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Abstract

We deal with an example of overlapping resonances; namely,
a system of three particles in which one of the particles can
form a two-particle resonance with either of the other two.
There have been claims that overlapping two-particle resonances
can cause an enhancement in the three-particle mass spectrum,
and part of the motivation for this work was to investigate
such a possibility. We show that when the calculations are
done correctly and the results given the proper interpretation,
the enhancements of previous models do..not appear. We con-
clude, therefore, that enhancements in the three-particle mass
can_not be caused by overlapping two-particle resonances.

In Section I we déscribe The experimental procedure ol making
resonance cuts, and we discuss various choices for the defi-
nition of cross sections for resonance production. We treat
both the case of a single final-state resonance and the case
of overlapping final-state resonances.

In Section II we discuss overlapping resonances in the Lee
model and in other static models. The Lee model is of par-
ticular interest because 1t presents the overlapping resonance
problem within the context of a completely soluble field
theory, and the static kinematics are useful for gaining un-
derstanding of some aspects of the problem.

In Section III we develop a nonstatic isobar model for
describing overlapping final-state resonances, and we give
two examples: a 301 system in which two of the I's are identical,
and a KIII system containing no identical particles and two
overlapping resonances. We compare our model in which the
resonances are treated coherently with the simpler model (from
a calculational point of view) in which the resonances are
treated incoherently. We find that there is not much dif-
ference between the two models in their predictions for the
three-particle mass spectrum, but there is a considerable dif-
ference in their predictions for some differential cross sec-
tions - particularly for some angular distributions (in the
incoherent model the presence of the second resonance 1s ig-
nored in these differential cross sections). We feel that co-
herence should be taken into account when fitting the data, and
that our form of the coherent model is reasonably simple to
work with when performing calculations.

For all of our models we consider resonance projections
which treat the resonances as though they were stable particles,
and we get reascnably good approximations to the coherent
model for the three-particle mass spectrunm.

Amado has suggested that a product form for the scattering
amplitude is somehow more fundamental than the linear form upon
which our isobaric model and our approximations to the Lee model
are based. We consider this point and our conclusion is that
s0 long as the two-particle interactions can be described as
resonances, an isobar model is probably adequate for treating
overlapping two-particle interactions.
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INTRODUCTION

In this work we will be dealing with an example of
overlapping resonances; namely, a system of three pseudoscalar
" mesons in which one of the particles can form a two-particle,
spin-one resonance with either of the other two. Experimen-
tally such systems are usually found as a subsystem for a
final state in a meson-nucleon production-reaction, and exper-
imental data are becoming available with good enough statis-
tics to allow a detailed study of such systems. Two cases
of particular interest are the 3 system with two identical
II's either of which can form a p with the third I, and the
charged K-II-II system which contains the appropriate gquantum
numbers for one p and (at least) one X¥. Much of the interest
in these particular systems comes from the fact that there
are experimentally observed enhancements in the three-particle

mass spectrum for both cases near the overlap threshold,

and one of the motivations for this work was to investigate
the possibility that such enhancements could be caused merely
by the resonance overlap.

In theoretical models final state resonances are often
treated as though they were stable particles. If there are
overlapping resonances in the final state, thé resonance—stable
particle projection is made for each resonance and the different
amplitudes are added incoherently. In some cases the dynamics
are such that one resonance term is considerably enhanced
relative to another, and in other cases the presence of iden-

tical particles or some symmetry such as isotopic spin or SU(3)
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can be used to fix the relative magnitude and phase of the dif-
ferent resonance terms in the amplitude. Reducing the number of
particles in the final state through resonance projections
simplifies the final state kinematics considerably so that the
calculation of cross sections is often made trivial, and trea-
ting different resonance terms in the amplitude as incoherent
means that symmetry predictions for the parts of the amplitude
lead to symmetry predictions for the cross sections as well. In
Section IIT below we develop a model for such an overlapping
resonance system which can be compared directly with data, and
within the context of this model we discuss the validity of
resonance approximations and projections.

" Resonances such as the p and the K¥ can not be observed
directly but can only be inferred from enhancements in the appro-
priate two-particle mass spectra and from various angular dis-
tributions and sélection rules. In 3Zection I we discuss the
resonance-cut procedure used by experimentalists which involves
selecting‘an event only if it has a two-particle mass near the
resonance mass. The reason for such cuts is to suppress non-
resonance events relative to resonance events. We discuss the
relationship between cross sections based on these resonance
cuts and what might be termed resonance cross sections. This
section is primarily a background for the later sections.

In Section II we discuss a form of the Lee model which
includes a thrée—particle final state with two overlapping res-
onances. We consider this model for the following three reasons:

it is an exactly soluble field thsory containing the problem
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of interest, Chen-Cheung and Sommerfieldl (C&S) found that either
making a resonance projection or using a resonance cut led to an
anomalous enhancement in the three-particle mass spectrum (see
Fig. la), and the model is one of the cases cited by Amado2 in
which overlapping resonances appear more naturally in the ampli-
tude as a product rather than as a sum (as shown in Appendix B
resonance projections make sense when the amplitude is written as a
linear sum of the resonance terms). We find that C&S made some
errors in their derivation of the resonance projection and in
their interpretatipn of the cross section based on their res-
onance cut, and that when these errors are corrected no enhance-
ments occur. We show that the production process is well

3

approximated by a Born approximation- and we discuss Amado's
conjecture with respect to this result. We end this section by
introducing a model which is a simplification of the Born
approximation in that the production process is replaced by a
point vertex and all information concerning the initial state is
removed except for the total energy so that we are left with a
model which only contains final state interactions which arise
from the coherent sum of the two resonance terms. We calculate
effective cross sections for this model and we find that the
resonance-projection cross section and the resonance-cut cross
section have essentially the same structure relative to the
total cross section as they had in the Lee model and its Born
approximation. We interpret this result as an indication that

the mode of production of the three-particle system is not

important when one is interested in studying the validity of
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a resonance projection or the interpretation of a resonance cut.

In Section IIIA we derive a nonstatic model which is essentially
a relativistic generalization of the final model of Section II.
Here the only evidence of the origin of the system is the
three-particle spin and parity (J™) and the three-particle mass
(M). We develop the model using the helicity framework of
Wicku because it lends itself quite well to the treatment of
overlapping resonances. Since dynamiéal approximations usually
involve orbital angular momenta, we use McKerrell® to relate the
helicity framework to the fully relativistic "canonical" frame-
work given by MacFarlane.6 We write down amplitudes for three-
particle final states with either two or three overlapping two-
particle resonances, and we put the corresponding effective
cross sections into a form in which there remain: only two
nontrivigl integrations with the variables of integration
given by the usual Dalitz-plot variables. We also write down
a resonance approximation within the framework of our model.

In Section ITIB we consider a system with overlapping
resonances caused by a particle forming a resonance with either
of two identical particles; specifically we consider the 31

system referred to above. We first consider a simplified ver-

sion in which the p is taken to have spin J ="' 0 and the JN is
taken to be 0 . We consider this zase because our model then
7

reduces to that of Chang' who claimed to have found an enhance-
ment in the 31 mass in the A1(1080) region. We repeat his cal-
culations and find no enhancement cnd we conclude that his cal-

culation was in error. Next we give the p its correct spin-
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parity , J7 is chosen to be l+, and each relative p-I system
is taken to be in a relative s-wave. These are the input for
the model treated by Gleeson and Meggs8’9 who alsco claimed to
have found a 3i enhancement near the A;. We find no enhance-
ment for the total cross section, and we show that their en-
hancement in one case8 was caused by an invalid approximation
and in the other9 by an incorrect interpretation of the reso-
nance-cut cross section.

In Section IIIC we consider an example of a system with
overlapping resonances but no identical particles, the K-II-I
system referred to above. For conveniencé we simplify on reality
slightly by taking the p and the K¥ spin-parity to be given
by 0t. Here the relative magnitude and phase of the two
resonance terms in the amplitude are arbitrary. We calculate
cross sections for various choices of these parameters inclu-
ding those predicted by SU(3) assuming the three-particle sys-
tem has the internal quantum numbers df a K.lo

In our examples of Sections IIIB and IIIC we find that the
differential cross sections for the two-particle mass and one of
the observable angular distributions for the model are quite
different from the same quantities calculated for a model in
which the effects of the second resonance are ignored. We also
find that the resonance projection gives a reasonably good
approximation to the total cross section. Our answer, therefore,
to the question as to whether or not resonances can be treated
as thougn they were particles is that it depends on the par-

ticular eppiication.
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In Section IIID we rewrite our amplitude in terms of di-
rectly observable quantities, and in so doing we arrive at the
form of the amplitude used by two groups of experimentalistsll’12
for studying the KII system near the overlap threshold. The
form of the amplitude derived in this section 1s much more
cumbersome to work with in calculating cross sections than
the form we have used in the previous sections. It is hoped
that the demonstrated equivalence of the amplitude written
in terms of experimental observables to a form which is much
better suited for calculations will prove useful in future
experimental analyses.

Lovelacel3'has suggested that the Veneziano modellLl treats
the resonance overlap differently from the way it is treated
in isobaric models such as the one we use. However, Bogutang
hés reproduced all of Lovelace's results using an isobaric
model, and we find that near the overlap, Lovelace's ampli-
tude can be written as an isobaric model amplitude times a
slowly varying form factor.

Our contclusions are that overlapping two-particle resonances
can not cause enhancements in the three-particle mass spec-
trum, and that although our models are far too simple to
provide a complete description of a three-particle system

containing overlapplng resonances, the models at least pro-

vide a reasonable reference.



SECTION I: Resonance Cuts and Resonance Cross Sections

We start out this section by considering a situation in
which we have a three-particle system dominated by a single
two-particle resonance. One makes a resonance cut for such a
system by accepting (rejecting) an event if the appropriate two-
particle mass is inside (outside) an interval [m¥-xI', m¥+c T ]
where m¥ is the mass corresponding to the peak of the resonance
distribution, T is (approximately) thé full width at half max-
imum of the distribution, and k and k” are to be determined.
There are conflicting conditions to be met in choosing k and k~:
if the selection region is small the total number of events will
be small so that the statistics will suffer but the probability
that the event is actually a resonance event will be large
since the ratio of resonance to background will be high, while
if the selection region is larger more events will be iIncluded
but the ratio of resonance to background will decrease. To
illustrate this, consider that the background is incoherent to
the resonance production and constant at about 10% of the max-
imum of the resonance, and assume that I'/m¥<<1l and that the
resonance has j = 0 so that the mass spectrum for the resonance
is well approximated by a Lorentzian in the mass, and finally,
assume that the kinematics are such that in pérforming the
final integral over the resonance mass there is a negligible
effect from letting the limits go to *«, Then, for x = k7 = 1/2
we will be including 1/2 of all the resonance events, and the
ratio of resonance to background is 5:1 at the end points
and about 7.7:1 for the cross sections; for k = k’= 1 we

will be including about 2/3 of all resonance events, and



the ratio of resonance to background will be 2:1 at the end
points and the ratio of the cross sections will be about 5:1.
As I'/m* increases and for j # 0, the resonance mass spectrum
will no longer be a symmetric distribution in the mass so that
k and ¢k~ will no longer be taken as equal. Generally one

uses a selection region with a width of about 2T.

A similar procedure to the above can be used to suppress
resonance events; for example, N¥ cuts are often made when
studying the final state meson systems in meson-nucleon pro-
duction reactions. Another method used to suppress N¥ pro-
duction is to make a cut on the momentum transfer to the nu-
cleon since there is an observed suppression of N# production
for small momentum transfers.,

When there are overlapplng resonances, resonance cuts
such as those described above can be made and may be useful
in suppressing nonresonant background, but the interpretation
of the results of such cuts is more model dependent than for
the single resonance case. If the final state contains two
identical overlapping two-particle resonances, the cut is most
naturally defined as selecting an event if either of the ap-
propriate two-particle masses lie in some designated region.
As we will see in Section III, the fact that the second reso-
nance is coherent to the first distorts the shape of the
two-particle mass ¢gistribution relative to the single reso-
nance case. There is also a shape-distortion in the two-par-
ticle mass spectrum relative to the single resonance case

when there are nonidentical overlapping resonances.



One of the applications for two-particle resonance cuts
in three-particle states such as we have been considering is
to look at the three-particle mass spectrum in whigh on;y the
selected events are included. If there is a three-particle
resonance whose decay is dominated by the two-particle rescnance,
the three-particle resonance peak 1is generally more pronounced
for the selected events than for the uncut ses..of events.

Care must be taken when interpreting such curves when there
are overlapping two-particle resonances since we will see that
a resonance cut can introduce structure which might be inter-
preted as a three-particle resonance. In the example we dis-
cuss, the structure does not occur until the width of the
selection region is decreased to far below that which any
experimentalist would choose, but there is at least one case
on record in which a resonance was discredited partly because
of arguments concerning structure created by resonance cuts.15
The case involved the overlap of three p bands in a 3 state.
This three-band overlap is analogous to the two-band overlap
in the static models treated in Section II, and the structure
introduced is more extreme than in the cases we will be dis-
cussing.

A cross section (or a three-particle mass distribution)
calculated on the basis of the events in the selection region
is not really a resonance-production cross section since it
includes some nonresonant background and it does not include

some resonance events. In correcting for these effects when there

is only a single resonance, one uses some model for the back-

ground and a modified Lorentzian for the resonance mass distri-
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bution assuming the resonance and background can be taken as
incoherent. When there are overlapping resonances the pro-
cedure is not so well defined. If the resonances are not iden-
tical and if one . wants a resonance-production cross section
for only one of the resonances, then at some stage one must
treat the two resonances as though they were incoherent. One
possibility is to treat the two resonances as incoherent from
the beginning to the extent that the data is fit using inco-
herent individual resonance terms with the interference term
included somehow in the background. One reason for doing this
may be that the models experimentalists have used which treat
the different resonances coherently are very cumbersome to
work with. We feel that in fitting the data the resonances
should be kept coherent, and one of the motivations of this
thesis is to provide models for doing this which are easy to
calculate with. If one wants a number for the resonance-
production cross section for only one of the resonances, we
feel that the best way to calculate this is first to calculate
the total resonance-production cross section keeping the two
terms coherent. Then one calculates the fraction of this total
which represénts the incoherent production of the desired
resonance using a model like the one in Sectign ITT. When the
two resonances are identical one proceeds much as before in
that one first calculates a total resonance-production cross
section using a model which best fits the data. There is-an
ambiguity as to how one should proceed at this point: one

could call this cross section the resonance cross section, but
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by analogy with the nonidentical resonance case it would seem

that we should
interference of
The correct
section depends
reason might be
in which the tw
were a stable p
theoretical res
Section III and
order term in T
definition can
case. For the
ference in the
the definition
point is that t
definitions and

resonance selec

subtract out a proportion associated with the
the two resonances.

definitiqn of the resonance-production cross
upon the reason one wants such a number. One
in order to make some comparisons with a model
o-particle resonance is treated as though it
article. Then the appropriate choice is a
onance approximation such as that discussed in
Appendix B which is essentially the lowest
/m¥ for either of the above definitions. This
also be used for the nonidentical resonance
examples we work out there is very 1little dif-
numerical results for the various choices for
of the resonance cross section. The important
here 1s a difference between any of these

the cross section based only on events in a

tion region.
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SECTION II: Overlapping Resonances in Static Models

A. Background on Static Models

A static model is one in which some of the particles obey
relativistic kinematics while others are treated in their
static limit. In terms of a particle's three-momentum P and

its mass m the particle's energy p°® is given by
p° = [B.B + rr12]1/2 =m+ p.p/(2m) + ... . (1)

The static limit is obtained by keeping only the first term on

the far right hand side of (1) so that the energy hecomes de-

torcl o b vest mEET

coupled from the three-momentum and is constant. The appli-
cability of the static limit in physical processes in particle
physics is limited to a few special cases such as low energy
pion-nucleon scattering where taking the nucleon as stafic is
equivalent to ignoring the nucleon recoil. However, many of
the effects of interest to us here occur in the static models
as well as in the more physical nonstatic models, and because
the static kinematics lead to some simplifications in calcu-
lations, the static models will prove useful for gaining some
understanding of the causes of some of the effects.

We will now give some examples to illustrate simplifications
which occur when working with static kinematics. PFor a
three-particle state with all particles treated relativistically
we obtain the following well-known relation among the two-par-
ticle invariant masses [Sij]l/2’ the individual particle masses

me

3> and the three-particle mass M ”b{i2Vr€
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=M +m + m + m . (2)

It follows fronYZ) that two of the three invariant masses are
independent.Xf§f the thrge—particle state contains the possi-
bility of two-particle resonances either between #1 and #2 or
between #3 and #2, the transition amplitude to that state will
have a nontrivial dependence on both s12 and 332 so that in
calculating a cross section the nontrivial part of the inte-
gral will be at least two dimensional. Also, the range in M

for which s and s can simultaneously be at their resonance
12 32

values (the overlap region in M) may be quite large: for example,

for a 301 state with two p-resonances, the overlap region is
approximately 1080 MeV < M < 3900MeV. Thus if one is looking
for structure due to the overlap, effects may be spread out
over a 2BeV range in M.

Now we take as static both #2 and the two-particle reso=-
nances. Equation (2) is replaced by the equation for the con-
servation of energy

6‘1 H((\3

P® = pg + m, + pg : (3)

from which it follows that if P°, the total energy, is given,
only one energy, p? or pz, is..independent. Resonances are
now characterized by particular values of pj or p;' An imme-
diate consequence of (3) is that the overlap region in P°
reduces to a single point (neglecting the resonance width).

On the basis of this it would appear that any structure due to
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overlapping resonances would be more likely to occur in static
models than in nonstatic models. Another simplification in the
static case is that the Dalitz plot which is an area in the
nonstatic case reduces to a line in the static case. Equiva-
lently, a nontrivial two-dimensional integral in the nonstatic
case means a nontrivial one-dimensional integral for the
corresponding static case.

B. The Lee Model

The basic Lee model contains three fields: V, N, 6, where
V and N represenﬁ static particles and 6 represents a particle
with relativistic kinematics. By restricting the kinematics to
VMo (no antiparticles), the Lee model is an exactly soluble
field theory.l6 Chen-Cheung and Sommerfield! (C&S) have in-
troduced an extension of the basic Lee model in which there are
two V-fields, V1 and V2, with unrenormalized (VjNG) couplings
gl and g2 respectively. V-fields which are internally pro-
duced always occur in a linear combination given by -
V = x(glv1 + ngz) where \ is a constant. C&S chose A =1
but we will find it convenient to take A = 1/g which has the

effect that V does not go to zero in the 1limit of zero coupling.

We will also choose this linear combination for external V-lines.

For certain choices of the Lee model parameters the V propo-
gator in momentum space, &v(p), has a pole in p® at p° = m with
m below the (N8) threshold and a pole on the second shzet in
p° at p°® = B = m*¥ - 1T/2 where T > 0 and m¥ .above the (N®6)
threshold. We choose g so that the residue of —iav(p) at the

stable particle pole is 1. We will adopt the convention that

17
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V will stand for the stable V-particle and V¥ will stand for
the unstable V-particle. This will only apply to external lines
where the reduction procedure has picked out one or the other;
the only V-field that appears in the propogators is V. Fur-
ther background and definitions along with expressions for
various amplitudes and cross sections can be found in Appendix A.

The production process
6+ V->>0+ N4+ 6 (c)

has a three-particle final state with overlapping resonances.

We will also be interested in the quasi-process
6 +V > 0 + V# (d)

where the unstable V¥ is treated as though it were stable.
(The notation (c¢) and (d) comes from Appendix A.) Figure la
below is essentilally Fig; 3 from Ref. 1 except that an "exper-
imental" version of c(d)(w) has been added and the corrected
value for T has been used.18 It was concluded by C&S that the
anomalous peak in the V¥ cross section was indicative of the
fact that process (d) is not well defined whe; the final

state resonances overlap. Figure 1lb contains the results of
our calculations of these cross sections. We find no anom-
alous peaks and a reasonably good agreement between the pro-

duction cross section and the resonance cross sections. In the

following paragraphs we will outline the calculations of the
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resonance cross sections, and we will isolate the erroneous
assumptions made by C&S.

For the theoretical version of the resonance cross section
we and C&S both start from Eq. (Al5). A discussion of the
assumptions involved in arriving at (Al5) can be found below
in Appendix B. There remaiﬁs the question of how one chooses
to evaluate [ﬁﬁﬁ*,w)[? We héve céléulated it three ways
which turn out:to agree with each other to within 10-15% and
which agree with c(c)(w) to about the same extent, and we can
not really say that one method is more correct than the others.
The first way is to take literally the derivation of (A15)

given in the first part of Appendix B and to use the lowest
2

mation given by3

order term in g€ for F(m¥,w) which is just the Born approxi-

P (%, w) = ¢2/(w - m¥) . | (4)

The resonance cross section using (4) is labelled (1) in Fig. 1b.
The second method is to accept (Al5) as given and to evaluate
F(m*,w) exactly. We have done this using Eq. (Al0) and the
Yale DCS computer, and the result is labelled (2) in Fig. 1b.
The third method is that used by C&S and would probably be
classified as lying somewhere between the other two in jus-
tification. In this method we note that implicit in the deri-
vation of (Al5) is the assumption that F(V,w) is slowly varying

for y near m¥ so that

F(H*aw) = IIF(E,U)) . (5)
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where B is defined above and II denotes the second sheet in Vv

for F. As a check of (5) we can look at F We are actually

Born*®
interested in |F(W¥,w)|?, and we find

PGBy |2 = 82/((w - m*)2 + T2/1) (6)

Born
Combining (4) and (6) we find

|F(m 1°

>w)porn IIIF(_‘g"“’)Born|2|:l - Pg/éa(w - m*)g)]

so that (5) appears valid to the lowest order in TI'. An exact

19

expression™” for IIF(E,w) can be obtained assfoliows: One re-
writes the integral in(AlO)as a contour integral in the com-
plex v plane using the fact that\K(vj"l has a cut running from
p to ». F(w’,w) can be continued down into the lower half
of.the second sheet in w” and evaluated at w” = B by distorting
the integration contour. The multiplicative factor ¥IK(B),
which 1s zero, eliminates everything except the singularity in

the integral resulting from a pinch in the contour. The zero

and the singularity cancel each other giving

I1p(B,u) = g H(E,8,0)/D(E) . (7)
Combining (5) and (7) we have

F(m*,w) = g°H(B,B,w)/D(B) . (8)
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The further assumption made by C&S is that if B in the function
on the right hand side of (8) is replaced by v, the resulting

expression is slowly varying in v, so that

R

H(B,B,w)/D(B) = H(m*,m*,w)/D(m¥) , (9)
Combining (8) and (9) leads to Eq. (B2) in Ref. 1 for F(m¥,uw).
It should be clear from the above that (9) does not follow

from any previously made assumptions or approximations. We
will now show that (9) is invalid for w such that m¥ is near m¥%,
which is the region of the resonance overlap. From Eq. (Allb)
it is clear that H(v,v,w) is indeed slowly varying in v for v

near m¥ and w in this region, and using Eq. (A5) we find

H(—B_: B, UJ) = H(ﬁ*,m*,w)

and

R

D(B) z¥=1[B - m¥ + ir/2]

g%~

R

m¥ - m¥ + ir ],
while

D(m#%) = Z# 1[m* — m* + ir/2]. '

Thus at the overlap evergy, m¥ = m¥, the right hand side of (9)
is a factor of 2 larger than the left hand side leading to a

factor of 4 in the ratio of the corresponding cross sections

which is close to the ratio of Tho(d)(w) to o )(w) for w: such

(c
that m*¥ = m¥ in Fig. la.



19

There is some ambiguity as to how one should proceed in
obtaining an alternative to the assumption made by C&S. It
seems to be in the spirit of the approximations made so far
to treat functions of v = B as a power series in B - m¥ = iT/2
expanded about v = m¥, The method giving the best results of
those tried is to keep the lowest order term in T in both the
numerator and the denominator while interpreting the combination
Z%*"1r as independent of T'. Again this leads to H(B,8,w)

o H(ﬁ*,m*,w) for the numerator. For the denominator we have

— ~-d
D(m*¥) + 1 /2 —=D(v) I
av - v = m¥

D(B)

Now

z#¢=1 = d_ Re D(v)
vV = m

av %

and

%v Re D(v) = z%=1 4 [m* - m¥%) %3 [%3 Re D(v)] _t..

\):E* v:m*

Hence we have

F(m*,w0) = g H(m*,m*,u)/D(m*)
where
D(m*) = Re D(m*) + i[Im D(@*) + Im D(m*)]. (10)
The resonance cross section using (10) is labelled (3) in Fig. 1b.
We will now show by another method how the invalid result of
C&S can arise. This method has a particular relevance because

8

it has been used in a nonstatic model™ to produce a peak in

the 31 spectrum which we . show in Section IIIB to be anomalous.
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The fact that the method is invalid is easier to see here
because of the static kinematics. The method is to apply

2
Eq. (Bll) as an approximation for the case g # 0
[D(v) |72Im D(v) = NZ¥6(v - m*) (11)
to evaluate the production cross section given by Eq. (Al3).

2 2 (u .
Oieylw) = mlcu(a‘*’r)l fiv Im [D(v)™1] Im [D(W)71] |H(v,V,w) |2 (A13)

2 2 u
- g;%w}u(w)l ‘Iile(V,v,w)lz{va ~ m*) Im [D(¥) 1]

+ 8(% — m*) Im [D(v) 11} (11°7)

_ z%g%ulw) | *JuG*) | %(@mt) |H<ﬁ*,m*a§llf o (/¥
4Tk (w) |D(ﬁf*)l

- )

which is the same as the result of C&S. The error here is that
(11) is a walid approximation for Im [D(v)"lj only if the
remainder of the integrand is slowly varying over the interval
m¥ - kI <v'< m¥ +«T with ¥« > 1. For w in the vicinity of the
overlap, this condition is clearly not satisfied.

The "experimental" resonance cross section referred to
above is just the resonance-cut cross section discussed in
Section I. This cross section can be obtained by calculating
do(c)(w)/dv = A(v,w) and integrating A(v,w) over the resonance
region. Since the dynamics are static and since the 0's are

identical, a resonance can occur when the energy of one of the
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8's is near m* or near m*. For |m* - m¥|= x > 2T (k=x"=1), the
differential cross section has two separated resonance regions,
and the area of both of these should be included when cal-
culating the resonance-cut cross section. For x <e2r
the regions overlap, and the overlap should only be counted
once. Counting the overlap region once for each peak cor-
responds to an experimentalist counting some events twice
relative-to other events, and this is what C&S did in their
calculation. Of course, one is at liberty to define the selec-
tion region any way he likes, the only question is how one
interprets the results, As explained in Section I neither of
these methods will necessarily lead to a good approximation of
the total production cross section, but the symmetric method in
which all events are weighted equally has a better chance than
the other. The resonance-cut cross section using our method for
defining the selection region is included in Fig. 1b, and we
see that while it no longer has the peak of the resonance-cut
cross section in Fig.‘la, it still has some structure that
does not exist in the total cross section.

C. The Born Approximation of the Lee Model

There is no evidence of any dynamical structfure in Fig.lb
for the production process (c¢) which is not ihcluded in the
Born approximation by which we mean thazt F, the V0 scattering
amplitude, 1s approximated by one-N exchange giving the following

graphical form for (c)

' VAAAAAA 2
+ .\
// w \ //
Born Lkuw g™
2
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As discussed in Appendix B we can anticipate that the itera—
tive terms will produce 1little effect since m¥* and Z¥ are
shifted only slightly from their values for é2 = 0.
Since the stable V-particle is far below threshold, 8v(p)

will be dominated by the V¥, so we use Eq. (A5) as an approxi-

mation for all w
E-iév<p>1”l = D(w) » 2% 1w - m* 4 1T 2] . (A5)
except that in order to keep the kinematics correct, we use
Im D(w)™ 1 = —ID(m)l_.2 Im D(w) - —ID(w)]_ZF k(w)/[2k(m*)] ,

and we have set u(w) = 1.

With these approximations we have

u
o (w) = Jdv Alv,w) ..
(e) Born u »B
EXpo (w) = dv A(v,w)
(a) Born *>7'B
resonance region
th -
o (w) —  gPrk(m*) g(m* - 1)
(q) Born 2k (m*)k(w)[w — m¥]?2 H
where

A(v,0)y = [BRk(w) 1 k(%) 1 26Tk (v)K(9)

x Z* 2| [(v = 0)D(W I 1+ [(¥ - )D(¥)]171]2
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These cross sections have been plotted in Fig. lc. Comparing
Fig,lc to Fig. 1lb we see that little has been lost by these
approximations.

A nice feature of the Born approximation is that the three
methods of the previous section for calculating F(m¥*,w) all
reduce to the same result - the first and second methods are
trivially the same, it is the equivalence between them and the
third which 1s interesting.

D. The Product Form of the Scattering Amplitude in the Lee Model

A production amplitude to a final state which includes
overlapping resonances can always be written both in a linear
form such as Eq. (Al2a) and as a product such as Eg. (Al2b).
We have treated the linear form as the more "fundamental" in
that the Born approximation of the previous section and our
theoretical resonance approximation have been based on it.
Amado2 has proposed that the dynamics of a state involving
overlapping resonances are more clearly presented in the pro-
duct form, which seems to imply that this is the form upon

which approximations should be based. Kacser20

has given some
examples which show how the basis for Amado's assumption is
model dependent, but the Lee model discussed above is one of
Amado's examples and it is not discredited by Kacser. A sketch
of the logic which leads to Amado's conclusion is as follows:
In either the isobar or in the usual interpretation of the
Faddeev equations for three-particle systemsgl, terms in the

scattering amplitude ending with the interaction of a given

pair of particles are believed to carry the major information
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concerning interactions of that pair. Amado finds that when
an appropriate caherent combination of all terms contributing
to the process is taken, a factor carrying the features of the
given pair's final-state interactions appears multiplying the
entire amplitude. Thus, when there are two overlapping reso-=
nances, the total amplitude contains the product of two such
factors. Equation (Al2b) appears to be consistent with this
interpretation since each of the D's in the denominator carries
the elastic scattering phase of a two-particle system, and from
Eq. (Allb) it is clear that the numerator H(w,,w,,w) is slowly
varying in w, and w,.

It might appear possible that such a product form could
lead to an enhancement in w at the resonance overlap begause if
we had H = 1 such an enhancement would occur since [D(v)D(V)]—l
contains a nearby double pole when v = m¥ and m*.= p¥%., Amado
argues that no such enhancement occurs because of unitarity.
While we agree with the conclusion, we disagree slightly with
his argument, so we will restate it here. Unitarity is used in

the form of Eq. (A1l5)

o=1 2 _
[k(w)] " |ul(w)|® Im Flw,w) = o(b)(w) + o(c)(w) . (A15)

From Ref. 1 we borrow the fact that H can be written in the

following form

H(v,V,w) = C(w)H " (v,v,w) ,
where

Clw) = 2[2 - K(w)Q(w)]™t
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with Q(w) given by Eq. (1l2a) of Ref. 1. Also, we use the

fact that F(w,w) can be written as
Flw,w) = C(w)[w - m]Q(w)/2 = C(w)F " (w,w)
Using these we can rewrite (A1l5)

Im P(o,w0) = |C(w) 2007 ulw) |%k(w) [F"(w,0)|°

m
¥ fva<v,G,w)1D(v>|‘2|D(v>|“2} (12)
M

where

N(v,v,0) = [20] %2 Im [D(v)] Im [D()] |H (v,%,0)]° .

The function IC(w)l2 corresponds to Amado's |A(E)]"2 in Eq. (19)
of Ref. 2, and any enhancement in w for the elastic scattering
cross section would occur in ]C(w)]g. The form of the Lee
model which we have been using contains no such peak, but if

we had included an unstable W-particle as described in Appen-
dices A and B, all processes in the V6 channel would have a
peak in w and the structure would be contained in IC(w)lg.

Also contained in C(w) is the so-called Peierls singularity22
which was shown by Goebel23 to lie on the wrong sheet in w
to fit the criterion of a resonance. PagnamentaZu’25 found
that the pole in C(w) was actually accompanied by a nearby

zero, and we have looked at [C(w)|2 using the computer and

found it to be essentially constant in, . Equation (12) could



26
be rewritten with |C(w)|2 cancelled from both sides leéving
two slowly varying terms and the integral, which means that the
integral must be slowly varying too. Thus, although N is
slowly varying in v, it must contain an w dependence that can-
cels the peak in the denomlnator. The only difference between
our argument and Amado's 1s that he claims the dé—enhancing
comes from |C(w)]2 and relates the fact of no enhancement to
the absence of a Peierls singularity.

We have thus found no cause for disagreement with Amado's
product form for the production amplitude. However, we have
not been able to find any method of approximation based on
this form - in fact, an attempt above at a resonance appro-
ximation«gaﬁe gquite bad results. We also found for the given
parameterization of the Lee model, that good results were
obtained in resonance and Born approximation which are related
to the linear form of the amplitude. We have looked at para-
meterizations of the Lee model for which the Born approxi-
mation does not work, but we have found that in such cases
I'/m*¥ is too large to be taken as describing a resonance; for
example, if g2 is doubled while a,B, and m are kept fixed, T'/m¥
increases by a factor of 1.6. Our tentative conclusion is
that when I'/m¥ is small enough to warrant the two-particle
final-state interaction being described as a resonance, then
the isobar model will be adequate for describing overlapping
resonances. We should point out that such a conclusion can
at best be but tentative in providing a prescription for

deallng with processes in the real world due to the limited
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applicability of the Lee model.

E. A Static Model Independent of the Mode of Production

The model of Section IIC was motivated by its being an
approximation to the production process (c) of the Lee model.
This model could also be interpreted simply as a production
process proceeding by a one-partié¢le exchange and utilizing
static kinematics.with a three-particle final state which
contains‘two identical particles and two overlapping (static)
resonances. We will now show that the relations among the
various cross sections of Section IIC are not strongly dependent
on the mode of production. We will do this by removing all
information concerning the origin of the three-particle final
state. Thus, for example, the three-particle system might be
a subsystem of an n-particle final state where, for some
dynamical reason, the interactions between this subsystem and
the other n-3 particles can be igno