n n 
0 <k,R>E:y 

£nk£ -Slnijl 
e n e 

<i,j> 

x n 
i *€/\.* 

e 
i8. * (V'n) (i *l 

1 
( 1. 7) 

i6. * ('Vn) (i *> 
1 n .. twice in n appears e 

1] i *€/,* 
·* is the site 1 of the dual lattice 

immediately above or to the left of <i,j>, and once with a negative sign 

when i* is the site in the dual lattice immediately below or to the 

2n ae .• 
J 2~ 
0 

right of Denote n 
i *€/\.* 

= f D6 and rewrite (1.7) as 

£(h -h) 
< 0 x 

z/\. e >/\. foe l n 
{n} <k,R>E:y 

r -S/n .. / in .. (6 .• -6.*)] 
n .e 1) e 1) 1 J • 

<i,j> 
(1. 8) 

Here ·* is the site in 1 the dual lattice to the left or above <i,j> 

and j* is the site to the right or below that bond. Perform the sum 

over {n} leading to 

foe n rsce .• -ej.+i£6_...,. ·•> J 
<i*,j*> 1 .....,, ,J ,y 

(1. 9) 

l + e - 2S - 2e -S cos 8 
(l.10) 

and 

if <i*,j*>nr 

6<. * . *> 1 ,) ,y I : (l.ll) 

otherwise 

) 
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Note that there exists a constant \ <Sl > o such that 

for all e. 

We now use the periodicity of the functions 1
6

ceJ 

variables in (1.9) according to 

). 

to change 

(l.12) 

If is properly chosen (we discuss this choice below) there exists 

a constant c' CS) with 

lrs<e .• -e .• +ia .• -ia .• +i£6<.* ·•> 'I 
1 J 1 J 1 ,J ,y :i;; 

rsce .• -e .• l 
1 J 

c' CS) (a .• -a .• +EO<i* ·•> )
2 

e 1 J ,J ,y 

(l.13) 

2e- 13 [cos 6(cosh a-l)+isin6sinha] 
-213 -s l + e - 2e cos e 

(l.14) 

Suppose there exists some constant K such that /a I < KE. Since 

I 2e-s [cos e (cash a-1) + i sine sinh a] I :i;; 2K£ 
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for £ sufficiently small, there exists a constant £0 (6) such that for all 

0 < E < e:
0 

<SJ one has 

I
IS~(8+ia) I 

IS (8) 

2e - 13 [cos e (cash a-1) + i sine sinh a] 
l+e- S-2e-Scos e 

(l.15) 

with c(S) > O. (In fact for 8 small, -4 
c<SJ~c·S .) This estimate 

used Taylor's theorerr. to expand the logarithm to second order and then used 

the bounds 



sinh a<.; 3/2a , (1.16) 

for a small. (This may necessitate taking £
0

(Sl somewhat smaller 

than it was previously.) Equation (1.15) yields (1.13) if we can prove 

I a.* - a.* + £6<. * . *> I ~I<-£ 
i J i ,J 'y 

(1.17) 

Define y* as the set of bonds in the dual lattice which intersects 

y and define * YL as sites in the dual lattice which are the upper end of 

some bond in y*. X(· l 
. . 2* . 
is the function on Z defined by 

if 

X(i*l (1.18) 

otherwise 

Finally, let a
2 

be the y component of the lattice gradient, i.e., if 

f is some lattice function, (d
2
f)(i) ::f(i+~y) -f(i). We pick our 

translating function ai* to be 

Here 

a.* 
i 

(1.19) 

is the Green's function, or covariance of the negative of the 

two-dimensional lattice Laplacian with Dirichlet b.c.'s on all*. 

We prove in Appendix I that there exists a constant c, such that 
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for . * . * 
i 'J nearest neighbor sites, la.*-a.*j<c·£ . 

i J 
If we take K = c + 1, 

ja.*-a.*+£6,..,* .*> I <K·£ 
i J "- ,J ,y 

verifying (1.17). use (1.13) to rewrite (1.9) as: 

) 
67 

foe n i 6 (e.*-e.*+ia.*-ia. +i£6<.* ·*> Y 
<i *. j *)cf\* i J i J * i 'J • 

Joe {
i 6 (e.*-e.*+ia.*-ia. +i£6<.* ·*> y>) n i J i J* i ,J • I 

<i* J0 *>ell* i (e -e ) ( ' B i* j* J 

x Joe n 
<i* ,j*>cfl* 

(1. 20) 

But 

Hence 

£(h -h) \ l 
<e 

0 
x >/\..;exp c' (S) l (a.*-a.*+£6<i* "*> >

2 
( 

<i*,j*> i J ,J ,y ' 
(1. 21) 

Now bound the exponent of this expression. 

l (a.*-a.*+£6<.* "*> >
2 

<i *. j *> i J i • J • y 

\ 2 2 2 
1 [(ai·*-aJ.*l +2£(a.*-a.*)6<.* "*> +£ 6,..,* '*> ] 

<i<j*> i J i ,J ,y 'Y. 1] ,y 

(1. 22) 

The definition of 6<'* '*> i ,J ,y 
implies that 



) 

I o~. ··> 
<i *' j •> 'J 'y 

jyj • (1. 23) 

Using the definition of X(·) we write 

E l (a .• -a .• J6<"* ·•> 
<i * 'j •> l. J l. 'J 'y 

-E l 
i* 

(1.24) 

where <· ,·> is the usual L2 inner product on the space of functions 

on which vanish in The definition of Dirichlet boundary 

conditions for the lattice Laplacian (see Appendix I) implies that 

l (al. .• -aJ.*)2 
<i• ,j*> 

Combining (1.24) and (1.26) gives 

l [(ai.-a .• l
2

+2E(a .• -a .• Jo,.,,. ·•> 
<i *' j •> J l. J ....... 'J 'y 

Lemma II I. 2. There exists a constant such that 

(1.25) 

(1.26) 

(1.27) 

(1.28) 

This lemma, combined with (1.21), (1.22), (1.23) and (1.27) yields 

Theorem III.l. The lemma is proved by integration by parts, but the proof 

is left to Appendix I where the Dirichlet covariance is discussed. 

) 
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CHAPTER IV 

AN UPPER BOUND FOR MODELS WITH NON-LOCAL POTENTIALS 

In this chapter we extend the methods used to prove the upper bound 

in the SOS model to the models with non-local potentials. This requires 

dual transforming as in the SOS case. Because the interaction potentials 

are non-local, however, the dual transformed model does not factorize into 

nearest neighbor interactions. A more manageable form of the model is 

obtained after a Mayer expansion which exhibits a partial factorization. 

We prove the upper bound on the fluctuations given in Theorem I.l, 

<(h -h i2>11 :i;;; c (B,J)R,n(l+ lx/J 
0 x u 

(I. 3.1) 

This bound was shown to follow from 

Theorem I.3. For every B > O there exist constants J 
2 

(13) > O and 

E
0 

(13) > 0 such that for all J > J 
2 

(13) and O < E < E
0 

(6) there exists a 

constant cu(8,J) >O such that for x= (n,O) Ez2 n /\,with O<n< /f,/l/B 

one has: 

(0.1) 

Furthermore, cu(8,J) may be uniformly bounded by some constant K($) 

for all J>J
2

($). 
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IV.l The Mayer Expansion for Upper Bounds 

The models studied have an unnormalized expectation given by 

I v x c { h. -h. } I x> 
xc./\ i J 

e 

(l.l) 

As in the previous chapter, y is the set of lattice bonds connecting 0 

to x, IS (h) = e -BJ h J , and the potentials V x< ·) obey the conditions 

(I.2.2). Introduce "bond" variables n .. = h. - h. as before, and imple-
l.J l. J 

ment the constraints on these variables via Kronecker 6-fWlctions, which 

are rewritten as integrals over variables ei*' living on the dual 

lattice. The manipulations are the same as those in the previous chapter 

and yield 

( 

in .. ce .• -e .• +ie:6<"* ··> > 
foe I n I c > 1 J 1 J 1 ,J ,y 

{n} <i,j) S nij e 

x 
(l.2) 

At this point we see where the problems arise--the sum over {n} does 

not factorize as was previously the case. To circumvent this difficulty 

we Mayer expand (1.2). As a first step in this process define an 

arbitrary order for nearest neighbor pairs (bonds) which intersect the 

region /\. Denote the first bond (with respect to this ordering) <i
1

,j
1
>, 

and define the interpolated potential 

) 
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l 
sf x({n} Ix l 

Vx({n} Ix> otherwise. (1.3) 

Then rewrite 

( 

in .. ce .• -e .• +ie:o<.* ··> y>) I n I (n .. )e l.J l. J l. ,J , 

{n} <i,j> B l.J 

l VxC{n}lx> 
Xe./\ , ( 1. 4 ) 

e 

using the fundamental theorem of calculus as 

I 
{n} ( 

in .. ce .• -e .• +ie:o<.* ··> >) 
n I (n .. )e l.J 1 J 1 ,J ,y 

<. ·> B l.J 
J., J 

e 

I 
xc/1 

v c{n} I > 
x x 

<i1,j?t>i: 

+ 
l 
J ds 1 I 
0 {n} ( 

in .. ce .• -e .• +ie:o<.* ··> y>) 
I ( ) l.J J. J J. ,J , n B nij e 

<i,j> 

x 

s 
vx1<{n}Jx;<i1,j1>> 

(1. 5) 

The purpose of this interpolation is to decouple the bond <i1 ,j 1> from 

all the non-local potentials in the first term. Now continue to decouple 

the second term via the following inductive procedure. 

Let rl, ... ,rn be connected collections of lattice bonds such that 

for all iE{l, ... ,n} there exists j E {1, ... ,i-1} with r.nr. ;-1¢. 
l. J 

Then define 
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sl ... s 
v n({n} I ,r l.J ••• u r i 

X X 1 n 

sl ... s -1 
s v n , {n} I , r

1 
u ... I.) r 

1
i 

n X x n-
if there exists 

<i,j>Er u .•• ur 
1 n 

<i,j>cx s.t. and there exists 

<i',j'>c:x s.t. <i'.j'>i!' u ... lJr 
1 n 

otherwise (1.6) 

Now study the second term in (1.5). 

Let r 1 = { <il I j l>} and choose r 2 ={set of lattice bonds contained 

in x
1

} = rcx
1

J, according to which term in the sum over x
1 

we are 

sls2 
considering. Decouple using vx ({n} Ix;[ 1l,r2> to obtain 

1 

l 
{n} 

J 
0 

) 
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1 in .. (6 .• -e .• +ie:i5<.* ··> J 
f dslXX (fl)VX ({n}lx) TI (IB(ni.)e 1) 1 J 1 ,J ,y) + 

l 
xcx 

x e 1 

0 1 1 1 <i,j> J 

l vx({n}lxl 
x cA 

rcx>ncr
1
ur

2
> = ~ 

e 

The characteristic functions are defined by 

(1. 7) 

) 

if there exists <i,j>E f with <i,j>cx ana 

there exists <i',j'>~r with <i',j'>cx 

otherwise. 

sls2=0 
We have used the facts that VX dn}lx;r

1 
i.if

2
J = 0 for any X with 

f(X) n !'(X
1

)1!2l and f(X) n (f/,\[(X
1

));C ~ (f/,={set of all bonds inter-
s 

sectin~ /J), v/({n}lx;!'1 ) =VX({n}lx> for f(X) nf
1 

=!<l, and 
s 1 ,s2-o ~ s 1 

Vx ({n}lx;1
1 

uf
2

J =Vx ({n}lx;f
1

J if xcx
1

, all of which follow 

from the definition of the interpolated potentials. (In general, as in 

the special case above, r (X) ={set of lattice bonds contained in x}.) 

Rearrange the second term of (1.7) as 

Xx (fo)Vx ({n}lx) n (L(n .. ) 
1 1 1 <i J·>c:x 0 1

J 
' 1 l 

in .. ce .• -e .• +ie:o<.* ··> >) xi=x1 x e 1) 1 J 1 ,J ,y e 

X \, 1 I l 
tn 5 1~ \('"' ur J 

J 
1 f, '1 - 2 

n 
<i,j>: 

<i I j>c;tx
1 

I (n ) e 1 J ~ J 1 'J 'Y 
( 

in .. cea-6.*+ie:r5<.* '*> )) 

B ij 

I 
xc:: /1 

r cx;n C:' ur > 
x e 1 2 

Now return to (1.7) to decouple x
1 

and x
2 further. The general 

result is the following lemma. First, given r
1

, ... ,[k and Xk, 

define for m < k 

(1.8) 
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l if there exists <i, j> c:: X s. t. <i, j> E f , 
k m 

<i. , j •>c:xk s. t. <i. 'j '>ft r l l,, ••• J rm and 

no <i" , j "> c:: x s . t . <i" , j "> E f 
1 

J • . • U f 
1 k m-

O otherwise (1. 9) 

Lemma IV.l. For any positive integer m 

c. e ~ ) l vx<fn}Jx> 

( 

in .. (v .• - .• +iEu<.* ·•> ) vr-' l n I (n .. le l.J 1 J 1 'J 'y e"-" 
{n} <i,j> B l.J 

m 
l l l l 

k=l x
1 ~-1 n 

x 

n 
<i,j>: 

<i,j>Ef 
1
u ... 0r k 

n 
<i,j>: 

<i, j>.£r 
1 
u ... 1.:r k 

in .. ce .• -e .• +ic::6<·• ··> > 
( ) l.J l. J l. 'J ''( 

r 6 nij e 

Eq. (1.10) to be 
continued 

) 

l 
x 

m 

l 
n 

) 

l 

J 
0 

(1.10) 

We define f k inductively as f k = f (Xk-l). The sur.t over n in the first 

term runs over all tree functions on k vertices while that in the second 

term runs over all tree functions on rn+l vertices. The proof is also by 

induction. Begin by proving the following leIT~a about the interpolated 

potentials. 

Lemma IV. 2. For any integer k ;;i: 1, 

l (1.11) 
x 

Proof. This is true for k=l. Assume that it is true for k < n. From 

the definition of Xx<f
1

i..i ••• t.:fk) we can rewrite the l.h.s. of (1.11) 

when k=n as 
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n-1 

l l 
x j=l 

{s .... s 2>x <f 1 :J ... lif 2;f 1 )u {{r.}J) 
J n- X n- n- ·x x 

{l.12) 

We have applied the definition of the interpolated potentials and then the 

induction hypothesis to the first term on the r.h.s. of {l.12). The 

second term is handled by the observation that if f {X) n {fl U ••• U f n-l} =fl!, 
sl ... s -1 

then VX n ({n}lx;fl U ... Ufn-l) =Vx({n}lx>· {This follows from the 

definition of the interpolated potentials.) With this observation the 

second term in {l.12) becomes 

l 
x 

which when combined with the first term completes the proof. 

Proof {of Lemma IV.l). By (1.5), the lemma holds for k=l. Assume that 

it holds for m < m0. Consider the second term in {l .10). Introducing a 

new decoupling parameter s , expand 
mo 

x e 

l 
xc=ll 

f<x>n<r 1u ... ur >=fl! 
mo 

Eq. {l.13) to be continued 
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) 

l 
+ I 

0 
({n}/ ;f1 u ... ur _1 >x cr1 u ... ur 1) x m

0 
x m

0 mo mo 

{l.13) 

In the first term we have used the fact that 

if f {X) n {Tl U ••• U f m-l} = (II. The first of these two terms becomes the 

k = m0 part of the first term in {l.10). Rewrite the second term with the 

aid of Lemma IV.2 as 

Putting this back into (l.10) yields the second term in {l.10) in the 

case when This completes the proof. 

The expansion process must terminate after a finite number of steps, 

because fl U ••• UT kc: fl Li ••• U f k+ l and the lattice is of finite size. 

When r 1 U . . . U r k = r A , 
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and IV.2 The Cluster Formalism 

0 . We now introduce the cluster formalism discussed in Chapter 2. 

Thus the second half of (l.10) will vanish. If we adopt the convention 

that for all k greater than that k
0 

for which r 1 u ... u r k exhausts 
0 

all the bonds on the lattice, the sums in (1.10) are set equal to zero 

we obtain 

Corollary IV. 3. 

l n I (n .. ) e 1
) 

1 J 1 
,J 'y 

( 

in .. <8 .• -8 .• +iEO<.*'*> )) 

{~} <i,j> s 1) 

00 

l 
k=l 

l 
~-1 

l 
n 

1 

J ds1 ... dsk-l 
0 

l Z: n 
in .. (8 .• -8 .• +iEo<.* ··> > 

I ( n ) e 1) 1 J 1 'J 'y s ij 
x {n}lr1u ... urk < .. ><ir,j>: r 

1,J E1J ••• 1.:k 

n 
<i,j>: 

<i, j>,zr 
1 

u .•. ur Jc 

in .. (8 .• -8 .• +iEo<·• ··> y> 
Io(n .. )e 1J 1 J 1 ,J ' 

µ 1J 

l vx({n}/x> 
xc/\. 

x 
r<x>n<r1u ... urk>= ~ 

(1.14) e 

Definition: A tluster Y consists of 

(a) An integer k ~ 1 

(b) A collection of connected subsets of A, {x
1

, ... ,xk_
1

} 

(c) A collection of sets of lattice bonds 

(d) 

(e) 

the minimal bond in u~ r .. 
1 J 

A tree function n on k vertices. 

An interpolation parameter s 
m 

for m=l, ... ,k-1. 

Definition: Given a cluster Y we define the cluster function: 

Q(Y,8,E) z: f n 
{n}/f(Y)l <i,j): 

<i,j)Er(Y) 

in .. <8 .• -8 .• +iEo<.* ··> l 
I ( ) 1) 1 J 1 'J 'y 

0 n .. e 
µ 1) 

(2.1) 

sl ... sk-1 l 
vx <{n}/x;r1u ••• urk-11f 

(2.2) 

where by f (Y) we mean fl U ••• :.J f k · 

With these two definitions we may write 
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· ( 9 9 · " l l v < {n} Ix') 
( 

in.. ..- .• +iE:u<i* "*> 'YCA X I n I ( n .. ) e iJ i J 'J '"Y e 
{n} <i,j> 8 iJ 

I Q (Y,9,£) 
Y:f

1
={<i

1
,\>} 

f(Y) c: J\ 

Where we have compressed our notation so that 

00 

2 I l !. 
Y:f 1={<i

1 
,j?} k=l xl ~-1 

f(Y) c: f J\ 

1 

L I ds 0 ••• dsk-l 
n 0 

(2. 3) 

Repeat the expansion process, this time applying it to the bracketed 

quantity on the r.h.s. of (2.3). We choose <i;,j? so that fl is 

the smallest bond (with respect to the previously defined ordering) in 

rJ\\f(Y). The clusters generated in this expansion must satisfy a 

compatibility condition with respect to those generated in the first 

- -expansion. Specifically, we require that f(Y
1

) n f(Y 2) ¢. Continuing 

this process until rJ\ is exhausted we arrive finally at the expression, 

Lemma IV.4. 

l ( n I (n .. ) 
{n} <i,j> 8 iJ 

in.. ..- .• +i£u<i* '*> Yi:./\. x X . (9 8 . " ' !: v ({n} I ') 
e iJ i J 'J '"Y e 

k 
n Q(Ym,8,£) 

m=l 
(2.4) 

8L ) 
) 

we mean r 1 
for the cluster Y .. 

J 
Now remove the various 

restrictions on the allowed sets of clusters. First remove the 

requirement that Note, that by picking sufficiently 

small we can insure that 1i
8

<e .• -0 .• -i£0<·· ··> , I ~>-<8,£>, for some 
i J i 'J '"Y 

constant A (8,£) > O. Recall that 

-28 
1-e 

Thus we may rewrite (1.18) as 

l 
- {Y1:··.,Yk} ( 

n i 8 <0 .• -0 .• +i£0<.* ··> ') 
<. . -...er i J i , J , "Y 
i' J....-.0 J\ 

f(Y inr(Y.l=¢;m#j 
m J 

r 1 <Yt_<. •• <r 1 (Ykl 

U~ f(Yk)=f J\ k l x n 
Q(Y ,9,£) ] 

m • (2.5) 

m=l n 
<i '>Ef (Y ) ,J m 

I8(9 .• -9 .• +i£O<.* ··> v) 
i J i 'J ' ' 

Note that for any cluster Y, with k = 1, f (Y) {<i,j>} for some 

<i,j>. we can restrict our sum over clusters to run only over those 

with k > 1. For those clusters we define 

Q(Y ,8,£) 
m 

Rewrite (2.4) as 

n_ I8(9 .• -8 .• +i£o<.* '*> v> 
i J i ,J '' <i ,j>Ef (Ym) 

l n I8(8 .• -8 .• +i£0«* ··> vj[~ 
<. ·>Er i J i ,J ·' 1 

i 'J J\ 
Q(Ym,8,£)]. 

(2.6) 

(2. 7) 
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\I l just reminds us that we sum over clusters with k > 1. Given a term 

in (2.7), associate with each <i,j>Er11\u~ f(Yj) the cluster Ym' with 

Q(Ym,,8,£) = I6(8 .• -8 .• +i£O<.* ··> y>. 
1 J 1 I) I 

For such a cluster Thus 

i 6 c6 .• -6 .• +i£o<.* ··> y>] (~ QCYm,6,£>] 
1 J 1 1) I i 

[~. QCY ,,8,£>1[ n i 6 c6 .• -6 .• +i£o<.* ··> y>] ~ 
m J <i I :j__>£ 1 J 1 I J I 1 

Q(Y ,6, £) 
m 

n 
m' 

r 11\(Um' f(Ym,)) 

k 
Q(Ym' ,6,£) n 

m=l 
Q(Y ,6,£) 

m 

as required by (2.4) 

One eliminates the requirement that fl (Y J! < •.. <fl (Yk) by summing 

over all ordered sets of clusters (Y
1

, ... ,Yk) and dividing by l/k! 

to cancel the overcounting. Finally remove the restriction that 

r (Y ) n r (y.) =~I by introducing the familiar u (Y. I y.) functions 
m J 1 J 

defined by: 

U(Y. ,Y .) 
1 J I : 

- -
if r CY.> n r CY.> = ~ 

1 J 

otherwise 

With these modifications (2.4) becomes 

m 

n 
<i,j> 

i 6 c6 .• -6 .• +i£o<i* ··> > L ;. 
1 J ,J ,y m=O . 

t' n Q(Y ,6,£) 
(Yl, ... ,Ym) 1 m 

(2.8) 

U(Y.,Y.) . (2.9) 
1 J 

82 ) ) 

From here one follows the procedure used in the proof of the lower 

bound: Introduce functions A= u-J., expand the products over A's, and 

then exponentiate the resulting sum, finally arriving at 

Lemma IV.5. 

0<£<£0(6) 

There exists £0 (6) and J 2 ( 6) > 0 

and all J > J 2 <6) one has 

such that for all 

foe( n 
<i*,j*> 

!6 c6 .• -6 .• +i£o<.* ··> >) 
1 J 1 I J rY 

x exp[ I Jo, I' 
m=l m. (Y

1
, .•• ,Ym) ( gEG (~l' ... ,Y ) 

c m 

n A(Q,)) 
Q,Eg 
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~ Q(Y.,6,£)]. (2.10) 
j=l J 

Recall that Gc(Y1 , .•. ,Ym) is the set of connected graphs on the 

vertices (Y1 , ... ,Ym). The restriction on J just insures that the 

sum in the exponent is absolutely convergent, and hence that the mani-

pulations leading to (2.10) are justified. 

Corollary IV.6. Under the conditions of Lemma IV.5 

Joe( n ! 6 <6
1 
.• -eJ .• >) 

<i*,j*> 

x exp [ I 
m=l 

1 
m! 

We close this section with 

Lemma IV.7. For any cluster Y, Q(Y,6,£=0) 

n A(i)) ~ Q(Y.,6,£=0)]. 
Q,Eg j=l J 

(2.11) 

is real. 
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Proof. 

Q(Y,8,£=0) = [ l J · Q(Y ,8,£=0) 
n i <8 .-e .• J 

<i,j>Ef (Y) S i J 

Since is<8i*-8j*) is real, so we may concentrate on Q(Y,8,£=0). 

Suppose we make the change of variables {n•} = {-n} in the sum defining 

Q(Y,8,£=0). Because of the invariance of IS(n), VX({n}lx) and hence of 

sl ..• sk-1 , 
VX ({n} lx;r

1 
U ••• U rk-l) under this change of variables we see 

that 

Q(Y,8,£=0) 
{n'}tr 1. (Y) 

-in'.. (8 .• -6.*) 
I

0
(n'. .)e l.J 1 J 

µ l.J 

x ~rs <£J ... s£-2X., ff1\.J ••. i.Jf11<£J-l;f11<£ll vx ({n'}l'x l] 
i=2 L 11 "i-1 i-1 i-1 

x 

\ v5i ... sk-1 
l <{n'} lx;rlu •.. urk-ll l 

xcx \.J " x l ... ux k-1 
e 

* Q (Y, 8, £=0) . (2.12) 

(Here * Q (·,·,·) refers to the complex conjugate, not the dual, of 

Q(• ,· ,·)). This implies that Q(Y,8,£=0) is real, and completes the 

proof of Lemma IV.7. 

) 

IV.3 Complex Translations and an Upper Bound 

In this section we change variables and derive bounds yielding 

Theorem I.3. As a first step use the periodicity of the integrand in 

expression (2.10) to translate 

As in Chapter III we choose our translating function to be 

£ I 
j* 

Recall that CD(i*,j*) is the covariance of the negative of the 2-dim 

Laplacian with Dirichlet b.c.'s and X(·) is the function defined in 

(III. l.18).. Under this change of variables, 

n 
<i*,j*> 

JDS ( n is<e .• -e .• +ia .• -ia .• +i£o<.* ··> l) <i *. j *> l. J l. J l. • J • y 

x 

I 0 (8 .• -e .• Jexp[ I -..!, I' 
µ 

1 J m=l m. (Y Y ) 
l' .. ·' m 

x ~ Q (Y . , 6, £=0 )] 
j=l J 

Eq. (3.l) to be continued 
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1 J* 1 J 1 •J ,y r6(e .• -e. +ia .• -ia .• +iEo<.* ··> JJ 

exp[r:! l
0 

( l TIA(£J)!.;Q(Y.,6+ia,EJ 
m=l (Y , ... ,Y J gEG £Eg J=l J 

1 m c 

- ; Q(Y. ,6,E=OJl] , 
j=l J 

I 6(e .• -e .• +ia .• -ia .• +iEo<.* ··> J 1 J 1 J 1 ,] ,y 
.;;;; sup 

{8} 

( [ J)[ 
m 

Y n A(£J n 
gEGc £Eg j=l 

Q(Y. ,8+ia,EJ 
J 

- .; 6(Y. ,8,E=OJ] 1} 
J=l J 

x foe[ n i 6 (e .. -e .. JJ exp[ Y -.!, I' 
<1'*,J'*) 1 J m=l m. (Y Y J 

l' · · ·' m 

In this step we use the fact that the reality of Q(Y. ,8,E=OJ 
J 

(3. lJ 

implies that 

the integrand is positive. Note that this integral is eactly the partition 

function, so that (3.lJ insures 

(h h J I 
n i 8 (e .• -8 .• +ia .• -ia .• +iE6<.* ··> J 

E - <i * . *) 1 J 1 J 1 , J , y 
<e 0 x >A .;;;; sup 1~'------''-"--------------------1 

{8} n I 8 (0 .• -e .• J 
<i* ,j*> 1 J 

Eq. (3.2J to be continued 
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x Jexp .; 6(Y.,8,E=OJ] ll 
J=l J 

(3. 2J 

In the previous chapter (see III.l.15J we saw that for E sufficiently 

small there exists a constant c' (BJ such that 

sup t 
{8} l 

n r6 (0 .• -e .• +ia .• -ia .• +iEo,,.,. ··> J } 
<i *' . •> 1 J 1 J ....... 'J • y 

n r
8

(e .• -e .• J 
<i*,j*> 1 J 

.;;;; e 

c' (SJ l (a .• -a .• +Eo<i* ·•> J
2 

<i*,j*> 1 J ,] ,y 
(3. 3J 

The remainder of the expression is controlled by 

Proposition IV.8. For every S > 0 , and x = ( n ,o J E Z 
2 n /\ there exists 

exists a constant c" (S,JJ such that 

Q(Y. ,8+ia,E) -
J ~ Q(YJ .• 8,E=oJJI 

j=l 

(3.4J 

Furthermore, c"(S,JJ can be made arbitrarily small by choosing J 

sufficiently large. 



Equation (III.1.28) implies the existence of a constant K with 

I 
<i* ,j*> 

(a a +co . . >
2 ~ K £n(l+lxl> . i*- j* <i*,J*>,y 

Thus, if we take cu{f3,J) = K(c'{i3,J) +c"{S,J)), we obtain, by combining 

(2.2), (2.3) and (2.4), the estimate 

£(h -h > I 
<e 

0 
x >/\~expl(c'((:\,J) +c"(f3,J)) 

~exp{c (13,J)fo(l+lxl>} 
u 

l (a .• -a .• + 
<i*,j*> 1 J 

(3. 5) 

This completes the proof of Theorem I. 3. The proof of Pro1.•osi tion IV. 8 

is delayed until Chapter VI. 
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CHAPTER V 

CONVERGENCE ESTIMATES FOR Till: LOWER BOUND 

In this cha1•tcr we prove th<: cstimatl's wl1ich insurL· convcrqc·11ce of 

the cx1•ansion of Cha1•tcr II. The proof is divided into four St'ctiun,;. 

In the first section Proposition II.21 is shown to follow from the 

convergence of a com1 .arisen series involving rww clustt·r functions 

In the second section the convcrqencc of this comi1arison sf'rics i!.> 

proven. In the third section, ratioe; of till' clustc·r functions 

Q(Y,(j>,C) and S ( i') are estimated, and thc·sc estimates arc used to 
n 

s (i'). 
n 

µrove Lemma II. 17. In the final section differcncc:s of clu,;ter funcLion,; 

like: Q(Y,<ji+o,c) - Q(Y,cj>,O) an· l>ound<:d. 



V.l The Proof of Proposition II.22. 

.. 
Define a set of new cluster functions Sn(Y), n=l, ... ,64 by 

S (Y) 
n 

k nJ1 I 
( Z n./64) ( n - -,x n s s x (- - l 64 i-1 ) (1. ll 
pEf(Yl P i=2 n(i)··· i-2 xi-1 -n(il ,_i e 

Here 

and 

where 

Xx(:'.,'.. l 
l. J 

z p 

D is a (B and J 

if x n supp a~ 'I (:I! for all 

xnsupp a(:-i) 'f-(:2! 

otherwise 

p El°'. and 
J 

independent) constant determined by the 

(1. 2) 

(1. 3) 

combinatorial estimates of [15] (see Appendix II), and A(p) is the 

function defined in Theorem II.3. 

These new cluster functions are related to the functions Q(Y ,¢,E:) 

by the following lemmas. 

Lemma V.l. There exist 0 < sl < 52 and Jl (81) > 0 such that for 

BE U\, S2J and J > J 1 U\l one has 

Q(Y,,tj>+O,E) -
>., 

~ Q(Y,,¢,oJ] d'v~(Pl II 

£=1 >., 

for n=l, ... ,39. 

(1. 4) 

Lemma V.2. Let {y£} be a set of clusters which satisfy {o,x} n 

supp a(f(Y£)) =(:I! for £=1, ... ,m. Then there exists O<t\ <S
2 

and 

J
1 

U\l > O such that for all J > J 1 U\l and SE (1\,B2l one has 

90 
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Q(Y
2

,¢+o,£) - TI Q(Y
0
,¢,0; d\!~(¢) m J I 

2=1 )(, .. ! 

x 

for n=l, ... ,39. 

sup 
;;C (Y£) 

<i,j>f1D(C) 

m 
n 

£=1 
s (Y,) n ,., 

' 12 I 3::;.. + 
l.J 

J d·J~ (¢J 

sup 
xnsupp ac 

oC(Yx.l 

<i I j>c:x 

) 

_! J\xl ·1 
I' 12 4 ) 
.~oij e j 

(1. 5) 

The f~nctions Sn(Y) are in turn controlled by: 

Lezr.:na v. 3 . There exists and 

) 
(Yl,: .. ,Ym) 

ooEL'i'.(Yil 

for m = 10, ... , 64. 

m 

) ( n A(2J) n 
gEG £Eg £=1 c 

such that for 

n-7 
-m (64) s (Y,l/ .;;;m!e (z ) 

n ,., I Po 
(1. 6) 

We defer the proofs of these theorems until later in the chapter, 

and conclude this section by showing how these lemmas lead to a proof of 

Proposition iI.22. Note first that 
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x 

/! r~ Q(YQ,<jl+o,E) - ~ Q(YQ,<jl,o)] dV~(<jl) I 

I 
supp 

+ L 

L 
pEN 
a n{o,x};o1¢ 

p 

L 

rn -
n s21<Ykl 
l 

r
E2 oo l 

L mi 
rn=l 

<i I j>d\. pEN: 
sup I ao i, j, l=I ao ij I 
<i · ,j •>nn<<Ji> 

x I ( gE~ ~ A(£))( 
c 

+ L 
<i,j)ci\ 

L L laoijl
2 

pEN X:>D<i ,j> 
Xflsupp ap 

x [ I rn\ L II ( l n A(£)) 
rn=l (Yl, ••• , Y ) gEG Q 

rn c 
pE:.:~r(Yk) 

dv~ <<Pl 

92 
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(1. 7) 

(1. 8) 

) 

The second inequality results from applying either Lemma V •. 1 or 

Lemma V.2 to each term in the sum ove~ (Y
1

, ... ,Ym) in the first in

equality depending on whether or not supp ap n {O ,x} 1 ¢ for some 

m 
p E u1 r (Ykl. 

The first term in brackets in (1.8) is controlled by noting that 

Theorem II.3, (II.2.3) and (II.2.6) imply that there are at most two 

h d · · · f · 2n< d/\(p) ::'.'.2n+l c arge ensities, p, satis ying ~ and supp ap n {O,x} 1 ¢. 

Applying Lemma V.3 we bound this term by 

co 
2 

L !. l -m 7/32 E 
rn! 

• m! e z 
pEN: m=l p 

supp a nfo,x};o1¢ p 

,.; E 2 l L z 7/32 

n=l pEN: p 

2N<d/\(p),.;2n+l 
supp a n{o,x} 

p 

00 

-cl£nBl·n ,.; 2E 2 I e 
n=l 

,.; 2E 2 
(1.9) 

for B sufficiently small. In the next to last inequality we have used 

the fact that A(p);;;.: c' £n2d/\ (p) 
7/32 

(see Appendix II) to bound zp 

The second term in (1.8) is bounded in an analogous fashion. 

Applying Lemma V.3 one bounds that term by 

I 
pEN 

sup I ao i,, j, I= I ao ij I 
<i • ,j •>nn(p) 

2 I ao .. I 
1J 

7/32 
z 

p 

. 00 

I ;, 
m=l · 

· m! • e-m 

(l.10) 
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ce again, there is at most ore charge density p € N with 

2n < dJ\ (p)..:;; 2n+l, and with <i,j>n (D(p) ni\). Combining this with the 

1/32 I I fact that z p :S: exp (- D/64 £.n B ) for any p € N one bounds (1.10) by 

_-E.1 £,n BI 
e 64 I l 

for 

<i,j>ci\ pEN: 
sup\aai'j' \=\aaijl 

<i' ,j •>no(p) 

_..!2..i £.n 6 \ 
.;;; e 64 I 

B sufficiently small. 

I 
n=l 

-c"·IJl.n Bl·n 1~ 12 e · aa .. 
1J 

Finally we turn to the last of the three terms of (1.8). 

Lemma V.3 to control the sum over clusters this is bounded by 

l 
<i,j> 

x 

l 
X:X:i,j> 

e 
- ! J\x\ 

4 

xflsupp ap 

Oa . . l
2 

1J l 
pEN 

I 1/2 
(l+dist(i,pll- £.n B\ 

I 1
1/2 - ! J\x\ 

(1 +dist (i ,p)) £.n B. e 2 z 7/32 
p 

(1.11) 

Applying 

(1.12) 

94 
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From the definition of ap and the fact that <i,j>cx and xn supp a,, 

one has dist(i,p)..; \x\ + d(supp ap).;;; Ix\+ 3dJ\ (p). 

large, and B sufficiently small, 

For J sufficiently 

I 1
1/2 - .!... J\x\ 

(l+dist(i,p)) £.n B e 32 z7/32 
p 

\
£. 6 ,i12 - ; 2 \xi - ~~ \£.nB\£.n2dJ\ (p) 

..; (l+ \x\ +3dJ\(p)) n I e e 

(1.13) 

One may bound the number of charge densities a distance n from the point 

i by O(l) ·n. This follows by noting that there are O(l)·n points in 

z 2 a distance n from i, and any charge density a distance 

must contain one of these points. Thus (1.12) is bounded by 

l 
pEN 

1/2 
(l+dist(i,pll-\,11,n BJ 

7 
\' - 32 J\x\ 
l e 

.lb<i, j> 

n 

3 
- -J 

./ 16 
""' e <:la .. l 

2 

1J l l 
1/2 

(l+n)-\£.n 6\ 

\ 2 
L ( aa . . ) 

<i,j> 1] 

00 

3 l 

n=l pEN: 
dist(i,p)=n 

1/2 
0(1) ·n(l+n)-\£.n BJ 

.;;; c' e- 16 Jllaan;.;;; e- 8 J naan; 

from i 

(1.14) 

95 

for J sufficiently large. In the first of these inequalities we have used 

the Peierls argument to bound the sum over X with <i, j>c X. 

Combining (1.8), (1.9), (1.11), and (1.14) we obtain the bound of_ 

Proposition II.22. 
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v.2 The Convergence of the Comparison Series for the Lower Bound 

In this section we prove a series of estimates which yield Lemma V.3. 

ro control the sums over Sn(Y) we take advantage both of the convergence 

::oming from the number and size of the charge densities p Er (Y), and the 

exponential decay of the factors exp( (-nJ/64) :x. j). 
l. 

The first step is to control sums over a single cluster function. 

Lemma V.4. There exist 0 < B
1 

< B
2 

and J
1 

<Bl > 0 such that for all 

S (Y) 
n 

n-6 

~ (z l 64 
Po 

provided n=6, ... ,64. 

Proof. 

S (Y) 
n 

x 

I 
pEN 

I 
Y:P=f 1 (Y) 

Po Er (Y) 

S (Y) 
n 

(n-5) 
64 

I z 
pEN Po 

1/2 
(l+dist(p,po)J-lin Bl 

I 
Y:p=f1 (Y) 

PoEf (Y) 

Ii Bl
112 

(l+dist(p,p
0

)) n 

(n-5) 

z-~ S (Y) 
Po n 

(2.1) 

(2. 2) 

This is bounded in two steps. We first claim that for any cluster Y, 

with p=f
1

(Y), p
0

Eri, iE{l, .•. ,k}, and for B, J as specified by 

the lemma. 

) 
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1/2 
(1 +dist (p,pol l I £n BI 

__!__JIX I 
(TI z-3/64) e32 j-1 J 

pEf. p 
J 

312 JI \-1 I 
e 

) 

(2. 3) 

For i = 1 the statement is obvious since the l.h.s. is equal to 1, and 

z < 1 for all p provided B is sufficiently small. Assume it is true p 

for i ~k. Let Po Er k+1 · Pick some Pk Erk such that ~ n supp a 
pk 

;-!¢. 

By the triangle inequality one has 

I 1
112 I 

1
112 

(l+dist(p,p
0
)) 9,n B ~ (l+dist(p,pk) +dist(pk,pO) +d(pk)) J:,n B 

97 

Ii Bl
112 

It sl
112 

Ii Bl
112 

~ (l+dist(p,pk)) n (l+dist(pk,p
0

)) 'n (d(pk) -1) n 

(2.4) 

In the second inequality we have used the fact that if k;;;.2 (l+dist(o,pk)), 

(l+dist(pk,p
0
ll, and (d(pk)-1) are all larger than 2 (if the constant M 

in Theorem II.3 is chosen larger than 4), and the easy estimate 

(A+B) k ~ AkBk for A,B greater than two. By the induction hypothesis, 

I I 1/2 [kn-1 
(l+dist(p,okll in B ~ 

j=l 

x 

n 
pEf. 

J 

z~3/64) eJ2 Jlxj-11 J 

1 . I 
(z-l/64)e 32 J!Xk-1 

p 
(2. 5) 
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We now demonstrate that 

(2.6) 

we know that "k n supp a '/. 121 and x_ n supp a '/. j2! since by 
Pk . k Po 

definition "k intersects all p E rk+l · By the definition of our trans-

lating functions a , 
p no point in supp ap is farther than 

for B sufficiently small and J sufficiently large, 

from 

(2. 7) 

Combining (2.7), (2.5), and the observation that I 1
1/2 

CdCp l-ll £n B ~ 
k 

-1/64 . . 
zp for B sufficiently large completes the induction and proves (2.3). 

k 
Combining the definition of S (Y) with (2.3) gives 

n 

I 1
1/2 

(l+dist(p,p
0

)) fo6 (z 
Po 

(n-5) 
-~ -

Sn(Y)~S2 (Y), 

for n=6, ... ,64, and hence 

(2. 8) 

98 ) 

l 
Y:P=f

1 
(Y) 

p
0 

E f(Y) 

l 
"k-1 

) 

1 

Y. ) ds1 ..• dsk-l 
n o 

1/32 k :2 lxi-11 
( n z ) n [s (")" •• s. 2xX (f (")'f.) e ]. 
pEfCYl P i=2 n i i- i-1 n i i 

(2.9) 

In this last expression fl (Y) = p is fixed. We now demonstrate that 

(2.10) 

Note that if Xk-l makes a non-vanishing contribution to the stnn, it must 

intersect for all In particular, it must intersect 

supp ap for p that charge density in rk which is minimal with respect 

to the ordering defined in Chapter II. Thus we find 

L xx. crnCkl ,rklexpC-1/32 Jj~_1 1>~ l ( l expC-1/32 Jlxl>) 
"k-l k-1 iEsupp ap X:i EX 

(2.11) 

In the last inequality we have used the Peierls argument to bound the 

stnn over X with i EX, and the fact that the diameter of supp aA 
p 

is 

less than or equal to 3dA(p) and hence !supp apl~8rr[dAClllJ 2 . For B 

sufficiently large one has 
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(2.12) 

Combining (2.12) with (2.11) yields (2.10). 

Since for any charge density p, A(p) ~ 1 

c' such that z1164
<exp(-c'\R.nB\

112 i for all 
p 

there exists some constant 

p. Since f. ;' !21 for 
l. 

i = 1, ... ,k, 

n 1/64 
zp 

pEr (Y) 
< e 

-c'k/£n Bi 112 

Applying (2.13) to the r.h.s. of (2.9) gives a bound of 

00 

I 
k=l 

(2.13) 

1/64 k - 3J2 Ix. 11 

( n ) n c c r r > i- 1 • c 2 .14 > z snc·i···s._ 2Xx (')'. e 
p€f(Y) p i=2 1 

l. i-1 T) 1 1 

Now use (2.10) to estimate each of the sums over xj, starting with 

j = k-1 and working backwards. This yields 

\£ Bll/2 
-(n-5) 

I (1 + dist(p,p
0

)) n (z 64 
) S (Y) 

Y:p=fl (Y) Po n 

p
0
Er (Y) 

1 
00 

e-c'k I £n Bll/2 I J 
k 

~ I ds 1 ••. dsk-l n ST) (i) • • • S i-2 
k=l T) 

0 
i=2 

00 

-c'k/£n Bi 112 
k 

e • e ~ 1 (2. 15) I 
k=l 

for B sufficiently small. 
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In the next to last inequality we have used the standard estimatP. (see [9]) 

When 

I 
Y:p

0
Ef(Y) 

1 

l f dsl, ..• ,dsk-1 
T) 0 

k 
.::: k n ST)(i) .•. si_2 ~ e 

i=2 

(2 .15) is combined with (2.2) it yields 

(n-5) I 1/2 
S (Y) ~ I 64 (l+dist(p,p

0
))- £n Bl z 

n 
p€/J Po 

00 

I 1/2 
(1 + m) - R.n B I • I I 

m=l p€N: 
dist(p,p

0
)=m 

(2.16) 

(2.17) 

There are at most 
2 2 

0(1). (d(po) + m) d (po) points x in zi:
2 

satisfying 

dist(x,p
0

) = m. To see this suppose that supp p
0 

has k connected 

components. Define pa, a=l, .•• ,k, to be the restriction of p
0 

to the 

component a. For a connected region one has no more than 0(1) (d(pa) +m)
2 

points in 

points in 

:1:2 a distance m from 
a 

supp p • Therefore the number of 

Zl:2 a distance m from supp p
0 

is bounded by 

k 
l O(l) (d(pa) + m) 2 

a=l 
(2.18) 

If we draw a circle of radius 2d(p
0

) about any point in supp p, all 

pa's must be contained in this circle. Thus k~O(l)d2 (p0 ). Clearly, 

d(p0~d(pa) for all a. These two facts allow us to bound (2.18) by 

2 2 
O (1) d (p

0
) (d (p

0
) + m) as claimed. Since any charge density a distance 

m from p
0 

contains a point a distance m from p
0

• This estimate 

extends to bound the number of charge densities p € N satisfying 

dist(p,p
0

) =m. 
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Combining this with (2.17) gives 

(2.19) 

provided B is sufficiently small. This completes the proof of Lemma V.4. 

We must now control sums over more than one cluster. Following 

[4,7,16,25] we define 

k 
n S (Z ) 

s=l n s 

z. 
J 

cluster (directly or indirectly) to a y • 
m 

Sums of such functions are 

controlled by 

Lemma v. 5 • There exist 0 < B
1 

< B
2 

and J > J
1 

CB
1

l one has 

and J 
1 

CB
1

l > 0 such that for 

for n=S, •.• ,64. Here, z = maxpEN zp, and satisfies the bound 

O<z<expC-c!R.n Bil for some c. 

lC ) ) 
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Proof. The proof i> by induction on r+k. Begin by noting that 

n n 
iZi CY

1
, .•• ,Yr;<ji)=l and iZi (¢,z

1
, ••. ,Zk)=O. If we now define, for 

gEGc' rl={s:R.(Y
1

,zs)Eg} we find 

r 

l [ n s (Z >] [ n A(Yl,Z >] [ n U(Y.,Z >] 
rl sErl n s sErl s j= 2 J s 

sErl 

x [ n 
s <s 

l 2 

U(Y ,Y >] <!Pcy
2

, ••• ,Y , (Z ) E"; (Z ) an> s 1 s 2 r s s " s s,.. 

s.Erl 
l. (2.21) 

For details of the derivation of this equation see the references above. 

Inserting (2.21) into the l.h.s. of (2.20) we estimate the sum which 

results by first fixing the cardinality of n, and the total number, N~ M, 

of charge densities in ~sErl f(Zs). Using I u (Y. , z ) I ~ l 
J s 

and isolating 

the terms with N = 0 and N = M one obtains 

+ kl 
k-1 M-1 

1nt=1 1d'1, N=tnlczi,.~.,zinl> 
L jf(Z') I= N 

s 

x l 
(k-Jrll> ! 

k 

[ n /A(Y
1
,z•) j jS (Z') /] 

sErl s n s 

+ l n 
(z

1
, ... ,Zk) l 

[jA!Y
1

,z J ! is (Z l j J 
s n s 

Ejrcz > l=M s 

(2. 22)' 
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The first term in this expression is bounded by the induction 

hypothesis. The last term is controlled by noting that IACY
1

,zs) I= 0 

unless f(Zs) nf(Yl) 'f'. ¢, and then applying the bound of Lemma V.6 below. 

Finally, the second term is estimated by using the induction hypothesis 

and the bound of Lemma V.6. Combining these extimates gives 

(n-B)M I r 
I II 

If (Yl) lk A 64 
z exp! l f (Yi) l\11 + + 

i=2 k! 
~ k! 

k-1 M-1 N 
A64 

eNjf(Yl) 1 irll I + 

1rif =1 * N=f rlj 
z (2. 23) 

If B is sufficiently small the quantity in curly brackets is bounded by 

exp ( Ir (Y 1) I ) which completes the proof of Lemma v. 5. 

Lemma V.6. There exist 0 < i\ < 13 2 and J
1 

CB
1

J > 0 such that for all 

BE CB1 ,13 2l and J>J1 <13
1

J one has 

I 
(Zl'. •. ,Zm) 

f (Zs)nf (Yl) 'f'.¢ 

s=l, .•. ,m 
r1rcziJ=M s 

for n = 7, •.• , 64. 

m 
n S (Z ) 

s=l n s 
(2. 24) 

~- There are at most 2M ways of dividing the M charge densities 

in r Jrczs) I into m piles with Ms charge densities in pile s, 

s=l, ... ,m. Thus, (2.24) maybe bounded by 
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sup 
{Ml'.•. ,Mm} 

I: M =M 
s s 

I 
(Zl'. •. ,Zm) 

f(Zs)nf(Y1 l'f'.¢ 

lrcz l l=M s s 
s=l, •.• ,m 

m 

~ 2M sup [ n ( l 
{M

1 
.•. Mm} s=l p€f(Y1 ) 

I:M =M 
s 

m 
n S (Z ) 

s=l n s 

I 
z : 

s 
pEr(Zs) 

lrcz l I= M s 

sup [ ~ ( 

n-6 
(-64)M 

A S) ( l 
h\, ... ,Mm} s=l z pEf(Y l 

1 
I: M =M 

s 

l 
z : 

s 
pEr (Zs) 

Jrcz l l=M s s 

In the last inequality we have just used the observation 

n-6 

S (Z ) ~ ( n z 
64 

) s6 (Z ) 
n s pEr (Z ) P s 

s 

(2.26) 

Estimate the sums over Zs in (2.25) by Lemma V.4, and then use the fact 

that there are lrcY1 l J terms in the sum over pE f(Y1 l to bound (2.25) 

by 

This completes the proof of Lemma V.6. 

(n-6)M 

2M z~ lr<Yl) Im 

(n-7)M 
:!:: A 64 
"" z 

We conclude this section by using Lemma V.5 to prove Lemma V.3. 

First note that 

(2.27) 
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l 
(Y l' ·,·. ,Ym) 

p0E ui r !Yi> 

we have compensated for choosing p
0 

E Y1 by multiplying by m. The 

r.h.s. of (2.28) is rewritten as 

l 
(Y2, • .• ,Ym) 

r:,,,2 /f!Ysl /:N 

(n-8) N jr (Y1> I 
:i;; m l Sn(Yl) l (m-1) ! 

~ 64 
z e 

yl :pOEYl N=m 

(n-9) Ir <Y1> I 
:i;; m! l 

~64m 
Sn (Y 1) z e 

Yl:poEYl 

provided ~ is sufficiently small. Now use the fact that 

1/64 Ir (Yi l I 
( n z ) e E;;1 , 
PEf (Y ) p 

l 

provided S is sufficiently small to bound (2.29) by 

~ m! 

(n-9) m (n-7) 

£ 64 (Z )~ 
Po 

106 
) 

(2.28) 

(2. 29) 

(2.30) 

(2. 31) 

) 

In the last inequality we used Lemma V.4 to bound the swn over 

13 is sufficiently small that z1/
64

:i;;e-
1

, (2.31) is bounded by 

m! e-m. (z 
Po 

(n-7) 

64 

This completes the proof of Lemma V.3. 
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V.3 Ratios of Cluster Functions 

In this section we prove estimates relating the cluster functions 

Q(Y,¢,£) and Sn(Y). These estimates lead to a proof of Lemma II.18. 
-yq 

Estimates on the factors K(p), e P, and i(¢+i~pap) follow from (15) 

and are deferred until Appendix II. We now estimate the contributions of 

the non-local potentials. 

o < s
1 

< s
2 

J>J1 (8) and SE <S
1

,S2J one has 

Lemma V.7. There exists and J 1 CSl >O such that for all 

~ exp ) c"y 2 e - 3/ 4 J 
k 

l l 
j=l pH. 

J 

I 
m=O 

for some constant c. Recall that S~(p) is defined by (II.2.2). 

(3.1) 

Proof. The proof breaks into several parts. First we demonstrate that 

for any set of translating functions, 

I exp /W ( ¢: i~a er 0) + ... + i~a er ) ) I 
x ~ k 

108 ) 

.;;; exp t e -
i~ Jlxl [ 

sup 
j=£, ... ,k 

pH j 

( sup 
<'I 'I'-'• l. , J ,,.._,., 

Cap (i' )-ap (j ')) 2)11 

(3.2) 

These bounds are then extended to the interpolated potentials, and finally 

sums of the interpolated potentials are treated. 

Step 1. Define a=~=£ ~a(fj). By (II.1.2) one has 

) 

fCa¢ .. +ah .. +naa .. > 
l.J l.J l.J 

I n f ca¢ .. + ah .. > l 
< '-u l.J l.J 

i ,j,,.._,., (3. 3) 

Recall that f (z) = (sin
2 

rrz)17r
2

z
2

, 3¢ij = ¢i - ¢j, the sum over {oh} Ix 

is a sum over {h}lx' with h. =constant, for some 
l. 

iCX, and f.E[O,l]. 

By Taylor's theorem with remainder one has 

l 
<i,j>cx 

dd~ ca¢ .. + ah .. + naa. . .>I 
A l.J l.J l.J A=O 

x [ n fCa¢ .. +ah . .>J! 
<i',j'>cx l.J l.J J 

<i',j'>;Ki,j> 

(3.4) 

n fca:p .. +ah .. + naa . .> I , 
<i,j>cx l.J l.J l.J l.=f.

0 

for some t.
0 

E (0,1), and we have used the fact that L'iVX(¢:0) = O. By 

explicit computation of the derivative of f(·) one finds that the first 

term is pure imaginary. 

Now consider the terms in which two derivatives act. 

,, 
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d
2

2 [ n f<<l¢ .. +ah .. +naa .. >Ji 
dA <i,J'>cx iJ iJ l.J A=A 

o· 

l.J l.) l.) 
f<<l<P .. + Clh .. + n 0 aa. .. >] 

(3.5) 

We saw in Chapter II that for any nearest neighbor pair <i,j), 

(ap (i) - ap (j)) was non-zero for at most one p EN. Thus, 

I aa .. I ~ 2y 
l.) 

(3. 6) 

·for Y the constant in the definition of our translating functions. 

Making use of the explicit expression for the function f(z) it is easy 

to. check that there exists a constant K > D such that 

lf<<l<P .. + Clh .. +n0aa . .>I ~ Ke4Y1Tc<a¢ .. + Clh .. l , 
l.) l.) l.) l.) l.) 

I I 4y1T 
f' <<l<P .. +ah .. + n

0
aa. . .> ~ Ke c<<l<P .. + Clh .. > 

l.) l.) l.J l.J l.) 
(3. 7) 

I I 
4y1T 

f"(Cl¢ .. +ah .. +n0 aa .. l ~Ke c<acp .. +ah .. l, 
l.) l.) l.) l.) l.) 

) ) 

where 

if l<PI ~ 1 

(3. 8) 

if !<Pl > 1 

Combining (3.4), (3.5), and (3. 7) we see that 

- 28 Jjx/1 
~ I .,- 2 ..,, exp I sup (oaij) e j 

<i ,j>cx 
(3.9) 

provided J is sufficiently large. In the first of these inequalities 

we have dropped the exponential of those terms in (3.4) in which only one 

derivative acted because it was of magnitude one. We then used (3.5) and 

(3.7) to control the terms with two derivatives. The nllll\ber of terms in 

which both derivatives act on a single function, f(·), is bounded by lxl, 

while the nllll\ber of tenns in which the derivatives act on different 

functions is bounded by jxj 2
. In the third inequality c' just bounds 

the sum over 

pendent of acp ... 
l.) 

of C(Cl<j) .. + Clh .. ) 
l.) l.) 

which is uniformly bounded inde-
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Step 2. The bound of (3.9) is extended to give a bound on the inter-

polated potentials of the form 

(3 .10) 

Equation (3.9) insures that this bound holds for the case k = l when 

we recall from Chapter II, that for any bond <i,j>, ap(i)-ap(j) is 

N _ 2 k ... r 2 
non-zero for at most one p E . Thus, (Cla .. ) = I: 0 (oa .. ( ) ) . 

1) m=N 1) m 

Assume (3.10) holds for k < n. Then, combining the definition of the 

interpolated potentials with the induction hypothesis, yields 

7 
~ [-9J\x\ 

:i:; exp l sn e 

( - i J Ix I n 2 - i JI x I 2]} 
+ (1-s) e I sup (Cla .. (f 0 )) +e sup (Cla .. er +l)) 

n £=l <i,j>c:x 1) N <i,j>c:x 1) n 

(3.11) 

Here 

if loi:;ioi:;n-1 

(3.12) 

if £ = n 

Our previous comment on the non-overlapping support of Claij(f£) insures 

that 

) 

caa .. cr » 2 
:i:; caa .. er >> 2

+ caa .. er 
1

'> 2 
1) n 1) n 1J n+ (3.13) 

Combining this observation with (3.11) yields (3.10). 

Step 3. The proof of Lemma V.7. By (3.10) 

- 2 JlxJ k 
:i:; exp '1 I e B r I sup (Cla .. <fo»2l 11 

»=J' £=1 <i,j>c:x 1) N 

(3.14) 

Rewrite 

l l (Cla .. Cf 0 ))
2 

<i,J">cA X· 1) N 
• 2 2 

SUp(Cla. I • 1 er o>) =(Cla .. er o>) 
1 ) N 1) N 

<i I ,j t)cx 

(3.15) 

Applying the Peierls argument we have 

-~!xi 
e B (~ (f )) 2 

:i;:: - 3/ 4 J(Cl (f )) 2 
oaij £ ~ e aij £ 

X: 
2 2 

sup(Cla., .,<f 0 ll =(Cla .. (f 0 )) 
1 f) N 1) N 

(3.16) 

<i I ,j '>c: X 

If we again use the fact that for any given 

non-zero for at most one p we may rewrite 

<i,j>, (a (i) - a (j) l p p 
2 

( aa .. er 0)) as 
1) N 

I:pEf (ap(i) - ap(jl)
2

. This, coupled with (3.151 and (3.16) allows us 
£ 

to bound (3.14) by 

is 
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Is, <P> I I 
rn I 

(3.17) 

In this last inequality we have used Lemma A.II.2 of Appendix II to 

control the sum over <i,j). Expression (3.17) is precisely the bound 

of Lermna V. 7. 

Corollary V.8. There exist constants O< 131 <13 2 and J 1 ll31l>0 such 

l 
~ [s .•. s t,,V <<P: it;a (f ( » + ... + it;a (f )) J I 

2 n<ml m-2 xm-l nm m 
m= 

ll4 

(3 .18) 

Proof. By Lemma II.8 b.V (<jl:il:;a(f ( ) ) + ..• + il:;a(f )) vanishes 
xm-l n m m 

unless Xm-l n supp a(f ) r '21· By the definition of f , n(m) m 

~-1 n supp ap r '21 for all PE r . 
m 

Hence 

b.V (¢:il:;a(f())+ •.. +il:;a(f)) 
x nm m 

m-1 

Xx (f ,f)b.V (¢:it;a(f())+ ... +il:;a(f)) 
m-l n(m) m xm-l nm m 

From the definition of b.Vx(·:·) and the bounds on the translated 

potentials in the proof of the previous lermna, one finds 

(3.19) 

) ) ll5 

Jb.Vx (¢:il:;a(f ( ) ) + •.. + il:;a(f ) ) J 
m-l n m m 

(3.20) 

Pick sufficiently large that for all J > J 
1 

<13
1

) 

-J:...Jlx I Ix I 16 m-1 41TY m-1 
e (Kc' e ) " 1. 

Then (3.19) and (3.20) yield (3.18). 

We now turn to the proof of Lermna II.17. The estimates of 

Appendix II yield 

(3.21) 

From the definition of A(p), one has 

l 
m=l 

js· <P> I "A<P> • 
m 

(3.22) 

This observation, when combined with Lermna V.7, Corollary V.8 and (3.21) 

yields 

jQ(Y,¢,0) I " ~ <l> Ir (Y) I 
2 

k 15 I I 
[ 

- 16 J' xm-1 j 
{I:; f (Y) 

TI sn<ml···srn-2Xx (fn< )'fm)e 
m=2 m-1 m 

x exp I , 1/6 2 2 -3/4 J I 
l (c+B Y c'+c"y e -yo)A (p) 

I p€f (Y) l 
(3. 23) 

The r.h.s. of (3.23) is now independent of {i:;}, so we drop the sum 

over {i:;}f(Y) and compensate by multiplying by 2lf(Y) J. Choose 



) 

sufficiently small and J sufficiently large that 

(3. 24) 

~ecall that we chose y = c'" 1£n SI, for some small constant c"'. 

rhese two comments imply that 

(3.25) 

for S sufficiently small and n=l, .•• ,60. In analagous fashion one has 

for n = 1, ••• , 60, independent of o and £. Now note that 

00 

I 
l: 1 

m=l m! l: 
(Yl ••. Ym) 

m 
pOc:U/(Yk) 

00 

1 
m! 

m=l 

~ l: 
m=l 

( l: n 
gE:G ,\', 

c 

l: 
(Yl, .•• ,Ym) 

m 

p0 E: U/ (Yk) 

In the first of these inequalities we used (3.24) while the second 

applied Lemma V.3. This completes the proof of Lemma II.18. 

(3. 26) 
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V.4. Differences of Cluster Functions 

In this section we turn to the more difficult task of bounding 

differences of products of cluster functions. Define 

m m 
IT Q(Y,\',,¢+AO,A£) - IT Q(Y,\',,¢,0) 

,\',=l £=1 
(4.1) 

We wish to study FA=l(¢) which we write, using Taylor's theorem with 

remainder, as 

F A=l (¢) 

for some AO E (O,l). We see from (4.1) that FA=O(¢) = O. The 

remainder of the section is devoted to obtaining bounds on the deriva-

tives of FA(¢). 

m - m 
L (~~(Y,\',,¢+AO,A£)) IA=O x IT Q(Y,\',,,¢,O) 

£=1 ,\','=l 
• (4. 2) 

,\',I ;f,\', 

We now show that 

Q (Y, ¢-AO, -AE) Q(Y,-¢+AO,A£) (4. 3) 

By definition 

Q (Y, ¢-AO, -A£) 

Eq. (4.4) to be continued 
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( 4. 4) 

Use the facts that 

R(P,¢-Ao,c ,-A£) = R!P,-¢+Ao,-c ,A£) 
p p 

6VX !¢-Acr;i~a(f ( )) +, .. + iCa(f )) 
1 

T) m m 
m-

and 

(4. 5) 

Inserting these expressions into (4.4), and then changing variables in 

the sum over {~}f(Y) to Cp = -Cp,(4.4) becomes Q(Y,-¢+AO',-A£) as 

claimed. 

From (4.3) we see that Q(Y,¢,O) = Q(Y,-¢,O) and that 

~(Y,¢+AO',A£) IA=O = - ~(Y,-~AO',A£) IA=O· These observations, combined 

with (4.2), imply that 

dFA dFA 
a;:-<¢> IA=O = - ~(-¢) IA=O (4.6) 

and hence 

118 
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0 (4.7) 

Now turn to a consideration of 

[

dQ(Y! ,<j>+AO,A£)~[dQ(Y! ,<j>+AO,AE)] 
+ 2 I 1 ___ 2....,.... __ _ 

l<• <! < dA dA 
-kl 2sm -

m 

x II Q(Y i' ,<j>+AO',A£) 
i'=l 

(4. 8) 

i';o!il ,i';o!i2 

These sums are controlled by the following lemmas. 

Lemma V.9. There exist 0 < a
1 

< a 2 and J
1 

<a 1> > 0 such that for 

all a€ <a
1
.a2) and J > J 1 <a1>, one has 

I 
- I { _.!_ JI x I 

~(Y,<j>+AO,A£µ)1A s: sup Jaoi.J+ sup <Jacri.le 
4 

) 
o pEf(Y) J Xnsupp a J 

<i,j>nD(,O) p<:f(Y) p 

<i,j>cx 

(4. 9) 

Lenuna v.10. There exists 0 <al< a2 and J1<a1>'> 0 such that for 

all a€ <a1 .a2> and J > J 1 <a1>, one has 
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+ sup 
xnsupp a 

p 
pEf(Y) 
<Lj>cx 

:5 ~ sup l pEf(Y) 
<i,j>nD(p) 

(4.10) 

Lemma V.l follows from these two lemmas. We first recall that because 

of the definition of O,, and standard estimates on the 2-dimensional 
l. 

covariance, loo .. I :5 c•l£nBI£, for some constant c. Furthermore, we 
l.J 

have already shown (see (3.24)) that 

(4.11) 

Thus 

(4.12) 

Jn the second inequality we have used the fact that for any cluster, Y, 

(4.13) 

so that for B sufficiently small, 

12G) 

{m(2cj£nBl
2

+2) +2m
2

(2cl£nBl+lJ
2
}; s

1
(Y£) :5 1 

£=1 

Combinin~ (4.12) and (4.7) yields Lemma V.l. 

) 

Lemma V.2 also follows from these results. Assume that 

(4.14) 

supp a h {o,x} = ¢ for all p E f(Y). Then from the definition of 
p 

our cluster functions, we find Q(Y,~AO,A£) = Q(Y,~A0,0) for such a 

cluster. 

Define 

F~ (¢) 

m m 
IT Q(Y£,~A0,0) - IT Q(Y£,¢,OJ 

£=1 £=1 
( 4 .15) 

Then by precisely the same argument as before, one has 

(4.16) 

and 

0 

I dFA I N 
(d'X'"""( ¢J ) A=O dV A ( ¢) 0 (4.17) 

Furthermore, writing out an expression for the second derivative of 

0 FA(¢), analogous to (4.8) and using (4.9) and (4.10), with µ = 0, 

leads to a bound 

d2F 0 { 

1~(¢) IA I :5 sup 
dA o pEf(Y£) 

£=1, ••• ,m 
<i,j>no(pJ 

2 _l J Ix! l m 
loo .. I + sup (loo .. l

2
e 

4 )\! x IT s
39

(Y ). 
l.J xnsupp a£ l.J £=1 

pEf(Y £) 

£=1, .•• ,m 
<i,j>cx (4.18) 
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Equations (4.15), (4.16), (4.17) and inequality (4.18) combine to prove 

Lemma V.2. 

We must now prove Lemmas V.9 and V.10. Begin by proving bounds on 

derivatives of parts of the cluster functions. We first note that by 

(II.3.5), 

-Yq ! 
:s; K(p)e pli<¢+>. cr+il',;a ) I licr(p)+ie:µ(a (0)-a (X)) 

0 p p p 

+ 
'i' d I

8
(o¢ .. +iAClcr .. +ir,; (a(i)-a (j)) 

1 1 
l -R.n ( l.J l.J p p P ) 

(p) 
di. I

8
<a¢ . . +Hoa .. > >. n l.J l.J o 

<i,j>E U Qm 
m=O p 

} . 

(4.19) 

The first three factors on the r.h.s. of (4.19) are bounded by the 

estimates of Appendix II which we used in section V.3 to bound 

Q(Y,¢,0). (See (3.21).) The last tenn in curly brackets is bounded 

by 

1 

sup c'•iocr .. l•B3 (g(a (i)-a (j))+l)·d~(p) 
<i,j>nD(p) l.J p p 

(4.20) 

Here, g(•) is the function defined in Theorem II.l, and the factors 

1 

S3 (g(ap(i)-ap(j)) + 1) in this bound come ·from bounding the derivative 

of the logarithm of the Is(•) functions by means of (II.1.1) (d). The 

2 factor of dA(p) comes from bounding the number of terms in the sum 
n(p) 

over <i,j>. This follows because any <i,j> E U rf' is contained in 
m=O p 

) 
122 
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supp ap' and !supp apl :s; O(l)•d~(p). The second term in curly brackets 

is bounded by noting that for any point i, jap(i) I :s; Y•(n(p)+l). This 

follows from the observation that at any given length scale 2m, there 

is at most s' E S~(p) with m Since one i E supp a s'. 
n(p) P• n (p) 

ja~,s' (i) I :s; y, I aP<i> I :s; l L Ian ,(i) I :s; l Y. Thus 
m=O s 1 ES 1 (p) p,s m=O 

m 

(4. 21) 

The first term in curly brackets in (4.19) is bounded by 

I a< P> I (4. 22) 

If p is a neutral charge density, this follows immediately from equa-

tion (5.23) of [15]. If p is charged, let iR denote the site in 

s?- n Ac closest to i. Let T be the set of lattice bonds connect-

ing i to iR of minimal length. Then 

icr<i> I I cr( i) -cr(iR) I :s; L I a (m) -cr (n) I 
<m,n>ET 

:s; 2(dA(p)+l) sup jacr .. I 
<i,j>nD(p) l.J 

(4.23) 

We have used here the fact that no point in supp p is farther than 

2dA(p) from the boundary of A. If we note finally that there are no 

2 more than 3dA(p) points in supp p, we arrive at (4.22). 

Combining (4.19), (4.20), (4.21), (4.22), we have 

(Eq. (4.24) to be continued) 
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+ 2Yqin(p) J (4.24) 

We have used the bound on the g(•) functions coming from Theorem II.l 

in the second term inside the square brackets. Recall that Y = cl£nBI. 
1 1 

For the constant c sufficiently small, c"BJ"e47TY < s4 for B suf-

ficiently small. Also, for B sufficiently small, 

1 

z~{6d~(p)(dJ\(p)+l)+d~(p)+2Yn(p)} 5 1 (4.25) 

These two facts imply 

7 

l :~(P,<P+Ao,r,;P,A\J£) IA Is; z
8

( sup jao .. l+E\J). 
o P <i,j>no(p) J.J 

Now derive bounds on second derivatives of R(•,•,•,•). Again, using 

the explicit form of (II.3.5) we find 

d2 r 0 (a¢ .. +Hao .. +ir,; (a (i)-a (j)) I l -£n ( µ l.J l.J p p p ) 
+ n(P' dA2 I 0 (a¢ .. +iAao .. ) A 

<i J' >c u rf1 IJ l.J l.J 0 
, p 

0 Eq. (4.26) to be continued 

+ 
n(p) 

<i,j>c u rr 
0 p 

n(p) 
<i I, j I >C U rr 

0 p 

<i I' j I >'l<i, j> 

) 

[d 

r 0 (a¢ .. +iAao .. +ir,; (a (i)-a (j))) 

1 

l 
-£n ( .., l.J l.J p p p ) 
dA I 0 (a¢ .. +iAaa .. ) A

0 µ l.J l.J 

x -£n( - 1 J 1 J P P p • 
[

d r 8(a¢.,.,+jAao.,.,+ir,; (a (i')-a (j'))I ]IJ 
dA r 8 (aai'j'+iAoai'j'> A0 

(4.26) 

The only term in (4.26) which is not controlled by our previous esti-

mates is the second one inside the curly brackets. This is bounded by 

(II.1.1) (d), and we find, for B sufficiently small, that 

7 

d2R(p,cp+A0,1,; ,A)J£) IA I$ zs( sup laoi.,2+£2(/+µ)) 
dA2 P o P <i,j>no(p) J 

(4. 27) 

we have used the fact that lcr(i) I 5 c•l£nBI •£ to absorb the term pro

portional to lo(i) l·r.µ into the £2µ term on the r.h.s. of (4.27). 

we now estimate derivatives of the interpolated potentials. If we 
m 

once again denote a = l 1,;a(fk)' we find 
k=£ 

~VX(¢+AO:i1,;a(f£) + ••. + il;a(fm)) IA 
0 

\ { \ v ({ah}! ) (oo .. ) [f' (oo .. +A aa . . +oh .. +ioa .. ) 
l rla } I x x l.J l.J o l.J l.J l.J <i,j>cx h x 

x JI 
<i',j'>cx 
<i',j'>,t<i,j> 

f(0¢. I, ,+A 00. 1 • ,+ah. I• ,+ioa, 1: ,) 
l. J 0 l. J l. J l. J 

Eq. (4.28) to be continued 
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- f' ca¢ij+A
0

aoij+ahijl x IT 
<i' ,j •>ex 

f(a¢ .. +A ao .. +ah . .>) l . 
1J 0 1J 1J j 

<i' ,j'>;i<i,j> 
(4.28) 

Applying the bounds of (3.7) to control the factors off(•) (recall 
. 2 

that f ( z) = si~ ~z) , we find 
1T z 

s2 l jao .. I I lvx<fah}ix>jcKey
71

>1xl IT cca¢ .. +Aao .. +ah . .l 
<i,j>cx 1J {ah}jx <i,j>cx 1J 0 1 J 1J 

_2 Jjxj 
s sup I ao .. I e 8 

<i,j>cx iJ 
(4.29) 

for J sufficiently large. Here we have used the fact that 
00 

l C(¢+n) < c, in the second inequality, and also bounded the number 
n=-o0 
of terms in the sum over <i, j > by IX j. The estimates of ( 3. 7) also 

yield, in an identical fashion, 

_2 Jjxj 
sup I ao .. 1

2 
e 8 

<i,j>cx 1J 
(4. 30) 

Now extend these bounds to the interpolated potentials. We claim that 

126 
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for m = 1,2. By (4.29) and (4.30), this bound holds for k 1. 

Assume that it holds for k < n. Then 

s s /Lt:N sl ... sn-1(¢+AO:i1;a(fl)+ ... +il;a(f 2);i1;a(f lur )) IA I 
n-1 dAm x n- n- n 

0 

+ ~~v (¢+Ao:i1;a(r )) /A I 
dAm X n o 

7 . 
-- JjxJ 

:s !s _1 (n-l)+(l-s _1J[(n-l)+l]j sup JaoiJ.Jme 
8 

1 n n <i,j>cx 

(4.32) 

This canpletes the proof. In the second inequality; we have applied 

the induction hypothesis. 

We are now ready to prove Lemmas V.9 and V.10. Using the defini-
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tion of our cluster functions, (II.4.2i, we have 

{ ( l 
pc f(Yi 

k 

(IT s ( i···s _2 ,t:,Vx (cj>+A o:il:,;a(r ( ii+ ••• +ir,;acr ii Ii 
m= 2 ri m m m-l o ri m m 

k 

x IT s < > ••• s 2 /1::,v ccp+>. o:ir,;acr < > )+ .•. +ir,;acr > > J > 
m'= 2 rim m- Xm-l o rim m 

m';im 

( IT I R ( p' cp+ A 0' I:,; 'A µe:) I ) 
PEf(Yi 0 p 0 

+ ( IT IR(P,¢+A 0,1:,; ,A µe:) Ii 
pEf(Yi o p o 

< ~ [s < i ••• s _2J x /1::,vx (¢+>. o:ir,;acr < > i+ ..• +ir,;acr i i
1

1 > 
m= 2 ri m m m-l o ri m m 

X( l 
xcA 
xnsupp a(rii 

R.=l, ••• ,k 

at:,v sl ••• sk-1 

d}. x (¢+AO;il:,;a<f1i+ ••• +il:,;a(rk_ 1> ;il:,;a(rki i l>-Ji J 

(4.33i 

) 

In the last tenn in the curly brackets, we have used the fact that 

sl ... sk-1 
t:,vx <<P+>.o:ir,;a<r 1i+ •.. +ir,;a<rk_1i; ir,;a<rki i vanishes unless X 

intersects supp a(rji for some j, to restrict the sum over X. In 

(4.33i factors of IR(.,.,.,il 
Sl ••• Sk-1 

are controlled by (3.2li, the factor 

I exp l t:,v ( • : ·; • i I 
XcA X 

is controlled by Lemma V.7, and factors of 

!:,VX(.:. i by Corollary v.s. The factors on which derivatives act are 

bounded by (4.24i or (4.3li. Since by (II.3.si, /::,VX ( • :· i is made 
m 

up of at most four tenns of /::,Vx(·:·i, derivatives of !:,VX ( -: • i may 
m 

also be bounded by (4.3li. Combining all these estimates yields 

l 
pEf{Yi 

7 
k _2 Jix I 

8 J 8 m-1 
x ( IT z i ( IT [ s ( i ... s Xx ( r ( i , r i e i 

PEf (Yi p m=2 fl m m m-1 fl m m 

J lrcYil( sup I Cloi. l+Eµ) + 4k . ~up 
( <i,j>nD<Pi J <i,J>cx 

+ l 
xcA 
xnsupp ap 

pd(Yi 

xnsupp ap 

pEf(Yi 

sup I Clo .. I) l 
<i,j>cx iJ ~ 

_! Jlxl 
lao .. I e 

4 
1J 

(4.34i 

We have inserted the characteristic functions on the r.h.s. of (4.34i 

129 



) 

because the functions t.VX ( ·: • ) in ( 4. 33) vanish unless Xm-l 
m-1 

intersects both fn(m) and fm. Note that nothing on the r.h.s. of 

(4.34) depends on {~}. so we can drop the sum over {~} and compen-

sate by multiplying by The sum over X on the r.h.s. of 

(4.34) is bounded by 

k· sup 
Xnsupp ap 
pd(Y) 
<i,j>cx 

_! Jlxl 
I Clo .. I e 

4 L 
iJ xcA 

Xnsupp 

pd(Y) 

-~ Jlxl 

ap 

-% Jlxl 
e 

_2 Jlxl 
I e a s k· sup lcioijle • L 

Xnsupp ap iEsupp ap xcA 
icx 

PEf(Y) p€f(Y) 
<i,j>cX 

_! Jlxl 
:Sk• sup IClo .. le

4 <I c'd~(p)) 
xnsupp ap 1 J pEf (Y) 

pd(Y) 
<i,j>cx 

(4.35) 

In the last inequality we have used the Peierl's argument to control 

the sum over X containing i, and then bounded the number of points 

in supp ap by Finally, pick B sufficiently small and J 

.sufficiently large that 

(4.36) 
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If we use the fact that l IS'(p) I < A(P), (4.36) combined with (4.34) 
m=O m 

yields 

l~(Y,cj>+l.e:,l.µe:)/A Is( ~ut:> ICloi.I+ ~ut:> 
o <i,J>no(p) J <i,J>cx 

_! Jlxl ) 
I Clo .. le 4 + e:µ 

1J 

xnsupp a 
pd (Y) p 

• (4. 37) 

This is precisely the bound of (4.9) and it completes the proof of 

Lemma V.9.' 

The proof of Lemma V.10 is very similar. The second derivative of 

the cluster function is bounded by 

{ ~ ( s ( ) ••• s ) I t.V Ix I _t__( II R ) I 
m=2 nm m- 2 xm-1 dl. 2 pe:f(Y) P 

+II /RI(~ (s()···s 2>lt.V 1)1
1 

l: 
pe:f(Y) P m=2 nm m- xm-1 xc::A 

xnsupp a 
pe:f (Y) p 

+( l: 1~vs1···sk-1/) 2 l 
xc::A di. x j 
xnsupp a 

pe:f.(Y) p 

+ ( II IR 1) 
pe:f (Y) p 
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+ 2c I 
Xe/\ 
xnsupp a 
pd (Y) p 

+ 2( I 
XCf\ 

Xnsupp a 
pd (Y) p 

k 
x II (s , ') ... s ,_)tiVX I) 

m'=2 n1m m m-1 

m;;o!m' 

sl .•. sk-1 
dt:.VX dR 

I- I) (I l__QI IR jl 
dA pd(Y) d)., p'Ef(Y) p 

p';;o!p 

(4.38) 

We have omitted the arguments of the functions here in an effort to 

save space. They are in each case identical to those of the correspond-

ing function in (4.33). The last three of these terms are controlled 

using the estimates from the proof of Lemma V.9. The first three use in 

addition (4.27), (4.30) and (4.31) to control the factors with second 

derivatives with respect to >... As was the case in Lemma V.9, the sums 

over X n supp a are controlled by the Peierls argument. Applying 
p 

all of the above bounds to (4.38) yields 

) 

5 
k -- Jjx I 8 m-1 

x ( II [ s ( ) ••• s 2 ] Xx (f ( ) r ) e ) 
m=2 n m m- m-1 n m ' m 

+ (4k+k I c'd~(p)) ( sup 
pEf(Y) <i,j>cx 

xnsupp a 
pEf(Y) p 

+ [jr(Y)j( sup jao .. j+E:ll) + (4k+k I c'd~(p)) 
<i,j>nD(p) 

1
) pEf(Y) 

_.!. J Jx I l 2} 
x < . ~up I ao i . I e 

4 
) • 

<i ,)>cX ) 
X supp a 
pEf(Y) p 

(4.39) 

Since we can pick B sufficiently small, and J sufficiently large 

that 
1 

<II zsl<lf<YlJ+4k+kc'I d~<Pll 2 s1 
pd(Y) p pEf(Y) 

there exist o < S
1 

< S
2 

and J
1

(S
1

l > o such that for all 

S E <S
1

,S
2

) and J > J
1 

<8
1

), (4.39) is bounded by 
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5 
k -~ J Ix I 

8 ] 8 m-1 
(!I z)(!I[s() ... s 2 :isc (f()f)e ) 
PEf(Y) p m=2 n m m- m-1 n m ' m 

( 
sup 

PEf(Y) 
<i,j>cD(p) 

sup 
<i,j>cX 
Xnsupp a 
pEf (Y) p 

This completes the proof of Lemma V.10. 
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CHAPTER VI 

CONVERGENCE ESTIMATES FOR THE UPPER BOUNDS 

VI.l. Bounds on the Cluster Functions 

In this chapter we prove Proposition IV.8 which yields convergence 

of the expansion for the upper bound. As a first step, consider differ-

ences of products of cluster functions. 

Lemma VI.l. £ (8) > 0 such that for all O < £ < £ (6) 
0 0 

There exists 

( ~ Q(Y ,,e+ia,£) - ~ Q(Y ,,8,£ = O)] 
j=l J j=l J 

(1.1) 

where Q
1

CY 1 , ... ,Ym,e,a,£) is a real function for all values of its 

arguments. There exists J
2

(8) > 0 such that for all J > J
2

(6), 

( 1. 2) 

with 

S(Y) 

( 1. 3) 
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m m 
Proof. II Q(Y.,&ri\a,l..e:) - II Q(Y.,6,e:=O) 

j=l J j=l J 

By Taylor's theorem, 

Gl..=l (9,a,e:) (1.4) 

for some 

We prove that 

is real. Since we have already shown that 

dG1..1 real, this suffices to prove that (-i) ar- l..=O and hence 

~(Y, 9+iAa, >..e:) I l..=O = [ II 
<i ,j> 

<i ,j>Ef (Y) 

[ 
l 

dr 6 . . 
-ar-< 9i * -9j * +1>..ai.-1>..aj* +i>..e:o <i*, . *>, 

<i, j> 
<i, j>Ef(Y) 

i 6c0i*-0j*' 

+[ "~'~ \ce,.-e,.i] 
<i,j>d(Y) 

Q(Y., 6,0) 
J 

is 

! . in .. (9 .• -9 .• >l l ( l I"(n .. ) (-n .. ) (a .• -a .• +e:o<k* '*> y>e l.J 
1 1 

{nl 1- <i,j>.:" l.J l.J l. J ,J • 
f (Y) f(Y) 

Eq. (1.6) to be continued 

) 
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x [ II 
<i I , j 1 >€f (Y) 

<i' ,j'>;t<i,j> 

in.,., (9 .• -9 .• >1 l. J l. J 
r 6cni'j'le 

J 

(1.6) 

The first term is pure imaginary. This follows f~om the fact that 
dI 

real, while d, 6c0 .• -8 .• +i>..a .• -i>..a. 
A l. ) l. J* 

+ii.. o<i*,j*>,Y) IA=O is pure imaginary, by explicit computation. In 

the second term we may ignore the factors of r 6(9i*-9j*) since they 

are real. Change variables in the sum over {n}lf{Y) to {m} = {-n}. 

Using the invarance of r
6

(n) and VX({n}lx> under this change of 

variables we find 

I -
, inij <9i*-9j*l L ( l I"(n .. ) (-n .. ) (a .• -a .• +e:o .• '*> y>e 

{n}I- <i j>Ef{Y) " l.J l.J 1 J <1 ,J • 
f(Y) ' 

x II_ 
<i',j'>Ef(Y) 
<i' ,j '>;t'<i,j> 

, , )e-imij (9i*-9j*l 
l ( l- r,,(m .. ) (m .. ) (a .• -a .• +e:o<"* '*> y 

{ }I - <" "> f(Y) µ l.J l.J 1 J 1 ,J ' m f(Y) l.,J € 
Eq. (1.7) to be continued 
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x JI I (m . , . , l e 1 J 1 J 
[ 

-im.,.,c0.,.-0.,.>] 

<i 1 ,j 1 >f'.f(Y) 8 1 J 
<i' ,j'>l"'<i,j> 

-I* (1. 7) 

We have ignored the factors with Vx(·) in them since these are all 

invariant under {n} ~ -{n}. Equation (1.7) proves that the second 

term in (1.6) and hence ~(Y,9+iAa,A£) /A=O is pure imaginary. Thus 

Q1 <Y 1 , ... ,Ym,9,a,£) is a real function as claimed in the first half of 

Lemma VI.l. 

Now define 

We first prove some bounds on Q(Yi,9+iA
0

a,A
0

£) 

tives. 

(1.8) 

and its deriva-

(1.9) 

This is true by the assumption for k = 0, and since the interpolation 
sl ... sk 

procedure either leaves VX (•;•) unchanged, or multiplies it by 

some real constant of magnitude less than one, it holds for all larger 

k as well. By the standard Peierl's argument, there exists J 2 (8l > 0 

such that for all J > J 2 (8l one has 

_l J 
::; e 4 

(1.10) 

) 
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Thus, 

that 

! Jlk-1 I ::> e u X 
m=l m 

£(K+ll ::> .!_ 8 for all 
2 

0 < £ < £0 ($). 

) 

(l.ll) 

Then for A
0 

€ [0,1], 

_.!_ B 
2 -1 

2(1-e l . 

(1.12) 

Combining (1.9), (l.11), (1.12), and the definition of Q(Y,9,£) from 

(IV.2.2) yields 

3 
-;J 

x exp(e .. 

1 -
k-1 -28 lf(Y) l 

U X 1>{2(1-e )} 
m=l m 

Now bound derivatives of Q(Y,9+iAa,A£l. 

(1.13) 
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I k-1 I 
-""1I43 ~ xm [ k 

ee IT 
R.=2 

in .. (e .• -e .• i -n .. A. (a .• -a .• +Eo .•.• yl 
x e l.J i J e l.J o i J <1 'J >' ) 

ini'J'' (8i'*-8J. ,*) ::\.0 (ai'*-aJ. ,*+Eo<i'* . '*> yln., · • 1 
IT _ I (n .. ) e e 'J ' 1 J • 

<i',j'>e:f(Y) B l.J 
<i' 'j '>;i<i, j> 

(l.14) 

The first line in this inequality results from applying (1.9) and 

(l.ll). The sums over {n} 

This yields 

00 _,! Bn 
l ne 2 

n=O 

are bounded by (l.12) and 

_.! B _.!. B _
2 s 2e 2 (1-e 2 ) (l.15) 

~ . I -d;\.(Y,8+i::\.a,::\.E) < 2( sup _ a .• -a .• +Eo<k* '*> yll lf(Y) I 
<i* ,j*>e:f(Y) 1 J ,J ' 

x2lfcYllc1 -i 8
,-2-lf<Yll {-iJ1k-l I} ~ -e x exp e u X x e 

1 m 

Eq. (l.16) to be continued 

14 ) 

x 

The factor of 

in t 
l -<i,j>Ef (Y) 

) 

( 1.16) 

f f(Y) I just comes from estimating the number of terms 

Finally we bound second derivatives of cluster functions. The 

only additional estimate required is 

(l.17) 

This is used to bound those cases in which both derivatives act on a 

single exponential factor. Applying these estimates, one obtains 

2 
sup _ (a.*-a .• +Eo<.* '*> y> 

<i*,j*>e:f(Y) 1 J 1 ,J ' 

-~Im I . k - -JfXR.-11 
x exp{e ~xmi }(R.~2 [sn(R.) •.• sR.-2)\R.-l (flu •.• urn(R.)-l;rn(R.))e )}. 

(1.18) 

In this formula the factor of f f(Y) I comes from estimating the number 

of terms in which both derivatives act on a single exponential, and the 

factor Jf(Y) 1
2 

comes from estimating the number of terms in which the 
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derivatives act on different exponential factors, in Q(Y,9+iAa,A£). 

Now consider 

Explicitly 

m 
x rr 

£=1 
£;,lj; £;,lk 

m ~ 
IT Q(Y.,9+iA a,A £)} 

£;,lj J 0 0 

£=1 

Q(Y 0 ,e+iA a,A £)} 
,,, 0 0 

- -1 
+Q(Y,e+iAa,A£){ rr IB( .•• )} 

O O <i*,j*>Ef(Y) 

x { l 

(l.19) 

( l. 20) 

The arguments of the 1
8

(•) functions have been omitted to save 

space. Theya:e in each case equal to [e .• -e .• +iA (a .• -a .• +£0<.* .• > y>]. 
1 J 0 1 J 1 ,J , 

The definition of allows one to calculate the derivatives, which 

gives 
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I -1[ dIB ] I l - [ IB ( .•. )] ~( ... ) 
< i*, j*>Ef (Y) 

1 

:s 41 r (Y) I ( 1-e 
2 B) - 2 

x sup _ I a.* -a . * +£0 . * . * y I · 
<i*,j*>Ef(Y) 1 J <i ,J >, 

(l.21) 

Combining (1.21) with (1.20) and (1.16) gives 

l:if (Y,9+iAa,A£) ''=' I :s sup _ Ja .• -a .• +£0<.* ·•> yl 
I\ 1\0 <i* ,j*>Ef(Y) 1 J 1 ,J ' 

(l. 22) 

To bound the second derivative of ~(Y,9+iAa,A£), we use (1.13), 

(l.18), (l.21) and 

, (l. 23) 



) 

-which follows again from the explicit form of IB ( •). (See (III.1.10).) 

Once again the arguments of the functions on the l.h.s. of (1.23) are 

just (9 .• -e .• +A (a .• -a .• +Eo<.* '*> y>· One then obtains 
J. ) 0 J. ) J. I) I 

I~ I I 2 
2 CY,9+iAa,AE) A=A s sup _ (a .• -a .• +Eo<'* ·•> y> 

dA 0 <i*,j*>€f(Y) l. J l. ,J I 

_! B - _! B -
x)Cl6)(1-e 2 )-lr(Y)l-2 + 4lf(Y)l(l-e 2 )-lf(Yll-4 

1 B _! B _! B 
+ (16) (l-e-2 ) -If (Y) l- 2 + If (Y) I (1-e 2 )-4 + 8(1-e 2 )- 3 

(1. 24) 

In the last curly bracket, the first two terms come from estimating 

the case in which both derivatives act on the function Q (.,.,.), the 

. third term comes from the case when one derivative acts on the function 

Q(.,.,.) and one on the product of IB(•) functions, and the last two 

terms come from the case in which both derivatives act on the product 

of functions. 

The important point is that there exist constants K
1

CBl and 

K2 CBl such that the quantities in curly brackets in (l.23) and (1.24) 

) 

may be bounded from above by exp(K
1

(8) lf(Y) I> and exp(K
2

(8) lf(Y) I> 

respectively. 
k-1 

(We use the fact that because of the definition of rk 

one has I u x I s c/rCY) I.) 
1 m 

one has 

Using (1.13) and our bounds on 

IQ(Y ,e+n a,A £)I 
K3rn>lr(Y>I 

s e 
0 0 

Pick J 2 C8l > 8•max(K
1

(8) ,K2 (8),K
3

(8)) and use the fact that 
k-1 
n exp(-Jlxil> s exp(-Jlr(Y) I>· Then 

i-2 

I 
2 

I I 
1 d GA 2 2 
2 - 2- '=' s sup _ (a .• -a.&+Eo<.* ·•> yl (m+2m) 

dA A Ao <i*,j*>Ef(Yi) 1 J 1 ,J ' 
i=l, ••• ,m 

7JI -9 x._1 (Yi> I 
x e J ) (1.26) 

By ki we mean the integer k associated with the cluster Yi. 

Similarly f j (Yi) are the sets r j and X. associated 
J 

with Yi· Since (possibly by enlarging J
2

(8)) one has 

k 1 
2m i-9Jlx._1(Yill 

(m+2m ) n en e J ) s 1 (1.27) 
i-1 j=l 

for all J > J
2

(8), eqn. (1.26) leads immediately to (1.2). 
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VI.2. Bounds on Sums of Cluster Functions 

In this section we prove estimates on sums of the new cluster 

functions S(Y), defined in (1.3). The principle result is 

Lemma VI.2. For every B > 0 there exists J
2

(8) > 0 such that for 

all 

l' 
(Y l' ... 'Ym): 

m-
< i *, j * > E: U f ( Y ) 

1 k 

1 -9 Jm 
5 m!e (2.1) 

,. 
Recall that L just means that we sum only over clusters with k ~ 2. 

This lemma implies Proposition IV.8. By Lemma VI.l, 

jexp) I :! }:' ( L [IIA(£l]l< ~ Q(Y.,8+ia,£)- ~ Q(Y,8,0))JI 
(m=l (Y

1
, ..• ,Y)gE:G £ j=l J j=l 

m c 

· S exp! I -\ 
m=l m. 

{ 

00 
1 I 

s exp l ( l ~ l 
'* '* - m . <i ,J > m-1 (Y

1
, .•. ,Ym). 

m-
<i *, j * >E: Uf (Y ) 

1 k 

(2.2) 

x (a.* -a.* +£6 < . * . * ) 
2 1_ 

1 J 1 ,J >,y J 

) 
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In the last inequalitywehaveapplied (1.3) and insured that the 

2 
sup(a .• -a .• +£6<.* '*> y> is attained by summing over all <i*,j*> in 
m_ i J i , J , 

uf(Ykl. Lemma VI.2 bounds this expression by 
1 

1 
oo -- Jm 

exp( le 8 
) ( l (a .• -a .• +£6<'* '*> yl

2
) 

m=l <i*,j*> 1 J 1 ,J ' 
(2.3) 

This is the bound of Proposition IV.8 if we make the identification 
oo _.l Jm 

c"(8,Jl l e 
8 

m=l 

Note that Lemma VI.2 combined with (1.25), also insures that the 

sums over (Y
1

, •.. ,Ym) in (IV.2.10) are absolutely convergent and 

hence that the manipulations leading to the exponentiated form of the 

expansion were justified. 

we now prove Lemma VI.2. The first step is 

Lemma VI.3. There exists 

L' 
(Zl, ••• ,Zm) 

f(Zs)nf(Y1 l;i¢ 

s=l, ..• ,m 

EJf(Z ) J=M s 
s 

for any cluster 

m 
II s (Z ) 

s=l s 

such that for J > J
2

<Bl 

Proof. There exists J
2

(8) > 0 such that J > J
2

<Bl implies 

(2.4) 
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_.!.JN 
,. 4 
l S (Y) :5 e 

Y:<i*,j*>Ef(Y) 
(2. 5) 

lf(Y) l=N 

The l.h.s. of this expression may be rewritten as 

"' 
Jldsl dsk-1 

0 ••• l 
k=2 

l l l 
x1 ... xk-1' n 

lf(Y) l=N;<i*,j*>e:f(Y) 

• (2 .6) 

Now fix lr2 1 = n 2 , ... , lrkl = nk. (One has lr
1
1=1 always.) There 

are at most 2N ways of partitioning the fk's. Expression (2.6) is 

then bounded by 

"' _2.._ JN 
2N• l (k)e 16 

k=2 

. 1 
I k - - 8 Jlx._1 1 

x) n (s (')"""s·_2>~ crlu •.. ur (')-l;r ('))e J 
\ j=2 n J J j n J n J 

} . (2. 7) 

The last step assumed that <i*,j*> € rcxl) and compensated by multi-

plying by k. We now claim that 

) 
14!'.j 

<i*, j*>e:f (X1 ) 

lr2l=n2·····lrkl=nk 

For k 2, we need to show that 

lr2l=n2 

_.!. JIX I 
8 1 

e $ e 

J 
16 

) 

(2. 8) 

(2.9) 

This follows from the standard Peierls argument. Assume that (2.8) 

holds for k s m-1. 

l l 
<i*,j*>e:rn<m> x: 

<i*,j*>Ef(X) 

-!!ixl 
8 

(s . ) ••• s 
2

>e 
n(m m-

(2.10) 

The first inequality follows because all terms in the first sum with 
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f(X 1 > n r ( ) = ¢ vanish. In the second inequality, the Peierls m- nm 

argument is used to bound the sum over X with <i*,j*> € f(X). 

Equation (2.10) implies 

I · · ·L 
xl xm-1 

<i*,j*>€f(X
1

) 

m-1 -~JIX. I 
< n s ('l .•• s. 2x (r1u ... ur (' ;rn(J'l>e 

8 
J-1 

> 
j=2 n J J- xj-l n Jl-1 

J 

x (s ••• s n )e 16 
n (m) m-2 n (m) (2.11) 

Bound the remaining sums by the induction hypothesis, thereby obtaining 

(2.8). By standard estimates (see :9]) 

Ifldsl •.. dsk-1( ~ (sn(') ••• s._2nn(·)] ~ 
n o j=l J J J 

Combining (2. 5), (2. 7), (2.B) and (2.12) yields 

oo _ .2_ JN N - kJ 
l 1 _ S (Y) !,; 2N L (k) e 16 •e e 32 

Y:<i*,j*>€f(Y) k=2 
jf(Y) j=N 

_!.JN 
s e 4 

N 
e . (2.12) 

(2.13) 

) 

for J sufficiently large. 

Now use (2.5) to prove (2.4). 

I' 
(Zl, • .. ,Zm) 

f (Zs)nf (Y1 );o1¢ 

m 
TI S(Z ) S 

s=l s 

M 
2 • sup 

{nl' •.. ,nm} 

I:nk =M 

) 

I 
(Z

1
, ••• , Z ) 

- - m 
f(Zs)nf(Y

1
);ol¢ 

s=l, ••• ,m s=l, ... ,m 

Ir (Zl) I =nl •... 'Ir (Zm) I =nm r 1 r <z > 1 =M s s 
(2 .14) 

The factor of 2M bounds the number of possibilities for splitting the 

total number of bonds in into subsets Since each 

f(Zs) intersects f(Y 1), the r.h.s. of (2.14) is bounded by 

m 
<;' 
l S (Z ) ) • 

z :<i*,j*>Ef(z > s 

M 
2 • sup n 

{n
1

, ... ,nm} s=l 
s s 

Ir (Z l l=n 
s s 

m _!_Jn 
S2M• sup TI(jf(Y

1
lle

4 
s) 

{n
1

, ... ,nm} s=l 

I:nk=M 

(2.15) 

for J sufficiently large. In the first inequality, we have used 

(2.5) to bound the sum over z and then bounded the number of terms 
s 

in the sum over <i*,j*> by jf(Y
1

) j. This completes the proof of 

Lemma VI.3. 

In analogy with the proof of the lower bounds in Chapter V, define 
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k 
(IT A(i)) IT S(Z.) 

j=l J 
(2.16) 

Recall that Gc(Y
1

, ..• ,Yr;Z1 , •.• ,Zk) refers to the set of graphs in 

which each Zj vertex is connected (directly or indirectly) to a Yk 

vertex. One then has 

Lemma VI.4. There exists J
2

CSl > 0 such that for all J > J 2 CSl 

has 

one 

r 
.exp(L lf(Yj) I> 

1 

(2.17) 

We then rewrite ~(Y 1 , ... ,Yr;z1 , ... ,Zk) in tenns of ~ functions with 

less than r+k vertices, via the manipulations detailed in [4, 7, 12, 

25). This leads to 

r 
Ic IT scz >> IT ACYtz > IT ucY1 ,z > 
n SEn S SEn S j=2 S 

SEn 

x[ IT U(Z ,Z )'l'(Y2 , ... ,Y ,(Z) nlCZ) .-n>] • Sl s 2 r S SEo. S S,->< 
Sl<S2 

(2.18) 

Si En 

Recall that given a graph g E Ge' n - {s:iCY1,zs)Eg}. This leads to 

) ) 

k 
I' 

(Zl, ... ,~) 
IT [IA(Yl,Z >lscz l) 

s=l s s 

rlrczs>l=N 

k-1 N-1 
+k!L 1 I I' IITACY1 ,zilcITscz•» 

lnl=l TITf! M=Tnl (Zi•····Zini> sEn s sEn s 

rlrcz·i l=M s 

x 1 
Ck-In!> i II L' II l'l'CY2·····Yr,z~, ... ,zinl;Z]'.,····zk-lnl'I 

czl' .. · ,zz-lnl l 

r1rcz 11 > l=N-M s 

+ l l'l'CY2, ... ,Yr;Zl, ... ,Zk) I 
(Zl, ... ,Zk) 

rl r (Z ) I =N s 

(2.19) 

The first tennis handled by noting that ACY
1

,zs) vanishes unless 

f(Z ) n f(Y ) # ~. and then applying Lemma VI.3. The third tennis 
s 1 

handled by the induction hypothesis and the second combines the induc-

tion hypothesis and Lemma VI.3. This bounds (2.19) by 

_:I_ N r 
8 -

k!e •expcilrcY.) I> 
2 J 

_.!_JN I 1 
1

-

1 

k s 
Xll+klf(Yl) e + 

1 1 } k,-1 1 M B JM n -- JM 
l TQT! e e I r (Y 1 l I I I e 4 . 

lnl=1 
(2.20) 

1 1 
If J is sufficiently large exp(B J + 1 - 4 J)M ~ 1, and the quantity 

in curly brackets is bounded by expClfCY1) I> which completes the 
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f(X 1J n f ( ) = ~ vanish. In the second inequality, the Peierls m- TJ m 

argument is used to bound the sum over X with <i*,j*> E f(X). 

Equation (2.10) implies 

l .. · l 
xl xm-1 

<i*, j*>Ef (Xl) 

m-1 -§Jixj_1 1 

<II s c·i···s. x cr1u ... urTJ(J'l-l1rTJ(J'l>e > ·-2 T) J J-2 x. 1 J- J-
s l .. ·l 

xl xm-2 

<i*, j*>Ef (Xl) 

lr2l=n2•···•lrm-1l=nm-1 
J 

x(s ... s n )e 16 
n (m) m-2 T) (m) (2.11) 

Bound the remaining sums by the induction hypothesis, thereby obtaining 

(2.8). By standard estimates (see :9]) 

Ifldsl •.. dsk-1( ~ (sT)(')···s._2nTJ(')] 
T) 0 j=l J J J 

k 
s exp(L n.) 

1 J 

Combining (2.5), (2. 7), (2.8) and (2.12) yields 

_ S(Y) 
Y:<i*,j*>Ef(Y) 
lf(Y) i=N 

"' _2.._ JN N _kJ 
s 2N l (k)e 16 •e e 32 

k=2 

N e • (2.12) 

(2.13) 

) ) 

for J sufficiently large. 

Na..r use (2.5) to prove (2.4). 

I' 
(Zl,. •. ,Zm) 

f czsJnf (Y 1 J;I~ 
s=l, ... ,m 

Elr<z > l=M 
s s 

m 
TI S (Z ) 

s 
s=l 

l' 
(Zl, ... ,Zm) 

f czs)nf(Y 1 J;I~ 
s=l, •.. ,m 

m 
II S (Z ) 

s s=l 

Ir ( zl) I =nl, •.. , Ir ( Zm) I =nm 

(2.14) 

The factor of 2M bounds the number of possibilities for splitting the 

total number of bonds in Ejfczs) \ into subsets n1 , •.. ,nm. Since each 

f(Zs) intersects fcY 1), the r.h.s. of (2.14) is bounded by 

m 
2M• sup TI 

{n
1

, •.. ,nm} s=l 

,. 
l S(Z))• 

z :<i*,j*>Ercz > s 
s s 

Enk=M lrcz > l=n 
s s 

m _.!. Jn 
S2M• sup II(lfCY1Jie

4 
s) 

{n1 , ... ,nm} s=l 

Enk=M 

(2.15) 

for J sufficiently large. In the first inequality, we have used 

(2.5) to bound the sum over 

in the sum over <i*,j*> by 

Lemma VI.3. 

Z and then bounded the number of terms 
s 

jrcY
1

> I. This completes the proof of 

In analogy with the proof of the lower bounds in Chapter V, define 
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k 
l ( II A(R.)) II 5 (Z .) 

gEGC(Y
1

, ... ,Yr;z1 , ..• ,Zk) iEg j=l J 
(2.16) 

Recall that Gc(Y1 , .•• ,Yr;z1 , •.• ,Zk) refers to the set of graphs in 

which each Zj vertex is connected (directly or indirectly) to a Yk 

vertex. One then has 

Lemma VI.4. There exists J 2 (8) > O such that for all J > J 2 !8l one 

has 

J N 
r 

.exp([ !f(Y .) I) 
l J 

(2.17) 

We then rewrite ~(Y1 , ..• ,Yr;Z
1

, ... ,Zk) in terms of ~ functions with 

less than r+k vertices, via the manipulations detailed in [4, 7, 12, 

25). This leads to 

r 
L< II scz >> II A<Yrz > II ucY1 ,z > 
n SEn S SEn S j=2 S 

sEn 

x[ II U(Z ,Z ) ~(Y2 , ..• ,Y , (Z ) ,..,; (Z ) .m>] . s 1 s 2 r s sE" s s,.. .. 
Sl<S2 

(2.18) 

Si En 

Recall that given a graph g E Ge' n - {s:i(Y1 ,zs)Eg}. This leads to 

) ) 

k 

( s~l[IA<Yl,ZsJls<zsJ) 
(Zl' ... ,Zk) 

Elr<zs>l=N 

k-1 N-1 
+k 1 L 1 

/. L
1 

\IIA!Y1,zJl!IIS(Z')) 0

\n\=l TITf! M=Tnl (Zi•····Zin\l sEn s sEn s 

[ 1 :r cz·, \=M 
s 

x l 
<k-lnl> i " l, " l~<Y2, ... ,Yr,z~, ... ,zjn\ ;Zi·· .. ,z;;__lnl l I 

< z i • · · · • z z- \ n I ' 
E\f(Z") \=N-M 

s 

+ l \~(Y2, ... ,Yr;Zl, ... ,Zkll 
(Zl, ... ,Zk) 

[ 1 :r cz , 1 =N 
s 

(2.19) 

The first term is handled by noting that A(Y
1

,zs) vanishes unless 

r(z ) n f(Y ) 1 ¢, and then applying Lemma VI.3. The third term is 
s l 

handled by the induction hypothesis and the second combines the induc-

tion hypothesis and Lemma VI.3. This bounds (2.19) by 

1 l l kl -JM -JM 
"t i M a I r·c > 

1
1 n I 4 

l Tnf!ee Y1 e 

lnl=1 
(2.20) 

1 1 
If J is sufficiently large exp(B J + 1 - 4 J)M s 1, and the quantity 

in curly brackets is bounded by exp<lf<Y1J \l which completes the 
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induction. 

Finally, we use Lenuna VI.4 to prove Lel!Ulla VI.2. 

L' 
(Y l' ••. 'y m) 

m_ 

<i*, j*>€Uf (Yk) 
1 

<i*,j*HT(Y1) 

(2.21) 

where we assumed <i*,j*> £ f(Y
1
l and compensated by introducing a 

factor of m. Using (2.18) this may be bounded by 

m. r 
Yl: 

<i*,j*>€f(Yl) 

I' 
y 1' 

<i*, j*>€f (Y 1> 

"' l 
N=m 

r \'l'(Yl;Y2, ••• ,Yrn) \lS(Yl) 
(Y2' •.• ,Ym) 

I:!f(Ys) !=N 

by Lemma VI.4. This may be rewritten as 

Jm J --a -9 -1 
m!e (1-e ) l 

n=l 

<i *, j*>€f (Y l) 

jf(Yl) l=n 

(2.22) 
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Eq. (2.23) to be continued 

) 

_Jm -~ 

~ m!e 8 (1-e 4
l-l 

Jm 

~ rn!e 8 

) 

"' 

(2 .23) 

provided J is sufficiently large. In the next to last inequality, we 

have applied (2.5). This completes the proof of Lemma VI.2. 
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APPENDIX I 

THE DIRICHLET COVARIANCE 

In this appendix we prove various estimates on the Dirichlet co

variance. Let A be some square region in lR 
2

, with sides of length 

(2m+l) for m E z. Define LA = {f : f is a function on z 2 which 

vanishes on z 2 n Ac}. Then for f E LA, define 

Laplacian with Dirichlet boundary conditions, on 

quadratic form, 

l ~ .-f. J 2 
<i,j> l. J 

D 
tiA, the lattice 

aA by its associated 

(A.I.l) 

If ti is the lattice Laplacian with free boundary conditions, a 

straightforward calculation shows that this is equivalent to 

(A.I.2) 

where XA is the characteristic function of the region A. we first 

prove a logarithmic lower bound on the Dirichlet covariance, given the 

restrl.'cti'on that JxJ !> JAJ
118

• 11 Reca that we wish to prove the 

existence of a constant K" > O such that 

(A.I.3) 

This bound is trivial for x = O. To prove it for Jxl ~ 1 we rewrite 

the Dirichlet covariance in terms of the covariance with free boundary 

conditions. Let be the set of periodic lines, separated by a 

156 ) 
) 

distance (2m+2) in the x and y directions, which divides R2 into 

(2m+2) x (2m+2) squares tij, one of which, ti
0

, is centered at the origin 

(and hence contains Al . For any point x EA, define a set of points, 

{x.}, invariant under reflection in any line belonging to =, and with 
J 

x E {x.}. One then has following [23]. 
J 

"' £. 
l (-1) J [CF (i-OJ.) - CF (i-x).)] 

j=O 
(A.I.4) 

157 

where CF(x-y) 

Note that o
0 

= 0 

is the covariance with free boundary conditions at infinity. 

and since Ac ti
0

. Standard estimates on the free 

covariance imply CF(O) -CF(x) ~K·ln(l+Jxll so our task is to estimate the 

contribution to (A.I.4) from all squares other than ti
0

• Define 

F(i) 
"' £. 
l (-1) J[CF(i-OJ.) -CF(i-xJ.)] . 

j=l 
(A.I.4) 

We see that F(·) is a solution to Laplace's equation throughout ti
0

. 

Thus by the maximum-minimum principle for elliptic difference operators 

it must attain both its maximum and minimum values on ati
0

, the boundary 

of ti
0

. However, we know that for any site i E ti
0

, 

0 CF (i-0) - CF (i-x) + F (i) . (A.I.SJ 

Thus for any site i E :;z2 n ti
0 

(A.I.6) 

Standard estimates on the two-dimensional dipole potential show that 



) 

c- lxl 
Jc (j-o>-c (j-x>I < . 1 · I 1·1 F F min( J-X • J ) 

(A.I. 7) 

provided f Af >1, where in the second inequality we have used our bounds on 

!xi. Hence 

c
0

(0,0J-c
0

CO,x) > CF(O)-CF(xJ-[F(O) I 

> K·ln(l+!xl> - c"fA/-
718

• (A. I. 8) 

Choosing A0 suet that for !Al >A
0

, c"IA/-
718 

< K/2, one obtains the bound 

Of (A.I.3) with K" = K/2. 

we now prove the upper bounds of Chapter III. 

We first prove that for the function ai* defined by (III.1.9) 

and any pair of nearest neighbor sites <i*,j*> one has 

lai*-aj*/ < c•E for some constant c. Heuristically, ai*-aj* is just 

the electric field (lattice gradient of the potential) of a line of di-

poles stretching from 0 to x, which elementary electrostatic esti-

mates show is uniformly bounded. Note that the definition of XI •I 

implies 

E I (-1) Eit I {C (i*' (R.*-; ) )-C (i*' l_*) 
k=O R.*EYL* F y k F 'It 

(A.I.9) 

158 ) ) 

In the second equality we again used the representation of the Dirichlet 

covariance in terms of the free covariance. We shall study just the 

contribution of the cube ~O which coincides with A. The contribution 

of the other cubes is handled in a fashion very similar to that discussed 

in the lower bound. In the cube ~O we must estimate 

159 

I {CF(i*,R.*-~) -CF(i*,R.*> -c (j*,R.*-;) +C (j*,R.*>}. (A.I.10) 
y F y F 

R.*EYL* 

Since i* and j* are nearest neighbor sites, if i* = (x
1

,x
2
J, j* is 

either (x
1 

±l,x2J or (x
1

,x
2

±1). Assume that it is (x
1 

+l,x2J. All 

the other cases are estimated in analogous fashion. Similarly, £* EyL* 

has coordinates (m,O), o<:m<:!x\. (We have moved the origin of our 

coordinate system to the origin of the dual lattice.) 

Using the translational invariance of the free covariance we find 

(A. I.11) 

where we have used the fact that the second line in (A.I.11) is just the 

two-dimensional quadrupole potential, and then applied standard estimates 

to this quantity. Hence 

,,.;; K' • (A.I.12) 



) 

Combining this with the bound on contributions to (A.I.9) coming from 

squares other than ~0 • we find 

(A.I.13) 

as claimed in (III.1.17). 

Finally we turn to the bound of Lemma III.3. The basic task is to 

compute <c
0
a2 x,a

2
X>. This is complicated by the fact that c

0
(i*,j*) 

is not translation invariant. First note that 

;(A.I.14) 

where [•,•] just denotes the usual operator commutator. Thus 

A 

If we denote vertical bonds (i.e., j* = i*+e ) 
y 

by <i*,j*> , and 
v 

horizontal bonds by <i•,j•>h, we may rewrite the first term on the 

r.h.s. of (A.I.16) as 

l [(c0Xl (j*)-(C0Xl (i*l][X(j*J-X(i*l] 
<i*, j*> c~ 

v 

l [(C0Xl (j*)-(C0XJ (i*)) [X(j*)-X(i*)) 
<i*,j*>cA* 

l [ (C
0

Xl (i*)-(c0Xl (i*)] [X(j*J-X(i*)] 
<i*,j*>hcA* 

(A.I.16) 

) 

If we now combine the observations that 

<X,X> 

and 

with we find 

(A. I.17) 

The first term in (A.I.18) is bounded using the inequality c
0 

s CF, 

from which we see 

Here, O* and x* are the points at which a
1

X is non-vanishing. (See 

Figure A. 1.) 

straightforward calculation shows 

Note that 'I' is -1 on the sites in 71:2 n A closest to a A and zero 

elsewhere. Similarly, r,; is -1 on the 11 top 11 row of sites in A 

7/;2 
A 2 n Ac) (i.e., those sites i in n A such that i+e EZ and zero y 

elsewhere. Using this fact, one may rewrite 
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) 

Figure A. l. The points O* and x*. 

) 

l 
i*c"YL* 

k*c"YL* 

j*csupp '!' 

x (C (j*-~ ,k*)-C (j* ,k*)]} • (A.I.20) 
D y D 

Standard estimates imply Jc0 (i*-~ ,j*)-C
0

(i*,j*) I s K1 Ji•-j•J-
1

. Be-
y . 

cause of the restrictions on the position of x, if L = JAJ~. one has 

li*-j•J > (2m+l)-(2m+ll~ and 
!. 

h*-k*I > (2m+l)-(2m+l) 4
• 

are at most Jxl terms in the sums over i* E: YL* and 

4(2m+l) terms in the sum over j* E: supp'!', so that 

2 

Also, there 

2 Kl 
s 4 < 2m+i>- Ix! .------'=-----

. ((2m+l)-(2m+lJ 114 i 2 

4(2m+l) 3/ 2 .K2 

s ~~~~~~~~---'l0--~~-
( 2m+l)2 - 212m+l)514 + ( 2m+l)514 

S K
2 

(A.I.21) 

In the second inequality, we have used the fact that !xi < (2m+lJ
114

• 

In analogous fashion, l<c0~~c0x,a 2X>I and 

J<c
0

[!XAa
2
J, !XA~J]c0x,a 2x>I are both bounded by constants, which when 

combined with (A.I.24) and (A.I.25), yields the bound of Lemma III.3. 
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APPENDIX II 

THE MULTIPOLE EXPANSION OF FROHLICH AND SPENCER 

In this appendix we discuss the proof of Theorem II.3 and a nUl!lher 

of related results from [15). The idea of the expansion may be observed 

through the following approximate argument. Ignore for a moment the 

non-local potentials, and approximate the sum over {m} in the expres-

sion (II.1.5) by the terms with {m} = O, and a term with one m. = +l 
l. 

and one m. = -1. For the term with {m} = O, the logarithmic lower 
J 

bound on the correlations can be proved by elementary means. The term 

with non-zero {m} is treated by noting that if the functions I ( •) s 
are replaced by Gaussian functions, the integrals over {¢} can be 

exactly performed and we obtain the electrostatic energy of a two-

dimensional dipole with endpoints at i and j. 

one endpoint fixed) has an entropy proportional to 

-c'S-1tn\i-j\ 

Such a dipole (with 

edn\i-jl. Its 

energy behaves like e . Thus for small S. the energy 

will dominate the entropy, and the dipole term will contribute only a 

small correction to the {m} = 0 term. In making this argument rigor-

ous, the two principal problems which must be overcome are first to 

discover a way to include the effects of all the rest of the terms in 

the sum over {m}, and second to estimate the electrostatic energy of 

and all the non-local charge configurations with the functions IS(•) 

potentials present instead of just Gaussian functions. 

Theorem II.3 provides the solution to the first of these problems. 

164 ) 
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we discuss some of the principle ideas of the proof. For full details 

see [15). First pick a positive number, b, such that ~ n-4 b l = l. 
n=l 

Then 

co 

(1+2 l cos(2mn¢)) 
m=l 

b -4 -1 4 l bm ( 1+2b m cos ( 2nm¢)) (A.II. l) 

m=l 

Thus 
co 

IT (1+2 l cos(2mni¢i)) 
i€!1.n'l/.2 m=l 

-4 -1 4 
= l Tl (bm. ) JI (l+2b m cos(2mni ¢i)) 

{m} i~Anz2 
1 

iEAnz2 
(A.II.2) 

one now repeatedly applies the identity 

(A.II.3) 

In the initial step of the induction, we just take ¢(p.) = 2TTm.¢ .. 
l. l. l. 

one then applies (A.II.3) to nearest neighbor pairs of sites, generat-

ing a set of charge densities. The constants for this set of 

ensembles will just be the factors 
-4 

bm. 
l. 

multiplied by factors of 

<t> and (-~-), according to the various terms in (A.II.3) which con

tribute to a particular ensemble. If the ensembles generated by this 

procedure satisfy the conditions of Theorem II.3, we ·stop. If not, one 

reapplies (A.II.3) to these new charge densities. Some care is neces-

sary to insure that one does not build up exceedingly large entropy 
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factors for some of the charge densities. Roughly speaking, one 

divides the charge densities generated after n-steps of this inductive 

procedure into two groups -- those which obey conditions (a) and (b) 

of Theorem II.3, and those which do not. To those which do not, one 

applies (A.II.3), while the rest are left untouched. Since there are 

only a finite number of charge densities to begin with, this inductive 

procedure must eventually terminate. One .then checks to see that the 

entropy estimates of Theorem II.3(c) hold. 

Suppose we have a set of charge densities, N*, all of which are at 
n 

least a distance 2n from each other, and all obeying Theorem II.3(c). 

Apply (A.II.3) to all pairs of charge densities within a distance 2n+l 

* of one another, until an ensemble Nn+l is generated with all 

p' e: N 
n+l 

By p e p' 

separated by at least We show that 

cA (p') 
K(p') $ e n II K(p) (A.II.4) 

pep' 

we mean those elements of N* which are continued in p'. 
n 
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This, combined with the assumption that the K(p) 's all obey (II.1.7) (c) and 

an induction argument on n, proves that all charge densities generated 

in the first half of Theorem II.3 obey the entropy estimates. 

First note that 

K(p') 3m ( p 
1

) II K ( p) 

pep' 
(A.II.5) 

where m(p') is the number of applications of (A.II.3) necessary to 

* produce p' from Nn. We claim that m ( p') s: c 'An ( p') which will 

verify (A.II.4). Since we applied (A.II.3) only to charge densities 

) ) 

which were closer than 2n+l to each other, the number of applications 

necessary to obtain p' is bounded by the number of charge densities 

in N* within a distance of 2n+l of p'. This follows from the fact 
n 

that (A.II.3) takes two such charge densities, and either combines them 

or deletes one. A single 2nx2n square can intersect at most three 

charge densities in * N . 
n 

Hence A ( p •) ? c" l A ( p) • Furthermore, 
n pep' n 

for a given p, a simple geometrical argument shows that there are at 

most c"' An(p) charge densities in N:. within a distance of 2n+l 

* (This follows from the requirement that all p e: Nn be at 

least a distance 2n from all other elements of Hence 

j# elements of N* within a distance 2n+l of p' I 
n 

:S c"' 
c"' 

S: (~) An(p') 

which proves (A.II.4). 

(A.II.6) 

Having succeeded in rewriting the sum over {m} in (II.1.12) to 

include the effects of all terms, we proceed to the renormalization it-

self. Start from the observation that the integral 

ibx -ax d 
f 

. 2 
e e x 

can be evaluated by making the change of variables 
ib 

x -+ y - 2a· One 

then "guesses" that the complicated integrals of (II.1.12) are "close" 

to Gaussian, makes the changes of variables detailed in Section II.2, 

and bounds the error which results. The bounds on errors result from 

combining the bounds of Section V.4 with bounds on the functions 

i(lj>+i~pap) discussed below. Implicit in estimate (V.3.21) is the 
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bound of 

Lemma A. II. l. 

IA' (p) I ~ 4DIA(p) I (A.II. 7) 

n(p) 
Recall that A(p) = l !Sk(p) !, and A' (p) = 

m=O 
Sk(p), the minimal set of 2kx2k squares which 

n(p) 
l 1si::(p) 1, with 

m=O 
cover supp p, and 

Sk(p) the subset of Sk(p) defined in (II.2.2). This is one of the 

few places where our choice of Dirichlet rather than free boundary con-

ditions produces any significant difference from the detailed proof of 

[15]. The difference arises due to the fact that for fixed Sk(p), 

Sk(p) may be smaller in the Dirichlet boundary condition case than in 

the free boundary condition case, because of the second half of condi-

tion (II.2.2) which insures that we don't translate so close to the 

edge of A that we violate our boundary conditions. We must check 

that, nonetheless, some inequality like (3.10) of [15] holds. Assume 

that ISY(k) (p) I ~ 2, where Y(k) = [a-1
(k-b-2)], where b = ~n2 12·2M, 

and M and a are the constants appearing in Theorem II.3. (Note 

that if 1\(k> (Pl I < 2, so 

that lsy(k) (p) I = o if p is neutral, and !Sy(k) (p) I = !SY(k) <Pl I 

if p is charged, and in either case ~(p) Ak(P) .) We divide 

into two sets, ~(P) and If 

dist(s
1

,Ac) s; 2k+2 , and for every other s
2 

€ Sk(p)\Sk(p), 

dist(s
1

,s
2

) ~ l2•2M•2ak. Define ~(p) = (Sk(p)\Sk(p))\<(P). By the 

reasoning that leads to (3.8) of [15], one has 

~(p) s; ~Ay(k) (p) + ISY(k» (p) I + !S~(k) (p) I (A.II.8) 

16& ) ) 

This results from the fact that since the squares in S~(k) ( p) are 

"close" to one another on the scale 2 Y(k), more than one of them may 

be covered by a single square. Iterating this inequality, one 

arrives at 

~(p) 

~-1 f ~ 
s; l 2-m[IS'm+l (p) I+ IS m+l (p) IJ + 2- Ao(p) 

m=O y (k) y (k) 
(A.II.9) 

This is analogous to Eq. (3.10) of [15]. Here, ~ is the maximal 

integer such that y~(k) ~ O. Then, following Fr~hlich and Spencer, 

one shows that this implies 

n(p) 
A ( p> s EA· ( p> + F I Is!< pl I 

m=O 
(A.II.10) 

We now show that 

(A.II.11) 

which when combined with (A.II.10) yields the bound of Lemma A.II.!. 

To prove (A.II.11) we show that if s 1 € IS!(p) I, then the squares, 

s' , which cover Pl on all scales k, less than or equal to m-2, 
s 

l 
can be arranged so that dist(s' ,Ac) ~ 2m, and hence, are never ele-

ments of This implies that for and 

Thus, 

[n ( p) /2] f 

l IS2m(p) I 
m=O 

and 

[n(p)/2] f 
l IS2m+l (p) I s; Ao(p) 

m=O 
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which proves (A.II.11). ([n(p)] is the integer part of n(p) .) 

Consider 

By (II.1.7) (b) this implies 

Defining p1 = Pl 
sl 

we see that 

(A.II.12) 

(A.II.13) 

Now pick the covering on the scale 2k, k < m-2, such that no square, 

s, in the covering is closer to Ac than p
1 

is. Then dist(s,Acl ~ 

23/ 2a2m > 2k+2 so s 's!<pl as claimed. 

Finally we turn to the task of bounding the factors of 

We need the following lemma. 

Lemma A. I I. 2 • For the translating functions defined in Chapter 

II, 

(A.II.14) 

for all p,m,s E S~(p). 

This lemma follows from (4.42)-(4.59) of [15]. From (II.1.1) (c) 

we have 

1 

s exp(s3(g(a~(i)-a~(j) l l) • (A.II.15) 
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Because of the bounds on g ( •) , this is less than 

1 

exp (s
6 [a~ ( il -a~ ( j >l) 

2 (A. II .15) 

where we have used the fact that Y =cf inSI and assumed the constant 

c is small. By (II.2.15) this implies 

I i<¢+iz:; a >I p p 

I n<pl 
s exp/ I 

m=O 
(A. II.16) 

Recalling from Chapter II that no bond <i,j> is ever translated more 

than once, we may rewrite 

for m > 0, and 

I [ao(i)-ao(j)]2 
0 p p 

<i,j>E)l 
p 

using Lemma A.II.2. This, combined with (A.II.16), bounds 

by 

li<¢+iz:; a >I p p 
l n(p) 2 ) 

$ explmll c'Y /S~(p) I + c'Y2Ao(p) I 

exp{c 1 Y2A1 (p)} 

Combining Theorem II.3(c), (II.2.8) and (A.II.18), we obtain 

(A.II.17) 

(A.II.17) 

li<<P+iz:; a >I p p 

(A.II.18) 
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-Yq 
!K(P)e pi(cp+ir; a ) I 

p p 
1 

s [ II 
i€supp 

( 4 p(i)) 4]exp )cA(p) +c•ls
6

A1 Cpl-Y): Pl p(i) I 
p lET0 

(A.II.19) 

Since l !P(i) I <: ~(p) + iA
0

(p), we see that for S sufficiently 

iET p 

small, 

Since 

0 

. 4 I I Y II 4 p(i)) exp 1-2 
iEsupp p 

I I o<i> I ( s 
iETp 

0 

lqmp, s' / <: 1 by our definition of S~(pJ, 

-Yq 
fK(p)e Pi(¢+ir; a JI 

p p 

1 

1 

s exp )<c+c•Y2 S6)A(p)-~0 (p)-YR-n/2j1 1S~(p) ii 
1 

s exp l<c+c•ls
6

-YD)A(pJj 

where in the last step we used Lemma A.II.l. This is the estimate of 

(V.3.21). We note in passing that since I A ( pJ I <: 1 for all 
n 

n s [R.n
2

(Md(p)a)) + 1, one clearly has Alp) <: R-n
2
Md(p)a > £n2dh(p) · 

This completes our review of the results of [15). 

17' ) ) 
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