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ABSTRACT

We report a new measurement of the B-meson semileptonic decay momentum

spectrum that has been made with a sample of 9.4 fb−1 of e+e− data collected with

the CLEO II detector at the Υ(4S) resonance. Electrons from primary semileptonic

decays and secondary charm decays were separated by using charge and angular

correlations in Υ(4S) events with a high-momentum lepton and an additional elec-

tron. We determined the semileptonic branching fraction to be B(B → Xe+νe) =

(10.91± 0.09± 0.24)% from the normalization of the electron-energy spectrum. We

also measured the moments of the electron energy spectrum with minimum energies

from 0.6 GeV to 1.5 GeV.
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CHAPTER 1

Introduction

In 1897, J.J. Thomson determined that the so-called “cathode rays” emitted by a hot

filament were actually streams of negatively-charged particles. He called them corpus-

cles and their charge the electron (the term “electron” would later be applied to the

particle itself). Thomson postulated that the electron was a fundamental constituent

of atoms. Since atoms were much heavier than his electrons, and electrically neutral

on top of that, it was clear that they were not the only constituents of atoms. So

he proposed a model of the atom that had the electrons embeddeded in a continuous

medium of positive charge, calling it the “plum-pudding” model.

A few years later, Ernst Rutherford formulated a test of Thomson’s model. He

performed an experiment where he fired a beam of α particles (helium nuclei) into a

thin sheet of gold foil. If Thomson’s model was correct, the α particles’ trajectories

should be deflected slightly by their passage through the uniformly distributed posi-

tive charge of the gold atoms. Instead, Rutherford found that most of the α’s passed

straight through the foil (suggesting empty space), while some of them richocheted

off at extreme angles (suggesting that they encountered something very massive).

Apparently, most of the mass of an atom was concentrated in a very small space.

Niels Bohr soon put forth a model that claimed a hydrogen atom consists of an

1
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electron in planetary orbit around a proton (as the hydrogen nucleus was called).

Enormously successful in predicting the emission spectrum of hydrogen, it suffered

from the fact that it could not be extrapolated to explain the structure of heavier

elements. While helium (the next heaviest atom) had two electrons (and therefore

two protons in its nucleus), it was four times heavier than hydrogen. Obviously,

the nucleus contained more than just protons. So when in 1932 James Chadwick

discovered the neutron, a particle similar in weight to the proton but electrically

neutral, the pieces fell into place: atoms were made of electrons orbiting a nucleus

containing nucleons, as protons and neutrons are collectively called.

However, there were still problems, and many of the proposed answers to these

problems predicted the existence of particles beyond the electron, proton, and neu-

tron. Dirac’s attempt to derive a theory for the electron that incorporated both

quantum theory and special relativity demanded the existence of the positron, a

positively-charged antimatter partner to the electron. To explain why electrons emit-

ted in nuclear β decay were not monoenergetic, Pauli predicted the existence of the

chargeless, massless neutrino. Yukawa proposed the existence of a meson, a charged

particle about one-sixth the mass of a nucleon, to explain how all those positively-

charged protons could be held so closely together in the nucleus1

These predicted particles were searched for and subsequently seen in the labora-

tory over the next several years. However, also uncovered were many other types

of particles that were completely unexpected: several types of mesons were discov-

1Yukawa’s insightful model eventually proved too simplistic, and the name “me-
son” is now used for a different purpose.
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ered, as well as many heavier particles that were more similar to the nucleons. With

this proliferation of new particles, attempts were made to find patterns among them.

In the sixties, Murray Gell-Mann proffered an explanation for the patterns in the

properties of the various particles. He proposed that all the known particles (except

the electron, muon, and the neutrino) were themselves made up of three types of

fractionally-charged particles called quarks. Since no fractionally-charged particles

had ever been observed, this theory did not seem well-motivated to most physicists;

quarks seemed like a clever fiction. Experimental evidence was needed.

In the spirit of Rutherford, physicists at the Stanford Linear Accelerator Center

fired a high-energy beam of electrons into a target of protons, probing for substruc-

ture. These “deep-inelastic scattering” experiments showed that nucleons are not

fundamental, that in fact they consisted of three partons. Eventually2 these partons

were recognized as Gell-Mann’s quarks.

So far as we know today, quarks have no substructure. They, along with the

leptons (the class of particles consisting of the electron, its heavier cousins the µ and

the τ , and the neutrinos) are the fundamental constituents of matter.

Atoms to nuclei, nuclei to nucleons, nucleons to quarks; this quest to delve deeper

and deeper into matter, peeling away layers of abstraction until left with only the

2After the deep-inelastic scattering experiments, it was suspected that these par-
tons were Gell-Mann’s quarks, but not many physicists were ready to fully recognize
them as such. The deciding piece of evidence for the quark model was provided in
the “November Revolution“ of 1974, with the discovery of the J/ψ meson that was
much heavier than any other meson ever seen before. The quark model was ready
with an explaination: it contained a fourth type of quark that the theory predicted.
This explanation is now the accepted theory.
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fundamental constituents, is what motivates the particle physicist. This thesis will

describe the measurement of one part of the current model of elementary particle

physics, called the Standard Model.

The first two chapters of this thesis will lay out the theoretical motivation for the

measurements made here. The rest of this chapter will give a qualitative introduction

to the current theory of elementary particle interactions, the Standard Model. The

second chapter will explain in more detail the physics of semileptonic B-meson decays.

In it, the theory of the weak decay that lays at the core of this process, as well as the

complicating effects of the strong force, will be explored.

1.1 Particles and Forces

In the Standard Model, our universe consists of three types of particles: leptons,

quarks, and the force-mediating gauge bosons. Each particle has an antiparticle, with

the same mass and opposite quantum numbers. Some particles, like the photon,

are their own antiparticles. One particle, the yet-to-be-seen Higgs boson, does not

fall into these categories, and plays a special role in the theory, in particular the

generation of the masses of the particles. All of our knowledge about the properties

of matter arise from the observations of interactions of these particles.
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1.1.1 Leptons

There are six types of leptons. The most familiar is the electron, denoted e− or simply

e. 3 The electron has two heavier cousins, the muon (µ), and tau (τ), both also

negatively charged. The remaining three leptons are the massless4 and chargeless

neutrinos. The neutrinos are partnered up with the charged leptons: the electron

neutrino νe, the muon neutrino νµ, and the tau neutrino ντ . The properties of all six

leptons are summarized in Table 1.1.

1.1.2 Quarks

Quarks make up the vast majority of matter in the everyday world. As with the

leptons, there are six flavors of quarks: up, down, charm, strange, bottom, and top.

The properties of each are shown in Table 1.1. The complicated strong interactions

inside hadrons make defining and measuring individual quark masses difficult, so some

of the masses that appear in Table 1.1 are approximate. While the quarks carry a

fractional electric charge, no particles with fractional charge have ever been observed

in the laboratory. It is a feature of the strong force (described below) that quarks

are only observed in bundles of three quarks or antiquarks called baryons, or quark-

antiquark bound states called mesons. Baryons and mesons are collectively called

3The electron’s antiparticle, the positron, will also be denoted as e at times
throughout this thesis; in general, we will not distinguish between particles and an-
tiparticles, as it can usually be inferred by context which is meant.

4This is not exactly true; there is growing evidence that neutrinos may have small
but nonzero masses from neutrino mixing experiments. That is beyond the scope
of this thesis, however, and since the Standard Model assumes the neutrinos are
massless, I will do the same.
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hadrons. Protons, for example, are made up of two u quarks and a d-quark, while

neutrons consist of one u quark and two d quarks. The particles studied in this thesis,

B mesons, contain a b̄ antiquark paired with a u or a d quark.5

The quarks and leptons each fall naturally into three groupings called generations.

The source of this structure is not understood, just as we do not understand the

patterns of masses and decay couplings. The u and d quarks are in the first generation,

the c and s quarks in the second, and the t and b quarks in the third. Similarily, the

leptons are grouped as (e, νe), (µ, νµ), and (τ, ντ ).

1.1.3 Particle Interactions and Force Mediators

Particles interact via the four fundamental forces: gravity, electromagnetism, the

strong force, and the weak force. In the Standard Model, interactions are described as

the exchange of particles called mediators of the force responsible for the interaction.

Figure 1.1 shows a diagram of a photon being exchanged between two electrons,

describing an interaction via the electromagnetic force. A photon is emitted by an

incoming electron. This photon carries momentum and energy from the emitting

electron and transfers it to the absorbing electron. An electron cannot just emit a

photon and conserve energy and momentum. However, by the grace of the uncertainty

5It is for historical reasons that the B meson contains the b̄-antiquark, while the B̄
meson contains the b-quark. When the first strange-flavored particles, the Λ baryons,
were discovered it was not known that they actually bore the s̄-antiquark, and “fool-
ish” consistency led to a similar convention for naming bottom-flavored hadrons. It
is similar to the choice faced by Benjamin Franklin when labeling the two electric
charges positive and negative, not knowing that by his choice the electron would in-
conveniently carry a negative charge, thus plaguing freshman physics students with
sign errors for centuries to come.
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Name Symbol Charge Spin Mass (MeV/c2)

Up u 2
3

1
2

1.5 to 4.5

Down d -1
3

1
2

5.0 to 8.5

Quarks Charm c 2
3

1
2

1000 to 1500

Strange s -1
3

1
2

80 to 155

Top t 2
3

1
2

174,000

Bottom b -1
3

1
2

4000 to 4500

Electron e -1 1
2

0.511

Electron Neutrino νe 0 1
2

< 3× 10−6

Leptons Muon µ -1 1
2

105.7

Muon Neutrino νµ 0 1
2

< 0.19

Tau τ -1 1
2

1777 ± 0.28

Tau Neutrino ντ 0 1
2

< 18.2

Photon (EM) γ 0 1 0

Gluon (Strong) g 0 1 0

Mediators W+ +1 1 80,423 ± 39

Weak Bosons W− -1 1 80,423 ± 39

Z0 0 1 91,188 ± 2.1

Higgs H 0 1 > 114, 300

Table 1.1: The elementary particles in the Standard Model.
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Figure 1.1: Photon exchange in electron-electron scattering.

principle, the energy ∆E needed to emit the photon can be “borrowed” as long as

the photon is reabsorbed before time ∆t ' (h̄/∆E). A photon exchanged in such a

process is called a virtual photon, and is not a real photon in the sense that it can be

detected. The strong force is similarily described by the exchange of virtual gluons,

and the weak force by the exchange of virtual W± and Z0 bosons.

Each force also has an associated coupling constant, which denotes the strength

of the interactions of that force. The coupling of the strong force αs is, as the name

suggests, the largest. The electromagnetic coupling αEM is two orders of magnitude

smaller, and the weak force coupling GF is a thousand times smaller still.

1.1.4 Gravitation and Electromagnetism

The gravitational force is the weakest of the four forces, yet to a certain extent

it is the most familiar. Isaac Newton first developed a comprehensive model for
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gravity in 1687, a theory that was later subsumed by Albert Einstein into his General

Theory of Relativity. However, neither of these theories are quantum theories, nor

has the proposed mediator of the gravitational field, the graviton, been discovered.

Because it is so weak relative to the other forces, individual particles do not interact

meaningfully via the gravitational force, and gravity is therefore not described in the

Standard Model.

The electromagnetic force is responsible for almost all of the myriad of inter-

actions common to everyday life. A complete classical theory was first derived by

James Maxwell and was not only compatible with relativity, it was the inspiration

for Einstein’s work. The current quantum theory of electromagnetic interactions,

quantum electrodynamics or QED, stands today as the most successful and precisely

tested physical theory yet devised. The mediator of the electromagnetic force, the

photon, couples to electric charge; therefore, all charged particles interact via the

electromagnetic force.

1.1.5 The Weak Force

The weak force is responsible for the decay of quarks and leptons into lighter quarks

and leptons. All quarks and leptons interact via the weak force. Unlike all the other

gauge bosons, the mediators of the weak force, the W± and the Z0 are very massive,

causing the weak force to be short-ranged. It is also the only force that is capable of

changing the flavor of a quark or lepton, like a bottom quark into a charm quark, or

a muon into an electron.

Shown in Fig. 1.2 is the decay of an unstable lepton by a charged-current interac-
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Figure 1.2: A weak interaction vertex involving leptons.

tion. Here a muon or tau is converted into its corresponding neutrino and a vitrual

W− is emitted. This is not a complete physical process, as the W is virtual and needs

to decay into something else before this process can be observed. Note that couplings

of the W to leptons of different generations (i.e. µ− → ντW
−) are not allowed within

the Standard Model.

Quarks also decay into other quarks via the weak force by coupling to W bosons.

A Feynman diagram of a u quark decaying to a d quark and emitting a vitrual

W+ is shown in Fig. 1.3. In contrast to leptonic decays, quarks can decay cross-

generationally. Here it is necessary to make an important distinction: the genera-

tions defined by the quark masses are not the generations obeyed by the weak force.

However, we can define weak eigenstates of quarks by rotating the mass eigenstates of

down-type quarks into a new basis using a 3×3 matrix, called the Cabibbo-Kobayashi-
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Figure 1.3: A weak interaction vertex involving quarks.

Maskawa (CKM) matrix [1]6:
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. (1.1)

Now we can write the weak eigenstates as mixtures of the mass eigenstates:

|b′〉 = Vtd|d〉+ Vts|s〉+ Vtb|b〉. (1.2)

The weak interaction only allows transitions within these new generations: (u↔ d′),

(c↔ s′), and (t↔ b′). Since we only observe the quarks in their the mass eigenstates,

the experimentally measured probability for each weak transition is the overlap of the

mass and weak eigenstates. For example, since Vtb is much larger than Vts or Vtd, the

bottom quark mass eigenstate is mostly b′, and very little s′ or d′. Therefore, decays

6Again, it is not exactly true that leptons cannot “jump” generations. The main
purpose of neutrino mixing experiments is to measure elements of the MNS matrix,
the analogous matrix to the CKM matrix in the lepton sector. And again, this is
“beyond the Standard Model,” and will not be discussed further in this thesis.
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of the top quark to the bottom quark are much more common than decays to strange

or down quarks. In this way, the CKM matrix governs the relative probabilities of

different quark decays.

The elements of the CKM matrix are fundamental inputs of the Standard Model,

and must be experimentally determined. The current experimental limits on their

magnitudes are as follows [2]:













0.9741 to 0.9756 0.219 to 0.226 0.0025 to 0.0048

0.219 to 0.226 0.9732 to 0.9748 0.038 to 0.044

0.004 to 0.014 0.037 to 0.044 0.9990 to 0.9993













. (1.3)

1.1.6 The Strong Force

The strong force is what holds quarks in hadrons, and (indirectly) holds nucleons

in the nucleus. The current theory of strong interactions is called quantum chromo-

dynamics, or QCD, and is modeled on QED. The strong force involves all particles

that carry the color charge. Color charge has nothing to do with real color, and is

rather more analogous to the electric charge; why it is called color charge will become

apparent in a moment. Whereas there is only one type of electric charge (that can

be positive or negative; a charge and an anti-charge, so to speak), there are three

types of color charge: “red”, “blue”, and “green”. Quarks carry color charge, and

can only group themselves into hadrons in combinations that make the overall state

“colorless”. Baryons form by combining one “red”, one “blue”, and one “green”

quark, making the baryon itself “white,” or colorless (and it is here that the reason

for calling the strong charge “color” becomes apparent). Mesons form by combining,
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say, a blue quark with an anti-blue anti-quark, making a colorless meson. Leptons do

not carry color charge, and thus do not participate in strong interactions. The strong

force mediator, the massless gluon, couples to the color charge. Interestingly enough,

the gluons themselves carry color, allowing them to interact with each other, unlike

photons.

The name “strong coupling constant” for αs is a misnomer: αs is not really a

constant, but it increases as the distance between quarks increases. This “running”

coupling constant has some interesting implications. As the distance between two

quarks decreases, αs decreases. Inside a hadron, αs is so small that the quarks essen-

tially do not interact, and rattle around freely. This phenomenon is called asymptotic

freedom. On the flip side is confinement: αs increases as separation increases, bind-

ing the quarks inside hadrons. As quarks in a hadron separate, the energy in the

strong force coupling of the quarks increases. Eventually, there is enough energy in

the coupling to create a quark-antiquark pair as it departs. The departing quark will

then pair with the newly-formed antiquark to form a meson, and the newly-formed

quark can replace the departed quark in the old hadron to make it a complete hadron

again. This process of creating new quarks and antiquarks to satisfy confinement is

called hadronization. A diagram of hadronization in Υ(4S)→ B+B− decay is shown

in Fig. 1.4.

The running of αs causes the physics of strong-force interactions at short dis-

tances to be very different from long-distance interactions, and different theoretical

approaches must be employed for each. The borderline between the two regimes is

called the QCD scale, and is marked by the parameter ΛQCD ∼ 200 MeV. At dis-



14

b

b

b
u

u
b

_

_
_

B−

B
+Υ

Figure 1.4: Hadronization in Υ(4S) decay. Here a u and ū are created from the

energy of the strong force interaction between the b and b̄ as they split apart.

tances much shorter than 1/ΛQCD, αs is small enough that the strong interaction

can be described as the exchange of individual gluons using perturbation theory. At

distances of order 1/ΛQCD, quarks and gluons start to hadronize, and QCD becomes

non-perturbative.

1.2 Why Semileptonic B-Meson Decay?

In this thesis, we are interested in making a precision measurement of the CKM

matrix element Vcb. To make this measurement, we need to observe decays where a b

quark decays into a c quark.

Observing b → c decays would be a relatively straightforward task if we were

able to see quarks individually. However, the strong force interferes. Because of

confinement we do not see quarks; we only see hadrons. Therefore, if we wish to study

the weak-force physics of a certain quark, we are forced to observe it interacting via the

strong force with other quarks, which will obscure our view of the weak interactions.

Because B mesons are the lightest bottom-flavored hadrons, they can decay only
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via the weak force; the flavor-preserving strong and electromagnetic interactions are

forbidden because there are no lighter hadrons with the same quark content. Also,

b quarks cannot decay to CKM-favored but far heavier t quarks. This leaves only

transitions to c or u quarks. And since Vcb is roughly 10 times bigger than Vub,

approximately 99% of B decays are to final states with mesons containing a charm

quark. This makes a sample of B mesons fertile ground for b→ c decays.

Since leptons do not interact via the strong force, we study B → Xc`ν decays to

minimize our sensitivity to the complicating strong force interactions quarks in the

final state. However, semileptonic decay processes are still not completely free from

the meddling of the strong force. The b quark is still confined in a hadron, where it

experiences strong interactions on the order of ΛQCD. However, we can approximate

the contribution of the strong force to observed weak decays of hadrons containing

quarks of mass mq � ΛQCD. The details of this approximation are given in the next

chapter.



CHAPTER 2

The Theory of Semileptonic B Decay

In this chapter, we detail the theoretical calculation of the differential rate dΓSL of B

meson semileptonic decay using the Operator Product Expansion (OPE) and Heavy

Quark Effective Theory (HQET).

The semileptonic decay of a B meson is the result of the weak decay of the b

quark into a c quark or a u quark and a virtual W , with the virtual W decaying to a

lepton-neutrino pair. The diagram for this process is shown in Fig. 2.1. To calculate

the rate of this process, we view it as the interaction of a leptonic current and a quark

current mediated by W exchange.

Semileptonic decays are not as “clean” as shown in Fig. 2.1, but rather are more

like the situation depicted in Fig. 2.2, with gluons being exchanged between the quarks

inside the hadron. Moreover, since the energy scale of typical QCD interactions is of

the order ΛQCD, there is ample energy to create light quark-antiquark pairs, creating

a so-called “brown muck” of gluons and light quarks and antiquarks. The presence

of these light degrees of freedom greatly obscures the underlying weak process we are

interested in studying. However, the sheer girth of the b-quark presents us with the

opportunity to make some simplifying approximations.

First we will turn our attention to calculating the differential decay rate of B →

16
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Figure 2.1: Semileptonic decay of a B meson containing a b quark and a “spectator”

u or d quark, denoted as qsp.

Figure 2.2: A more realistic picture of B meson semileptonic decay.
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X`ν. Our goal in obtaining an expression for the differential decay rate is to separate

the physics processes that we cannot calculate (non-perturbative QCD) from those we

can (perturbative QCD and weak physics). Once we have isolated the non-calculable

parts, we will express them in a way that makes determination of them possible using

data.

2.1 Calculation of the Semileptonic Rate

The general expression for the differential rate of decay for a particle of mass M is

given by the “Golden Rule”:

dΓ =
(2π)4

2M
|M|2dΦ. (2.1)

This expression is useful because it splits the kinematics of the decay from the dy-

namics. The kinematics are encoded in the phase space term dΦ and depend on the

masses and momenta of the particles in the initial and final states. The dynamics,

the details of the interactions of the particles via the various forces, are encoded in

the matrix elementM.

2.1.1 Phase Space

Phase space is the term for the “map” of the density of final states for a process

that are allowed by energy and momentum conservation. The n-body phase space

describing the possible final states for a decay to n daughters is defined as:

dΦ(P ; p1, p2, ...) = δ4(P − (
∑

i

pi))
∏

j

d3pj
(2π)32Ej

. (2.2)
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For reasons that will become clear in a few sections, in this thesis we will be dealing

“inclusive” quantities, meaning that we will be measuring quantities for processes that

sum over several final states arising from a particlular initial state. This is contrasted

with “exclusive” quantities, which are quantities that are measured for a transitions

from a specific initial state to a specific final state. For inclusive processes, the number

of particles in the final state is not well defined. This ruins our nice, clean separation

of kinematics and dynamics. For our calculation of the inclusive rate for B → X`ν,

the sum over the final state particles and their phase space will be accounted for in

the calculation of the matrix element. The differential decay rate is then written as

dΓ =
d3p`

(2π)32E`

d3pν
(2π)32Eν

∑

X

∑

lepton spins

(2π)4

2MB

|M|2δ4(pB − (p` + pν)− pX). (2.3)

where
∑

X is the sum over all the possible hadronic finals states, as well as the integral

over the phase space of those states.

Making the approximation that the lepton masses are negligible, we can write the

differential elements as d3p = E2dEdφd(cos θ). Three of the four angles are just the

orientation of the decay, which contains nothing interesting about the decay in the

rest frame of the spinless B meson. Therefore, we can just integrate over these angles,

giving us a factor of 2(2π)2. The one interesting angle is that between the lepton and

neutrino directions, cos θ`ν . Our differential decay rate is now

dΓ =
∑

X

∑

lepton spins

|M|2
4MB

E`dE`Eνdeνd(cos θ`ν)δ
4(pB − (p` + pν)− pX). (2.4)

Here it is convenient to introduce a new variable q ≡ p`+pν. Form this definition,

it is obvious that q2 is the invariant mass of the virtual W exchanged. For massless
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leptons, q2 = 2E`Eν(1− cos θ`ν). The differential decay rate can now be written as

dΓ

dq2dE`dEν
=
∑

X

∑

lepton spins

|M|2
8MB

δ4(pB − (p` + pν)− pX). (2.5)

2.1.2 The Matrix Element

We now turn our attention to the matrix element M. The general expression for a

matrix element for a process that is governed by a Hamiltonian H is

M = 〈f |H|i〉 (2.6)

with i and f describing the initial and final states respectively. For the weak decay

b→ q`ν, we have

Hw =
4GFVqb√

2
LµHµ, (2.7)

where Lµ and Hµ are the leptonic and hadronic currents, respectively. They are given

by the expressions

Lµ = ¯̀γµ(1− γ5)ν (2.8)

Hµ = q̄γµ(1− γ5)b. (2.9)

Inserting this Hamiltonian into our expression for the differential decay rate gives

dΓ

dq2dE`dEν
=
∑

X

∑

lepton spins

|〈X`ν|Hw|B〉|2
8MB

δ4(pB − (p` + pν)− pX). (2.10)

Since leptons do not interact strongly, the weak matrix element 〈x`ν|Hw|B〉 in

Eq. [2.10] can be approximately factored into a leptonic matrix element 〈`ν|Lµ|0〉 and

a hadronic matrix element 〈X|Hµ|B〉. This is an approximation because, while the
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leptons do not interact strongly, they do interact with the quarks in the hadron via

electroweak processes, and corrections to this result will occur at order of GF and

αEM . These corrections are small and will be neglected for this discussion.

With the factorization approximation, the differential decay rate becomes

dΓ

dq2dE`dEν
=

∑

X

∑

lepton spins

G2
F |Vqb|2

2

|〈`ν|Lµ|0〉〈X|Hµ|B〉|2
8MB

(2π)3δ4(pB − (p` + pν)− pX)

=
G2
F |Vqb|2
(2π)3

LαβWαβ (2.11)

The quantities Lαβ and Wαβ in Eq. 2.11 are called, respectively, the leptonic tensor

and the hadronic tensor.

The leptonic tensor is defined by

Lαβ =
∑

lepton spins

〈0|L†α|`ν〉〈`ν|Lβ|0〉 (2.12)

and is calculable as an expansion in powers of the coupling constant. It is given by 1

Lαβ = 2(pαkβ + pβkα − gαβp · k − iεηβλαpηkλ). (2.13)

The hadronic tensor is more complicated. It is defined by

Wαβ =
∑

X

(2π)3δ4(pB − q − pX)

2MB

〈B|H†
α|X〉〈X|Hβ|B〉. (2.14)

This is a second-rank tensor that depends on the momentum of the B meson pB and

the momentum of the daughter hadronic system pX .

1In Eq. [2.13] I have changed notation, replacing p` → p and pν → k, to prevent
confusion between momentum labels and Lorentz indices.
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2.1.3 The Free-Quark Calculation of the Rate

The hadronic tensor is difficult to calculate because it involves nonperturbative strong

interactions. One way around this difficulty is to simply ignore it and treat the b

quark as if it is a free particle that does not interact with the “spectator” quark qsp

in the hadron. With this simplifying assumption, the expression for Hαβ takes a form

identical to that of Lαβ. Using this free-quark assumption and integrating over q2

and Eν, the expression for the differential decay rate for b→ x`ν becomes

dΓ

dx
=
G2
Fm

5
b

192π3
|Vqb|2w0(x, y) (2.15)

where x = 2E`/mb and y = mq/mb. The physical limits of x are 0 ≤ x ≤ 1− y2. The

function w0(x, y) is the contains both weak interaction and phase-space information,

and is given by

w0(x, y) =
2x2(1− y2 − x)2

(1− x)3
[(1− x)(3− 2x) + y2(3− x)]. (2.16)

Integrating over all possible x gives

Γ =
G2
Fm

5
b

192π3
|Vqb|2Φ(y), (2.17)

where Φ(y) =
∫ xM

xm
w0(x, y) is about 1 for b→ u`ν decays (reflecting the relativly small

masses of the final state particles in comparison to mb) and about 0.5 for b → c`ν

decays.

This result for the rate is very similar to the well-known expression for muon decay

µ→ eνeνµ. Since there are no quarks involved in the initial or final states, muon decay

is one of the cleanest weak decay processes, both theoretically and experimentally.
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The rate for muon decay is given in terms of the mass of the muon mµ by the

expression

Γµ =
G2
Fm

5
µ

192π3
. (2.18)

While the free-quark assumption makes a rough calculation of the rate relatively

easy, it neglects QCD effects which are not small, and we need a method for obtaining

the hadronic tensor that accounts for them. Because it involves non-perturbative

physics, the hadronic tensor cannot be written as an expansion only in powers of the

coupling constant, unlike the leptonic current. To get an appropriate expression for

the hadronic current, we turn to the Operator Product Expansion (OPE) and Heavy

Quark Effective Theory (HQET).

2.2 The Operator Product Expansion

The OPE is a short-distance approximation where the product of two operators sep-

arated by a short distance x is expanded in terms of local operators and coefficients

dependent on x. We will use it to reorganize the expression for the hadronic tensor

defined in Eq. 2.14 into something more tractable:

Wαβ =
∑

X

(2π)3δ4(pB − q − pX)

2MB

〈B|H†
α|X〉〈X|Hβ|B〉. (2.19)

The steps in applying the OPE are shown schematically in Fig. 2.3.

The first step is to perform the summation over the complete set of states in

Eq. 2.14 by using
∑

X = |X〉〈X| = 1. This removes the dependence on the structure

of the final hadron state X from the tensor.
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Figure 2.3: Schematic of the steps of applying the Operator Product Expansion.



25

The next step is to apply the OPE. The OPE makes the approximation that the

product of two operators separated by a short-distance x can be expanded in terms

of local operators and coefficients dependent on x. For our two hadronic currents, we

can write

Hα(0)Hβ(x) =
∑

i

Cαβi OQCDi (0), (2.20)

whereOQCDi are local QCD operators, and Cαβi (x) are the so-called Wilson coefficients.

The Wilson coefficients contains both phase space information and the terms from

the short-range perturbative QCD expansion in αs, and and have been calculated by

several authors [3, 4, 5].

The hadronic tensor now looks like

Wαβ =
∑

i

Cαβi 〈b|OQCDi |B〉. (2.21)

The operators OQCD
i are generally not calculable as they contain non-perturbative

physics. However. we can gain some insight into their structure in the case of hadrons

containing heavy quarks by using HQET.

2.2.1 Quark-Hadron Duality

With the OPE, we have been able to separate the perturbative QCD corrections from

the non-perturbative corrections. There is a price to pay for this ability. The short-

distance approximation made in the OPE means that it cannot predict long-distance

effects, such as what form the final hadronic states X will take (indeed, we summed

them out of the expression). The OPE allows for calculations to be made in terms

of quarks. Any comparison of the predictions with experiment must be made with
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“inclusive” quantities, where a summation over all possible final states is performed.

However, we live in an “exclusive” world, where we observe B → (D,D∗, D∗∗, or

DX)`ν rather than b → c`ν. The assumption that a sufficient sum over exclusive

final states is equivalent to an inclusive view is called quark-hadron duality. The

theoretical uncertainty associated with this assumption is not well uncerstood, and

whether or not a particular measurement or calculation is “inclusive enough” must

be evaluated on a case-by-case basis.

2.3 Heavy Quark Effective Theory

Heavy quarks behave differently in the strong interactions inside hadrons than light

quarks because they are heavy. Since the masses of the b quark and the c quark (∼ 4.6

GeV/c2 and ∼ 1.2 GeV/c2, respectively) are much larger than ΛQCD, the creation of

bb̄ or cc̄ pairs in the brown muck is greatly suppressed. Also, since the momentum

exchanges in hadrons due to strong interactions are of the order ΛQCD, the change in

velocity of a heavy quark during such interactions is about ΛQCD/mq. In the infinite-

quark-mass limit, the heavy quark’s velocity is conserved. In this limit, different

flavors of heavy quarks behave identically; one flavor of heavy quark can be replaced

by another flavor of heavy quark of the same color and the strong interactions with

the light degrees of freedom will not be affected. This is known as the heavy quark

flavor symmetry. The heavy quark can be viewed as a static source of a color field,

with the light degrees of freedom orbiting it in the hadron. Indeed, an analogy can be

drawn between a hadron containing a heavy quark and an atom. In atomic physics,
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the nucleus of an atom is viewed as a static source of the electromagnetic field. One

can replace the nucleus with another nucleus with the same charge and different

mass, and still leave the electrons unaffected. There is also an analogous situation to

hyperfine splitting in hadron with a heavy quark. The strong force couples to the spin

of a quark via the chromomagnetic moment of the quark. Since the gyromagnetic

ratio is proportional to 1/mq, the strong force decouples from the spin of a heavy

quark in the infinite-mass limit. This is known as the heavy quark spin symmetry.

Of course, both symmetries only hold in the infinite mass limit, and we will need to

make corrections of O(ΛQCD/mb).

Using these symmetries, we can construct an “effective” theory of the dynamics of

hadrons containing heavy quarks. Effective theories, rather than trying to calculate

everything, incorporate only those degrees of freedom that matter in a more or less ad

hoc manner. In this spirit, we will develop an effective theory of QCD for heavy quarks

in hadrons by constructing a double power series expansion around small parameters;

one expansion in powers of αs to account for the perturbative QCD processes, and

the other in powers of 1/mb to account for non-perturbative effects.

2.3.1 The HQET Hamiltonian

The derivation here will follow the discussion presented in Ref. [6]. The key to con-

structing the effective Hamiltonian is to recognize that, due to its mass, the heavy

quark Q in a hadron HQ moves with more or less the hadron’s velocity v. The



28

expression for the momentum of Q then looks like

pQ = mHQ
v + k, (2.22)

where k is the “residual momentum”, and is of order ΛQCD. In the rest frame of HQ,

Q’s momentum is entirely residual, and the motion of Q becomes non-relativistic in

the limit ΛQCD/mQ → 0. We can therefore express the Hamiltonian for a hadron

containing a non-relativistic heavy quark as2 :

HHQ
= mQ +HQ +Hlight, (2.23)

where Hlight is the Hamiltonian of the light degrees of freedom, and HQ is the Pauli

Hamiltonian for a non-relativistic spinor particle:

HQ =
(~σ · ~π)2

2mQ

. (2.24)

Here ~π is the kinetic momentum of the heavy quark ~π = ~k − g ~A, and ~A is the

gluon-field vector potential.

Using the commutation relations for ~π and the properties of the Pauli matrices,

the Pauli term can be rewritten as:

(~σ · ~π)2 = ~π2 − g~σ · ~B,

where ~B is the chromo-magnetic field at the location of the heavy quark. Equation

(2.23) can now be written in a most suggestive way:

HHQ
= mQ +

~π2

2mQ
− g~σ · ~B

2mQ
+Hlight. (2.25)

2A fully relativistic calculation has been done in numerous places [7, 8, 9], and
gives the same results to O(1/mQ).
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2.3.2 HQET parameters

What has appeared here in Eq. [2.25] is just what we needed: an expansion in powers

of a small parameter, in this case 1/mQ. The first term in is the only term that

remains at the infinite mass limit, and the O(1/mQ) terms are corrections for the fact

that the heavy quark is not infinitely massive. The first O(1/mQ) term corresponds

to the kinetic energy of the heavy quark, and the second term corresponds to the

chromomagnetic coupling of the heavy quark and the light degrees of freedom. The

Hlight describes the QCD interactions of the light degrees of freedom with themselves.

The expectation values of the operators in the HQET Hamiltonian in Eq. 2.25

describe physical properties of a hadron containing a heavy quark, but since they

involve non-perturbative QCD processes, they cannot be calculated. Instead, we

define a set of parameters that need to be experimentally determined. The lowest

order of these, Λ, is defined as

Λ ≡ 〈HQ|Hlight|HQ〉, (2.26)

and can be interpreted as the contribution of the light degrees of freedom to the

hadron mass. The first O(1/mQ) term, µ2
π, is defined as

µ2
π ≡ 〈HQ|π2|HQ〉, (2.27)

and corresponds to the kinetic energy of the heavy quark, related to the “Fermi

momentum” of the heavy quark inside the hadron. The other O(1/mQ) term, µ2
g, is

defined as

µ2
g ≡ 〈HQ|g~σ · ~B|HQ〉. (2.28)
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and corresponds to the chromomagnetic coupling of the heavy quark and the light

degrees of freedom, and is spin-dependent.

The two terms µ2
π and µ2

g are often written in the parameterized form:

µ2
π − µ2

g = −λ1 + 2

[

J(J + 1)− 3

2

]

λ2, (2.29)

with J being the spin of the hadron. The nomenclature of these new parame-

ters will be used in what follows. The expansion has been calculated to one order

higher than the derivation presented here. This adds six new expansion parameters:

ρ1, ρ2, T1, T2, T3, and T4.

We can make a rough estimation of the size of the non-perturbative parameters

due to the fact that they arise from strong interactions; each of these parameters is

expected to be of order Λn
QCD, where n is the order of the dimension on the parameter.

We can see from Eq. 2.30 that the dimension of Λ is GeV, λ1 and λ2 are GeV2, and the

dimensions of the ρ’s and T are GeV3. Because λ2 is easily measured, one can write

an expression for observables of semileptonic B decay (see Sect. 2.4.2) as a polynomial

that is dependent on Λ and λ1; using (0 ± 0.5 GeV)3 as an estimate of the ρ’s and

T ’s. In this way, a moment will define a band in Λ − λ1 space. The intersection of

two of these bands will yield unique values of Λ and λ1. We can also use more than

two moments in an attempt to overconstrain the theoretical predictions, as a test of

the quark-hadron duality assumption made in constructing the OPE.

Using the Hamiltonian from Eq. [2.25] and these HQET expansion parameters, we

get an expression for the mass of a hadron HQ containing a heavy quark to O(1/mQ):

MHQ
= mQ + Λ− λ1

2mQ
+
J(J + 1)− 3

2

mQ
λ2 +O(1/m2

Q) (2.30)
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2.4 Measurements of HQET

With an expression for the hadronic tensor in the OPE framework, and the HQET

expansion parameterizing the troubling non-perturbative aspects QCD in terms of

expectation values of local operators, the final step is to replace the full QCD, rep-

resented by the operators OQCD
i in Eq. 2.21, with our effective theory of QCD for

heavy quarks by simply swapping the HQET operators into the OPE expansion.

The OPE allows the calculation of the fully-differential decay rate in HQET.

However, as mentioned in Sect. 2.2.1, quark-hadron duality demands that we use

inclusive quantities to compare HQET predictions to experimental data. Therefore,

we must use measured quantities with enough phase space and final state modes.

2.4.1 The Semileptonic Branching Ratio

One of the measurements we make in this thesis is the semileptonic branching ratio

of the B meson. The branching ratio is related to the semileptonic width by BSL =

τBΓSL, where τB = 1.6 ps is the average lifetime of the B meson [10]. We can then

use the measured branching ratio to extract |Vcb| from the data; we need simply to

integrate Eq. [2.11] using the hadronic tensor containing the HQET operators over
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all the kinematic variables to get the expression for the total rate [11]:

Γ(B → Xc`ν) =
G2
F |Vcb|2m̄5

B

192π3

[

0.370− 0.115Λ− 0.012Λ
2
+ 0.0Λ

3

− 0.04λ1 − 0.10λ2 − 0.01λ1Λ + 0.02λ2Λ (2.31)

− 0.02ρ1 + 0.02ρ2 − 0.02T1 + 0.0T2

− 0.03T3 − 0.02T4 − 0.040ε− 0.022ε2BLM + 0.007εΛ

]

,

Here we use the spin-averaged meson mass m̄HQ
=

3m∗
HQ

+mHQ

4
as an approximation

for the quark mass, an approximation that is good to the extent that Λ/mQ is small.

Before Eq. 2.31 can be used, the values of the non-perturbative expansion param-

eters must be determined. Since they contain the non-perturbative QCD corrections,

they cannot be calculated and must be measured. The easiest to measure is λ2.

From Eq. 2.30, we can get an expression for λ2 in terms of the mass splitting of the

pseudoscalar state HQ and vector state H∗
Q:

λ2 = (mH∗
Q
−mHQ

)
mQ

2
= (mH∗

Q
−mHQ

)
m̄HQ

2
. (2.32)

Using PDG values [10], we obtain λ2 = 0.1255 ± 0.001 GeV2. The other expansion

parameters are not so easily obtained; we will use measurements of the moments of

different kinematic distributions to get these values.
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2.4.2 Moments

The remaining HQET parameters can be determined with a battery of moments

measurements. In general, a moment is given by the definition

〈M〉 =

∫

M(~x)d~x
dΓ

d~x
. (2.33)

Expressions for moments are predicted by HQET, and are usually expressed as poly-

nomials of the non-perturbative parameters:

〈M〉 = M (1) +M (2)Λ +M (3)Λ2 +M (4)Λ3

+ M (5)λ1 +M (6)λ2 +M (7)λ1Λ +M (8)λ2Λ

+ M (9)ρ1 +M (10)ρ2 +M (11)T1 +M (11)T1

+ M (12)T2 +M (13)T3 +M (14)T4 +M (15)ε

+ M (16)ε2BLM +M (17)εΛ,

where the M i coefficients are numerical constants given by the HQET/OPE methods

described above, and ε and ε2BLM are used to denote the terms dependent on αs in

the perturbative expansion, and are set equal to one.

The three main types of moments that have been measured to date are

• the moments of the lepton-energy spectrum in B → Xc`ν decays [12, 13],

• the moments of the hadronic-mass-squared distribution in B → Xc`ν decays [14,

15, 16], and

• the moments of the photon-energy spectrum from b→ sγ decays [17, 18].
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Each has its own experimental limitations. Meaasurements of the lepton-energy spec-

trum are able to cover a large amount of phase space; the measurement presented

in this thesis measures the portion of the energy spectrum where E` ≥ 600 MeV, or

about 94% of the total spectrum. Hadronic mass moments are tougher to measure, as

they demand reconstruction of the undetected neutrino, which means that one must

detect all the other particles in the event and attribute the missing energy and mo-

mentum to the neutrino. Measurements of hadronic mass moments have been made

for decays with lepton energy greater than 1.0 GeV. The photon-energy moments of

the rare decay B → Xsγ are very desirable because they are two-body decays; in the

infinite quark mass limit, the photons from this process would be monochromatic.

The extent that the photon-energy spectrum is smeared depends on the Fermi mo-

tion of the b-quark inside the meson. Thus the mean of the photon-energy spectrum

(the first moment) gives a measurement of Λ. This measurement, however, is plagued

by the fact that this decay is relatively rare; overwhelming backgrounds have lim-

ited measuements of the spectrum to Eγ ≥ 1.8 GeV. Several authors have calculated

moments expressions for “truncated” spectra [11, 19] to reflect these experimental

limitations. These expressions are usually presented in the form of Eq. 2.34 with

large tables of M i’s calculated for various minimum energy cuts.

In this thesis, we will measure the semileptonic branching ratio of the B meson,

and several moments of the lepton-energy spectrum at various minimum energy cuts

between 0.6 and 1.5 GeV.



CHAPTER 3

CESR and CLEO

Our source of subatomic particles is the Cornell Electron Storage Ring, or CESR

(pronounced “Caesar”). CESR collides electrons (e−) and their antimatter partners,

positrons (e+), at a center of mass energy of about 10 GeV. When an electron and

a positron collide, they annihilate in a state of pure energy, a virtual photon. That

virtual photon then turns into another fermion-antifermion pair, whether it be leptons

or, more interestingly, a quark-antiquark pair.

The CLEO detector (named for another who is historically coupled to a CESR)

is used to identify and measure the particles produced by CESR in an effort to

better understand the fundamental constituents of matter and the laws governing

their interactions. This chapter will describe CESR and the two generations of CLEO

detectors used to collect the data used for this thesis.

A note about terminology: I use teletype fonts for any CLEO-specific variables

or software packages. For the edification of the non-CLEO reader, these quantities

are defined when they are first introduced.

35
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Figure 3.1: The colliding-beam facility at Cornell.

3.1 CESR - The Cornell Electron Storage Ring

Forty feet under Cornell University’s track-and-field facility lies the Cornell Electron

Storage Ring, a symmetric electron-positron collider 768 meters in circumference[20].

From 1979 to 2003, electron and positron bunches were made to collide at center-of-

mass energies from 9 to 12 GeV; most of this time was spent in the vicinity of 10.58

GeV. In early 2003, CESR was retooled to run efficiently at energies as low as 3 GeV.

The data for this thesis was collected between 1990 and 1999. The storage ring itself

is part of a larger facility shown schematically in Fig. 3.1.

We must first begin by creating the beams of electrons and positrons with a linear

accelerator (linac). Electrons are produced by heating a filament, and then collected,
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collimated, bunched, and accelerated to an energy of about 300 MeV in a 30 meter

long vacuum pipe by a series of radio-frequency (RF) cavities. For positron produc-

tion, electrons from the filament are accelerated to 150 MeV before being intercepted

by a tungsten target, producing a spray of electrons, positrons, and photons. The

positrons are selected by their charge and mass with a magnetic field, and then ac-

celerated in the remainder of the linac to energies of about 200 MeV.

The electron and positron bunches from the linac are transferred to the syn-

chrotron, where they are accelerated to their ultimate energies. The synchrotron is

an evacuated ring that mostly consists of the 192 three-meter sections of bending and

focusing magnets. At four places around the ring, particles pass through three-meter-

long accelerating cavities. It takes about 4000 revolutions, or about 1/100 seconds,

for particles to reach their maximum energy in the synchrotron. They are then ready

for transfer into CESR.

Bunches of particles in CESR are confined in stable orbits by magnets. Electron

and positron bunches counter-circulate in the storage ring at the same time, and are

kept apart by magnets and electrostatic separators. Being charged, the electrons and

positrons emit synchrotron radiation as they circulate, about 1.2 MeV per revolution.

This energy is replaced by several RF cavities. Bunches are steered into one another

at the interaction point (IP) on the south end of the ring and directly in the center

of CLEO.

The most useful metric of an accelerator’s instantaneous performance is a quantity

called the luminosity. It is defined conceptually as

L ≡ nf
Ne+Ne−

A
, (3.1)
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where n is the number of electron (or positron) bunches in the beam, Ne+ and Ne− are

the numbers of electrons and positrons in each bunch f is the orbital frequency, and

A is the cross-sectional area of the beams. The highest luminosity achieved during

the collection of the data in this thesis was 8× 1032 cm2s−1.

The instantaneous luminosity and the cross-section σ for a particular process

determine the rate at which that process occurs. The number of events N is given by

N = σ

[∫

Ldt
]

. (3.2)

where the quantity in brackets is the integrated luminosity. Fig 3.2 shows the yearly

integrated luminosity generated by CESR from 1985 to mid-2001. Dips in 1995 and

1999 correspond to extended shutdowns for major upgrades to both CESR and CLEO.

Here σ is the cross-section of the process in question, and is measured in barns .

Fig. 3.3 shows the total cross-section for e+e− → hadrons at center-of-mass energies

around 10 GeV.1 The enhancements in this plot are the Upsilon (Υ) resonances,

bound states of a bottom quark (b) and an anti-bottom quark (b̄). At the 10.58 GeV

resonance, the total hadronic cross-section is about 4 nb. About one-fourth of this is

due to production of the Υ(4S) and the rest from the continuum production of lighter

quark-antiquark pairs. The Υ(4S) is broader the the lower Υ resonances because it

has just enough energy to decay via the strong force to a pair of B mesons, each

with a mass of about 5.28 GeV/c2. The data sample used for this thesis consists

of an integrated luminosity of 9.13 fb−1 at a center-of-mass energy near 10.58 GeV

(hereafter referred to as on-resonance or simply “ON”). This corresponds to a sample

1The cross-section has the dimensions of area and is typically measured in barns
(1 b = 10−24 cm2) or multiples thereof.
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Figure 3.3: The hadronic cross-section in the Upsilon region.

of about 9.7 million BB̄ events. An additional 4.35 fb−1 was collected about 60

MeV below the Υ(4S) (called off-resonance or “OFF”), providing a sample useful for

estimating backgrounds to B physics.

3.2 The CLEO Detector

Observing the kinds of particles created from electron-positron annihilations, how

often certain particles appear, how long they live, and their kinematic properties

gives us insights into the natural laws that govern their behavior. To reconstruct

the history of these events, we must detect and measure as many of the particles

and their properties as possible. These properties include a particle’s energy and

momentum at the vertex, its electric charge, its mass, and its trajectory. To this

end, the CLEO collaboration has built a general purpose detector [21, 22] around
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CESR’s interaction point, covering nearly the entire 4π of the solid angle with several

types of instrumentation, each able to measure some property of a particle with good

accuracy.

The basis of all particle detectors is the behavior of subatomic particles when they

interact with matter. Particles entering a chunk of matter encounter an aggregate

of electrons and nuclei, and can interact with either the atoms as a whole or their

individual parts. For example, an alpha particle entering gold foil can scatter off a

nucleus via the strong force, collide electromagnetically with an atomic electrons, or

be absorbed in a nuclear reaction to produce other types of radiation. Similarly, we

are able to distinguish different particle species by how they interact with the material

in CLEO’s subdetectors.

Particles leaving the IP encounter the parts of CLEO in the following order: the

beryllium beam pipe, the tracking system, the time-of-flight counters, the electromag-

netic crystal calorimeter, the 1.5-Tesla superconducting solenoid electromagnet, and

the muon identification system. Between 1990 and 1999, the CLEO detector existed

in two different configurations, CLEO II (1990-1995) and CLEO II.V (1995-1999).

A side view of CLEO II.V is shown in Fig. 3.4. The main difference was that the

innermost wire chamber of the tracking system in CLEO II was removed and replaced

in CLEO II.V by silicon strips to provide better vertex resolution (see Sect. 3.2.2).

Also, the gas filling in the main drift chamber (Sect. 3.2.3) was changed from an

argon/ethane mixture to a helium/propane mix.

In the following sections, we will describe these sub-detectors in the order that

particles encounter them. To facilitate this discussion, the following coordinate system
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Figure 3.4: The side view of the CLEO II.V detector
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will be used: the origin is positioned at CESR’s IP in the center of CLEO, the z-axis

points along the beam line in the direction of travel of the positron beam (west),

the y-axis points upward, and the x-axis points outward from the center of CESR

(south). Points in the x− y plane are determined by their radial distance r from the

beam line and the angle φ off the y-axis. The polar angle θ is defined off the z-axis.

In our analysis, we mostly restrict ourselves to the best-performing region of CLEO,

the section in the region |cosθ| ≤ 0.7071, called the good barrel region. In describing

the detector, we will also refer to the endcap regions of |cosθ| ≥ 0.81, and the bad

barrel regions in between the endcap and the good barrel.

3.2.1 A Few Words About Tracking

Upon exiting the beam pipe, a charged particle encounters a set of devices designed

to measure its trajectory and momentum. In CLEO II, this consisted of three con-

centric drift chambers. A drift chamber uses sense wires held at high positive voltage

suspended in a mixture of gases. Field wires or a tube of conducting material at

negative high voltage form a cell around each sense wire. Thus an electric field of

known shape and strength is established in the cell. As a charged particle travels

through a cell it knocks electrons off, or ionizes, the gas molecules. These ionized

electrons then drift toward the sense wire of the cell under the influence of the cell’s

electric field. The strength of the electric field increases as an electron approached the

sense wire. Very near the wire, the approaching electron gains enough energy to itself

ionize gas molecules as it passes, creating an avalanche of electrons to be collected by

the sense wire. This avalanche produces a measurable electronic pulse on the sense
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wire known as a hit. We resolve the trajectory of the particle through the cell even

further by measuring the time of arrival of the avalanche, thus getting an estimate of

the particle’s distance of closest approach to the sense wire. Combining information

from multiple staggered cells, the particle’s trajectory through the wire chamber can

be precisely measured. Hits are later grouped by software into combinations called

tracks.

The tracking layers are inside a 1.5-Tesla magnetic field oriented in the z di-

rection. Therefore, charged particles traveling through them follow a helical path.

A measurement of the particle’s transverse momentum p⊥ is made from the helix’s

radius of curvature a in the r-φ plane with the relation

p⊥ = qBa (3.3)

where q is the magnitude of the particle’s electric charge and B is the magnitude of

the magnetic field. With the particle’s polar angle θ, p⊥ provides a measurement of

the particle’s total momentum. Also, the direction of curvature indicates the sign of

the particle’s charge.

3.2.2 The Inner Tracking System: PT, VD, and SVX

The innermost layer of CLEO II’s tracking system was known as the Precision Tracker

(PT), and consisted of six layers of aluminized mylar tubes with a single sense wire

strung in each tube. The tubes were mounted directly on the beam pipe in a hexagonal

close-pack configuration, as shown in Fig. 3.5. The tubes varied from 4.5 mm to 7.5

mm in diameter and provided the smallest cell size of all the drift chambers. The PT
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Figure 3.5: Layout of the PT and VD in CLEO II

provided an average r-φ resolution of about 100 µm.

Surrounding the PT in CLEO II was a multi-wire drift chamber with small wire

spacing, called the Vertex Detector (VD) and shown in Fig. 3.5. The VD had ten

layers of cells; each cell formed by a hexagonal arrangement of field wires surrounding

a sense wire. Hits on the wires were read out at both ends, and the division of the

charge seen at each end gave a measurement of the z position with a resolution of

about 1.7 cm. Further z position information was obtained from segmented cathodes

on the inner and outer walls of the VD, which provided a z resolution of about 750

µm. The average r-φ resolution of the VD was about 150 µm.

The PT was removed in 1995 and replaced by a silicon vertex detector (SVX),

pictured in Fig. 3.6. It was made of three concentric layers of 300-µm-thick double-
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Figure 3.6: End-on (top) and side (bottom) cross-sectional views of the SVX detector

in CLEO II.V

sided Si wafers mounted directly to the beam pipe. A charged particle traversing

the active detector creates electron-hole pairs along its path, which are then collected

on fine conducting sense strips on both sides of the silicon. The position resolution

achieved by this device was about 30 µm in r-φ and 60 µm in z, much better than

the earlier drift-tube detector PT. Nevertheless, the precision space points measured

with the inner tracker were important for ensuring excellent track fits and precise

momentum measurement.

The inner tracking system was crucial for many measurements made by CLEO,

especially measurements of charmed particle decay. However, this analysis does not

need precision vertex finding, as B mesons typically decay within ∼ 20µm of the IP.
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Figure 3.7: A cross-sectional view of the CLEO II main drift chamber.

3.2.3 The Central Drift Chamber

The largest and most important tracking device in CLEO II was known as the central

drift chamber, or DR. Situated around the inner tracking layers, it consisted of 12,240

sense wires and 36,240 field wires arranged in 51 staggered layers of nearly square cells

with dimensions 14 mm × 14 mm. The drift chamber itself had an inner radius of 17.5

cm, an outer radius of 95 cm, and was 2.15 m in length. Forty of the 51 layers were

axial, having sense wires that ran parallel to the z-axis, while the sense wires in the

other 11 stereo layers were skewed from the z-axis by 3◦-7◦ to provide z information

throughout the volume of the detector. The axial layer are staggered to help resolve

the ambiguity of whether the particle passed through the cell to the left or the right

of the sense wire. The layout of the cells is shown in Fig. 3.7.

The inner and outer radii were covered with longitudinally-segmented cathodes to
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provide precision measurements of the z position at the beginning and end of most

tracks. In the good barrel region, the momentum of a 2 GeV/c track was measured

with a precision of about 0.6%.

Track Reconstruction

Track reconstruction is the process of turning the hits in the DR into more directly in-

teresting physics quantities like momentum and position measurements. This process

is described below.

Reconstruction begins by converting the raw hit times into drift distances using

tracking-detector calibrations that were precisely determined and closely monitored as

data was collected. Hits are then grouped into track candidates by pattern-recognition

software. The track candidates are then fit with helical trajectories, corrected for

energy loss in material. Several passes through an event’s hits are necessary to assure

the quality of the fits. Fit results that were stored included the helical trajectory

parameters, their errors with correlations, and the residual of the fit, defined as

RESICD =

[

∑

i

(dobsi − dfiti )2/N

]1/2

(3.4)

The sum is over all non-stereo layers i in the DR, dobsi is the measured drift distance

for the hit in layer i, dfiti is the drift distance predicted by the track’s helix, and N

is the total number of degrees of freedom in the fit, a function of the number of DR

hits included in the fit.

The track fitter was designed with a big-tent mentality; it formed and included

track candidates that were reconstructed with incomplete information. One type
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of these tracks are called z-escapes, arising when a particle’s trajectory was nearly

parallel to the beam axis, therefore not crossing most of the stereo layers or the

cathodes. Another type of fit made with poor information is known as a dredge seed.

Dredge tracks were formed near the end of track reconstruction, and are the fitter’s

attempt to cobble together additional tracks from hits not included in other tracks.

Confusing arrangements of hits can also lead to problematic tracking. A charged

particle with a sufficiently low momentum will curve enough in the magnetic field so

that it never reaches the DR’s outer diameter and travels back toward the IP; such

particles are known as curlers. Curlers can result in two or more separate track fits,

one each for the outgoing and incoming parts of the particle’s trajectory. Another

common problem arises when hits from a single particle traveling away from the IP

are split into multiple tracks. Extra tracks generated this way are known as ghosts.

An event with examples of both ghosts and curlers is shown in Fig. 3.8. A separate

processor, called Trackman, was run after track fitting to identify these and other

spurious tracks.

Measurement of dE/dx

The amount of ionization that a charged particle produces in a material depends on

its velocity. The linear density of energy deposited in the gas by the passage of a

charged particle, dE/dx, is estimated from the integrated charge of the hits it caused

in the DR. This quantity, when combined with the track’s measured momentum, gives

the DR some power to discriminate between particles of different mass, and thus some

particle identification abilities.
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tracks, viewed in the r-φ plane. DR hits are represented by dots and reconstructed

tracks are shown as solid and dashed lines. Tracks 16 and 17 are two halves of a

curler. Tracks 5 and 13 are a “ghost pair”.
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Figure 3.9: Measured dE/dx as a function of momentum. The solid lines represent

theoretical curves for various particle types.

To perform particle identfication using dE/dx, we cut on the difference between

the mean of the lowest half of the pulse heights (thus truncating the Landau-like

high-side tail of the distribution) and the expected pulse heights for a given particle

type divided by the expected resolution for that pulse height and number of hits.

Fig. 3.9 shows the expected curves for various particle types versus measured dE/dx

as a function of momentum. For electron identification in this analysis, we use the

CLEO quantity SGELDI, the number of σ away the dE/dx measurement for a track

is from the expected value for an electron.
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Figure 3.10: Measured times of flight as a function of momentum. The solid lines

represent theoretical curves for various particle types.

3.2.4 The Time-of-Flight Counters

The Time-of-Flight (TF) system provided another source of information about a

charged particle’s velocity. It did this by measuring the amount of time between

the crossing of an electron bunch and a positron bunch at the IP and the passage

of a charged particle through strips of doped plastic sciltillator arranged outside the

DR, approximately one meter away from the IP. Again, the velocity measurement

combined with the momentum measurement provides a constraint on a particle’s

mass. Fig. 3.10 shows the expected curves for various particle types versus measured

times of flight as a function of momentum.

The TF consisted of three sections arranged around the IP to provide good solid
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angle coverage. The barrel section consisted of 64 rectangular blocks, each 2.8 m × 10

cm × 5 cm, arranged to form a cylindrical shell around the z-axis. A charged particle

entering the sciltillator interacted with the heavy organic molecules embedded in it,

causing the emission of a flash of light. This light was then fed through lucite light

guides to a pair of photomultiplier tubes, one on each side. In each of the endcap

regions were 28 wedge-shaped sections about 58 cm long and 5 cm thick. A single

photomultiplier tube collected light on the narrow end of each section. Together,

the barrel and the endcap sections covered about 97% of the solid angle. The time

resolution of this system was about 150 ps.

Like in the case of dE/dx, we cut on the number of standard deviations between

the measured arrival time of a charged particle and the expected time of a postulated

particle type. In our electron identification package, we cut on a quantity called

SGELTF, the number of σ between the measured time and the expected time for an

electron.

3.2.5 The Electromagnetic Calorimeter

Along with the DR, the Electromagnetic Crystal Calorimeter (CC) are the subde-

tectors of CLEO most important to this measurement. As the name “calorimeter”

suggests, the CC was designed to measure the energy of particles, both charged and

neutral, entering it.

A particle entering one end of a cesium iodide (CsI) crystal will deposit a portion

of its energy in the bulk of the crystal through various interactions, producing light

that is read out by photo-diodes at the other end of the crystal. Particles such as
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electrons and photons interact electromagnetically in the crystal, depositing almost

all their energy through a cascading process of bremsstrahulung and pair production.

Muons, being much heavier than electrons, will not be stopped by bremsstrahulung

processes as easily, and will not deposit much of their energy in the CC. Hadrons, in

addition to electromagnetic processes, can also interact via the strong force with the

nuclei of the thallium-doped CsI crystals, producing secondary hadrons and causing

non-localized showers. As we will see, different particles interact differently in the

CC, so the characteristics of the resulting shower depend on the incident particle.

The CC itself is made up of about 7800 thallium-doped CsI crystals, each about

30 cm long and 5 cm square in cross section, distributed over the barrel and endcaps

as shown in Fig. 3.4, covering 95% of the solid angle. The crystals are arranged to

point nearly directly toward the IP; they are aimed slightly away from the IP to

minimize gaps through which particles can pass undetected. Material between the IP

and the CC will degrade a particle’s energy before reaching the crystals, motivating

the placement of the CC inside the solenoid.

Showers are reconstructed by first turning the amount of light detected in each

crystal into an estimate of the energy deposited in that crystal. Since showers often

span multiple crystals, neighboring crystals having deposited energies above threshold

are grouped into clusters, with the requirement that the highest-energy crystal be at

least 10 MeV. The position of the shower’s center is then calculated as the energy-

weighted mean of all the member-crystal positions. Showers are associated with DR

tracks by loose track-shower matching criteria.

The energy and angular resolutions for barrel showers are 3.8% and 11 mrad for
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100 MeV showers and 1.5% and 3 mrad at 5 GeV. The energy resolution of the barrel

calorimeter is about 2% for 2.0 GeV electrons and photons. Endcap performance is

degraded somewhat by the presence of the DR endplates and electronics in front of

the crystals.

Measurement of E/p

The calorimeter is a critical component of electron identification. Electrons deposit

almost all their energy in the CC, so if we neglect the electron’s small mass, the ratio

of the energy measured in the CC to the momentum measured in the DR should

be near 1. Heavier particles do not efficiently dump their energy into the CC, and

should have an E/p value significantly less than 1. One exception is antiprotons,

which can annihilate with protons in the crystals. However, these interactions will

produce a value of E/p significantly greater than 1, as the mass of both the proton

and antiproton are converted into energy in addition to the initial kinetic energy of

the antiproton.

Shower Shape

Showers from different particles have different shapes in the calorimeter. Electrons

and photons leave relatively localized showers, while showers from hadrons tend to be

broader. The quantity E9/E25, the sum of the energies in the 3x3 square of crystals

around the center of the shower divided by the sum of energies in the 5x5 square, is

used to give a measurement of the shape of a shower. Showers from electrons and

photons will tend to have a E9/E25 value closer to 1 than hadrons. Overlapping
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showers can pose a problem for the determination of E9/E25, as the shower recog-

nition algorithms often do not correctly allocate the energy seen in crystals to the

proper shower, or indeed even recognize that two showers are present. We will see

the impact of this effect in our electron identification studies, detailed in Sect. 4.3.3.

3.2.6 The Magnetic Field

A large superconducting solenoid of diameter 3 m and length 3.5 m provided CLEO’s

1.5-Tesla axial magnetic field. Cooled by liquid helium, the coil carries a current of

3500 A and stores 25 MJ of energy, and delivers a field that is uniform to ±0.2% over

95% of the tracking volume. The iron flux return for the magnet also serves as part

of the absorber for the muon identification system.

3.2.7 The Muon Chambers

Since muons are leptons, they do not interact via the strong force. Therefore, they

lose only a moderate amount of energy as they pass through the material of the de-

tector. Due to their higher mass, they do not lose as much energy to bremsstrahulung

processes as electrons. These qualities make them the only charged particles capable

of penetrating the iron flux return yoke of CLEO’s magnetic field, and relatively easy

to identify. The muon detector (MU) exploits these qualities using gas-filled tracking

chambers sandwiched between the 36-cm-thick layers of iron in the flux return yoke.

A MU tracking super-layer is shown in Fig. 3.11. Each super-layer consists of three

layers of staggered proportional wire chambers 8.3 cm wide, 1 cm thick, and about
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Figure 3.11: A cross-section of a muon chamber super-layer.

5 m long. Each chamber has eight rectangular cells with a sense wire strung along

its center. Three of the cell’s walls are coated with graphite and used as cathodes.

The fourth wall is made of copper strips oriented perpendicular to the sense wire

to provide z information. The eight sense wires in a counter are ganged together

when read out, and adjacent counters’ sense wire sets are connected together with

a series of resistors. Muon hits are located using charge division from pulse height

measurements made at each end of a read-out chain. Averaged over its volume, the

muon detector’s spatial resolution is about 5 cm. The three barrel super-layers are

embedded in the iron at depths of 36, 72, and 108 cm, corresponding to 3, 5, and 7

absorption lengths (an absorption length is the average distance a particle travels in

a material before scattering off a nucleus). There is one super-layer in the endcaps at

a depth of about 7 absorption lengths.
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Tracks are identified as muons by matching hits in the MU chambers to the ex-

trapolated trajectory of a DR track. For a track to be identified as a muon in this

analysis, we require that the deepest muon chamber to match a hit be at least 5

absorption lengths deep, and all the shallower chambers also have matched hits. For

example, a track with hits matching in the muon chamber at depths of 3 and 5 ab-

sorption lengths is labelled a muon, while a track with hits matching at depths 3 and

7 (while missing hits in the depth 5 chamber) would not be identified as a muon.

3.2.8 The Trigger and Data Acquisition System

Bunch trains in CESR’s electron and positron beams cross at the IP at a rate of

about 3 MHz. The rate of interesting physics processes, however, is much smaller:

production of Υ(4S) occurred at a rate of about 1-3 Hz. Including other processes such

as tau, charm, 2-photon, and QED events, the total rate of interesting physics is about

10 Hz. It is impossible to read out and record the information from CLEO anywhere

near the bunch-crossing rate, so we employ a sophisticated system of electronics and

software filters, called triggers, to reduce the data flow to a more manageable rate.

There are tens of thousands of sensitive elements and corresponding electronic

channels in CLEO, each of which could hold pertinent data in any given event. Read-

out of CLEO takes several milliseconds, and during this time the detector is insensitive

to new physics events. This makes it crucial to read out the detector only during in-

teresting physics events. To this end, a multi-level trigger and data acquisition system

was developed [23, 24]. As data flows from the lowest level trigger to the highest,

the decision process becomes increasingly refined and time-consuming; each level re-
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ceives only the events that have passed the previous level, and uses increasingly more

detailed information to make its decision.

The level-zero trigger (L0) is a hardware triger, the first and the fastest trigger

in the system. Individual detector elements of the TF, CC, and VD were combined

into groups for use in L0, and patterns of hits found in those groups were used to

select interesting events. If an interesting event is found, sample-and-hold circuits

on the individual data channels stored their current values until an event was either

read out or failed some other trigger level. L0 reduced the event rate from the 3 MHz

bunch-crossing frequency to a rate on the order of 20 kHz.

The level-one trigger (L1) is a hardware trigger that accepts all the events from

the L0 trigger. Using information from TF, VD, CC, and DR detectors, L1’s goal

is to further reduce the event rate to about 100 Hz. If an event fails any of the L1

criteria, the trigger is reset and CLEO is ready to be read out again.

The level-two trigger (L2) accepts events passing L1, and using additional infor-

mation from the VD and DR decides if an event should or should not be read out.

Since only a fraction of the tens of thousands of channels in CLEO contain informa-

tion during any particular event, only channels with values above a certain threshold

were recorded. Events were accepted by L2 at a rate of about 25 Hz. After L2, the

hardware trigger is reset, and CLEO is readied for data-taking again.

A software trigger logically called L3 takes the events passed by L2. At this

stage, detector deadtime is no longer a concern, so rather sophisticated reconstruction

algorithms can be run on the event. These algorithms were designed to reject other

types of uninteresting events, such as cosmic rays or interactions of the beam with
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residual gas molecules in the beampipe. L3 rejects approximately half of the events

passed to it by L2. Those that pass are written to tape for later analysis. Overall

trigger efficiency for accepting e+e− → BB̄ events was over 99%.

3.2.9 Event Reconstruction

The various tasks of reconstructing the various signals in CLEO into interesting

physics quantities, as well as the calculation of event-wide quantities (total energy of

the event, thrust axis of the event, etc.) are accomplished by a two software packages,

called PASS1 and PASS2. PASS1 is a collection of routines that specialize in fast track

and event reconstruction, and is used to perform fast classification of the raw data

events as well as running online to provide real-time feedback about the performance

of the detector during data collection. PASS2 is the main reconstruction software,

specializing in accuracy at the cost of running much more slowly than PASS1. All

data that is used for physics analysis by CLEO has been processed by PASS2.

3.3 Physics Simulation

We make heavy use of simulated data for various aspects of this analysis, as will be

described in subsequent chapters. This section will explain the techniques used to

generate this simulated data at CLEO. Simulated data at CLEO (called Monte Carlo

data because of the use of a random number generator to determine outcomes) is

generated in two steps.

The first step is a physics simulation. A program called QQ produces a list of
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particles (and their respective 4-momenta) that are created in an e+e− interaction

using a list of parameters for known particles and physics processes, including mass,

spin, lifetime, and partial branching ratios. Whenever possible, these models and

parameters are constrained by measurements. All of the Monte Carlo used in this

analysis is BB̄ Monte Carlo, where every e+e− interaction yields a pair of B mesons.

The list of particles produced by QQ is then passed to a program (based on CERN’s

GEANT) called CLEOG, which takes the stable particles in the QQ list and simulates

the response of CLEO as the particle traverses it. To this end, CLEOG contains a full

description of the CLEO detector, including the position, size, and type of materials

a particle could encounter. As a particle is propagated through the detector and

encounters material, a random number is thrown to determine if the particle interacts

with the material. If it does, another random number is thrown to determine the

effect of the interaction. If the material is instrumented, the detector’s response is

simulated. Hits from random trigger events (where CLEO was read out even though

no physics event was seen) are inserted into Monte Carlo events to simulate detector

noise. In the end, CLEOG produces an event in the same format as the real data from

the CLEO detector is collected, so they can both be processed by PASS2.

A detailed description of the Monte Carlo samples produced for this analysis is

given in Sect. 4.2.1.



CHAPTER 4

Measuring The Lepton Energy Spectrum

This chapter explains the method we used for extracting the electron-energy spectrum

from B → Xeν decays. From this spectrum, we extract its moments (after a small

correction for B → Xueν decays), and with the number of tags we calculate the

semileptonic branching ratio.

4.1 Strategy For Extracting the B → Xceν Spectrum

We first select Υ(4S) events with a “tag,” a lepton with momentum pt ≥ 1.4 GeV/c;

more than 97% of the leptons in BB̄ events satisfying this requirement are from

semileptonic B decays. Within events with a tag lepton, we look for an additional

“signal” electron with momentum pe ≥ 600 MeV/c.

The whole reason for “tagging” one of the B mesons with a lepton tag is to

determine its flavor, and from that infer the flavor of the other B. This information

gives us insight into the source of our signal electron. Table 4.11 summarizes the main

sources of our signal electrons and their resulting charges, given a positively-charged

1B0B̄0 mixing is a second-order weak process where a neutral B changes, or
“mixes” into its antiparticle. So when mixing occurs, a B0B̄0 becomes either a B0B0

or a B̄0B̄0 event.

62
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No B0 Mixing B0 Mixing

Primary Events `+ ← b̄ b −→ e− `+ ← b̄ b̄ −→ e+

Opposite B Secondary Events `+ ← b̄ b→ c→ e+ `+ ← b̄ b̄→ c̄→ e−

Same B Secondary Events `+ ← b̄ −→ c̄→ e−

Table 4.1: Charge correlations for dilepton BB̄ events.

tag. Assuming the tag lepton came from a semileptonic B decay, the signal electron

comes mainly from three sources:

1. The semileptonic decay of the B meson that did not produce the tag lepton

(hereafter referred to as “primary electrons,” or dB(b)
dp

);

2. The semileptonic decay of a charmed meson produced in the decay of the B

meson that was not the parent of the tag (“opposite-B secondary electrons,” or

dB(c)oppB

dp
);

3. The semileptonic decay of the charmed meson that was produced in the semilep-

tonic decay that produced the tag lepton (“same-B secondary electrons,” or

dB(c)sameB

dp
).

To separate the primary electrons from the other two possibilities, we exploit

charge and kinematic correlations between the electron and its tag. Requiring the

tag and the signal electron to have unlike charges eliminates the opposite-B secondary

electron background in events where B0B̄0 mixing has not occurred. Of course, if one

of the neutral B’s mixes, this charge correlation is reversed.
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Therefore, we separate our sample into two types of events: “unlike-sign” events,

where the tag lepton and signal electron have opposite charge, and “like-sign” events,

where they have the same charge. The contributions of these sources to the mea-

sured electron spectrum, including the effect of mixing, can then be described by the

following equations:

dN(`±e∓)

dp
= N` η(p) ε(p)

[

dB(b)

dp
(1− χ) +

dB(c)oppB

dp
χ +

dB(c)sameB

dp

]

(4.1)

dN(`±e±)

dp
= N` η(p)

[

dB(b)

dp
χ+

dB(c)oppB

dp
(1− χ)

]

, (4.2)

where N` is the number of tag leptons in the sample, η(p) is the efficiency of electron

identification, ε(p) is the efficiency of the “diagonal cut” (described in Sec. 4.1.1),

and χ is the fraction of our total events that B0B̄0 mixing occurred, determined as

described in Sec. 4.1.2.

4.1.1 Diagonal Cut

To get a soluble set of equations from Eqs. 4.1 and 4.2, we need to remove the same-B

secondary electron term from Eq. 4.1. To do this, we exploit the kinematic correlation

between tags and signals coming from the same B. When it is produced, the tag

lepton recoils against the daughter hadron, so on average the hadron is boosted in a

direction opposite to the tag lepton. If this hadron then decays semileptonically to a

signal electron, that electron will tend to have momentum in the same direction that

the hadron was boosted, i.e. the direction opposite to the tag. Therefore, the tag

and signal will tend to be back-to-back. Since the B’s are essentially at rest, dilepton
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pairs coming from opposite B’s have momenta that are to a good approximation

uncorrelated. One can see the strong correlation of these same-B secondary events

in the plot on the right in Fig. 4.1, which shows the cosine of the angle between

the tag and signal momentum vectors (the “opening angle” θ`e) versus the signal’s

momentum. The preponderance of events at cos θ`e ≈ −1 shows the back-to-back

tendency of same-B secondary events.
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Figure 4.1: Monte Carlo simulation of electron momentum versus the cosine of the

opening angle between the tag lepton and the signal electron (cos θ`e) for dilepton

pairs from opposite B’s (top) and from the same B (right). The line indicates

p+ cosθ`e = 1.

Inspection of the plots in Fig. 4.1 suggest that a cut in the 2-D plane of signal-

electron momentum p and the opening angle between the tag lepton and the signal

electron cos θ`e will greatly suppress the same-B secondaries while accepting a ma-

jority of the primaries. We therefore use a “diagonal cut”, p+ cos θ`e ≥ 1. This cut is
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identical to that used in the previous CLEO II analysis [25, 26], and is applied only

to unlike-sign events.

We have checked that this cut does not bias our measurement by affecting different

B → Xc`ν decay modes differently. Fig. 4.2 shows that the efficiency of the diagonal

cut for B → D`ν, B → D∗`ν, B → D∗∗`ν, and B → DX`ν is essentially independent

of decay mode.

4.1.2 B0B̄0 Mixing

We determine the mixing parameter χ by combining several pieces of experimental

information. The value in PDG2002 for the B0
dB̄

0
d mixing parameter is χd = 0.181±

0.004 [10]. The charged/neutral B lifetime ratio from the same source is τ±/τ
0 =

1.083± 0.017. CLEO has measured the ratio of charged to neutral B production at

the Υ(4S), f+−τ±
f00τ0

= 1.11 ± 0.08 [27]. Combining these inputs, we find χ = f00χd =

0.089 ± 0.004. This is the value for χ and the error that we use in extracting the

primary and secondary spectra from the measured like- and unlike-sign spectra.

A semi-independent confirmation of this that uses semileptonic B-decay informa-

tion in a very direct way follows from the most recent CLEO measurement of the

rate of same-sign to unlike-sign dilepton production in BB̄ events: r = `+`++`−`−

`+`−
=

0.081± 0.002 [28]. When combined with the lifetime data and the production ratio,

this gives χ = 0.088± 0.003, in excellent agreement with the first value.
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Figure 4.2: The efficiency of the diagonal cut determined with Monte Carlo sim-

ulations of lepton-tagged BB̄ events with four different semileptonic decay modes.

Clockwise from the top left, the points represent B → Deν, B → D∗eν, B → DXeν

and B → D∗∗eν. The histograms are the same in all four plots, and give the overall

efficiency for the complete mixture of semileptonic B decays. There is no discernible

mode-to-mode variation.



68

4.2 Data Samples and Event Selection

We have analyzed the entire CLEO II and CLEO II.V dataset, giving us a total

integrated luminosity of 9.4 fb−1 ON the Υ(4S) and 4.5 fb−1 OFF, which is taken at

center-of-mass energies about 60 MeV below the nominal Υ(4S) mass and below the

BB̄ production threshold.

We start by selecting hadronic events with a standard CLEO event classification

cut. For this analysis, we augment it with a tighter charged multiplicity requirement.

Since BB̄ events have higher average multiplicity than background processes like τ -

pairs, radiative Bhabhas and µ-pairs, and two-photon events, we require an event to

have at least five charged tracks that pass our track-quality criteria (Sec. 4.3.1).

Lepton production at the Υ(4S) includes a sizable continuum (non-BB̄ hadronic

events) component which is subtracted using the OFF data sample. Before sub-

traction, OFF distributions must be scaled to correct for differences in the integrated

luminosities and for the energy dependence of the continuum production cross section.

The ON/OFF scale factor is defined as

αL =
LON
LOFF

×
(

E2
OFF

E2
ON

)

,

where LON and LOFF are the ON and OFF integrated luminosities, and E2
ON and

E2
OFF are the luminosity-weighted average beam energies. Using this formula, we find

scale factors of αL(II) = 1.931 and αL(II.V) = 2.170 for the CLEO II and CLEO II.V

samples, respectively.

Independent determinations of these scale factors have been made by computing
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the ratio of ON and OFF yields of charged tracks between 3.0 and 3.5 GeV/c, well

above the B-decay kinematic limit. For CLEO II the ratio is 1.931±0.007, in excellent

agreement with the above-computed ratio. For CLEO II.V the track ratio is 2.158±

0.006, smaller than the integrated-luminosity result by 0.6%. (A similar disagreement

for CLEO II.V was observed in a previous analysis [29].) Since the track ratios

provide a direct measurement of the ON/OFF normalization as it affects subtraction

of spectra, we have opted to use it rather than the corrected luminosity ratio for

CLEO II.V, and take 1% as the overall uncertainty on the luminosity scale factor.

4.2.1 Monte Carlo Samples

Monte Carlo samples are used in this analysis for the determination of some compo-

nents of the event- and track-selection efficiencies, and to estimate several contribu-

tions to the background.

The most important sample was a full-CLEOG simulation of BB̄ events with at least

one decay to a high-momentum lepton. The statistics of this sample (like CLEO’s

generic BB̄ Monte Carlo) amounted to approximately five times that of the combined

CLEO II and II.V data set. Unlike the generic CLEO Monte Carlo, we enabled

PHOTOS [30] to model electroweak radiative corrections. Preselection criteria were

used within QQ to select for full simulation only events with at least one generated

lepton of momentum greater than 1.35 GeV/c.

In measuring the momentum spectrum for b → c`ν we must correct for the con-

tribution of b → u`ν. For this we use a sample of Monte Carlo generated using the

INCLGEN generator [31]. INCLGEN, developed for CLEO’s most recent exclusive |Vub|
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measurement, is built on the inclusive description of b → u`ν developed by DeFazio

and Neubert [32], with shape-function parameters determined by fitting CLEO’s in-

clusively measured b → sγ energy spectrum [17]. For all final states with hadronic

masses up to that of the ρ(1450), exclusive final states as described by ISGW2 [33] are

substituted. The scale for the subtraction was set by normalizing the INCLGEN spec-

trum to CLEO’s measured partial branching fraction [29, 34] in the best-measured

region of 2.2-2.6 GeV/c. The resulting b → u`ν spectrum (Fig. 7.1) is subtracted

from the primary spectrum (Fig. 4.21) to produce the final b → c`ν spectrum in

Fig. 7.2, which is ready for the computation of the moments.

The INCLGEN sample has also been used to provide additional statistics for effi-

ciency corrections in the momentum range near the b→ c`ν end point (see Sec. 4.5).

In addition, various QQ-only samples were generated to determine several correc-

tions. We will describe their production when necessary throughout this chapter.

4.3 Lepton Identification

4.3.1 Track Quality

The first step in lepton identification is to require that a track be well measured before

it is passed to the lepton identification packages. A well-measured track must pass a

rather standard set of track quality cuts:

• KINCD ≥ 0 (Good track fit with vertex in interaction region)

• Pass Trackman
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• Not a dredge or z-escape track

• Pass three of the following:

◦ 0.02 mm ≤ RESICD ≤ 1.0 mm

◦ the track’s distance of closest approach to the beam spot is ≤ 5 mm

◦ the z position of the track vertex is within 5 cm of the z position of the

beam spot.

◦ DR hit fraction ≥ 30%

The DR hit fraction is defined as the ratio of the number of DR hits found for a track

to the number expected given its reconstructed trajectory.

Once a track passes these cuts, we subject it to a set of lepton identification

requirements to reject hadron tracks.

4.3.2 Muon Identification

We identify muons with momenta of at least 1.4 GeV/c for use as tags by requiring

that the outermost matched hits in the muon chambers be at least 5 absorption

lengths deep in the iron (designated as DPTHMU ≥ 5), and that all the chambers at

shallower depths also have hits matched to the track (denoted MUQUAL = 0).

Because muons are used only as tags in this analysis, we are insensitive to many of

the details of muon identification. Specifically, we do not need to know the efficiency

of muon identification, since we use the overall number of tags detected to normalize

the spectrum and measure the branching ratio. However, a good understanding of
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the contribution from “fake” muons (non-muon tracks passing our muon identifica-

tion cuts) is essential, as they are a background that renders the charge correlations

meaningless. The determination of fake rates is discussed in Sec. 4.4.1.

4.3.3 Electron Identification

Electron identification is extremely important to this measurement; the biggest sys-

tematic uncertainties in the last measurement of the tagged electron spectrum [26]

were those arising from electron identification. Therefore, much work has gone into

developing an electron identification package and understanding its efficiency and fake

rates.

We had several choices for electron identification packages. Our goal was to de-

velop an electron identification package that had a relatively momentum-independent

and well-understood efficiency, while still having manageable fake rates.

Cornell Electron IDentification (CEID) [35, 36] is CLEO’s standard electron in-

dentification package. It uses information from several sources and combines them

into the log-likelihood R2ELEC. CEID is trained, and its efficiency and fake rates are

measured with data. In particular, electrons from radiative Bhabha events embedded

in hadronic events are a primary tool. Studies [37] have suggested that using radiative

Bhabhas to measure the efficiency of the CEID package leads to a significant bias in

the momentum region above 1.8 GeV/c, especially for CLEO II.V data. It has been

suggested that the source of this bias is distortion of the electron’s shower shape due

to overlap of the electron and the radiated photon in the calorimeter. A technique

was developed, the PVRTX cut [36], to select a radiative Bhabha sample where this
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shower-overlap effect is minimized for use in determining the CEID efficiency. This

cut requires that the sum of the energies of all showers in the calorimeter within 0.3

radians of the track be less than 3 GeV. There remained some trepidation, however,

about whether the momentum dependence in the efficiency was purely a feature of the

selection of radiative Bhabha electrons or a real effect that also applied to identifying

electrons in hadronic events.

We decided that a more robust solution to this problem was to employ electron

identification criteria that are not dependent on details of shower shape or other

features that may not be the same in BB̄ and radiative Bhabha events. The package

Simple Electron IDentification (SEID) was originally conceived [38] for use in tau

physics, where well-understood electron identification efficiency is more important

than low fake rates. Its simplicity, high efficiency, and independence of shower-shape

information made it an attractive starting point for our analysis.

As designed, SEID consists of only two cuts: E/p > 0.85 and SGELDI > −2.0.

In hadronic events, rejection of fake electrons from antiproton annihilation in the

calorimeter can be enhanced, with little loss in efficiency, with a high-end E/p cut,

E/p < 1.1. Time-of-flight cuts, applied only when good time-of-flight information is

available, were similarly found to reduce antiproton and kaon fake rates with a small

loss in efficiency.

This combination of cuts, “SEID+TF,” proved to be very competitive with CEID

at momenta above 1 GeV/c and while showing evidence of the “PVRTX” effect de-

scribed above (due to the high-side E/p cut), the effect was much smaller than in

CEID, and disappeared completely with the application of the PVRTX cut. The proce-
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dure was still significantly less effective than CEID at eliminating fakes for momenta

below 1 GeV/c, however, and concerns about the determination of (especially kaon)

fake rates at low momentum seemed to introduce a significant additional systematic

error.

Based on these considerations, we have adopted a set of electron identification

cuts we dubbed TEID (The Electron IDentification). It exploits the strengths of each

individual package: CEID gives high efficiency and small fake rates at low momentum,

while the efficiency of SEID at high momentum is less momentum dependent and more

reliably measured with embedded radiated Bhabhas. The TEID cuts are

1. 0.6 - 1.0 GeV/c: CEID

• R2ELEC ≥ 3

2. 1.0 - 1.6 GeV/c: SEID+TF

• 0.85 ≤ E/p ≤ 1.1

• SGELDI ≥ -2.0

• SGELTF ≤ 3.0 if:

◦ TFSTAT = 2 and TFIDQL = 0 (good TF information)

3. ≥ 1.6 GeV/c: SEID

• 0.85 ≤ E/p ≤ 1.1

• SGELDI ≥ -2.0
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The determination of the efficiency of the electron identification package with

radiative Bhabha events embedded in hadronic events is described in Sec. 4.5.2.

We handle the estimation of fake-lepton yields in the usual way for precision

analyses: accumulating track spectra in data using all analysis cuts except for lepton

identification and then combining with fake rates measured with tagged π±, K± and

p/p̄. The determination of the fake rates is described in Sec. 4.4.1.

A significant advantage of this cut-based electron identification package is the ease

with which specific components can be adjusted or eliminated to assess systematic

uncertainties. A complete description of this determination is given in Sec. 5.5.

Monte Carlo plays no role in this procedure, except for small corrections and the

determination of the relative particle abundances with generic BB̄ events.

Electron Identification in Monte Carlo

Traditionally, electron identification in the CLEOG Monte Carlo is “kludged,” i.e. the

event-reconstruction software peeks at the generator information to get a track’s

identity, and assigns a value for the electron identification variable accordingly. The

goal is to apply, on the user’s behalf, distributions for fakes and efficiencies that

are equivalent to those measured in the data. This procedure has drawbacks for

precision measurement. The “training” information used by CLEOG may not have

been completely up-to-date at the time of production; the events from which such

information is derived may not be compatible with those for a specific analysis; and

the training information may not represent the same distribution of luminosities as a

specific measurement.
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Because of these shortcomings, we chose not to develop this facility for our elec-

tron identification procedure, but adopted a simpler and more flexible procedure. In

accumulating distributions from Monte Carlo we assume perfectly efficient electron

identification. The most appropriate and up-to-date efficiency information can then

be applied to the Monte Carlo events when specific distributions are produced from

them. (This also facilitates the use of multiple electron identification packages, as

well as adjustments to cuts in assessing systematic errors.) Our procedures for deter-

mining the electron identification efficiency and results for the TEID procedure are

described in Sec. 4.5.2. We rely on CLEOG to simulate the efficiency of muon detection,

for which it is quite reliable. This affects our analysis only through the selection and

vetoing of muon tags.

4.3.4 Physics Vetoes

Many of the background leptons for this measurement are from semileptonic decays.

These decays produce undetected neutrinos, making a reconstruction of the invariant

mass quite hard. However, there are some leptons from decays in which all the final

state particles are detectable. In these cases, we can employ mass-reconstruction cuts

to suppress leptons from these sources.

J/ψ veto

Leptons from the decays of J/ψ’s produced in B decays are potentially a signifi-

cant background for this analysis. We apply a veto to our candidate tag leptons and

signal electrons by calculating the invariant mass of the candidate and any oppositely-
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charged track above 800 MeV that passes loose lepton identification cuts. For elec-

trons, the second track must either pass R2ELEC ≥ 3 or E/p ≥ 0.85. For muons,

the second track must pass MUQUAL = 0 and DPTHMU ≥ 3. Monte Carlo was used to

determine the mass windows for electron and muon candidates. In each case, the J/ψ

mass peak was fitted with a bifurcated gaussian, and the asymmetric windows were

chosen at ±3σ. The efficiency of this veto to reject a tag lepton from J/ψ is 65.4%.

For unlike-sign signals electrons, the efficiency for rejection is 58.4%, and for like-sign

signals it is 56.6%. Application of the veto introduces a very small inefficiency when

signal electrons are erroneously flagged as daughters of J/ψ. This was determined

with Monte Carlo to be 0.04% and 0.07% for the unlike-sign and like-sign signals,

respectively.

π0 → γe+e− veto

We reject both tag and signal candidates from π0 Dalitz decays by requiring that the

three-body invariant mass of the candidate, an oppositely-charged track above 500

MeV, and a photon be within 3σ of the π0 mass. The second track has no electron

identification requirements. The photon is determined to not be from a π0 → γγ

decay by requiring that the reconstructed mass of it with any other photon in the

event must be more than 3σ away from the π0 mass. This veto has little effect on

the tag sample, since Dalitz decays of π0’s from B’s produce very few electrons above

1.4 GeV. The efficiencies for rejecting Dalitz electrons are 28.6% and 29.7% for unlike-

and like-sign signals, respectively. The signal inefficiencies associated with this cut

are 0.2% and 0.7%.
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γ conversion veto

Photon conversions in material are rejected by the GCFIND routine. This routine

combines a candidate with another track of opposite charge, forms a vertex, and flags

the candidate as coming from a photon conversion based on the distance of closest

approach, the vertex position in the detector, and other such quantities. It rejects

about 40.7% of tags, 56.2% of unlike-sign signals, and 54.7% of like-sign signals from

photon conversions, while introducing an inefficiency of about 2.0% for both cases.

4.3.5 Raw Spectra

For the measurement of the inclusive electron sample we first select the subset of

events passing our event-selection criteria (Sec. 4.2) that have at least one tag. To be

accepted as a tag, a track must

• be in the good barrel fiducial region, |cosθ| ≤ 0.707,

• have momentum between 1.4 GeV/c and 2.6 GeV/c,

• pass the track-quality and veto cuts described in Sects. 4.3.1 and 4.3.4, and

• be identified as either an electron or a muon, as defined in Sects. 4.3.2 and 4.3.3.

In events with tags, we look for a signal electron. To be accepted as a signal

electron, a track must

• be in the good barrel fiducial region, |cosθ| ≤ 0.707,

• have momentum between 0.6 GeV/c and 3.0 GeV/c,
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• pass the track-quality and veto cuts described in Sects. 4.3.1 and 4.3.4, and

• be identified as an electron, as defined in Sec. 4.3.3.

Fig. 4.3 gives the signal-electron momentum spectra separately for events with

like-sign tags and for those with unlike-sign tags. The unlike-sign spectrum with the

diagonal cut applied (Sec. 4.1.1) is shown in Fig. 4.4. Of course, the diagonal cut is

not applied to like-sign events.
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Figure 4.3: Electron spectra for ON and scaled-OFF samples of events with unlike-

(top) and like-sign (bottom) tags.

4.4 Background Corrections to Raw Spectra

Not all the leptons in BB̄ events come from primary B or secondary charm decays.

Background contributions to the charge-separated spectra can occur when either the
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Figure 4.4: Continuum-subtracted electron spectra for all unlike-sign tagged events

(histogram) and those passing the diagonal cut (points).
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tag or the signal electron is not from semileptonic B decay. To correct for these

backgrounds, we must first subtract candidate signal electrons whose tags come from

• fake leptons,

• semileptonic decays of D’s or other charmed particles,

• J/ψ, π0 Dalitz, or photon conversions that “leaked” through a veto, or

• leptons from several other sources in B decays, including leptonic decays of τ ’s,

leptonic decays of ψ′, and Dalitz decays of η (non-vetoed backgrounds).

Once these are removed, we subtract signal electrons from

• fake electrons,

• J/ψ, π0 Dalitz, or photon conversions that “leaked” through a veto,

• τ , ψ′, Λc, K
0
L, or η Dalitz (non-vetoed backgrounds),

• the same B as the tag (diagonal cut leakage, unlike-sign only), or

• upper-vertex charm.

Each of these background corrections is described in the following sections. All of

corrections are shown in Fig. 4.11, and the charge-separated spectra after the back-

grounds are subtracted are shown in Fig. 4.12.
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4.4.1 Fake Leptons

Fake leptons are charged kaons, charged pions, and protons or antiprotons that are

misidentified as electrons or muons. We have measured the species-by-species prob-

abilities for misidentification with tagged samples of pions from K0
S decays, kaons

from D∗ → D → Kπ, and protons and antiprotons from Λ/Λ̄ decays [39]. Fake-rate

measurements with large momentum bins demonstrated that there were no measur-

able differences in fake rates between CLEO II and CLEO II.V or between ON and

OFF data. The full data sample was therefore combined to maximize the statistical

significance of our fake-rate measurements. Examples of the π± and K± fake rates

for TEID and DPTHMU ≥ 5 muons are given in Fig. 4.5. Because our B → X`ν mea-

surements average positive and negative leptons, we used only charge-averaged fake

rates and did not separate candidate-track spectra by charge.

The results of this final step for TEID and DPTHMU ≥ 5 are given in Fig. 4.7 in

Sec. 4.4.1. Smoothing is an optional step to reduce the bin-to-bin scatter due to

limited statistics.

Application of Fake Rates

The separate pion/kaon/proton fake probabilities were combined into overall fake

probabilities per hadron track appropriate for B decays with abundances determined

with CLEO standard generic BB̄ Monte Carlo (see Fig. 4.6). The fake rates were

measured in 50 MeV/c bins, and smoothed using a MN FIT spline technique for

muons, and by combining groups of bins for electrons. Even though the statistics of

the electron-fake measurements were not large, as reflected by the need to combine
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Figure 4.5: TEID (left) and DPTHMU ≥ 5 (right) fake rates for charged pions (top)

and charged kaons (bottom). Note the different vertical scales.

bins, the contribution of these statistical errors to the measured spectra was negli-

gible. We therefore treated the uncertainties in the fake rates as entirely systematic

(Sec. 5.4). Our final abundance-weighted fake rates for TEID, both as measured and

after smoothing, are shown in Fig. 4.7.

The contribution of fake leptons to any momentum spectrum is determined by

combining the momentum-dependent fake probabilities with the continuum-subtracted

spectrum of hadronic tracks that pass the same cuts, except for lepton identification,

as the lepton sample in question. The number of hadronic tracks Nh that are candi-

dates for misidentification as leptons is computed with the following formula [26]:

Nh =
nt − (1 +Rµ/e)(ne/εeID)

1− (1 +Rµ/e)(fe/εeID)
. (4.3)
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Figure 4.6: Relative abundances of π± (blue solid line), K± (red dashed line), and

p/p̄ (green dotted line) from generic CLEO BB̄ Monte Carlo.
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Figure 4.7: TEID (left) and muon (right) fake probabilities as a function of hadron

momentum from 0.6 to 3.0 GeV/c.
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The track spectrum nt is corrected for real leptons, which are estimated with the

measured electron spectrum ne, since electrons are measured over a broader momen-

tum range than muons. The total lepton correction is given by the measured electron

spectrum divided by the electron identification efficiency εeID times 1 + Rµ/e, where

Rµ/e is the ratio of muons to electrons determined with BB̄ Monte Carlo (Fig. 4.8).

The small overestimate of the lepton correction due to fake electrons is corrected by

the term in the denominator that includes the electron fake rate fe.
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Figure 4.8: Ratio of muons to electrons in reconstructed momentum in Monte Carlo.

The calculation of fakes for an inclusive single-lepton spectrum (e.g. the spectrum

of tag leptons) is straightforward: tracks are considered one at a time. Things get

more complicated in the dilepton cases, where care must be taken to avoid double-

counting the events where both the tag and signal are fakes. This is done with a
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two-step iterative procedure.

When calculating the contribution of fake leptons to a dilepton sample, it is useful

to think in terms of candidate pairs of tag and signal tracks. If an event has one track

above 1.4 GeV and three others above 600 MeV, then there are 1× 3 = 3 candidate-

track pairs. If an event has two tracks above 1.4 GeV and two others above 600 MeV,

then there are 2 × 2 + 2 = 6 candidate track pairs (the “+2” represents the two

1.4 GeV tracks together, where one plays the tag and the other plays the signal, and

vice versa). In this way we take into account all the possible tag-signal combinations

that we encounter: fake tag-real signal, fake tag-fake signal, real tag-fake signal, and

real tag-real signal.

We must collect separate track spectra for electron and muon tags, because of the

different J/ψ and other veto cuts (see Sec. 4.3.4). The procedure described below is

executed separately for each species of tag, and for like- and unlike-sign signal events.

Also, the word “track” in the following is understood to mean tracks that have passed

all cuts except for lepton identification.

The first step is to calcuate the number of lepton pairs that get into our sample

via a fake tag. To do this, we find track pairs for which one track is above 1.4 GeV

and the other is an identified electron above 600 MeV. The momenta of these pairs

are collected in a two-dinemsional histogram. Bin-by-bin in signal momentum, the

spectrum of fake tags is calculated, and we end up with a two-dimensional distribution

for pairs of fake tags and signal electrons. From this we project the momentum

spectrum of identified signal electrons with fake tags.

This leaves the correction for real tags with fake signals to be computed. To do
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this, we first collect the spectrum of tracks above 600 MeV with an lepton-IDed tag

lepton. We then subtract from this the spectrum of identified signals with fake tags

that was calculated previously. This track spectrum now contains only signal tracks

with real tags. The fake spectrum calculated from this is the real tag-fake signal

contribution, avoiding double-counting the fake-fake combination. This added to the

spectrum from the previous step gives us our total fake correction.

4.4.2 Veto and Diagonal-Cut Leakage

We estimate the leakage through our vetoes and the diagonal cut using generic BB̄

Monte Carlo. To build confidence in our simulation and extract the relevant nor-

malization factors, we fit the spectra of vetoed leptons in Monte Carlo to the corre-

sponding spectra in the data. As described in Sec. 4.3.3, we do not assert electron

identification in the Monte Carlo. Prior to fitting, the electron spectra determined

from Monte Carlo under the assumption of perfect electron identification are multi-

plied by the efficiency of our electron identification package to more closely simulate

the actual electron identification efficiency (Sec. 4.5.1).

To get the correction for veto leakage, the spectra of unvetoed leptons (as identified

by QQ) from Monte Carlo are then scaled by the normalization factor returned by the

fit. Example fit results are shown in Fig. 4.9. They demonstrate that the Monte

Carlo does a very good job of reproducing the distribution observed in data for the

J/ψ veto, which is the most important veto in this analysis.

The leakage of same-B secondary signal electrons is estimated with a procedure

similar to that described above for the vetoes. In this case, the two-dimensional
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Figure 4.9: Fits of the Monte Carlo spectra of signal electrons with an electron tag

that fail one of the J/ψ vetoes to the corresponding spectra in data. The vetoed

electrons in Monte Carlo have not been identified by QQ as coming from J/ψ decays,

and thus include the contribution of mistakenly vetoed tracks, just as in data. The

plots are (clockwise from top left): unlike-sign signal electrons from any source with

a J/ψ-vetoed electron tag; vetoed unlike-sign signal electrons with a tag electron

that passed all vetoes; vetoed like-sign signal electrons with a tag electron that

passed all vetoes; and like-sign signal electrons from any source with a J/ψ-vetoed

electron tag. The peaking effect in the top left plot is an artifact of the diagonal

cut. The Monte Carlo simulation shows excellent agreement with the data.
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distribution of cos θ` versus signal-electron momentum is fitted. Again, the normal-

ization is determined by fitting the Monte Carlo distributions for same-B secondary

signal electrons that fail the diagonal cut (i.e. were successfully eliminated) to the

corresponding distribution in data. This factor is then used to scale the Monte Carlo

distributions for those that leaked through the cut, providing the background correc-

tion to be applied to the electron spectrum. Projections of these distributions and

the fits in momentum and cos θ` are shown in Fig. 4.10.
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Figure 4.10: Projections in momentum (left) and CZCD (right) of same-B secondary

fits. The points are data; the histogram is the fitted Monte Carlo.

4.4.3 Nonvetoed Backgrounds

Corrections to the charge-separated spectra for backgrounds from physics sources

that we do not veto are obtained directly from Monte Carlo. The distributions from
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each source are normalized to the number of BB̄’s in the data sample. As with the

veto-leakage corrections, we multiply each distribution of electron backgrounds from

Monte Carlo by the measured electron identification efficiency.

The unlike- and like-sign electron spectra after all background corrections are

shown in Fig. 4.12. The remaining steps are to correct for detection efficiencies and

to solve Eqs. 4.1 and 4.2 to get the separated primary and secondary spectra.

4.5 Efficiency Corrections

Since cuts are blind to the source of the track they are acting on, our procedures

inadvertently eliminate some electrons that belong in the charge-separated spectra.

With the exception of the electron identification efficiency, we use Monte Carlo to

determine these losses and calculate corrections to our measured spectra. Where

possible, the Monte Carlo has been validated by comparison with data.

Although we discuss the efficiency of all our cuts as though they were applied

separately, we actually apply the corrections in just two steps. First, we correct the

background-subtracted charged-separated spectra (Fig. 4.12) by the electron identi-

fication efficiency. Second, we correct the resulting spectra with one “efficiency” that

covers everything besides electron identification. This is the efficiency for all of the

other cuts applied simultaneously, as well as the effect of bremsstrahlung in the de-

tector material. It is, in effect, the product of all of the multiplicative corrections that

are obtained with Monte Carlo, and properly accounts for any correlations among the

components of the overall efficiency.
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Figure 4.11: Backgrounds in the charge-separated spectra. Each category includes

backgrounds to both tag and signal leptons, unless otherwise noted.
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Figure 4.12: Unlike- (top) and like-sign (bottom) electron spectra after all back-

grounds have been subtracted.

4.5.1 Tracking and Electron Identification Efficiency

For the recent inclusive end-point b→ u`ν analysis [29], we conducted extensive stud-

ies of the ability of the Monte Carlo to simulate the efficiency of track reconstruction

and selection with a set of very stringent track-quality cuts. This was done using

embedded radiative Bhabha events in both data and Monte Carlo, and was carried

out in concert with radiative Bhabha studies of electron identification. Details of

these investigations are given in Sec. 4.5.2.

For the tracking study, these events were used to determine the ratio of the track-

selection efficiency for data to that for Monte Carlo. This ratio was applied as a

correction factor in determining the track-selection efficiency from signal Monte Carlo.

In the previous application of this procedure, to the lepton-energy end-point mea-
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surement of b→ u`ν [29, 34], the track-quality cuts were very stringent and the ratio

was found to be significantly different from 1. For the current analysis, we use a much

less demanding set of track-quality cuts (Sec. 4.3.1), and find the correction factor

not to be measurably different from 1 (Fig. 4.15).

The same embedded sample was used to determine the electron identification

efficiency for our TEID package, as well as for CEID and other variants used in our

systematics studies. The efficiency of our electron identification package is shown in

Fig. 4.13.
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Figure 4.13: Efficiency of our electron identification package in CLEO II (left) and

CLEO II.V (right).
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4.5.2 The Embedding Study

Since Monte Carlo currently cannot accurately simulate dE/dx, getting the overall

efficiency of an electron ID package using dE/dx with Monte Carlo is out of the

question. Therefore, we need to measure the efficiency of our electron identification

package directly from the data.

To do this, we need a sample of tracks which are a priori electrons, so we can

ask the electron ID package how many of these tracks it determines to be electrons.

Radiative Bhabha events (e+e− → e+e−γ) are a plentiful and easily selected source

of electrons. While the angular distribution tends to be peaked in the beam direc-

tion, there are sufficient numbers of tracks in the good-barrel region to measure the

efficiency over the entire range of momentum we wish to study.

Care must be taken in using measurements from radiative Bhabhas and applying

them to electrons in hadron events, which have very different properties. To put

our electrons in a more “hadronic” environment, we take the raw detector hits from

obvious radiative Bhabha events, and combine them with the raw hits of a hadron

event to make an “embedded” event. The embedded electrons are still distinguishable

by their momenta, so we can determine the fraction of the embedded electron tracks

in the post-embedding event that pass our electron identification requirements.

The procedure for our embedding study was to overlay the entire radiative Bhabha

event, not just the hits we think are associated with the desired electron track, onto a

hadronic event. Our intention in this was to avoid the complexity and potential un-

certainty associated with stripping the information for individual tracks, thus risking

throwing out hits that might actually belong to the desired track. Large samples of
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such events, distributed over the CLEO II and II.V data sets, were constructed for

both data and Monte Carlo. For data, a radiative Bhabha from a given ON-resonance

run was embedded into a hadronic event from the same run that passed a cut of the

Fox-Wolfram parameter R2 < 0.5 [40] to ensure that it was BB̄-like2 . For Monte

Carlo, a simulated radiative Bhabha was embedded into a simulated BB̄ event for the

same run. In both cases the target hadronic events were selected so that the charged

multiplicity distribution for the embedded sample was compatible with BB̄ events.

Radiative Bhabha Selection

We select radiative Bhabha events using a prescription created for studies of CEID [35,

36, 37]. We perform a PASS1 skim, looking for events that pass the following criteria:

• one or two TRIO-approved tracks,

• at least three showers with E ≥ 150 MeV,

• total energy in the calorimeter ≥ 6 GeV,

• minimum opening angle between any pair in a triplet of showers is 18◦, and

2R2 is defined as the ratio of the Fox-Wolfram moments H2/H0, where

Hk =
1

s

n
∑

i=1

n
∑

j=1

[|~pi||~pj|Pk(cos φij)] . (4.4)

Here n is the number of particles in the event, s is the center-of-mass energy squared,
φij is the angle between the momentum vectors for particles i and j, and Pk is a kth
order Legendre polynomial. Values of R2 near zero represent “spherical” events, such
as BB̄ → hadrons, while R2 values near one represent more “jet-like” events, with
the back-to-back pattern characteristic of e+e− → qq̄ (q = u, d, s, c) events.
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• energy of the best triplet of showers is ≥ 900 MeV.

After this initial skim, events must pass a second layer of cuts, performed in PASS2,

before they are selected for embedding:

• PASS1 criteria using PASS2,

• exactly two tracks, of opposite charge,

• at least one track with p ≤ 3 GeV/c,

• each track matches to one of the four biggest showers,

• one of the four biggest showers is not matched to a track, and

• energy of the matched showers ≥ 3.5 GeV.

Hadron Bed Selection

To end up with an embedded event that is similar to a BB̄ event, we choose suitable

hadron events in which to embed the radiative Bhabha event with a similar two-step

system to that of choosing the radiative Bhabha. Events classified as hadrons were

skimmed in PASS1, and the sample further culled in PASS2 by requiring that the

events pass the following criteria:

• R2 ≤ 0.5,

• between 5 and 12 tracks, and

• no tracks with R2ELEC ≥ 0.
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Monte Carlo Samples

Although embedding Monte Carlo radiative Bhabhas will not give us any insight into

electron ID, it will allow us to evaluate the ability of the Monte Carlo to simulate

tracking. In this vein, we construct samples of Monte Carlo-generated Bhabha and

hadronic events to embed and compare with results obtained from embedded data

events.

Since the vast majority of Bhabha-type events do not have the low momentum

good barrel track we desire, we preselect QQ events to shape the initial sample of

Bhabhas by requiring:

• an electron (or positron) with | cos θ| ≤ 0.7071 and 0.6 ≤ |~pgen| ≤ 3.0 GeV/c,

• a photon with | cos θ| ≤ 0.85 and |~pgen| ≥ 150 MeV/c, and

• the other electron (or positron) with | cos θ| ≤ 0.85.

After QQ, we run CLEOG on these events, and then insert noise hits from a random

trigger event. We then apply the same PASS2 radiative Bhabha criteria as described

for the data. The momentum and distributions for this Monte Carlo sample are quite

similar to our data sample (see Fig. 4.14).

For the hadron beds, we simply generate generic BB̄ events, insert noise, and

apply the same PASS2 hadron bed criteria as described for the hadron beds from

data.

Because Bhabha and hadron events in the data each have their own detector noise,

the embedded events will have twice the level of noise than usual. Since we want our
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Figure 4.14: Comparison of the momentum (left) and polar angle CZCD (right) dis-

tributions of good-barrel tracks for pre-embedded radiative Bhabha events for data

(points) and Monte Carlo (histogram).
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Monte Carlo to mirror the data as much as possible, we insert random trigger events

into both the Bhabha and hadron bed events, thus giving us “double noise” in the

embedded Monte Carlo event. Care was taken to ensure that the same random trigger

event was not inserted into both the Bhabha event and its hadron bed event.

Embedding

Now that we have our samples of radiative Bhabha and hadron events from the data,

and similar samples from Monte Carlo, we are ready to embed. In this study, we

embed Bhabhas from data into hadron beds from data, and Bhabhas from Monte

Carlo into hadron beds from Monte Carlo.

After embedding, we can find an embedded track using the quantity

cos ∆θ =
~pr · ~pe
|~pr||~pe|

where ~pr is the momentum of the track in the raw radiative Bhabha event and ~pe is

the momentum of the track in the embedded event. The track in the embedded event

with the highest cos ∆θ is considered to be found if it satisfies cos ∆θ ≥ 0.99.

Track Quality In Data and Monte Carlo

One of the payoffs of all this embedding is the confidence we gain in the Monte

Carlo to simulate track reconstruction for our track-quality cuts. Figure 4.15 shows

the ratio of efficiencies of our track-quality cuts in data and Monte Carlo. We were

looking for a correction factor to apply to our Monte Carlo to to make it more “data-

like”, but since this ratio is essentially unity for all momenta, we determined that



100

0.6 1.0 1.4 1.8 2.2 2.6 3.0
Momentum (GeV/c)

0.95

1.00

ε da
ta

/ε
M

C

Figure 4.15: Efficiency ratio of track-quality cuts in embedded data and embedded

MC.

the Monte Carlo does a good enough job simulating track reconstruction efficiency,

and no correction needs to be applied. Note that this last statement is applicable to

our specific package of track-quality cuts; other track-quality requirements can cause

deviation from this level of agreement between data and Monte Carlo (see Ref. [29],

the lepton energy endpoint analysis, for an example).

Electron Identification Efficiency

We use the embedded data sample to measure the efficiency of electron identifica-

tion for TEID and for the several different permutations of TEID used in the EID

systematic error study described in Sec. 5.5.

In addition to the cos ∆θ requirement for embedded-track finding, we also require
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that the track pass the PVRTX cut for reasons described in Sec. 4.3.3. We measure

the electron-identification efficiency by looking at “found” embedded tracks passing

our track-quality cuts (Sec. 4.3.1) to see if they also pass our electron-indentification

requirements. The number passing our electron-identification cuts divided by the

total number of good-track-quality embedded tracks is the efficiency.
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Figure 4.16: Left: TEID efficiencies for reweighted unembedded (histogram) and em-

bedded (points) radiative Bhabha events. Right: TEID efficiencies for unreweighted

(histogram) and reweighted (points) embedded radiative Bhabha tracks.

We also correct for the difference in the angular distributions of radiative Bhabha

tracks (see Fig. 4.14) and BB̄ events. This is done by simply reweighting the ra-

diative Bhabha track sample so that each momentum bin has a flat polar angular

distribution. Reweighted distributions of the TEID efficiency for unembedded and

embedded radiative Bhabha tracks are shown in Fig. 4.16, as are the TEID efficiencies
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for unreweighted and reweighted embedded radiative Bhabha tracks.

4.5.3 Other Efficiencies and Detector Bremsstrahlung

The efficiencies of the primary spectrum passing the track-quality, veto, diagonal,

and fiducial cuts are determined using Monte Carlo, as is the correction for detector

bremsstrahlung.

Since our default Monte Carlo sample contains only B → Xc`ν decays, we only

get an efficiency measurement for tracks below 2.3 GeV/c. To get a measurement for

tracks between 2.3 and 2.6 GeV/c, we use the INCLGEN sample of B → Xu`ν Monte

Carlo. Above 2.6 GeV/c, we use the value of the efficiency in the 2.6 GeV/c bin.

The overall efficiencies for signal electrons from semileptonic B decays with unlike-

sign and like-sign tags are shown in Fig. 4.17. The principal source of difference

between the two cases is the diagonal cut. Application of the overall efficiency correc-

tions to the raw unlike-sign and like-sign spectra results in the fully corrected spectra

shown in Fig. 4.18.

4.6 Primary Spectrum Extraction

Now that we have our fully corrected charge separated spectra, we are ready to extract

the primary spectrum. In this section, we explain the method used to perform this

extraction.
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Figure 4.17: Overall efficiencies for unlike-sign (left) and like-sign spectra. Detector

bremsstrahlung is included in this correction.
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Figure 4.18: Fully corrected unlike-sign (left) and like-sign spectra. These are the

charged-separated spectra that are passed to Eqs. 4.1 and 4.2.
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4.6.1 Correction to Secondary Spectrum

The ratio of charged D mesons to neutral D mesons in B+B− events is different

from that in B0B̄0 events. The semileptonic branching ratio of charged D mesons

is different from that of neutral D mesons. Neutral B mesons mix, while charged B

mesons do not. Separately, these three effects would not trouble us. Together, they

undermine an assumption in the derivation of Eqs. 4.1 and 4.2: the assumption that

the secondary spectra in charged B and neutral B events are identical.

An examination of the Monte Carlo, which represents quite well the state of the art

as compiled by the PDG [10], shows that this assumption does not hold. A QQ study of

B decays determined that 8.22% of charged B decays will yield a secondary electron

(for future reference, call this number R+). The fraction of neutral B decays that

yield a secondary electron (call this R0) is 10.03%. Of these neutral B secondaries,

χ0 = 17.1% will be from B0’s that mixed, and will therefore be of the opposite sign

to the tag lepton; the rest will have the same sign as the tag. (All the secondaries in

charged B events will be same-sign.) Refer to Fig. 4.19 for more detail.

To correct for this effect, we would like to rewrite Eqs. 4.1 and 4.2, replacing

dB(c)oppB

dp
with R0 in the terms involving mixing. (The same-B term in Eq. 4.1 is

eliminated by the diagonal cut.) This gives the modified equations3:

dN(`±e∓)

dp
= N`

[

(1− f0χ0)
dB(b)

dp
+ f0χ0R0(p)

]

, and (4.5)

dN(`±e±)

dp
= N`

[

χ0
dB(b)

dp
+

(

dB(c)

dp
− f0χ0R0(p)

)]

. (4.6)

3At this point, we will drop the explicit efficiency factors that appear in Eqs. 4.1
and 4.2, as they have already been accounted for in the fully-corrected spectra.
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from MC.
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Since it is not feasible to determine which events are B+B− and which are B0B̄0, we

need to replace R0(p) with dB(c)
dp

∆(p), where

∆(p) =
R0

dB(c)
dp

=
1

(1− f0)
R+

R0
+ f0

. (4.7)
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Figure 4.20: Secondary correction factor ∆(p)

Making the substitution and solving these equations, we get expressions for the pri-

mary and secondary spectra:

dB(b)

dp
=

1

(1− [∆(p) + 1]χ)

1

N`

[

[1−χ∆(p)]
dN(`±e∓)

dp
−χ∆(p)

dN(`±e±)

dp

]

, and (4.8)

dB(c)

dp
=

1

(1− [∆(p) + 1]χ)

1

N`

[

χ
dN(`±e∓)

dp
− (1− χ)

dN(`±e±)

dp

]

, (4.9)

with χ ≡ f0χ0.
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4.6.2 Solving the Equations

We now have everything we need to get the primary spectrum. Plugging the fully-

corrected charge-separated spectra from Fig. 4.18 into Eqs. 4.8 and 4.9, we obtain

the primary and secondary spectra shown in Fig. 4.21.
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Figure 4.21: Primary (points) and secondary spectra (histogram).
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The primary spectrum in Fig. 4.21 is used as shown to measure the B → Xeν

branching ratio (see Chap. 6). One correction to this spectrum, the subtraction of

semileptonic B → Xu`ν decays, must be made before we can extract moments (see

Chap. 7).

4.7 Cross-Checks of the Semileptonic Spectra

Throughout our analysis cross-checks with Monte Carlo have provided an invaluable

tool for validating the techniques we have used and the specific implementations in

our code. These tests also provide useful feedback on the overall accuracy of our

Monte Carlo generators in predicting the shape and scale of the semileptonic decay

spectrum for secondary charm. These studies are described in Sec. 4.7.1.

Once we have generated our lepton spectra it is also reasonable to ask if we get

consistent results when we subdivide the data sample in obvious ways. In Sec. 4.7.4

we give the results separately for electrons with electron and muon tags, positive

and negative tags, high-momentum and low-momentum tags, and for CLEO II and

CLEO II.V.

4.7.1 Analyzing Monte Carlo as Data

Since the Monte Carlo is a data set for which we have access to the “final answer,”

we use it to test our analysis package. We treat the full-CLEOG Monte Carlo sample

(Sec. 4.2.1) as if it were data, apply the various corrections (mostly determined with

the same Monte Carlo sample), and then see if our analysis package delivers the
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correct “final answer.” We took advantage of the ability to peek at the true answer

at intermediate stages of the analysis as well, although not all of the critical steps

could be checked. For example, this procedure provides no useful information about

the correction for fake leptons.

Fig. 4.22 shows the fully-corrected unlike- and like-sign spectra from the MC-as-

data analysis, compared to what QQ says they should be at that point in the analysis.

The agreement is nearly perfect, as it should be.
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Figure 4.22: Results of MC-as-data analysis (points) compared to QQ (solid line) for

the fully-corrected unlike-sign (left) and like-sign spectra.

The MC-as-data analysis started as a check on our bookkeeping abilities: to en-

sure that efficiency corrections, background corrections, and algebra were being done

properly. It proved also to be a very useful aid in the development of our analysis
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tools and their implementation. It also allowed us to test some assumptions of the

analysis method itself. In trying to reproduce the primary spectrum, we determined

that we needed to incorporate the ∆(p) factor in Eqs. 4.8 and 4.9 (Sec. 4.6.1), while

trying to extract the branching ratio uncovered a problem with the relative event

selection efficiency correction (Sec. 6.1.2) in the previous analysis.

The MC-as-data analysis also provides a good laboratory for studying the ability

of the Monte Carlo to model secondary lepton production by comparing distributions

of tracks flagged as secondaries by the analysis procedure in the data and in the

MC-as-data. We study two sources of secondaries this way. By looking at what is

eliminated by the diagonal cut (Sec. 4.1.1), we learn about same-B secondaries, and

by comparing the final secondary spectrum (the solution to Eq. 4.9), we learn about

the opposite-B secondaries.

4.7.2 MC as Data Study of Same-B Secondaries

The diagonal cut was designed to suppress signal electrons coming from the charmed

daughter of the same B that decayed semileptonically to produce the tag lepton.

Therefore it follows that the sample of signal electrons failing the cut will be enriched

in these same-B secondaries. Since about 98% of the same-B secondaries fail the

diagonal cut, examining these events in data and in Monte Carlo will give us a handle

on our correction for same-B secondary events leaking through the diagonal cut. We

have already used this handle in Sec. 4.4.2 to determine the normalization of the same-

side-secondary background, which was estimated by Monte Carlo. The shapes were

shown to agree quite well both in the two-dimensional space of cosine of opening angle
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vs. momentum and in the projections onto momentum and CZCD, which are shown

in Fig. 4.10. The fit was reasonable, with a χ2 of 1166 for 980-2 degrees of freedom.

The normalization of the same-side-secondary component of the fit was 0.2121, while

the expected value from dead-reckoning was 0.2102 (based on the known numbers of

BB̄ events). Because the normalization of the opposite-B component was also free in

this fit, it is somewhat difficult to interpret the agreement quantitatively. It appears

to be within about 10%, however, which is quite good.

4.7.3 MC as Data Study of Opposite-B Secondaries

We can also look at the “other” solution of Eqs. 4.8 and 4.9 to test the Monte

Carlo’s simulation of the opposite-B secondaries measured in data. Fig. 4.23 shows

the one-parameter fit of the Monte Carlo prediction of the secondary spectrum to

the measured data points. The χ2 of is 21 for 28-1 degrees of freedom, and the

normalization parameter of 0.2196 compares to a dead-reckoned expectation of 0.2102.

The Monte Carlo reproduces the shape of the spectrum quite well, and while it has

too few opposite-B secondaries, the difference is remarkably small. Quantitatively,

the ratio of data to Monte Carlo is 1.045± 0.013 (statistical error only) for the full

spectrum, and above 1.0 GeV/c the ratio is 1.07± 0.03.
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Figure 4.23: Fit of the secondary electron spectrum from the opposite-B sample.

The points are data and the fitted histogram is the Monte Carlo.
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4.7.4 Consistency Checks: Splitting the Data Sample

CLEO II vs II.V

In analyzing our data we keep CLEO II and CLEO II.V separate up to the point

of final processing (B → Xu`ν subtraction, computation of the yield and moments).

Fig. 4.24 shows the separate primary-spectrum measurements for CLEO II and CLEO II.V,

normalized to unit area. There is generally excellent agreement. Even at the low-

energy end, where material differences between the two detector configurations should

be most pronounced, the points agree within statistical errors, which are considerably

smaller than the systematic uncertainties.

Electron vs Muon Tags

Throughout our analysis, we make no distinction between events with electron tags

and those with muon tags (except for the purposes of applying fake-lepton correc-

tions and vetoes). We certainly expect no significant differences between them, even

though the momentum-dependent acceptance of the muon detector should result in

a higher mean energy for muon tags than for electron tags. The electron-tagged pri-

mary spectrum and muon-tagged primary spectrum are plotted in Fig. 4.25, both

normalized to unity. This figure illustrates that the shapes of the distributions agree

very well, and the efficiency-corrected yields are consistent within 0.7% (∼ 0.5 σ).
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Positive vs Negative Tags

We also make no distinction at all between events with positively- and negatively-

charged tags. In splitting the data this way we did not have charge-separated fake

rates available, so a small disagreement between the spectrum with positive tags

and the spectrum with negative tags is expected. As can be seen in Fig 4.26,

the negatively-tagged primary spectrum and the positively-tagged primary spectrum

agree very well.

High vs Low-Momentum Tags

The last dataset splitting exercise was to partition the data by tag momentum in

two bins; tag momentum above and below 1.75 GeV (which gave us a roughly equal

partition). Again, we expect no disgreement between the two samples. And again,

the agreement between the high-p-tagged primary spectrum and low-p-tagged primary

spectrum is remarkable (χ2 = 19.7 for 40 − 1 d.o.f.). The spectra, both normalized

by their respective number of tags, are shown in Fig 4.27.
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Figure 4.24: Primary spectra from CLEO II (points) and CLEO II.V (histogram)

events. Plots are normalized to their respective number of tags.
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Figure 4.25: Primary spectra from electron-tag (points) and muon-tag (histogram)

events. Plots are normalized to equal areas.



117

0 1 2 3
Momentum (GeV/c)

0

1000

2000

3000

Figure 4.26: Primary spectra from positive tag (points) and negative tag (histogram)

events. Plots are not normalized.
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Figure 4.27: Primary spectra from high-p tag (points) and low-p tag (histogram)

events. Plots are normalized to their respective number of tags.



CHAPTER 5

Systematic Errors

Our experimental observables, the B semileptonic branching fraction and the lepton-

energy moments, are subject to systematic uncertainty from a large set of potential

sources. In this section, we describe these sources and the techniques that we use to

assess their effects on the observables. The actual systematic uncertainty estimates

are presented in Chap. 6 and Chap. 7 for the branching fraction and the moments,

respectively.

5.1 Veto-Leakage Corrections

These corrections are computed using momentum spectra determined from Monte

Carlo with normalizations obtained by fitting data, as was described in Sect. 4.4.

This procedure renders our corrections insensitive to uncertainty in the rates of the

contributing processes, but leaves us with uncertainty in the detailed descriptions, for

example of the momentum spectra. In the case of the J/ψ veto, we are very confident

in the modeling in QQ and CLEOG, since the mixture of decays has been tuned to agree

with exclusive branching ratios and the inclusive J/ψ momentum spectrum. We

believe our estimate of a ±5% systematic uncertainty on the subtraction of unvetoed

119
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J/ψ’s to be quite conservative. For the π0 and photon-conversion vetoes, there is more

uncertainty in the simulation of the detector response, and we take ±20%. For each

of these, we have fluctuated the correction upward and downward by these amounts

and taken the systematic uncertainty to be one half of the difference between them.

5.2 Diagonal Cut Leakage Correction

The background due to same-B secondaries that are not eliminated by the diagonal

cut is also computed with Monte Carlo normalized to data. In this case, the 98%

of the same-B secondaries that are successfully cut are used to estimate the 2%

that leak through, so the statistical uncertainty is very small. The quality of the fit

(Sect. 4.7.2) in the two dimensions of opening angle vs. momentum shows that both

the normalization (which we don’t use) and the detailed distributions (which we do)

are very well represented in Monte Carlo. We take a conservative 15% uncertainty in

the same-B secondary leakage to account for possible errors in these details.

5.3 Non-Vetoed Background Corrections

Similar to the method of determining the systematic errors attached to veto leakage,

we trust the Monte Carlo to simulate the shapes of the momentum spectra for these

backgrounds. For each component we have attempted to assess a reasonable uncer-

tainty based on world-average branching fractions and other information. In all cases

we take as the systematic uncertainty one half of the difference between the variation
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up and variation down.

Upper-vertex charm is the largest of these sources. It subdivides into final states

that include a Ds-meson and another charmed particle and those that have two non-

strange charmed mesons. We treat these independently, since their estimates are

largely based on different experimental and theoretical inputs. While the semileptonic

branching fraction B(Ds → Xeν) is not well measured, the D0 and D+ semileptonic

branching fractions can be combined with lifetime data to estimate B(Ds → Xeν) '

8%. This is consistent with the value in CLEO’s standard decay.dec, and is probably

reliable at the 10% level. This uncertainty is essentially negligible, however, compared

to that in the branching fraction for B → DsX, which has been estimated to be

9.8± 3.7% [41] based on a variety of exclusive measurements. CLEO’s default Monte

Carlo is consistent with this number, and we take the overall systematic uncertainty

on the contribution of semileptonic decays of upper-vertex Ds to be ±40%.

The upper-vertex D contribution is somewhat better known, with well measured

semileptonic branching fractions and an estimated rate for B → D̄D(∗)X of 8.2 ±

1.3% [41]. We have determined that CLEO Monte Carlo agrees with these numbers

and assign a systematic uncertainty on the electrons from upper-vertex non-strange

charmed mesons of ±25%.

The estimated contributions of B → τ → e and B → ψ′ → e+e− are both

based on world-average measured branching fractions. Both are assigned systematic

errors of ±15%, taking into account the errors of those branching fractions, with some

additional uncertainty associated with the shapes of the momentum spectra.
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5.4 Fake Muon Tag Correction

Since muons are only used for tags, the correction for fake muons only enters our

results through the normalization of our primary spectrum. We take an overall sys-

tematic uncertainty on the muon fakes of ±25%. As is discussed in Sect. 5.5, our

preferred approach for determining the systematic uncertainty in our electron identi-

fication efficiency also incorporates the uncertainty in the associated fake correction.

5.5 Electron Identification Systematic Errors

The usual techniques for estimating the uncertainty in the electron-ID efficiency in-

volve analyses of independent control samples: radiative Bhabha scatters (e+e−γ,

both “raw” and “embedded” into hadronic events), π0 Dalitz decays and conversions,

and J/ψ decays. The statistics and momentum coverage of these are limited, and

each carries its own systematic uncertainties. In CBX 95-35 [42], a variety of studies

were described that led to the conclusion that the CEID efficiency measured with

embedded radiative Bhabhas could be relied on to 3%, subject to the caveat that suf-

ficient care be taken that the conditions of the efficiency measurement (track-quality

criteria, event topologies, etc.) be compatible with the details of the signal selection.

Since we measure all of our own efficiencies, we have satisfied this condition.

In the predecessor to this analysis [25, 26], the combined uncertainty due to track-

ing and CEID efficiency was estimated to be 2%, based on a careful comparison of

efficiencies for embedded and unembedded radiative Bhabha electrons. This system-

atic uncertainty was 30% of the inefficiency of electron ID, and was judged to be
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appropriately conservative. We feel very confident that the efficiency of our current

package, TEID, is known at least to this 2% level, since it has been demonstrated

to be immune to some of the problems that plague the efficiency determination for

CEID in CLEO II and CLEO II.V data.

For past studies, most notably the first-generation lepton-tagged analysis [25, 26],

the primary results were yields and branching fractions, which are sensitive only

to the momentum-averaged efficiency. It was therefore unnecessary to scrutinize

carefully the reliability of the measured momentum dependence of the EID efficiency.

Our determination of the spectral moments of the electron energy spectrum is much

more demanding in this regard. As has been described in Sect. 4.3, the incompletely

understood momentum-dependent behavior of the radiative-Bhabha-measured CEID

efficiency and the need to have an electron-ID efficiency with a reliably determined

momentum-dependent efficiency were principal motivations for developing the TEID

algorithm.

The event sample for determining the efficiency for TEID is identical to that used

for CEID: radiative Bhabha events embedded into hadronic events, with reweighting

to an approximately flat angular distribution (Sect. 4.5.2). Quantitatively assessing

the systematic uncertainties in our observables (branching fraction, moments) remains

a major challenge.

Our initial approach involved the application of “skewing” functions to the mea-

sured efficiencies, introducing distortions subject to the overall ±2% uncertainty. The

philosophy is to explore “worst-case” scenarios, which can be visualized as a line with

positive slope, a line with negative slope, a “Λ”, and a“V”. Skewing in this man-
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ner needs to be done separately for each choice of minimum energy for the moment

computations, so it is quite tedious.

For estimating the systematic uncertainty associated with the fake electron cor-

rection, our initial approach was to vary the total fake probability in three momen-

tum ranges: ±25% for 0.6 - 1.0 GeV/c, ±50% for 1.0 - 1.8 GeV/c, and ±100% for

1.8 - 3.0 GeV/c. To calculate the uncertainty due to fakes for a given observable,

all three ranges were varied up and down in the following combinations: up-up-up,

down-down-down, up-none-down, down-none-up, up-down-down, and down-up-up.

For each variation, the quantity is recalculated, and half of the biggest difference

between the values from any two variations is taken as the error on that observable.

We find these procedures to be quite unsatisfying. They seem arbitrary and

provide no quantitative basis for assessing a “one-sigma” systematic uncertainty. We

have therefore explored alternative approaches. Despite their shortcomings, we keep

the skewing results in mind as a benchmark for comparison with other estimates. As is

discussed below, our preferred approach for determining the systematic uncertainty in

our electron identification efficiency also incorporates the uncertainty in the associated

fake rate.

One advantage of the TEID algorithm is that it is “factorizable” into its distinct

components. We use the likelihood-based analysis of CEID only below 1.0 GeV, where

the power of multiple experimental inputs helps to suppress difficult backgrounds from

kaons and antiprotons, and where past studies have revealed no systematic problem

in the determination of the efficiency. In the region above 1.0 GeV, TEID is SEID

plus a high-side E/p cut, with a TF cut also applied below 1.6 GeV. The relative
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simplicity of this procedure, especially above 1.0 GeV, led us to explore whether

Monte Carlo could be used as a tool to transfer measured efficiency information from

embedded radiative Bhabha events to signal events. Beginning with the E/p cut, we

compared distributions for real and simulated radiative Bhabha events, both bare and

embedded. The agreement was quite reasonable in both cases, within about 1% for

unembedded radiative Bhabha electrons over the full energy range, and varying from

about 2% near 1 GeV to less than 1% above 2 GeV for embedded radiative Bhabhas.

This sounds pretty good, except that the signs of the two effects are opposite: MC is

better (higher efficiency) than data for bare radiative Bhabhas and worse than data

for the embedded. Our conclusion from this observation and the lack of real dE/dx

simulation is that MC could never provide better than a 3% or 4% test of the TEID

efficiency.

Our second attempt was inspired by the “knob-turning” studies that have been

standard issue for a number of analyses using neutrino identification. It is conceptu-

ally easy to adjust the selection criteria of TEID and recompute the the total yield

and spectral moments. The procedure is to rerun the entire analysis with the altered

TEID cuts. This requires recalculating the fake rates from the tagged π/K/p samples

and the efficiencies from the embedded radiative Bhabha events.

There are four components of TEID that offer knobs to be turned: below 1 GeV,

where TEID is just CEID, there is just the R2ELEC cut; above 1 GeV there are

separate cuts on E/p, dE/dx, and time of flight (the last only for electron energies

up to 1.6 GeV). We turn these four knobs one at a time and generate new final

spectra equivalent, except for the altered cut, to our standard TEID spectrum. Since
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the four different knobs represent independent components of the electron selection,

we combine their systematic uncertainties in quadrature. Note that these knobs

simultaneously probe the reliability of the efficiency and the fake probabilities, so the

resulting systematic uncertainty covers both sources.

This leaves us with the question of how far to turn the knobs. Our TEID cut

values were chosen either based on conventional usage (CEID/R2ELEC and SEID as

originally defined) or based on our own “optimizations,” where we attempted to

choose cut values that were effective in rejecting fake backgrounds while remaining

on the “plateau” of efficiency. Each cut separately has a well-defined inefficiency that

is no more than a few percent. For the less powerful components of TEID (dE/dx and

time of flight), we simply took our alternatives to be the cases where those component

cuts were turned off. For the two other cases this was not practical, since CEID with

no R2ELEC cut and SEID with no E/p cut are not effective electron ID’s. For these we

made the assumption that we could estimate the systematic uncertainty by comparing

the values obtained for standard TEID with those obtained for alternative cuts that

had double the standard inefficiencies.

Fig. 5.1 shows the spectra obtained with our alternative electron identification

packages. The effects on the yields and moments are given in Chapters ?? and ??.

The alternative cases to standard TEID are “TEID-TF” (TEID with the time-of-

flight cut eliminated); “TEID-DX” (TEID with the dE/dx cut eliminated; “TEID-

EpLo” and “TEID-EpHi” (TEID with E/p cuts that are made twice as hard either by

pushing up on the low side or pushing down on the high side of the E/p distribution;

and “TEID-CEID-hard” (TEID with a cut on R2ELEC of 4.83, which doubles the
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Figure 5.1: The final b→ ceν momentum spectra with the alternative EID packages

(points) overlaid with standard TEID spectrum (solid line). Note the limits on the

momentum axes; only momentum ranges where the spectra differ are shown.
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inefficiency between 0.6 and 1.0 GeV).

The efficiencies and fake rates corresponding to these cases are shown in Figs. 5.2

and 5.3. The agreement among the spectra is impressive. In particular, the stability

in the shape of the low-momentum part of the electron spectrum under rather extreme

variations is a very significant demonstration of the reliability of our efficiency and

fake-rate determinations. In an earlier version of this study it was observed that

the efficiency for “TEID-EpHi” showed a significant dip above 1.8 GeV. This was

reminiscent of the “PVRTX” effect that plagues the measurement of the CEID efficiency

with radiative Bhabhas. In fact, the merging of energy from the photon of a radiative

Bhabha with the electron shower does affect the E/p cut. Our high-side cut value of

1.1 is quite loose, however, so this effect was believed to be small. We were surprised

in our initial “TEID-EpHi” study because we mistakenly tightened the high-side

E/p by much too large an increment. This distorted the efficiency and resulted in

overestimates of the sensitivity of the observables to this cut. It was a good reminder,

however, that pushing the cut up from the low side and down from the high side

probe different aspects of the physics of electron identification. We therefore decided

that they should both be used as independent contributions to the overall systematic

uncertainty.

5.6 Tracking Efficiency

The systematic error from the efficiency of our track-quality cuts was estimated by

taking the difference of the uncorrected spectrum and the spectrum corrected by the
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Figure 5.2: The efficiencies of the alternative EID packages (points) overlaid with

standard TEID efficiency (solid line). Note the limits on the momentum axes; only

momentum ranges where the efficiencies differ are shown.
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Figure 5.3: The total fake probabilities of the alternative EID packages (points)

overlaid with standard TEID fake probability (solid line). Note the limits on the

momentum axes; only momentum ranges where the fake probabilities differ are

shown.
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data/Monte Carlo ratio determined in the embedding study as described in Sect. 4.5.2.

5.7 Diagonal Cut Efficiency

We set the systematic uncertainty due to the efficiency of the diagonal cut based on

extreme variations of the mixture of semileptonic B decays in our standard “BBLEP”

Monte Carlo. No internal modifications, such as form factors governing the decays

to D and D∗, or the models for the decays to D∗∗ and nonresonant final states, were

made. The approach was similar to that of the CLEO measurement of hadronic-mass

moments [43], where the mixtures considered ranged from the “hardest possible” pri-

mary spectrum (B → D∗eν increased by 6%; B → D∗∗eν increased by 30%; B → Deν

decreased by 8%; nonresonant B → D(∗)Xeν decreased by 30%) to the “softest possi-

ble” primary spectrum (reverse of the above variations). For each case we computed

a new diagonal cut efficiency, rederived the final spectrum, and calculated new values

for the observables. Half the difference between the two extremes was used as the

systematic uncertainty associated with the diagonal cut efficiency.

5.8 Veto Efficiency

We calculate the systematic error due to the efficiency correction of the J/ψ, π0,

and γ-conversion by using the “hardest” and “softest” primary-spectrum variations

described in Sect. 5.7. We then take as the error half the difference between the

“hardest” and “softest” variations, plus 10% of itself. This extra 10% on the error
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accounts for the fact that we only vary about 90% of the primary spectrum when we

reweight the unlike-sign spectrum; the other 10% of the primary spectrum is in the

like-sign spectrum (due to mixing).

One possible source of apprehension is the effect of the J/ψ veto in events with an

unlike-sign electron tag; in these events, the tag electron is allowed to be the “second

track” in the veto calculation of the signal electron, and vice versa. This gives us

a lower and more momentum dependent efficiency than the other vetoes (Fig. 5.4).

However, it is merely kinematics that gives rise to this momentum dependence; the
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Figure 5.4: J/ψ veto efficiencies for unlike-sign events with electron (left) and muon

(right) tags.

diagonal cut and the high-momentum tag requirement together limit the range of

invariant masses a tag-signal pair can reach. The limit is dependent on the signal

momentum, and as Fig. 5.5 shows, the Monte Carlo simulates the effect very well.
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Figure 5.5: Invariant mass of tag and signal track pair vs. signal momentum in

data (left) and Monte Carlo (right) for events with an unlike-sign electron tag. The

diagonal cut is applied. The effect of the J/ψ veto is clearly seen, as is the range in

signal momentum in which it appears.
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Therefore, we make no special allowance for this effect in the determination of the

systematic uncertainty associated with this efficiency.

5.9 ∆(p) and B0B̄0 Mixing

For the systematic error on the factor ∆(p), we solve Eqs. 4.8 and 4.9 with ∆(p) = 1,

thereby taking the case that was standard before we recognized the need for ∆(p).

We take half the difference between these cases as the systematic uncertainty.

The uncertainty on the mixing parameter χ was determined from relevant input

data, as is described in Sect. 4.1.2. The effect on measured quantites was determined

by solving for the spectra with values of χ that were shifted up and down by 1σ.

5.10 Summary of Sources of Systematic Uncertainty

The list below tabulates the sources of systematic uncertainty in the lepton-spectrum

measurement and how each was quantified:

Corrections common to both measurements:

• J/ψ: ±5%

• π0: ±20%

• γ: ±20%

• Same B secondaries: ±15%
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• Upper vertex Ds: ±40%

• Upper vertex D: ±25%

• τ : ±15%

• ψ′: ±15%

• Other backgrounds: ±15%

• Tag from secondaries: ±15%

• Muon tags from fakes: ±25% total muon fake subtraction

• EID: alternative EID packages (±2% with skewing as backup)

• Continuum subtraction: αL scaled ±1%.

• Non-EID efficiencies: hardest vs. softest primary spectrum

• B0B̄0 mixing: χ = 0.089± 0.004

• ∆(p): half the difference with ∆(p) = 1

In addition to these uncertainties, there were a number of others that exclusively

affected the determination of the yield of leptons (branching fraction) or the shape

of the momentum spectrum (moments). These are explained in more detail in the

descriptions of the extraction of these quantities in the following sections.

Corrections specific to branching ratio measurement:

• Spectral fraction: Fits to the measured spectrum
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• Relative event selection efficiency: Variations of the multiplicity distribution of

signal MC

Corrections specific to the moments measurement:

• b→ u: ±12% magnitude of subtraction (based on the error in the lepton-energy

endpoint measurement [34]. See Sect. 7.1.

• Electroweak radiative corrections: half the difference of Atwood/Marciano and

PHOTOS, as described in Sect. 7.3

• B boost: |~pB| varied with reweighting by ±10 MeV/c as described in Sect. 7.2.



CHAPTER 6

Results: Semileptonic Branching Ratio

In this chapter we describe the determination of the B semileptonic branching fraction

BSL. By extracting the efficiency-corrected spectrum for semileptonic B decays in

events with tags, we have done most of the work for the branching ratio measurement.

The total area of the spectrum is the “primary count,” which is the numerator of the

branching fraction. It is 109, 914± 903, where the error is statistical only.

The denominator of the branching ratio calculation is the “tag count,” the effective

number of tags in our data sample. Its determination is described in the next section.

6.1 Effective Number of Tags

The first step is simply to count the leptons in hadronic events in CLEO II and II.V

data that pass the criteria for tag selection given in Sect. 4.3.5. After continuum

subtraction, there is a total of 1, 191, 562 ± 1, 627 raw lepton tags in our full data

sample.

137
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6.1.1 Corrections To Raw Tag Count

We must correct the raw tag count for backgrounds from processes other than semilep-

tonic B decays. These represent the same sources and are computed by the same

techniques as are described in Sect. 4.4.

The tag background corrections are tabulated in Table 6.1. After all subtractions,

we obtain N` = 1, 137, 042 ± 1, 631, where the error is statistical only. Systematic

uncertainties associated with the background corrections are evaluated by the tech-

niques of Sect. 5. They are included in the systematic uncertainties tabulated in

Table 6.4.

6.1.2 Event Selection Efficiency Correction

Note that it is not necessary to correct the tag count for any of the efficiencies of

lepton selection: track quality, lepton identification, etc. The reason for this is that

the selection of events with tags provides us with a sample of BB̄ events in which one

B is known to have decayed semileptonically. It is the fraction of these events in which

the other B decayed to an electron that gives us the semileptonic branching fraction.

The only necessary corrections to the tag count are for effects that might cause us

preferentially to gain or lose events in which that second B decayed semileptonically.

We must therefore account for possible differences in the event-selection efficiencies

for events with different numbers of leptons. We select hadronic events by CLEO’s

standard event classification, a very loose cut, and then suppress QED backgrounds

with a fairly tight charged-multiplicity cut of at least five tracks that pass our track-
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Source µ e µ+ e

ON Υ(4S) 828,155 ± 910 837,002 ± 915 1,665,157 ± 1,290

Scaled Continuum 261,667 ± 737 212,146 ± 664 473,813 ± 992

Cont. Subtracted 566,488 ± 1,171 624,856 ± 1,131 1,191,344 ± 1,628

Fake Leptons 11,385 ± 61 936 ± 4 12,321 ± 61

J/ψ 3,397 ± 28 4,451 ± 31 7,848 ± 42

π0 N/A 190 ± 8 190 ± 8

γ N/A 116 ± 6 116 ± 6

Secondary Charm 10,484 ± 47 13,347 ± 52 23,831 ± 70

Upper-Vertex D 330 ± 9 417 ± 9 747 ± 13

Upper-Vertex Ds 2,364 ± 22 818 ± 13 3,182 ± 26

τ 1,947 ± 20 2,538 ± 22 4,485 ± 30

ψ′ 588 ± 11 609 ± 11 1,197 ± 16

Other Backgrounds 356 ± 9 29 ± 3 385 ± 9

Total 535,637 ± 1,174 601,405 ± 1,132 1,137,042 ± 1,631

Table 6.1: Yields and backgrounds for tag count. Errors are statistical only.
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quality cuts, as described in Sect. 4.3.1.

We expect that a BB̄ event with a lepton tag and a second semileptonic decay

will tend to have lower multiplicity than an event with a tag and an accompanying

B that decayed hadronically. (The mean multiplicity of hadronic B decays is greater

than that of semileptonic decays.) We evaluate this effect with CLEO’s generic BB̄

Monte Carlo sample. The event-selection efficiency for any event with a lepton tag

from semileptonic B decay is 95.8%, while that for events with a lepton tag and

a second semileptonic B decay is 91.0%. The relative event selection efficiency is

therefore 95.0%. This shows that our tag count is an overestimate of the number of

events with tags that could enter into our primary count, and the effective number

of tags is N` = 1, 079, 901± 1, 549 (statistical error only).

This event-selection efficiency introduces systematic uncertainty into the branch-

ing fraction that depends on how well the Monte Carlo simulates the multiplicity of

B decays in general, and semileptonic B decays in particular. We believe that CLEOG

provides a good description of the response of the detector, and that the standard

CLEO Monte Carlo represents the state-of-the-art understanding of B decay, but it

is necessary to test these assumptions.

We compared the multiplicity distributions for CLEO Monte Carlo and data by

binning our results (the yields of primary and tag leptons) in NTRKGD, the number

of tracks that passed the track-quality cuts described in Sect. 4.3.1. The six bins

we used for this study were NTRKGD = 5, 6, 7, 8, 9, and ≥ 10. Comparisons of the

resulting distributions for BB̄ data and Monte Carlo tags and primaries are shown

in Fig. 6.1. For the primary signal events, the Monte Carlo reproduces very well the
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Figure 6.1: Multiplicity of good track-quality tracks in data (points) and Monte

Carlo (histogram) for tag events (top) and primary signal events (bottom). The

NTRKGD=10 bin in both plots is the sum of all events with NTRKGD≥ 10.
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average multiplicity (data average = 7.456, MC = 7.468). For tag events, there is a

disagreement of about 0.1 unit (data = 8.370, MC = 8.468). Note that these average

multiplicities are for the described binning scheme, and should not be interpreted

as “true” multiplicities. The difference in the accuracy of the multiplicity modeling

for hadronic and semileptonic decays is not surprising. Hadronic decays of B are less

precisely modeled than semileptonic, because less of the total rate is in well-measured

exclusive modes.

While we do not have enough confidence in this test to correct our results based

on it, we take the difference between data and Monte Carlo as a reasonable indica-

tion of the systematic uncertainty in the determination of the relative event-selection

efficiency. We estimated it by reweighting the Monte Carlo to get the tag-event mul-

tiplicity to agree with data. (The difference for primary events was judged to be too

small to warrant such an exercise.)

For this study we went back to the parent samples of events with tags that had not

been subjected to the NTRKGD cut. It was found by iteration that decrementing NTRKGD

by one unit in 17% of the tag events (randomly chosen) brought the average NTRKGD

in the Monte Carlo into agreement with the data (Fig. 6.2). The selection efficiency

for tag events in this reweighted Monte Carlo sample is 94.6%, giving a relative event-

selection efficiency of 96.1%. The difference between this and the central value given

above is 1.2%, which we take as the systematic uncertainty.

We should also note here that there was a misconception in the previous version

of this analysis. When calculating the relative event-selection efficiency, the signal

electron in the numerator was not required to be a primary decay (i.e. B → Xceν).
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Figure 6.2: Multiplicity of good track-quality tracks in data (points), reweighted

Monte Carlo (solid histogram), and standard Monte Carlo (dashed histogram) for

tag events. The Monte Carlo has been reweighted as described in the text. The

NTRKGD=10 bin in both plots is the sum of all events with NTRKGD≥10.
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Including all dilepton events in the numerator has the effect of raising the average

charged multiplicity in those events, since it admits cases where an electron is pro-

duced further down the decay chain and is thus accompanied by more hadrons. When

calculated in this incorrect way, the relative event-selection efficiency is overestimated

and the branching ratio underestimated by a few percent.

6.2 Fraction Below 600 MeV/c

To determine the fraction of the primary spectrum below 600 MeV/c, we fit with

a mixture of predicted spectra from Monte Carlo for the modes B → Deν, B →

D∗eν, B → D∗∗eν, B → DXeν, and charmless decays B → Xueν. All spectra

were generated using a modified version of CLEO’s generic BB̄ Monte Carlo that

included QED radiative corrections as described by the PHOTOS algorithm [30]. The

decays B → D∗eν were generated with CLEO-measured form-factor parameters [44].

B → Deν decays were generated with the ISGW2 [33] model, and then reweighted

to correspond to HQET with the form factor ρ2 as measured by CLEO [45]. These

B → Deν and B → D∗eν components of the fit are constrained to be within ±2σ

of the measured exclusive branching fractions [10]. The third fit component, denoted

B → D∗∗eν, is a mixture of higher-mass charmed mesons, as described by ISGW2 [33].

The fourth component is nonresonant B → DXeν, as described by the model of Goity

and Roberts [46]. These last two are constrained in the fit only to the extent that they

are not allowed to go negative. The final component is B → Xueν decays modeled

with the INCLGEN generator [31]. The normalization of the B → Xueν component
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was fixed by the partial branching fraction in the 2.2-2.6 GeV/c momentum region

measured in CLEO’s 2002 end-point analysis [34].

The standard (STD) fit performed according to these specifications is shown in

Fig. 6.3. The quality of the fit is quite good (χ2=33.8/36 d.o.f), although we note

that the B → Deν and B → D∗eν branching fractions are pinned at their ±2σ

limits. With this fit, we determine that 93.6% of the total B → Xeν spectrum has

pe ≥ 600 MeV/c.

We assess the systematic uncertainty associated with the correction for the spec-

tral fraction by performing a large number of variations of the STD fit. In each case

we refit with only one ingredient changed. The difference between the STD value

for the spectral fraction and that for the modified fit is recorded as the systematic

uncertainty associated with that ingredient. These results are tabulated in Table 6.2.

For B → Deν, we reweighted our standard ISGW2 Monte Carlo sample in q2

and lepton momentum to get the HQET spectra with the values of ρ2 increased and

decreased by 1σ. These variations were designated DRHOUP and DRHODN.

For B → D∗eν, we generated new spectra with QQ using altered values of the three

form-factor parameters, consistent with CLEO’s measurements. Alternative spectra

were generated for six sets of parameters: (R1 ± 1σ,R2, ρ2), (R1, R2 ± 1σ, ρ2), and

(R1, R2, ρ2±1σ), labeled as DSTR1UP(DN), DSTR2UP(DN), and DSTRHOUP(DN),

respectively. Correlations among the form-factor measurements were taken into ac-

count in estimating the associated systematic uncertainties in the spectral fraction.

We also consider extreme variations in the less well known D∗∗ and nonresonant

components. For the HIDDUB and LODDUB fits, we fixed the normalization of the
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Figure 6.3: Results of fitting the final B → Xeν spectrum.
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D∗∗ component to be ±1σ above and below the value preferred by the STD fits.

This corresponds to an 89% shift in the D∗∗ rate. The HINR and LONR fits are

similarily done for the nonresonant component, corresponding to a 67% shift in the

nonresonant rate. We use half the difference between the HIDDUB and LODDUB

(HINR and LONR) fits as estimates for the systematic error due to uncertainty in

the modeling of the D∗∗ (DX) component.

We also consider variations in the amount of the fixed B → Xueν in the fits.

We vary the normalization by ±1σ, using the overall uncertainty in the 2002 result.

These cases are designated as B2UHI and B2ULO. We take as the systematic error

the bigger difference from STD of these two variations.

To assess the uncertainty in the QED radiative corrections to the spectral fraction,

we do the NOFSR fit, using spectra generated without PHOTOS. This is clearly an

extreme variation, so we use one-third of the resulting variation in the lepton yield as

an estimate of the QED-related systematic error. (This is the approximate difference

between PHOTOS and Atwood/Marciano.)

We also allow for a conservative (∼ 10 MeV/c) variation in the scale of the B

momentum used for the boost with the BPUP and BPDN fits [29]. We take half the

difference between BPUP and BPDN as the systematic error related to the B boost.

There was one additional variation on B → Deν and B → D∗eν, which we

included in response to concerns that the range of cases considered was not sufficiently

broad. In the fit labelled “PDG,” we locked the B → Deν and B → D∗eν to their

measured branching fractions, also using measured central values for their respective

form-factor parameters. This gives a very poor fit to the spectrum (χ2=87.2/38 d.o.f),
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and has by far the largest effect on the spectral fraction of any case considered. It

will be seen later, however, that this still does not make it a significant contributor

to the overall systematic uncertainty.

To compute the total systematic error for the spectral fraction below 600 MeV/c,

we take the quadrature sum of all of the variations considered. These results are

summarized in Table 6.3.

6.3 The Branching Ratio

With the yield from the primary spectrum with pe ≥ 600 MeV/c and the effective

tag count given in the preceding sections, we obtain the partial branching ratio:

BSL(pe > 0.6 GeV/c) = (10.21± 0.08 (stat.)± 0.22 (syst.))% (6.1)

Correcting for the fraction below 600 MeV/c, we determine the total B semileptonic

branching ratio to be

BSL = (10.91± 0.09 (stat.)± 0.24 (syst.))%. (6.2)

A breakdown of the systematic error on the total semileptonic branching frac-

tion is given in Table 6.4. Note that the contributions to the systematic uncertainty

for the background corrections are not separately determined for primaries and tags.

When assumptions are varied, the effects on both numerator and denominator are

propagated through to the branching fraction, thereby properly accounting for corre-

lations. Table 6.4 also includes estimated systematic uncertainties in the final steps
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BSL Frac. χ2 B(D) B(D∗) B(D∗∗) B(NR) B(b → u) ∆BSL

STD 10.868 0.936 33.8/38 *2.43 *5.82 2.00 0.41 *0.177 –

BPUP 10.878 0.935 31.8/36 1.72 6.51 1.13 1.36 *0.177 0.010

BPDN 10.866 0.936 32.6/36 2.23 6.26 0.87 1.27 *0.177 -0.002

DDSTFIX 10.863 0.937 32.0/37 2.61 6.06 0.94 1.08 *0.177 -0.005

DDSTUP 10.859 0.937 32.1/37 2.84 5.94 0.91 1.00 *0.177 -0.009

DDSTDN 10.867 0.936 31.9/37 2.36 6.19 0.97 1.17 *0.177 -0.001

DSTR1UP 10.870 0.936 31.7/36 3.07 5.37 1.64 0.63 *0.177 0.002

DSTR1DN 10.857 0.937 28.8/36 0.26 8.35 0.00 2.07 *0.177 -0.01

DSTR2UP 10.875 0.936 30.1/36 2.28 5.98 1.10 1.36 *0.177 0.007

DSTR2DN 10.868 0.936 30.6/36 0.73 7.80 0.53 1.63 *0.177 0.000

DSTRHOUP 10.867 0.936 28.2/36 1.24 7.02 0.00 2.43 *0.177 -0.001

DSTRHODN 10.876 0.935 30.7/36 1.66 6.63 1.87 0.55 *0.177 0.008

DRHOUP 10.867 0.936 31.9/36 2.06 6.38 0.81 1.45 *0.177 -0.001

DRHODN 10.874 0.936 32.3/46 2.05 6.35 1.12 1.19 *0.177 0.006

B2UFLT 10.863 0.937 31.5/35 2.59 6.20 0.66 1.28 0.13 -0.005

B2UHI 10.859 0.937 33.3/35 1.61 6.45 1.39 1.23 *0.225 -0.009

B2ULO 10.862 0.937 31.5/35 2.60 6.20 0.65 1.28 *0.129 -0.006

NOFSR 10.842 0.938 32.6/36 1.84 6.41 1.58 0.82 *0.177 -0.026

OLD STD 10.871 0.936 31.9/36 2.11 6.32 1.02 1.26 *0.177 0.003

LODDUB 10.864 0.937 32.9/37 2.69 6.22 *0.16 0.016 *0.177 -0.004

HIDDUB 10.878 0.935 32.9/37 1.50 6.43 *1.96 0.857 *0.177 0.010

LONR 10.847 0.938 32.9/37 3.31 5.55 1.42 *0.37 *0.177 -0.021

HINR 10.895 0.934 32.9/37 0.91 7.09 0.61 *2.14 *0.177 0.027

PDG 10.940 0.930 87.2/38 *2.13 *4.95 3.64 0.00 *0.177 0.072

Total 0.078

Table 6.2: Results for b→ c`ν fits to determine systematic error due to estimate of

measured spectral fraction. Explanations of the fit labels in the first row are given

in the text. Entries denoted with a “∗” have been fixed for that fit. Values for

branching ratios are in percent.
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Source ∆BSL(%)

〈pB〉 0.003

D∗ FF’s 0.010

Dρ2 -0.003

b→ u -0.009

No final state rad. -0.009

D∗∗ BR -0.007

Non-res. BR -0.024

PDG BR’s 0.072

Total 0.078

Table 6.3: Systematic errors on the spectral fraction below 600 MeV from the fitting

study.
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of disentangling the spectra and in computing the semileptonic branching fraction,

which have all been described.
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Source ∆BSL(%)

J/ψ 0.003

π0 0.006

γ 0.023

Same B secondaries 0.052

Upper Vertex Ds 0.091

Upper Vertex D 0.065

τ 0.041

ψ(2S) 0.005

Other Backgrounds 0.003

Tags from Secondaries 0.014

Electron Identification 0.113

Mixing Parameter 0.035

Continuum Subtraction 0.028

Track Quality Efficiency 0.001

Diagonal Cut Efficiency 0.008

Veto Efficiency 0.006

Muon Fake Rate 0.001

∆(p) 0.021

Event Selection Ratio 0.128

Fit Extrapolation 0.078

Total 0.236

=⇒

EID Source ∆BSL(%)

TEID-TOF 0.002

TEID-dE/dx 0.064

E/p ≥ 0.91 0.047

E/p ≤ 1.07 0.055

CEID-HARD 0.042

Total 0.105

Table 6.4: Left: Breakdown of systematic errors on BSL. Right: Details of

electron identification systematic error on BSL.



CHAPTER 7

Results: Lepton Energy Moments

Following the notation of Bauer et al. [11], the general expression for the moments is

defined as follows:

R[n,E`1, m,E`2 ] =

∫ Emax

E`1

En
`
dΓ
dE`

dE`
∫ Emax

E`2

Em
`

dΓ
dE`

dE`
(7.1)

where Emax
` = 2.5 GeV. For convenience, we will denote R[1, Emin, 0, Emin] and

R[2, Emin, 0, Emin], as 〈E`〉 and 〈E2
` 〉, with Emin as a subscript when necessary. We

will use the variance of the spectrum 〈(E`−〈E`〉)2〉 as an alternative second moment,

as it is less strongly correlated with 〈E`〉 than 〈E2
` 〉. We also report results for the

third moment (or “skew”) 〈(E` − 〈E`〉)3〉.

We have chosen to compute the moments of the electron-energy spectrum by direct

integration of our final spectrum (Fig. 7.2). Obtained in this way, the experimental

moments are not precisely equivalent to the theoretical computations of moments

given in the literature. Because our moments are measured in the Υ(4S) rest frame,

so we must correct for the boost of the spectrum from the B rest frame, where

theoretical predictions are calculated. Our moments also show the effect of final-state

radiation, which is not by default included in the theoretical results, so we must use

calculations of electroweak radiative corrections to correct our moments for this effect.

The techniques for determining these corrections are described in the next sections.
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7.1 B → Xueν Correction

One last background subtraction needs to be made before we can get moments: the

subtraction of the electrons from B → Xueν decays. To get this spectrum, we use

the Monte Carlo sample generated with the hybrid inclusive/exclusive model INCLGEN

(see Sec. 4.2.1). The scale for the subtraction was set by normalizing the INCLGEN

spectrum to CLEO’s measured partial branching fraction [29, 34] in the best-measured

region of 2.2-2.6 GeV/c. The resulting B → Xueν spectrum (Fig. 7.1) is subtracted

from the primary spectrum (Fig. 4.21) to produce the final B → Xceν spectrum in

Fig. 7.2, which is ready for the computation of the moments.

To assess systematic uncertainties associated with the B → Xueν correction,

we vary the normalization by ±1σ, as determined by the total error on the partial

branching fraction in the 2.2-2.6 GeV/c region [29, 34]. This corresponds to a ±12%

variation of the B → Xueν correction. We have also considered alternative B → Xueν

spectra based on reweighting the exclusive and inclusive components of the INCLGEN

sample to increase and decrease the portion of the 2.2-2.6 GeV/c yield allocated

to B → (π/ρ/η/ω)eν. By using the measured branching ratios of these exclusive

modes [47] in the 2.2-2.6 GeV endpoint region and spectral fractions determined by

the average of several models, the fraction of the endpoint region due to these modes

was estimated to be approximately 0.55 with an error of about 30%. INCLGEN quite

remarkably delivers this fraction as 0.58. The alternative B → Xueν shapes are

shown in Fig. 7.1. We take as the systematic error half the difference between the

upward and downward variations.
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Figure 7.1: Spectrum of electrons from B → Xueν decays from the INCLGEN

Monte Carlo sample reweighted to enhance(red dashed)/degrade(blue solid) the

B → π/ρ/η/ωeν portion of the 2.2-2.6 GeV endpoint region by 30%.
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Figure 7.2: The final B → Xc`ν spectrum.
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7.2 Boost Correction

The B mesons produced at the Υ(4S) are not exactly at rest; they typically have

momenta of approximately 300 MeV/c. Using Monte Carlo, we obtain an additive

correction to a moment by comparing the value of the moment obtained from a

QQ spectrum of primary electrons in the lab frame with the value obtained from a

spectrum of the same electrons in which each electron’s momentum is boosted back

to its parent B’s rest frame. The difference of these two values is taken as the

correction. Since we use a Monte Carlo sample corresponding to the entire CLEO II

and CLEO II.V data set, we are guaranteed to get the appropriate distribution of

nominal beam energies.

The systematic error associated with boosting the spectrum back to the B-rest

frame is obtained by reweighting the QQ sample to achieve a ±10 MeV/c shift in the

mean B momentum. The moment is then calculated with the spectrum from these

reweighted samples, and half the difference from the +10 and -10 MeV/c shifted

samples is the taken as the systematic error.

7.3 Electroweak Correction

We obtain an additive correction for QED final-state radiation using the PHOTOS

algorithm [30] implemented in QQ. We generated spectra of primary electrons with

and without final-state radiation, and calculated the moments for both spectra with

EW radiation on and off. The difference between these is taken as the correction. For

comparison and assessment of the systematic error associated with this correction,
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we also used Atwood and Marciano [48].

The systematic error for the electroweak correction was obtained by comparing

the value of the correction from Atwood and Marciano with that calculated using

PHOTOS to model the final-state radiation. The difference between the corrections

from the two models is taken as the systematic uncertainty.

7.4 Moments

From our final spectrum, we extract values for moments with E` ≥ 600 MeV:

〈E`〉0.6 = (1.4261± 0.0043 (stat.)± 0.0105 (syst.)) GeV

〈(E` − 〈E`〉)2〉0.6 = (0.1526± 0.0021 (stat.)± 0.0031 (syst.)) GeV2

Systematic uncertainties in the moment values have been assessed with the tech-

niques described in Chap. 5 (background and efficiency corrections) and earlier in

this section (moment extraction). The systematic uncertainties for 〈E`〉, 〈E2
` 〉, 〈(E`−

〈E`〉)2〉, and 〈(E` − 〈E`〉)3〉 are summarized for all of our choices of minimum lepton

energy in Tables 7.1, 7.2, 7.3, and 7.4, respectively.

7.4.1 Errors and Correlations on the Moments

The calculations of the errors on each moment are relatively straightforward: each

source of systematic error is assumed to be independent of all the others, and there-

fore they are all added in quadrature to determine the total systematic error. The
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E` cut (GeV) → 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

Uncorr. Moment 1.4118 1.4384 1.4676 1.5032 1.5411 1.5827 1.6268 1.6765 1.7248 1.7800

Boost Corr. -0.0025 -0.0024 -0.0029 -0.0028 -0.0030 -0.0033 -0.0034 -0.0039 -0.0047 -0.0051

A&M Corr. 0.0108 0.0099 0.0090 0.0081 0.0072 0.0064 0.0056 0.0048 0.0041 0.0034

PHOTOS Corr. 0.0168 0.0149 0.0132 0.0115 0.0102 0.0090 0.0080 0.0068 0.0055 0.0043

Continuum Sub. 0.0004 0.0001 0.0000 0.0001 0.0001 0.0001 0.0002 0.0002 0.0002 0.0002

J/ψ 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000

π0 0.0003 0.0002 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

γ 0.0013 0.0007 0.0004 0.0002 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000

Same B Sec. 0.0029 0.0014 0.0006 0.0003 0.0001 0.0000 0.0000 0.0000 0.0001 0.0001

Upper Vertex Ds 0.0047 0.0031 0.0021 0.0013 0.0008 0.0005 0.0003 0.0002 0.0001 0.0001

Upper Vertex D 0.0036 0.0022 0.0013 0.0008 0.0004 0.0002 0.0001 0.0001 0.0000 0.0000

τ 0.0018 0.0014 0.0010 0.0007 0.0005 0.0003 0.0002 0.0001 0.0001 0.0001

ψ(2S) 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004

Other Bckg 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Secondary Tags 0.0002 0.0000 0.0001 0.0002 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003

B(b → ueν) 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0005

b → ueν Shape 0.0004 0.0004 0.0004 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003

EID 0.0046 0.0040 0.0033 0.0026 0.0021 0.0017 0.0017 0.0019 0.0025 0.0024

Fake µ Tags 0.0002 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Track Quality Eff. 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Diagonal Cut Eff. 0.0003 0.0003 0.0002 0.0003 0.0001 0.0001 0.0001 0.0001 0.0001 0.0000

Veto Eff. 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0000 0.0000 0.0001 0.0000

B Boost 0.0005 0.0004 0.0003 0.0003 0.0006 0.0003 0.0003 0.0005 0.0005 0.0003

Electroweak Rad. 0.0060 0.0050 0.0042 0.0033 0.0030 0.0026 0.0025 0.0020 0.0014 0.0009

B0 Mixing χ 0.0010 0.0007 0.0004 0.0003 0.0002 0.0001 0.0001 0.0001 0.0000 0.0000

∆(p) 0.0010 0.0007 0.0004 0.0003 0.0002 0.0001 0.0001 0.0001 0.0000 0.0000

Corrected Moment 1.4261 1.4509 1.4779 1.5119 1.5483 1.5884 1.6315 1.6794 1.7256 1.7792

Statistical Error 0.0043 0.0035 0.0031 0.0028 0.0026 0.0024 0.0023 0.0022 0.0021 0.0021

Systematic Error 0.0105 0.0079 0.0061 0.0047 0.0039 0.0033 0.0031 0.0029 0.0030 0.0027

Total Error 0.0113 0.0086 0.0068 0.0054 0.0047 0.0041 0.0039 0.0037 0.0037 0.0035

Table 7.1: Breakdown of corrections and errors on 〈E`〉 at various lower lepton

energy cuts. All numbers are in GeV.



160

E` cut (GeV) → 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

Uncorr. Moment 2.1484 2.2086 2.2783 2.3681 2.4685 2.5839 2.7126 2.8641 3.0181 3.2019

Boost Corr. -0.0095 -0.0096 -0.0110 -0.0109 -0.0118 -0.0129 -0.0135 -0.0155 -0.0183 -0.0203

A&M Corr. 0.0308 0.0290 0.0271 0.0251 0.0230 0.0209 0.0187 0.0166 0.0146 0.0125

PHOTOS Corr. 0.0467 0.0429 0.0392 0.0352 0.0323 0.0293 0.0268 0.0234 0.0195 0.0157

Continuum Sub. 0.0007 0.0002 0.0001 0.0003 0.0004 0.0005 0.0006 0.0007 0.0007 0.0008

J/ψ 0.0001 0.0001 0.0002 0.0002 0.0002 0.0001 0.0001 0.0001 0.0000 0.0000

π0 0.0008 0.0004 0.0003 0.0002 0.0001 0.0001 0.0001 0.0000 0.0000 0.0000

γ 0.0030 0.0017 0.0010 0.0005 0.0003 0.0002 0.0001 0.0000 0.0000 0.0000

Same B Sec. 0.0068 0.0034 0.0015 0.0007 0.0002 0.0000 0.0001 0.0001 0.0002 0.0002

Upper Vertex Ds 0.0117 0.0081 0.0056 0.0038 0.0025 0.0016 0.0010 0.0006 0.0004 0.0003

Upper Vertex D 0.0089 0.0057 0.0035 0.0022 0.0012 0.0007 0.0004 0.0002 0.0001 0.0001

τ 0.0046 0.0036 0.0027 0.0020 0.0014 0.0010 0.0007 0.0005 0.0003 0.0002

ψ(2S) 0.0012 0.0012 0.0013 0.0013 0.0013 0.0013 0.0014 0.0014 0.0014 0.0015

Other Bckg 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Secondary Tags 0.0002 0.0003 0.0006 0.0008 0.0010 0.0011 0.0011 0.0012 0.0013 0.0013

B(b → ueν) 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0016 0.0016 0.0017 0.0018

b → ueν Shape 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0010 0.0010 0.0009

EID 0.0129 0.0116 0.0102 0.0087 0.0073 0.0063 0.0066 0.0074 0.0095 0.0097

Fake µ Tags 0.0004 0.0003 0.0001 0.0001 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001

Track Quality Eff. 0.0001 0.0001 0.0000 0.0000 0.0000 0.0001 0.0000 0.0001 0.0001 0.0000

Diagonal Cut Eff. 0.0007 0.0007 0.0005 0.0007 0.0003 0.0004 0.0004 0.0003 0.0002 0.0000

Veto Eff. 0.0006 0.0004 0.0003 0.0002 0.0002 0.0002 0.0001 0.0001 0.0001 0.0001

B Boost 0.0014 0.0012 0.0009 0.0009 0.0019 0.0010 0.0012 0.0016 0.0018 0.0011

Electroweak Rad. 0.0159 0.0138 0.0121 0.0100 0.0093 0.0084 0.0080 0.0068 0.0050 0.0031

B0 Mixing χ 0.0025 0.0017 0.0012 0.0008 0.0006 0.0004 0.0003 0.0002 0.0001 0.0001

∆(p) 0.0024 0.0018 0.0012 0.0009 0.0006 0.0004 0.0003 0.0002 0.0001 0.0000

Corrected Moment 2.1856 2.2419 2.3066 2.3923 2.4890 2.6003 2.7259 2.8720 3.0192 3.1972

Statistical Error 0.0112 0.0097 0.0090 0.0085 0.0082 0.0080 0.0078 0.0078 0.0079 0.0081

Systematic Error 0.0271 0.0216 0.0177 0.0144 0.0127 0.0111 0.0109 0.0106 0.0112 0.0107

Total Error 0.0293 0.0237 0.0199 0.0168 0.0151 0.0136 0.0134 0.0132 0.0137 0.0134

Table 7.2: Breakdown of corrections and errors on 〈E2
` 〉 at various lower lepton

energy cuts. All numbers are in GeV2.
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E` cut (GeV) → 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

Uncorr. Moment 0.1552 0.1396 0.1246 0.1084 0.0934 0.0791 0.0660 0.0535 0.0432 0.0336

Boost Corr. -0.0027 -0.0027 -0.0025 -0.0026 -0.0025 -0.0025 -0.0025 -0.0024 -0.0023 -0.0023

A&M Corr. 0.0003 0.0005 0.0006 0.0007 0.0007 0.0007 0.0006 0.0006 0.0005 0.0004

PHOTOS Corr. 0.0000 0.0005 0.0008 0.0010 0.0009 0.0008 0.0007 0.0006 0.0005 0.0004

Continuum Sub. 0.0003 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

J/ψ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

π0 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

γ 0.0006 0.0002 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Same B Sec. 0.0014 0.0006 0.0002 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

Upper Vertex Ds 0.0017 0.0009 0.0005 0.0003 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

Upper Vertex D 0.0014 0.0008 0.0003 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

τ 0.0005 0.0003 0.0002 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

ψ(2S) 0.0002 0.0002 0.0002 0.0002 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001

Other Bckg 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Secondary Tags 0.0003 0.0003 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

B(b → ueν) 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002

b → ueν Shape 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0000 0.0000

EID 0.0013 0.0010 0.0009 0.0008 0.0010 0.0011 0.0012 0.0011 0.0010 0.0010

Fake µ Tags 0.0001 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Track Quality Eff. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Diagonal Cut Eff. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Veto Eff. 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

B Boost 0.0001 0.0001 0.0001 0.0001 0.0000 0.0001 0.0001 0.0000 0.0000 0.0000

Electroweak Rad. 0.0003 0.0000 0.0001 0.0003 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000

B0 Mixing χ 0.0004 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

∆(p) 0.0003 0.0002 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Corrected Moment 0.1526 0.1374 0.1228 0.1068 0.0918 0.0775 0.0642 0.0516 0.0413 0.0316

Statistical Error 0.0021 0.0015 0.0013 0.0011 0.0010 0.0009 0.0009 0.0008 0.0008 0.0008

Systematic Error 0.0031 0.0018 0.0012 0.0010 0.0011 0.0012 0.0012 0.0011 0.0010 0.0010

Total Error 0.0037 0.0024 0.0017 0.0015 0.0015 0.0015 0.0015 0.0014 0.0013 0.0013

Table 7.3: Breakdown of corrections and errors on 〈(E` − 〈E`〉)2〉 at various lower

lepton energy cuts. All numbers are in GeV2.
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E` cut (GeV) → 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

Uncorr. Moment -0.0062 -0.0021 0.0008 0.0029 0.0041 0.0046 0.0046 0.0043 0.0038 0.0031

Boost Corr. -0.0015 -0.0014 -0.0014 -0.0013 -0.0012 -0.0011 -0.0010 -0.0009 -0.0008 -0.0007

A&M Corr. -0.0013 -0.0011 -0.0009 -0.0007 -0.0005 -0.0003 -0.0002 -0.0001 -0.0001 -0.0000

PHOTOS Corr. -0.0022 -0.0018 -0.0014 -0.0011 -0.0008 -0.0006 -0.0004 -0.0003 -0.0001 -0.0001

Continuum Sub. 0.0001 0.0001 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

J/ψ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

π0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

γ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Same B Sec. 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Upper Vertex Ds 0.0002 0.0002 0.0002 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

Upper Vertex D 0.0001 0.0001 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

τ 0.0002 0.0001 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

ψ(2S) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Other Bckg 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Secondary Tags 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

B(b → ueν) 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

b → ueν Shape 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

EID 0.0004 0.0005 0.0005 0.0006 0.0006 0.0005 0.0005 0.0004 0.0004 0.0004

Fake µ Tags 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Track Quality Eff. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Diagonal Cut Eff. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Veto Eff. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

B Boost 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Electroweak Rad. 0.0009 0.0007 0.0006 0.0004 0.0003 0.0003 0.0002 0.0001 0.0001 0.0000

B0 Mixing χ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

∆(p) 0.0001 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Corrected Moment -0.0099 -0.0053 -0.0020 0.0004 0.0020 0.0029 0.0032 0.0031 0.0028 0.0023

Statistical Error 0.0008 0.0007 0.0006 0.0006 0.0005 0.0005 0.0004 0.0004 0.0004 0.0003

Systematic Error 0.0010 0.0009 0.0008 0.0007 0.0007 0.0006 0.0005 0.0005 0.0004 0.0004

Total Error 0.0013 0.0011 0.0010 0.0009 0.0008 0.0008 0.0007 0.0006 0.0006 0.0005

Table 7.4: Breakdown of corrections and errors on 〈(E` − 〈E`〉)3〉 at various lower

lepton energy cuts. All numbers are in GeV3.
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E` cut (GeV) → 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

No TOF 0.0003 0.0003 0.0003 0.0003 0.0003 0.0006 0.0006 0.0003 0.0002 0.0003

No dE/dx 0.0037 0.0033 0.0029 0.0024 0.0018 0.0014 0.0015 0.0018 0.0024 0.0024

Low E/p 0.0001 0.0001 0.0003 0.0004 0.0006 0.0002 0.0003 0.0003 0.0004 0.0002

High E/p 0.0008 0.0008 0.0008 0.0007 0.0007 0.0007 0.0005 0.0003 0.0003 0.0003

CEID tightened 0.0027 0.0020 0.0012 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

EID 0.0046 0.0040 0.0033 0.0026 0.0021 0.0017 0.0017 0.0019 0.0025 0.0024

Table 7.5: Breakdown of electron ID systematic errors on 〈E`〉 at various lower

lepton energy cuts. All numbers are in GeV.

E` cut (GeV) → 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

No TOF 0.0010 0.0010 0.0011 0.0011 0.0012 0.0021 0.0021 0.0010 0.0008 0.0010

No dE/dx 0.0108 0.0101 0.0093 0.0081 0.0066 0.0055 0.0059 0.0072 0.0093 0.0095

Low E/p 0.0005 0.0007 0.0010 0.0014 0.0019 0.0009 0.0011 0.0013 0.0014 0.0007

High E/p 0.0025 0.0024 0.0024 0.0022 0.0021 0.0021 0.0017 0.0012 0.0012 0.0013

CEID tightened 0.0066 0.0050 0.0031 0.0008 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

EID 0.0129 0.0116 0.0102 0.0087 0.0073 0.0063 0.0066 0.0074 0.0095 0.0097

Table 7.6: Breakdown of electron ID systematic errors on 〈E2
` 〉 at various lower

lepton energy cuts. All numbers are in GeV2.
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E` cut (GeV) → 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

No TOF 0.0002 0.0002 0.0002 0.0002 0.0001 0.0000 0.0000 0.0001 0.0001 0.0001

No dE/dx 0.0004 0.0005 0.0006 0.0008 0.0010 0.0011 0.0012 0.0011 0.0010 0.0009

Low E/p 0.0003 0.0003 0.0002 0.0001 0.0001 0.0002 0.0002 0.0001 0.0001 0.0002

High E/p 0.0001 0.0001 0.0001 0.0001 0.0001 0.0000 0.0001 0.0001 0.0001 0.0001

CEID tightened 0.0011 0.0008 0.0005 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

EID 0.0013 0.0010 0.0009 0.0008 0.0010 0.0011 0.0012 0.0011 0.0010 0.0010

Table 7.7: Breakdown of electron ID systematic errors on 〈(E` − 〈E`〉)2〉 at various

lower lepton energy cuts. All numbers are in GeV2.

E` cut (GeV) → 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

No TOF 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

No dE/dx 0.0004 0.0004 0.0005 0.0006 0.0006 0.0005 0.0005 0.0004 0.0004 0.0004

Low E/p 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

High E/p 0.0001 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

CEID tightened 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

EID 0.0004 0.0005 0.0005 0.0006 0.0006 0.0005 0.0005 0.0004 0.0004 0.0004

Table 7.8: Breakdown of electron ID systematic errors on 〈(E` − 〈E`〉)3〉 at various

lower lepton energy cuts. All numbers are in GeV3.
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statistical error is independent of the systematic error, and therefore also to be added

in quadrature in the total error determination.

However, since each moment is calculated from the same spectrum, their errors are

all correlated. Before we can use multiple moments in the determination of the HQET

parameters, we need to quantatively determine the correlations between them. The

method for obtaining the correlation matrices given in Tables 7.9-7.18 is described

here.

To get the statistical errors and the correlations between two moments a and b,

we use a toy Monte Carlo. We first obtain a “varied” spectrum by rolling a new value

for each momentum bin according to the central value and statistical error of the

measured spectrum, and the differences δa and δb between a and b from the varied

spectrum and from the measured spectrum are calculated. The average δa and δb

from n = 10, 000 “varied” spectra are used to build the covariance matrix C(a, b):

C(a, b) =
1

n

n
∑

i=1







(δa)2
i (δa)i(δb)i

(δa)i(δb)i (δb)2
i






. (7.2)

The total systematic error on each moment is just the quadrature sum of the

individual systematic errors for that moment as reported in Tables 7.1-7.4.

The calculation of the covariance of the systematic errors on moments a and b is

similar in form to the method used for the statistical correlations. Instead of ran-

domly generating our “varied” spectra, we use each systematic variation as a “varied”

spectrum, and calculate the covariance matrix as described above. We include the

statistical errors in this method as just another “varied” spectrum, and therefore ob-

tain the total (systematic and statistical) covariance matrix. With this method, the
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0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

0.6 1.000 0.951 0.888 0.807 0.722 0.662 0.624 0.587 0.525 0.455

0.7 1.000 0.955 0.886 0.808 0.750 0.715 0.680 0.618 0.543

0.8 1.000 0.949 0.881 0.825 0.792 0.758 0.696 0.618

0.9 1.000 0.945 0.888 0.852 0.817 0.753 0.674

1.0 1.000 0.940 0.902 0.858 0.779 0.686

1.1 1.000 0.948 0.881 0.782 0.693

1.2 1.000 0.934 0.837 0.746

1.3 1.000 0.928 0.843

1.4 1.000 0.938

1.5 1.000

Table 7.9: Correlations between measurements of 〈E`〉 for various lower lepton en-

ergy cuts.

correlation of a and b due to any single variation is assumed to be 100%, but because

each of the variations will yield a different ratio of δa to δb, the total covariance

matrix will not 100% correlated.

We report the correlation matrices C(a, b) between various moments and lepton

energy cuts in Tables 7.9-7.16 below. The correlation matrix is related to the covari-

ance matrix by the relation

C(a, b) =

n
∑

i=1







(δa)2i
σ2

a

(δa)i(δb)i

σaσb

(δa)i(δb)i

σaσb

(δb)2i
σ2

b






, (7.3)

where σa =
√
∑n

i (δa)
2
i and σb =

√
∑n

i (δb)
2
i are the total errors on a and b.
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0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

0.6 0.996 0.939 0.871 0.790 0.713 0.658 0.619 0.578 0.515 0.447

0.7 0.966 0.996 0.944 0.874 0.802 0.749 0.713 0.672 0.608 0.535

0.8 0.918 0.968 0.996 0.941 0.878 0.827 0.792 0.751 0.685 0.610

0.9 0.850 0.915 0.962 0.996 0.944 0.892 0.854 0.811 0.744 0.666

1.0 0.773 0.847 0.906 0.954 0.996 0.941 0.900 0.848 0.766 0.676

1.1 0.716 0.794 0.857 0.906 0.948 0.995 0.941 0.868 0.768 0.681

1.2 0.682 0.763 0.830 0.880 0.921 0.959 0.995 0.923 0.824 0.735

1.3 0.650 0.735 0.804 0.855 0.891 0.913 0.953 0.996 0.918 0.834

1.4 0.592 0.679 0.749 0.801 0.825 0.834 0.880 0.949 0.998 0.934

1.5 0.522 0.606 0.675 0.727 0.743 0.756 0.802 0.880 0.951 0.999

Table 7.10: Correlations between measurements of 〈E`〉 (rows) and 〈E2
` 〉 (columns)

for various lower lepton energy cuts.

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

0.6 -0.651 -0.436 -0.163 0.132 0.274 0.323 0.310 0.301 0.299 0.299

0.7 -0.457 -0.369 -0.090 0.212 0.354 0.402 0.386 0.375 0.372 0.371

0.8 -0.285 -0.164 -0.011 0.287 0.421 0.468 0.449 0.439 0.436 0.434

0.9 -0.126 0.024 0.194 0.343 0.466 0.515 0.497 0.488 0.486 0.484

1.0 -0.003 0.164 0.340 0.482 0.461 0.511 0.487 0.477 0.474 0.473

1.1 0.066 0.240 0.422 0.569 0.557 0.488 0.465 0.463 0.466 0.459

1.2 0.122 0.304 0.496 0.657 0.657 0.607 0.513 0.511 0.514 0.507

1.3 0.171 0.363 0.570 0.747 0.768 0.752 0.687 0.624 0.624 0.619

1.4 0.214 0.409 0.624 0.808 0.860 0.876 0.842 0.805 0.758 0.752

1.5 0.242 0.434 0.647 0.827 0.899 0.920 0.908 0.893 0.869 0.820

Table 7.11: Correlations between measurements of 〈E`〉 (rows) and 〈(E` − 〈E`〉)2〉

(columns) for various lower lepton energy cuts.
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0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

0.6 -0.412 -0.407 -0.297 -0.163 -0.060 0.021 0.080 0.146 0.195 0.241

0.7 -0.507 -0.408 -0.286 -0.142 -0.030 0.058 0.123 0.196 0.250 0.301

0.8 -0.521 -0.436 -0.275 -0.124 -0.004 0.090 0.161 0.239 0.298 0.352

0.9 -0.486 -0.412 -0.279 -0.114 0.013 0.114 0.190 0.273 0.335 0.391

1.0 -0.461 -0.397 -0.288 -0.160 -0.033 0.073 0.154 0.242 0.310 0.371

1.1 -0.421 -0.362 -0.266 -0.163 -0.069 0.029 0.121 0.217 0.288 0.348

1.2 -0.334 -0.266 -0.169 -0.075 0.005 0.077 0.153 0.253 0.327 0.390

1.3 -0.180 -0.096 0.010 0.105 0.179 0.238 0.285 0.360 0.434 0.498

1.4 0.021 0.121 0.235 0.333 0.405 0.455 0.485 0.528 0.571 0.631

1.5 0.170 0.275 0.388 0.484 0.550 0.593 0.617 0.645 0.661 0.692

Table 7.12: Correlations between measurements of 〈E`〉 (rows) and 〈(E` − 〈E`〉)3〉

(columns) for various lower lepton energy cuts.

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

0.6 1.000 0.961 0.908 0.839 0.768 0.716 0.681 0.642 0.582 0.514

0.7 1.000 0.965 0.909 0.846 0.798 0.766 0.730 0.670 0.599

0.8 1.000 0.961 0.909 0.864 0.835 0.800 0.740 0.668

0.9 1.000 0.960 0.917 0.887 0.853 0.793 0.720

1.0 1.000 0.956 0.925 0.886 0.816 0.734

1.1 1.000 0.961 0.906 0.824 0.747

1.2 1.000 0.949 0.871 0.794

1.3 1.000 0.944 0.874

1.4 1.000 0.950

1.5 1.000

Table 7.13: Correlations between measurements of 〈E2
` 〉 for various lower lepton

energy cuts.
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0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

0.6 -0.581 -0.367 -0.093 0.201 0.340 0.387 0.373 0.364 0.361 0.360

0.7 -0.391 -0.286 -0.011 0.284 0.419 0.465 0.447 0.437 0.434 0.432

0.8 -0.227 -0.091 0.075 0.360 0.486 0.529 0.509 0.498 0.495 0.492

0.9 -0.079 0.083 0.264 0.421 0.533 0.576 0.556 0.547 0.544 0.541

1.0 0.031 0.208 0.396 0.548 0.538 0.580 0.555 0.545 0.541 0.538

1.1 0.096 0.279 0.473 0.631 0.631 0.572 0.548 0.543 0.545 0.537

1.2 0.145 0.335 0.538 0.707 0.718 0.678 0.594 0.590 0.591 0.584

1.3 0.188 0.385 0.598 0.779 0.810 0.801 0.744 0.688 0.686 0.680

1.4 0.224 0.420 0.638 0.823 0.881 0.900 0.872 0.839 0.797 0.790

1.5 0.248 0.440 0.654 0.834 0.910 0.935 0.926 0.914 0.894 0.850

Table 7.14: Correlations between measurements of 〈E2
` 〉 (rows) and 〈(E` − 〈E`〉)2〉

(columns) for various lower lepton energy cuts.

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

0.6 -0.406 -0.386 -0.269 -0.130 -0.023 0.062 0.125 0.194 0.246 0.294

0.7 -0.476 -0.376 -0.249 -0.102 0.013 0.103 0.170 0.245 0.301 0.353

0.8 -0.475 -0.387 -0.228 -0.076 0.043 0.138 0.209 0.289 0.348 0.403

0.9 -0.429 -0.351 -0.217 -0.057 0.068 0.167 0.242 0.325 0.387 0.443

1.0 -0.397 -0.326 -0.212 -0.085 0.038 0.141 0.220 0.306 0.373 0.432

1.1 -0.349 -0.280 -0.178 -0.071 0.023 0.117 0.204 0.296 0.364 0.423

1.2 -0.263 -0.186 -0.083 0.016 0.097 0.168 0.240 0.335 0.404 0.464

1.3 -0.118 -0.027 0.083 0.181 0.257 0.316 0.361 0.432 0.499 0.559

1.4 0.063 0.166 0.282 0.383 0.455 0.505 0.535 0.577 0.616 0.672

1.5 0.200 0.307 0.423 0.520 0.587 0.631 0.655 0.683 0.699 0.727

Table 7.15: Correlations between measurements of 〈E2
` 〉 (rows) and 〈(E` − 〈E`〉)3〉

(columns) for various lower lepton energy cuts.
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0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

0.6 1.000 0.848 0.673 0.475 0.342 0.289 0.271 0.268 0.266 0.261

0.7 1.000 0.846 0.659 0.523 0.468 0.443 0.438 0.435 0.429

0.8 1.000 0.850 0.725 0.669 0.639 0.630 0.626 0.616

0.9 1.000 0.900 0.842 0.803 0.788 0.781 0.769

1.0 1.000 0.939 0.905 0.892 0.885 0.871

1.1 1.000 0.968 0.947 0.934 0.924

1.2 1.000 0.977 0.962 0.952

1.3 1.000 0.984 0.972

1.4 1.000 0.986

1.5 1.000

Table 7.16: Correlations between measurements of 〈(E` − 〈E`〉)2〉 for various lower

lepton energy cuts.

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

0.6 0.222 0.340 0.332 0.288 0.260 0.242 0.234 0.229 0.227 0.224

0.7 0.388 0.370 0.385 0.360 0.347 0.342 0.346 0.354 0.362 0.368

0.8 0.437 0.476 0.452 0.450 0.454 0.463 0.477 0.499 0.517 0.533

0.9 0.381 0.467 0.522 0.526 0.542 0.561 0.583 0.616 0.644 0.669

1.0 0.385 0.493 0.589 0.650 0.669 0.683 0.701 0.730 0.751 0.773

1.1 0.394 0.509 0.621 0.707 0.757 0.776 0.781 0.799 0.815 0.835

1.2 0.434 0.550 0.663 0.755 0.813 0.845 0.851 0.854 0.859 0.871

1.3 0.451 0.565 0.679 0.772 0.833 0.871 0.889 0.897 0.892 0.895

1.4 0.453 0.567 0.680 0.776 0.838 0.879 0.905 0.924 0.924 0.917

1.5 0.452 0.566 0.681 0.778 0.843 0.887 0.917 0.940 0.948 0.946

Table 7.17: Correlations between measurements of 〈(E`−〈E`〉)2〉 (rows) and 〈(E`−

〈E`〉)3〉 (columns) for various lower lepton energy cuts.
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0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

0.6 1.000 0.942 0.900 0.838 0.774 0.711 0.657 0.592 0.538 0.490

0.7 1.000 0.972 0.925 0.868 0.811 0.759 0.697 0.645 0.600

0.8 1.000 0.979 0.940 0.895 0.850 0.796 0.749 0.708

0.9 1.000 0.986 0.958 0.923 0.878 0.837 0.801

1.0 1.000 0.990 0.966 0.931 0.896 0.865

1.1 1.000 0.991 0.966 0.938 0.911

1.2 1.000 0.990 0.969 0.945

1.3 1.000 0.992 0.975

1.4 1.000 0.993

1.5 1.000

Table 7.18: Correlations between measurements of 〈(E` − 〈E`〉)3〉 for various lower

lepton energy cuts.



CHAPTER 8

Interpretation and Conclusions

In this thesis a new measurement of the inclusive momentum spectrum for semilep-

tonic B-meson decays using events with a high-momentum lepton tag and a signal

electron in the full data sample collected with the CLEO II detector has been pre-

sented. Improvements in the understanding of background processes and optimized

electron-identification procedures have resulted in significant improvements in sys-

tematic uncertainties relative to the previous CLEO measurement [25].

8.1 Branching Ratio

We have used the normalization of the measured spectrum and an extrapolation for

0 < E` < 0.6 GeV based on a detailed model calculation constrained by data to

obtain a new measurement of the B semileptonic branching fraction, B(B → Xeν) =

(10.91 ± 0.09 ± 0.24)%, as described in Chapter 6. Fig 8.1 shows that this result

is in excellent agreement with other recent measurements at the Υ(4S) [49, 50] and

has better overall precision. These results have diminished the level of disagreement

between measurements made at the Υ(4S) and those from Z0 decays [51]. The

difference of this measurement and the measurement made by CLEO in 1995 [25]

172
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9 10 11 12 13 14
Branching Ratio (%)

CLEO ’95 (10.49 ± 0.46)%

Z0 Average (10.86 ± 0.35)%

BaBar ’02 (10.87 ± 0.35)%

Belle ’02 (10.90 ± 0.50)%

CLEO ’04 (10.91 ± 0.26)%

Figure 8.1: Measurements of the semileptonic branching ratio. The measurement

presented in this thesis is shown in red.

using the same tagging strategy as this thesis can be partially attributed to the

problem with the relative event selection efficiency described in Sect. 6.1.2. When

corrected for this effect, the 1995 measurement becomes 10.82%, within 0.3 total σ

of the result presented here.

For several years, the measured B semileptonic branching ratio has been below

the theoretical calculations [52]. These began with a niave expectation of B(B →

X`ν) ∼ 15%, which after inclusion of hadronic effects, becomes ∼ 12.5%. Possible

explanations of this discrepancy include

• larger than expected non-perturbative corrections increasing the width for b→

cc̄s transitions,
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• rates for flavor-changing-neutral current (FCNC) proceses, such as b → sγ,

b→ sg, or b→ sqq̄, that are larger than Standard Model predictions, and

• the intervention of new physics in B decay.

The first of these explanations, an increase in Γ(b → cc̄s) to compensate for the

“missing” rate left by the low semileptonic rate, would lead to an increase in the

number of charm quarks per B decay 〈nc〉, which was expected to be about 1.3. The

experimental value of this number, however, is already lower than this prediction, with

CLEO [53] measuring 〈nc〉 = 1.10 ± 0.05.1 . Thus, any mechanism that increases

the expected 〈nc〉 exacerbates the “charm counting” problem. Experiment seems

to rule out an enhancement of FCNC [55] as a solution, as measurements are in

agreement with Standard Model predictions. The third explanation, physics beyond

the Standard Model, is exciting but unlikely, as an effect large enough to resolve

both the semileptonic banching fraction and charm counting problems would almost

certainly have a noticeable signature in other aspects of b decays. There may be no

single dramatic explanation of this discrepancy. Indeed, since the alarm about these

problems was first sounded, measurements of both 〈nc〉 and the branching ratio have

lessened (but not eliminated) disagreement with theory.

8.1.1 The Semileptonic Rate

To obtain the semileptonic decay rate, we need three ingredients: the semileptonic

branching fraction measured here, the B-meson lifetime, and the branching frac-

1The LEP experiments give a consistent measurement of the number of charm
quarks per b decay at the Z0 of nc = 1.15± 0.06 [54]
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tion for B → Xu`ν. First, the small contribution from B → Xu`ν decays must

be subtracted from the measured branching ratio, as Eq. 2.31 requires the rate for

B → Xc`ν. We now encounter a small subtlety in the extraction of the B → Xc`ν

rate from the B → Xc`ν branching fraction. Because of isospin symmetry, we can

assume that the rates for both B+ and B0 are equal. The branching ratios are

not the same, however, since the lifetimes are not equal, τB+ = 1.542 ± 0.0016 6=

τB0 = 1.674 ± 0.0018 [10]. Since our analysis procedure does not discriminate be-

tween charged and neutral B’s, our measurement of the semileptonic branching ratio

is “charge-averaged,” and applies specifically to the proportions of charged-B and

neutral-B events produced at the Υ(4S). Taking this into account, the expression for

the rate is

Γ(B → Xc`ν) =
h̄

c

B(B → Xc`ν)

f+−τB+ + f00τB0

(8.1)

where f+− and f00 are the fractions of charged-B and neutral-B events at the Υ(4S),

respectively. Using the measured ratio of these fractions, f+−/f00 = 1.04± 0.08 [10],

and the constraint f+− + f00 = 1, we can obtain the rate Γ(B → Xc`ν) from charge-

averaged branching ratios measurements at the Υ(4S) from Eq. 8.1.

8.2 Moments, HQET Parameters, and |Vcb|

We have also used the measured spectrum to determine the moments of the electron-

energy spectrum in semileptonic B decays with minimum energies ranging from

0.6 GeV to 1.5 GeV (Chap. 7). The measured value for the mean energy with

Emin = 1.5 GeV/c, 〈E`〉1.5 = (1.7792± 0.0021± 0.0026) GeV, is in good agreement
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with the previous CLEO measurement of this quantity [56], (1.7810±0.0007±0.0009)

GeV. The earlier measurement was more precise because it used the entire inclu-

sive spectrum for semileptonic B decays, without a lepton-tag requirement. That

technique does not allow for measurements with smaller values of Emin, however,

because of the large contribution of secondary charm decays. While electron-energy

moments were not presented for the previous CLEO lepton-tagged measurement of

B(B → Xeν) [25], moment values computed from fits to that spectrum are consistent

with the current measurements.

Measurements of moments of different quantities have sensitivity to different re-

gions of phase space, and provide an ideal opportunity to test the description of

inclusive B decays provided by the HQET/OPE methodology. Using the approach

described in Chapter 2, expressions for many inclusive properties of B decays have

been derived [11, 19], including the moments2. of the lepton energy and recoil hadronic

mass in B → Xc`ν and of the photon energy in B → Xsγ.

Physical observables in HQET are expressed as expansions in ΛQCD/MB, with

new parameters emerging at each order. Two formulations of the HQET expansion

calculated to third order in ΛQCD/MB will be discussed in the following sections.

The first formulation discussed is the that of Bauer, et al. in the “pole-mass” scheme

presented in Ref. [11]. The second formulation discussed is that of Uraltsev, et al. in

2In what follows, I adopt a similar notation convention as used for the electron-
energy moments. From here on, the first moment of the hadronic-mass-squared spec-
trum in semileptonic B decays will be written as 〈M 2

X − M̄2
D〉 and the first moment

of the photon-energy spectrum for B → Xsγ decays will be written as 〈Eγ〉, with
subscripts denoting minimum lepton-energy and photon-energy cuts in GeV, respec-
tively.
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the “kinetic” scheme, presented in Ref. [19]. For both, expressions for the semileptonic

decay width and the moments of the various kinematic distributions are presented.

These expressions provide an excellent opportunity to constrain the non-perturbative

parameters using the several measured moments, and thereby test HQET and obtain

results for |Vcb|.

8.2.1 Results in the Bauer Formulation

There are several non-perturbative expansion parameters defined in the Bauer formu-

lation: Λ at order ΛQCD/MB, λ1 and λ2 at order (ΛQCD/MB)2, and six parameters

(ρ1, ρ2, T1, T2, T3, T4) at order (ΛQCD/MB)3. Values have been calculated for the

M (i)’s in Eq. 2.34 for each type of moment at various minimum energy cuts [11].

The parameter λ2 can be calculated from the B∗−B and D∗−D mass splittings:

λ2 =
m2
B∆mB −m2

D∆mD

2(mB − κ(mc)mD)
= (0.1255± 0.001)GeV 2, (8.2)

where ∆mB and ∆mD are the B∗ − B and D∗ − D mass splittings and κ(mc) =

(αs(mc)/αs(mb))/β0 ≈ 1.2 [57]. The uncertainty on λ2 shown is experimental only,

and is dominated by the B∗ − B mass splitting. Theoretical uncertainty is about

10%, but is small compared to other sources of uncertainty in the extraction of Λ and

λ1. The mass splittings also supply a constraint on the third-order parameters [57]:

ρ2 − T2 − T4 =
κ(mc)m

2
B∆mB(mD + Λ)−m2

D∆mD(mB + Λ)

mB + Λ− κ(mc)(mD + Λ)
. (8.3)

With assumptions about the (ΛQCD/MB)3 parameters, each moment defines a

constraint on HQET, expressed as a band in Λ−λ1 space. To this end, the widths of
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the bands presented in this section reflect the statistical and systematic uncertainties

in the moment measurements and the theoretical uncertainties in the expansion pa-

rameters. The third-order parameters T1−4 are set to zero and varied by (±0.5 GeV)3.

The ρ1 parameter is set to (0.5± 0.5)(0.5 GeV)3 to satisfy the constraint that ρ1 be

positive definite, as suggested by the vacuum-saturation approximation [57]. The ε

parameter denotes terms proportional to αs, and is varied by ±25%, corresponding to

the range αs(mb/2) to αs(2mb). The parameter ε2BLM , corresponding to corrections

of order α2
sβ0, is varied by 100%. The bands are calculated by scanning over a range

of values for Λ; for each Λ, several sets of Gaussian-distributed random numbers are

thrown, with variances appropriate to the parameters being varied. For each set of

random numbers, a value for λ1 is calculated using the varied parameters, Λ, and

Eq. 2.34. A mean µ and a variance σ are then calculated for λ1. The value of λ1 for

that particular Λ is taken to be µ±1σ, with the variance interpreted as the one-sigma

error on the mean.

The plots in Fig. 8.2 show our measured values of 〈E`〉 as a function of the min-

imum lepton energy cut and the HQET/OPE predictions for the lepton-energy mo-

ments in the Bauer formulation. The plot on the left shows the measurements and the

prediction, while the plot on the right shows the difference between the measurements

and the prediction. The values for Λ̄ and λ1 are constrained by 〈Eγ〉2.0 = 2.346±0.034

GeV [17] and our measurement of 〈E`〉1.5. The error bars on the data points represent

the combined statistical and systematic uncertainties of the measurements. There is

substantial correlation among the data values for the different Emin cases. The width

of the band is set by the uncertainty in the measurements of Λ̄ and λ1, variation of the
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Figure 8.2: Left: 〈E`〉 as a function of Emin. The points are data and the band is the

±1σ prediction in the Bauer pole-mass scheme [11]. Right: 〈E`〉data−〈E`〉HQET as

a function of Emin. The points are the data with the predicted moment subtacted,

and the band is the ±1σ prediction. Inputs for these plots were set by 〈Eγ〉2.0 [17]

and 〈E`〉1.5.
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third-order expansion parameters, and variation of the perturbative QCD corrections.

As can be seen in Fig. 8.2, there is an increasing disagreement as Emin is re-

duced between the measured mean energy and the value extrapolated with HQET.

These results have been obtained by using the PHOTOS algorithm [30] to correct

for final-state radiation. There is considerable uncertainty in this correction, and if

the prescription of Atwood and Marciano [48] were instead used, the disagreement

between our measurement and the HQET computation would be increased by 25%.

The difference between these two computations is the largest contribution to the

systematic uncertainty in the measurement of the mean energy.

Fig. 8.3 shows four bands in the Λ − λ1 space. Along with bands for 〈E`〉0.7

and 〈(E` − 〈E`〉)2〉0.7, bands for the difference of the mean 〈E`〉0.7 − 〈E`〉1.5 and the

difference in the variance 〈(E`−〈E`〉)2〉0.7−〈(E`−〈E`〉)2〉1.5 are shown to isolate the

information that is independent of the measurements of the moments with E` > 1.5

GeV. The width of the bands indicates the combined experimental and theoretical

uncertainties. As can be seen, the variance (band 2) and the difference in the variances

(band 4) are compatible with other measurements [56], whereas the difference in the

means (band 3) is the predominant source of disagreement between data and theory.

The HQET expansion parameters Λ, λ1,2, ρ1,2, and T1−4 are internal to the theory;

they depend on the particular renormalization scheme used in the calculation of the

HQET expansion. They are useful only to the extent that they can be used to extract

physical observables like decay rates and CKM matrix elements. To this end, values

of the expansion parameters obtained from moments measurements can be used in

Eq. 2.31 to extract |Vcb| from the B → Xc`ν decay rate.
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Figure 8.3: Bands in the Λ − λ1 plane from 〈E`〉 with E` > 0.7 GeV (band 1),

〈(E` − 〈E`〉)2〉 with E` > 0.7 GeV (band 2), 〈E`〉1.5 − 〈E`〉0.7 (band 3), and 〈(E` −

〈E`〉)2〉0.7−〈(E`−〈E`〉)2〉1.5 (band 4). The widths of the bands reflect the combined

experimental and theoretical uncertainties. These bands were calculated with the

Bauer pole-mass formulation [11].
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|Vcb| in the Bauer Formulation

We need values for the HQET expansion parameters before we can extract |Vcb|

from Eq. 2.31. As described in Sect. 8.2, with assumptions about the third-order

parameters a moment defines a band in Λ− λ1 space. If two moments measurements

admit a solution for Λ and λ1, these can then be used in Eq. 2.31 to extract |Vcb|.

In the pole-mass scheme, the moment 〈Eγ〉 is especially useful because its expres-

sion is independent of λ1, so it directly yields a value of Λ. Using the previously defined

values for the other expansion parameters, the CLEO measurement of 〈Eγ〉2.0 yields

the result Λ = 0.33 ± 0.07 GeV, and the CLEO measurement of 〈M 2
X − M̄2

D〉1.5 =

0.251 ± 0.066 GeV2 [14] combined with this Λ gives λ1 = −0.236 ± 0.071 GeV2

(see Fig. 8.4). The quoted errors on Λ and λ1 are from the measurement uncer-

tainties of the moments only; in this section we do not quote uncertainties on Λ

and λ1 from the other expansion parameters. We will account for these uncertain-

ties only in the determination of |Vcb| to avoid double-counting them. The previous

CLEO measurement of the B semileptonic branching ratio [25] corrected for the small

B → Xu`ν contribution, B(B → Xc`ν) = 10.39 ± 0.46, gives the semileptonic rate

Γ(B → Xc`ν) = 4.27± 0.20× 10−14 GeV. Plugging these inputs into Eq. 2.31 gives

|Vcb| = (4.05± 0.10± 0.06± 0.19)× 10−2, (8.4)

where the errors are from the measurements of Γ(B → Xc`ν), the measurements of

Λ and λ1, and the uncertainty of the ρ’s, T ’s, and αs, respectively.

The measurement of the B semileptonic branching ratio presented in this thesis

gives us better information about the semileptonic rate that can be used to improve
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Figure 8.4: Bands in the Λ− λ1 plane for 〈Eγ〉2.0 (blue) and 〈M 2
X − M̄2

D〉1.5 (red).

Widths of bands represent measurement uncertainty on the moments.
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the precision of our determination of |Vcb|. After subtracting B(B → Xu`ν) = 0.18±

0.04% [34] from our measured branching ratio, we determine that the B → Xc`ν

decay rate is Γ(B → Xc`ν) = 4.40 ± 0.16 × 10−14 GeV. When input into Eq. 2.31

with the Λ and λ1 from 〈M2
X − M̄2

D〉1.5 and 〈Eγ〉2.0 given above, we get

|Vcb| = (4.12± 0.08± 0.07± 0.19)× 10−2, (8.5)

while the new measurement increases the value of |Vcb|, it remains consistent within

the experimental uncertainty.

The electron-energy moments reported in this thesis give us another set of con-

straints on HQET. When combined with 〈Eγ〉2.0, the first electron-energy moment

〈E`〉1.5 [56] gives results consistent with Eq. 8.5. In principle, the moment 〈E`〉0.7

should be more desirable theoretically as it is more inclusive, covering more than

twice as much phase space than 〈E`〉1.5. Thus, we expect it to be less apt to run

afoul of the quark-hadron duality assumption. The bands from 〈E`〉0.7 and 〈Eγ〉2.0

are shown in Fig. 8.5. With these moments, we obtain λ1 = −0.05 ± 0.12 GeV2.

Solving Eq. 2.31 gives

|Vcb| = (4.19± 0.08± 0.08± 0.20)× 10−2. (8.6)

It is interesting here to note that while the values for λ1 given by 〈E`〉0.7 and 〈M2
X −

M̄2
D〉1.5 for the value of Λ determined by 〈Eγ〉2.0 differ by a fair amount, values of |Vcb|

given by these parameters agree well within quoted uncertainties.

A troubling situation occurs, however, if we use only moments measured in this

thesis, namely 〈E`〉0.7 and 〈(E`− 〈E`〉)2〉0.7 = 0.1374± 0.0024 GeV2, we get bands in

the Λ−λ1 plane as shown in Fig. 8.6. Since the bands do not cross, we cannot extract
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Figure 8.5: Bands in the Λ− λ1 plane for 〈Eγ〉2.0 (blue) and 〈E`〉0.7 (red). Widths

of bands represent measurement uncertainty on the moments.
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Figure 8.6: Bands in the Λ− λ1 plane for 〈E`〉0.7 (blue) and 〈(E` − 〈E`〉)2〉0.7 (red).

Widths of bands represent measurement uncertainty on the moments.
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meaningful solutions for Λ and λ1, raising serious concerns about the applicability of

HQET/OPE, at least as formulated by Bauer et al.

8.2.2 Results in the Uraltsev Formulation

The Uraltsev formulation [19] uses different nomenclature for the HQET expansion

parameters. Rather than Λ, the quark masses mb and mc are used. In place of λ1 and

λ2 are the µ2
π and µ2

g first introduced in Chap. 2. By invoking only the heavy-quark

parameters relevant to inclusive decay rates, the number of third-order parameters

is reduced from six to two: ρ3
D and ρ3

LS. These parameters are related to the Bauer

formulation parameters by the following relations, valid up to O(αs) [58]:

µ2
π = −λ1 −

T1 + 3T3
mb

; (8.7)

µ2
g = 3λ2 +

T3 + 3T4
mb

; (8.8)

ρ3
D = ρ1; (8.9)

ρ3
LS = 3ρ2. (8.10)

Similar to the Bauer formulation, the parameters µ2
g and ρ3

LS are constrained by

meson mass splittings. For the fits that follow, we use µ2
g = (0.35± 0.07) GeV2 and

ρ3
LS = (−0.15± 0.045) GeV3, as suggested in Ref. [19].

Moments for the lepton-energy and hadronic-mass-squared distributions in the
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Uraltsev formulation are related to these expansion parameters by the expression [19]

M = V +B(mb − 4.6 GeV) + C(mc − 1.2 GeV)

+ P (µ2
π − 0.4 GeV2) +D(ρ̃3

D − 0.1 GeV3) (8.11)

+ G(µ2
g − 0.35 GeV2) + L(ρ3

LS + 0.15 GeV3) + S(αs − 0.22),

where the coefficients V,B, C, P,D,G, L, and S have been calculated for various min-

imum lepton-energy cuts and presented in tables in Ref. [19]. They have also been

obtained as FORTRAN functions from the authors. The new parameter ρ̃3
D is related

to ρ3
D by ρ̃3

D ' ρ3
D − 0.1 GeV3. Expressions for the photon-energy moments were not

available at the time of this writing.

The plot in Fig. 8.7 show our measured values of 〈E`〉 as a function of the minimum

lepton energy cut and the HQET/OPE predictions for the lepton-energy moments in

the Uraltsev formulation. To make these plots, we need assumptions about mc and

ρ̃3
D. For the rest of this section, we will use mc = (1.2± 0.02) GeV, ρ̃3

D = (0.1± 0.03)

GeV3. We will also use αs = 0.22± 0.07.

|Vcb| in the Uraltsev Formulation

With the assumptions about mc and ρ̃3
D given above, we can obtain bands in the

space of mb and µ2
π. The parameters µ2

g and ρ3
LS are set to their previously defined

values. Fig. 8.8 shows the bands given by 〈E`〉 and 〈(E` − 〈E`〉)2〉 for lepton-energy

cuts Emin = 0.6, 0.9, 1.2, and 1.5 GeV. As in Sect. 8.2.1, the width of each bands

represents only the measurement uncertainty for the moment defining that band;

uncertainties in the other expansion parameters will be determined in the calculation
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Figure 8.7: Left: 〈E`〉 as a function of Emin. The points are data and the line is the

prediction in the Uraltsev formulation. Right: 〈E`〉data − 〈E`〉HQET as a function

of Emin. The points are the data with the predicted moment subtracted. Inputs for

these plots were set by 〈E`〉0.6 and 〈(E` − 〈E`〉)2〉0.6. The error bars on the points

in both plots represent the measurement uncertainty of the moments.
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of |Vcb| only.

In the Uraltsev formulation, |Vcb| is given by

|Vcb|
0.0417

=

( BSL
0.105

)1/2 (
1.55 ps

τb

)1/2

×(1−4.8 [B(B → Xu`ν)− 0.0018]) · [1 + 0.3(αs(mb)− 0.22)]

×[1−0.66 (mb − 4.6 GeV) + 0.39 (mc − 1.15 GeV) (8.12)

+0.013 (µ2
π − 0.4 GeV2) + 0.09 (ρ3

D − GeV3)

+0.05 (µ2
g − 0.35 GeV2)− 0.01 (ρ3

LS − GeV3)].

The values for mb and µ2
π from the bands in Fig. 8.8 are given in Table 8.1, as well

as each corresponding |Vcb| calculated from Eq. 8.12. As can be seen from Table 8.1,

Emin (GeV) mb (GeV) µ2
π (GeV2) |Vcb| × 102

0.6 4.583 ± 0.038 0.769 ± 0.092 4.32± 0.08± 0.11± 0.16

0.9 4.608 ± 0.021 0.648 ± 0.048 4.25± 0.08± 0.06± 0.15

1.2 4.636 ± 0.018 0.539 ± 0.034 4.16± 0.08± 0.05± 0.15

1.5 4.666 ± 0.020 0.456 ± 0.029 4.08± 0.07± 0.05± 0.15

Table 8.1: Solutions for mb, µ
2
π, and |Vcb| in the Uraltsev formulation from 〈E`〉 and

〈(E`−〈E`〉)2〉 with various lepton-energy cuts. The first quoted error on |Vcb| is from

the measurement uncertainties of BSL and τB, the second is from the measurement

uncertainties of the moments, and the third is from uncertainties in mc, µ
2
g, ρ

3
D, ρ

3
LS ,

and αs.

over the range of lepton-energy cuts mb varies by about 2σ and µ2
π varies by about

4σ, while |Vcb| is more consistent, varying within a bit more than 1σ.
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Figure 8.8: Bands in mb−µ2
π space of the Uraltsev formulation determined by 〈E`〉

(blue) and 〈(E` − 〈E`〉)2〉 (yellow) with lepton-energy cuts of 0.6, 0.9, 1.2, and 1.5

GeV, as indicated by the title of each plot. The width of each band represents the

measurement uncertainty of the moment.
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while the expansion parameter µ2
π varies considerably, the extracted values for mb

and |Vcb| remain fairly consistent.

8.3 Conclusion

The the recent measurements of the branching fraction from this and other exper-

iments [49, 50] have led to an increase in the world average relative to its value a

few years ago, reducing the discrepancy between data and theory from about 20% to

about 11%. While still in disagreement with theory, it is becoming increasingly prob-

able that the discrepancy will be resolved within the current theoretical framework

of QCD.

As mentioned before, the non-perturbative expansion parameters have no literal

physical meaning, and their values can be different for different formulations of HQET.

However, in a sensible theory they should be internally consistent; different combina-

tions of moments should yield similar values of these parameters.

A picture of relative consistency appears if we restrict ourselves to only looking

at moments measurements with high minimum-energy cuts in the Bauer formulation

[56, 14]. But when using such moments, one should proceed with caution. As the

minimum-energy cuts rise, so too does the danger that an insufficient fraction of

phase space is being probed to satisfy the quark-hadron duality assumption. If we

are to believe that the consistency presented by the high energy-cut moments is real

and quark-hadron duality is not in peril with these measurements, it is reasonable

to expect the picture will remain consistent if we use moments with lower energy
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cuts. What has arisen, however, is quite the opposite. Whereas combination of the

moments 〈Eγ〉2.0, 〈M2
X − M̄2

D〉1.5, and 〈E`〉1.5 all give solutions consistent with each

other, the combination of 〈Eγ〉2.0 and 〈E`〉0.7 gives a value for λ1 that is different

by about 2.5σ (if uncertainties on the (ΛQCD/MB)3 and perturbative corrections are

included). One could say that this is not so bad, since the values of |Vcb| one obtains

with these disparate λ1’s still are well within errors, but the situation seems to fall

apart if one tries to use the combination of two moments that have the smallest chance

of trouble with quark-hadron duality, 〈E`〉0.7 and 〈(E`−〈E`〉)2〉0.7. In this case, we do

not even get a solution! If in desperation we take the “distance of closest approach”

of the two bands in Fig. 8.6 as a “solution”, we get Λ ≈ 1.0 GeV and λ1 ≈ −0.6

GeV2, giving a |Vcb| ≈ 0.047, values far away from those given by the high energy-cut

moments.

The Uraltsev formulation appears to give a more consistent representation of

HQET; while internal consistency still seems to be an issue, as it was with the Bauer

interpretation, we can obtain reasonable solutions for 〈E`〉 and 〈(E` − 〈E`〉)2〉 for

all of our energy cuts, and the determined values of |Vcb| are all within errors. We

note here that the authors of Ref. [19] have expressed wariness about the accuracy of

theoretical expressions for moments with high lepton-energy cuts; they suggest that

one use energy cuts no higher than 1.2 GeV.

There are several possible explanations for the observed inconsistency within the

Bauer formulation of HQET between the parameters extracted from our different

energy-moment measurements. In light of the sizable disagreement between the PHO-

TOS and Atwood/Marciano treatments of electroweak radiation, we cannot exclude
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an error in this correction that is outside of the quoted systematic uncertainty, al-

though it seems unlikely. Neither does quark-hadron duality appear to be causing this

inconsistency, since we run into trouble with our most inclusive moments. More likely

is a problem with the specific HQET/OPE implementation or incorrect assumptions

about the unknown third-order parameters.

The next step in testing HQET will be to perform a comprehensive fit, including

correlations, of all published CLEO moments [17, 14, 56], the electron-energy mo-

ments in this thesis, and new measurements of the recoil hadronic mass moments in

B → Xc`ν [16] with minimum lepton-energy cuts Emin ≥ 1.0 GeV. With this rather

large pool of moments measurements to draw from, the plan is to place constraints

not only on mb and µ2
π (or Λ and λ1), but also on the (ΛQCD/M)B)3 parameters. By

leaving all the non-perturbative parameters free in the fit, one can determine if any

of the HQET/OPE formulations, including the different mass schemes presented by

Bauer et al. [11] and the kinetic mass scheme of Uraltsev et al. [19], can accommodate

all of the data. We are currently building the machinery to perform this fit, and hope

to have results by early summer 2004.
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