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Abstract Mathematica Programs & Graphics for Conformal Maps II 

Quickly Available Graphics of Static, Electromagnetic Field Distributions Given 
by Conformal Maps Using Mathematica 

Conformal maps based on the Schwarz-Christoffel transformation map the infinite plane 
condenser on other simple plane configurations rigorously. The field distributions between 
the electrodes as well as the field and charge distributions on the electrodes can be computed 
from analytic expressions. This thesis contains ready-to-use Mathematica programs plotting 
these physical quantities for 11 condenser or pole piece configurations: The sharp or round 
corner of an infinite rectangular pole piece, a pole piece of finite thickness, the end of 
a condenser consisting of infinitely thin plates or of planes with arbitrary thickness, two 
parallel infinitely thin strip lines, a channel with a rectangular sharp bend, a channel with 
a finite step, an infinitely thin stripline in line with a stripline of inifnite width at each side. 
The design philosophy was to provide electrical engineers neither being acquainted with 
conformal maps nor with Mathematica with a tool for getting computer generated graphics 
fast and easily. The parameters defining the geometry of the configurations and the voltage 
may be chosen at will within limits indicated in each program. These programs can also 
be applied in magnetostatics, hydro- and aerodynamics and can be modified to deal with 
new configurations. 

Griffbereite Mathematica Programme fiir Graphik konform abgebildeter 
statischer elektromagnetischer Feldverteilungen 

Konforme Abbildungen, wekhe.mittels Schwarz-Christoffel Transformation gewonnen wer
den, bilden den unendlichen ebenen Plattenkondensator auf Kondensatoren einfacher, planer 
Geometrie exakt ab. Die Feldverteilung zwischen den Platten sowie Feld und Ladungsdichte 
auf diesen konnen damit analytisch berechnet werden. Diese Arbcit cnthiilt einfache Ma
thematica Programme, wdchc Bilder dieser physikalischen Grocssen fucr 11 Kondensator
oder Polschuhformen zeichnen: z.B. einen unendl. Polschuh mit rcchtwinkeliger spitzer 
oder runder Ecke, einen Polschuh endlicher Breite, da.s Ende eincs Plattenkondensators 
mit unendlich diinnen und cndlich dickcn Platten, zwci unendlich diinnc Streifenleiter, 
cin Kanal mit cinem rcchtwinkdigcn Knick, cinen Kanal mit cndlichcr Stufc, cine Streifen
lcitung zwischcn zwei halbuncndlich langen Streifcnleitern. Ingenicure und Elektrotechniker 
konnen damit ohnc Vorkenntnissc von Mathematica und konformen Abbildungen auf dem 
Computer Bilder fiir statischc Felder schncll erhaltcn. Die Kondcnsatorabmessungen, wie 
Plattenabstand, Plattendicke, und die Spannung zwischen den Platten konnen in grossen 
Bcreichcn sclbst vorgcgcben werdcn. Die graphischcn Ergebnisse gcltcn nicht mir fiir die 
Elektro- und Magnetostatik, sondcrn auch fiir Hydro- und Acrodynamik. Weitcrs konnen 
die Programme fiir cigcne konformc Abbildungen adapticrt werdcn. 
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Introduction Mathematica Programs & Graphics for Conformal Maps 1 

Introduction 

This " Diplomarbeit " (diploma thesis) contains Mathematica programs for problems of 
electrostatics that include conformal maps. Conformal mapping is an important means 
to solve problems in Electro- and Magnetostatics as well as in Hydro- and Aerodynamics, 
because it helps to reduce complicated mathematical problems in complex space to simpler 
ones. Especially graphics (of conformal maps) show their behaviour in a very distinct way, 
which was the motivation for this thesis. 
When you leaf through the thesis you see a lot of graphics plotted by the programming lan
guage Mathematica. Although some of these graphics look quite complicated, the pertinent 
Mathematica programs are comparatively short. 

Mathematica, a language for symbolic computation, has a lot of implemented graphics com
mands as well as routines for elementary and special functions as, for example, for elliptic 
integrals and functions. Together with the package Graphics'ConformalMap' Mathematica 
is immensely helpful to plot graphics of conformal maps. 

The first chapter of this thesis gives a short survey of the mathematic and electrostatic 
concept of conformal mapping. The most important Mathematica commands , necessary 
to produce the graphics, are explained. 
The following chapter contains the mathematical treatment of the conformal function as 
well as the Mathematica programs and ensuing graphics for a dozen problems. Those 
programs deal with the graphics output of some frequently used condenser configurations 
and their corresponding electric field strengths and surface charge densities. Finally the 
difficulties which arise when you want to round the corners of the condensers treated in 
chapter 2 are shown. 

Although the thesis always talks in electrostatic terms the field distribution for magnetic 
pole pieces looks the same as that for condensers of equal form. Then the electrostatic 
quantities (electric field strength, surface charge density) have to be translated to magnetic 
terms. Even in Hydro- and Aerodynamics the laminal stream around edges and the sudden 
change of the radius of a streamed through tube leads to the same pictures. 

You can run the Mathematica programs instantly to produce the printed graphics on your 
own computer display. Furthermore as soon as you understand how my Mathematica pro
grams arc constructed you may write your own programs for similar problems. 
For readers with no or little knowledge of Mathematica this paper also explains how the 
Mathematim objects used in the thesis work. Nevertheless yon do not learn Mathematica 
by reading the paper! 

It was the intention of the ant.or to render each section describing a Mathematica program 
as selfcontaincd as possible. This entails a certain amount of repetitions. 
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1 The Conformal Map 

This chapter is devided into three sections that treat the mathematic and elecrodynamic 

basics as well as the basics of those Mathematica commands that occur in the programs 

of the next chapter. 

1.1 The Mathematic Concept 

At the beginning I give a short mathematic abstract of conformal mapping including 

the main definitions and rules, followed by a glimpse to elliptic functions and integrals. 

This brief mathematic section should suffice not only to understand the examples given 

in this paper, but also to design your own Mathematica programs for similar cases that 

are not treated in chapter 2. 

Conformal Map: A function w = f(z) which is single-valued and 
holomorphic in a domain Dz of the complex Z-plane (Z = { z I z E CC} 1 ) 

and whose total derivative f'(z) # 0 is called a conformal map. 
Two curves C1 and C2 in Dz whose tangents, provided they exist, inter
sect in the point z0 ED z at an angle a, will intersect at the same angle a 
when they are transformed to the range Rw= J(Dz), the image of Dz on 
the complex W-plane, by the conformal map w = f (z). 
The inverse function z = .r-1 (w) of a conformal map f (z) always 
exists2 and is again conformal in Rw. 

2 

So, when I want to know whether a function f (z) is conformal, I have to verify that it 
fulfills two conditi~ns according to the definition given above: 

£ Firstly it has to be holomorphic in a set Dz C Z-planc. Therefore f ( z) has to 
satisfy the Cauchy-Riemann differential equations for all z of Dz. 

£ Secondly I have to find all zeros z0 of the function's first derivative that arc 
within D,. In these points no inverse function z0 = 1-1 (w0 ) of w 0 = f (z0 ) 

exists. The set Dz without all z0 is called the domain Dz for whose elements 
f ( z) is conformal. 

1 Representation of the compex numbers C by a Gaussian plane named Z with its elements z. 
2 However. to write f- 1 (re) down explicitely usually encounters a lot of trouble because either you have 

to calculate the first n coefficients of the Bargmann-Lagrange series for an n'h order approximation 
of the inverse function or you have to find an exact solution by trial and error. 
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Conformal functions are "very well behaved" since they do not have any singularities and 
have a unique inverse function for all elements of the range Rw. Moreover a pair of distinct 
lines in the Z-plane is mapped to a pair of distinct lines on the W-plane. So the electric field 
lines which arc parallel to the iy-axis on the Z-plane do not cross on the W-plane either. 
So for the Infinite Plane Condenser the equipotential lines which are parallel to the x-axis 
on the Z-plane cross the electric field lines on the W-plane at right angle too. This is very 
convenient when calculating the electric field strength or the surface charge density of the 
condenser plates. 

Some terms mentioned in the definition and others emerge throughout the thesis. To avoid 
confusion I will always use them in the same way : 

General Notations : 

£ The real numbers lR = { t 1-oo < t < oo} do not contain infinite points. 

£ The complex numbers <C = { z = x + iy I x, y E lR} do not contain the infinite point 
either. 

£ The term Z-plane with the elements z = x + iy is always used for the complex 
plane of the Infinite Plane Condenser. 

£ So W-plane - with the elements w = u + iv - is used for rondensers that are 
obtained from the Infinite Plane Condenser by a conformal map f (z). An exception 
is the following one: 

£ T-plane - elements t = r +is - denotes the complex plane with CSm(t) ~ 0. This is 
the basis for the Schwarz-Christoffel transformation explained later on. 

£ The set f> .x ( .\ = z, t) for whose clements >. the function .f ( >.) is holomorphic is a 
subset of the A- plane (A= Z, T). 

£ The Domain D .x is a subset3 of f>, restricted to the elements .\ for which .f (.\) is 
conformal. D .x = {.\ 1.f ( >.) conformal} = f> .x \ {.\o I .f' Po) = 0}. 

£. All conformal maps of this thesis are called f ( z), their inverse functions 1-1 
( w) or 

.f- 1 (t) respectively . 

. J A domain D is an open subset of Riemann's sphere. Nevertheless. for simplificity I will always 

regard its boundar~· DD a part of the domain. 
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£ All curves on the Z-plane are called C;, their parametric representations of the 
parameter ( arc denoted by C;((). The images on the W-plane are called C; and 
C;(w) respectively. 

£ (a, b) denotes an interval which is open to both sides. 

£ [a, b] is a closed interval: i.e. it contains the points a and b of the boundary: 
[a,,b] = (a,b) U { a,b }. 

Riemann's Mapping Theorem: Any simply connected domain D of 
the complex plane with connected boundary that consists of at least two 
points can be transformed schlicht4 to the interior of the unit circle by a 
holomorphic function in D. 

4 

Riemann's theorem is the fundamental theorem of conformal mapping in simply connected 
domains. It states that conformal functions exist for any realistic (physical) problem with 
connected boundary5 but it does not show how to find them. 

For certain classes of problems, however, special prescriptions lead to the conformal map 
wanted. One of these is the Schwarz-Christoffel formula which maps a condenser whose 
electric field is in the upper half of the complex plain to our special configurations. 

Schwarz-Christoffel Formula: The integral 

t n 

w = f(t) =A j IJ(t - t;)-"'' dt + B 
lo t=l 

(1) 

with the supplementary conditions: 

t 1 < t2 < ... < tn ; 0 < la;I '.S 1 and :L7=1a; = 2 with a;, t; ER 
for the coefficients t; and a; is a single-valued and holomorphic map in 
the complex plane with nonnegative imaginary part D1 = { t I ~(t) 2=: O} 
which transforms the set D 1 = { t I ~( t) > 0} to the interior of a polygon 
whose edges are at w; = f ( t;). The coefficients Ct(IT arc the angles of these 
edges (cf. Figure 1). A and B are complex constants. 

Having the definition of conformal mapping in mind I deduce that the map in eq.(1) defines 
a conformal function for all t E D 1\ {to If' ( t0 ) = 0} = D 1. The points to arc the points t; of 

4 A function f(z) is called schlicht in the neighbourhood U(zo) of the point zo when it can be inverted 
univalent in the neighbourhood U ( 11·0) of the point tvo = f (zo ). 

5 A theory for conformal maps in multiply connected domains exists but we do not need it here. 
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the real r-axcs ( = boundary of Di) whose corresponding angles a;?r on the W-plane are 
negative. Compared to this all points of the interior of Di arc conformal. You just have to 
solve eq. (1). This, though always possible in principle, may meet some difficulties which 
must he overcome by hard labour. 

The numbering of the w; is usually done counterclockwise and the angles ai are the (outer 
angles -?r) / 7r of the lines meeting at w; (sec Figure 1). So when the edge of w; points 
outwards (seen from the interior of the polygon) the corresponding angle a; > 0 is positive, 
when it points inwards a; < 0 is negative (cf. a 1 and a 1 of Figure 1). 

T 

r 

03 / W5 

°'·'=" /2 

Figure 1: Mapping by the Schwarz-Christoffel Formula 

Wn=oo 

Wn=OO 

When I know the location of the edges w; and the values of all a; on the W-plane I can 
calculate the values of the points t; on the T-plane and the constants A and B in eq.(1) in 
the following way : 

As the theory of rnnformal mapping shows you may choose three points t; (i.e a.~sign 

real numbers including infinity to them) arbitrarily to fix the mapping function w = f (t) 
completely. 
I choose tn to he at infinity which reduces the product in our integral by one (the last) term 
and obtain 

1· n-1 

'IJ) = f(t) =A J II (t - t;)-°'• dt + B 
lo r=l 

(2) 

Moreover let tm ( 1 :=:; m :=:; n - 1) be the arbitrary lower limit of integration. We get : 

(3) 
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lrn+l 

Wm+l =A Jf'(r) dr +Wm= f(tm+1)7 with rEffi.8 (4) 
tm 

Inserting (3) into (4) I obtain a symbolic solution for A as a function of the remaining t;. 
Those t; can then be found recursively 

tm+2 

Wm+z =A j f'(x) dx +wm+l = f(tm+z) ' ... (5) 
lm+l 

and be inserted into equation(2) to complete the calculation of the conformal map w = f (t). 

When I know the distance d of two parallel polygon lines that extend both to infinity 
(cf. fig. I) I get a solution for the constant A (whose calculation is usually harder than that 
of B) by9 . 

A= - ~ II(t -t·)+<>; 
nr . P 1 

J#p 

(6) 

where ~ is the distance on the W-plane when changing from one parallel line to the other; 
so d = JLfiliJ. tP is the pre-image of the corner at infinity (cf. corner n of fig.I). When I 
choose tp = oo eq. (6) equals 

A=~ (7) 
i7r 

The procedure to find the remaining ti is similar to the one from above. Here, however, B 
still has to be calculated; i.e. eq. (3) does not hold any more. 

6 Proof(usingequation(l)): wm =.-tf,1

0
°fr:/ (t.-t;)-"• dt+B=O+B=B. 

7 \Vhen I decide upon m to be n - 1. m + 1 will then be 1 since tn can no longer be found in our integral. 
8 The integration in the complex plain. can be reduced to one on the real r-axis (cf.[du]). 
9 cf. [wb] or [fl]. 
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For polygons with at least two connected edges the function w f (t) involves elliptic 
integrals and functions of which I give a short summary as far as they turn up in the 
problems 2.12 - 2.14. 

Doubly Periodic Functions: A function f(z) which is holomorphic 
in the whole complex plane CC except for some isolated singularities and 
fulfils 

for any combination of integer n and m is called a doubly periodic function 
with the periods w1 and w2 • 

The smallest periods w1 , w2 that fulfill the periodicity condition given 
above are called primitive. The set of all periodic elements nw1 + mw2 

has no finite accumulation point unless the function is constant. 

We call the domain connecting the points z = 0, z = w1 , z = w1 + w2 and 
z = w2 without the lines between z = w1 to z = w1 + w2 and z = w2 to 
z = w1 + w2 and excluding z = w1 and w2 the fundamental parallelogram. 
This subdomain of the complex plane contains all information about our 
doubly periodic function due to periodicity and to the absence of a finite 
accumulation point for our periodic elements. 

Elliptic Functions: An elliptic function is a meromorphic10 doubly 
periodic function. The order of an elliptic function is the sum of the 
multiplicities of the poles within the fundamental parallelogram. 

Theorems for Elliptic Functions: 
1) The sum of the residues of the poles in the fundamental parallelogram 

is allways zero so there are no elliptic function of zero and first order. 
2) Every value of an elliptic function of nth order is a..ssumed exactly n 

times in the fundamental parallelogram. 

The simplest elliptic functions are those of second order : 
a) The elliptic function with one pole of second order with a zero residue is Weierstrass's 

g:i function . 
b) The elliptic functions with two poles and residues of opposite sign lead to the Jacobi 

elliptic functions and others. 

10 meromorphic = holomorphic except for poles 
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Altough any elliptic function can be represented by the Weierstrassian p and its derivative 
p' Jacobi's elliptic functions are a useful tool in mathematical physics and easier to apply 
than rJ. They are the inverse functions of Legendre's first elliptic integral for different 
arguments. 

Elliptic Integrals: An integral of the form 

j R(z, () dz with R(z, () a rational function of z and ( 

and ( = Ja 0 z 4 + a. 1 z3 + a.2z2 + a.3 z + a4 

the square root of a polynomial with simple zeros and a.0 and a. 1 not both 
zero is called an elliptic integral. 
This elliptic integral can allways be separated into an integral of rational 
fm,dions and three basic types of elliptic integrals: 

J dz with ca zero of (2. 
(z - c)( 

There are several forms of writing down the three basic elliptic integrals; but the elliptic 
integrals in Legendre's normal form only play an important role in physical applications. 

Legendre's (Jacobi's) Incomplete Elliptic Integrals: 

First kind: F( arcsin y, k) 
y _ J dz 

- o J(l-z2)(l-k2z2) 
= F(<p,k) 

<p 

= J d{J 

0 J1-k2 sin 2 {I 

Second kind: E (arc sin y, k) 
y 

-J~d - v'l-z2 .z 
0 

= E(<p,k) 
<p 

= J Vl - k2 sin2 17 d1? 
0 

y <p 

Third kind: II(arcsiny,a2 ,k)=J Jdz =II(<p.a2,k)=J d{J 
0 (l-a2 z 2 ) (l-z2)(1-k2z2) ' 0 (l-e>'z')Vl-k2sin2 (1 

The variable k is called the modulus which also appears as one argument of Jacobi's elliptic 
functions. Its value is not restricted, though in most problems of mathematical physics k 
will be real and even 0 < k < l. The complementary modulus is defined by k' = v'f=k2. So 
the complementary modulus of k' is again the original modulus k. [as] and Mathematica , 
however, use the parameter m = k2 and the complementary parameter m.1 = 1 - k2 = k'2 

as an argument. 
The variable a 2 of the third integral must be real. 
The argument y or <p of the elliptic integrals may be complex but they usually are real and 
0 < y::::; 1 0 < <p ::::; 7r /2 respectively. 
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Legendre's (Jacobi's) Complete Elliptic Integrals: 

First kind: K ( k) = F(7r/2, k) 

Second kind: E(k) = E(?r/2,k) 

1'/2 

= f dt'J 

0 J1-k2sin2 t9 

7r:/2 

J Vl - k2 sin2 19 d19 
0 

1'/2 

Third kind: II(a2 ,k) = Il(7r/2,a2 ,k) = J d [a2 #1] 
o (l-a2z 2JVI-k2sin 2 t9 

9 

Sometimes K(k) and E(k) are shortened to K and E, the complete elliptic integrals of the 
complementary modulus k' are then marked by a prime; i.e K' and E'. 

Jacobi's elliptic functions can be obtained by the so called .Jacobi amplitude am(u, k) 
which is singly-periodic with the period w = 4iK' and nearly periodic with 2 K since 
am( u + 2K, k) = am( u, k) + 7f . It is the inverse to the elliptic integral of the first kind for 
the same modulus 

am- 1(<p,k) = F(<p,k) . 

When I wrap a function periodic with 27f as sine and cosine around the .Jacobi amplitude I 
obtain Jacobi's elliptic functions. Usually three functions sn(u, k),cn(u, k) and dn(u, k) are 
defined by : 

sn(u,k) = sin(am(u,k)), called sine amplitude, 
cn(u, k) = cos(am(u, k)), cosine amplitude, and finally 
dn(u, k) = (1 - k2 sn2 (u, k)) 1

/
2 called the delta amplitude. 

All the other .Jacobi functions as, for example, sd(u, k) = sn(u, k)/dn(u, k) or 
nd(u, k) = 1/dn(u, k) arc just ratios of these three. 
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At the end of this chapter I place a rule which may be useful when you want to change my 
Mathematica programs a bit. 

Schwarz_'s Reflection Principle: Let w = f (z) be holomorphic in the 
domain D which has a segment of a line or circle as boundary curve C. 
Let f ( z) be continuous on this curve and map C to a curve C' which is 
again a segment of a line or circle. 
The reflection of the domain D at the curve C gives D' - the image of 
D - for which the function w* = f*(z*) is again holomorphic. When 
C is the real axis w* is given by w = f (z) the bars denoting complex 
conjugation. 

Condensers that are symmetric with the u-axis can easily be obtained when I apply the 
theorem to the condensers in the second chapter one of whose plates is always the u-axis 
except for the Sharp Bend Condenser that may also be reflected at the iv-axis (cf. figs 9, 

12, 17, 22 and 33). 
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1.2 Conformal Mapping in Electrostatics 

This short section points out how the real quantities of electrodynamics can be transformed to 
a complex space so that they still describe the physics correctly. 

I start my considerations in the three dimensional real space IR3 with the co-ordinates x, 
y, z. Imagine a condenser, whose infinitely thin plates (made of an ideal conductor) are 
infinite in at least one dimension - say z. In this case the electric field strength E between 
the charged plates is independent of this variable z. With that E becomes E = (Ex,Ey,O). 
Without loss of information I reduce the dimension of the real space IR3 by one. The 
remaining two components of E = (Ex,Ey) can be combined in the following way 

E = Ei: +iEy (9) 

to form the new complex electric field strength E whose real (Ei:) and imaginary parts (Ey) 
are the two components of the real electric field E. When I choose a holomorphic complex 
potential <I> so that 

(10) 

with the real potential <I> 1 and the equipotentials <I> 2 of the real electric field E = V'<I> 1 • The 
complex electric field can then be written in a different form 

E(z) = -(d<I>) 
dz 

(11) 

whereby the bar denotes rnmplex conjugation and z = .T + iy is an clement of the complex 
Z-plane. 

Let ZEDz be transformed to WERw by the conformal map f(z) = w = u+iv. For the 
new complex variable w eqs (10) and (11) are transformed a..s: 

E(z) = -(d<I>(z)) 
dz 

_f_(z_)-+ E(w) = -(di.J!(w)) . 
dw 

(12 a) 

(12 b) 
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Then the old and new real potentials ( <1> 1 and '11 1 ) are related to each other by 

1 
6.w'1f1 = 6.ziti.l lf'(z)l 2 '¥ 

(13) 

whereby 6.w and 6.z are the Laplacians of the W- and Z-plane respectively and f'(z) is 
the total derivative of the conformal function f with respect to z. The same equation holds 
for the equipotentials; i.e. the subscript 1 may be replaced by 2. To get this formula I 
assumed that the old and new complex potential are pointwise equal ( w(w) = <P(z)), but, 
in general, <I> and '11 are not the same functions of their arguments z and w. 

For the charged condenser plates I may compute a surface charge density ry by adaption of 
its definition in real vector space to our complex notation using equation (11). 

7] (14) 

with n the unit vector normal to the ideally conducting surface pointing to the other plate 
and Eo the dielectric constant of the vacuum (Eo = 8.85 -10-12 :~). nz = n,, + iny is the 
complex representation of ii = (n,,,ny)· The surface charge density transformed to the 
W-plane reads: 

= -Eo ~{nw d\Jl(w(z)) dz} 
dz dw 

(15) 

Here nw is the normal unit vector on the W-plane. The condition f'(z) # 0 - so that 7] 

stays finite - is fulfilled as f ( z) is conformal. 
Although the first line of the previous equation describes the surface charge density on the 
W-plane as a function of w the transformation on the following line makes 7] a function of 
z. To get ry in terms of w, z must be expressed by w: i.e. I have to find z = 1- 1(w). 
As mentioned in section 1.1 that will normally be very difficult and laborious. The command 
ParametricPlot[] which occurs in every Mathematica program and that is described in 
the next section will do that for you. 
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1.3 Application of Mathematica to Conformal Mapping 

This diploma thesis was especially written for people who have little experience with 
Mathematica although not even that is needed to produce the graphics presented in 
chapter 2. 
Nevertheless it is usefull to understand how the graphics commands in these Mathema
tica programs work. At least two of the commands: af [x_] , Clear[] , Find Root[], 
Needs[" Graphics'ComplexMap"'] , Cartesian Map[ ] , Parametric Plot[ ], 
Show[ ] and Show[GraphicsArray[ ]] occur in every program of chapter 2. So I 
will explain what they do. 
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The built-in Mathematica functions a.s, e.g., sin x (Sin[x]), arccos x (ArcCos[x]) or exp x 
(Exp[x]) are named as usual.(Note the capital letters.) Some functions as, e.g., ln x 
(Log[x]) or artanh x (ArcTanh[x]) are slightly different. 
The argument mused in the elliptic integrals (EllipticK[m], EllipticE[<p,m], ... ),in the 
elliptic functions (JacobiSN[u,m], ... , InverseJacobiDN[y,m], ... ) and the Jacobi 
amplitude (JacobiAmplitude[u,m]) is the square of the modulus k: m = k2 (cf. p.8). 

af [x_ ] = expression defines a pure function named af (short for auxiliary function) of 
the argument x, which must occur in expression at least once. Expression can be any 
expression that contains other Mathematica commands mathematic or not. In our ca.se this 
will always be an expression of some built-in mathematic functions. 
The argument x_ is a dummy variable; it need not necessarily be a number but can 
be another expression as s = ArcSinh[t]. So af [s] returns expression from above 
replacing all x by ArcSinh[t]. If t is given a value (e.g. a complex number) af [s] 
evaluates symbolically for this value or number. Adding / / N calculates the numeric value 
for the above expression. 
There is another way to define a pure function: expression & [x] is the same as af [x_ ] 
= expression when you replace all variables x in expression by the sign # . 

The command Clear[ symbl, symb2, ... ] dears the values and/ or definitions attached to 
the symbols symb 1, symb2, .. . . These symbols may be e.g. variables or pure functions. 

FindRoot[ lhs = = rhs, { x, xl, x2}, options ] numerically searches for a root of the 
equation lhs - rhs = 0 near xl and x2 where lhs is any mathematic function of the 
argument. x and rhs is a complex number. Specifying xl and x2 FindRoot[ ] uses a 
variation of the secant method: specifying xl only (and omitting x2) induces Mathematica 
to use Newton's method. 
If FindRoot[] found a root this will be returned as a replacement rule { x -> complex 
number}. This root, however, must not necessarily be the only one of lhs - rhs = 0 ; in 
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general it is just the closest one to the starting point(s) xl (and x2). 
To replace the value of the variable x by the solution { x -> complex number} of 
FindRoot[ J I add x = x /. { x -> complex number} . 
In some case the default options for FindRoot[ J may not be sufficient for Mathematica to 
find a zero so you can change the maximum number of iterations by Maxlterations -> 
number, the working precision and the accuracy of the iteration by WorkingPrecision 
-> number and AccuracyGoal -> number ( For further options cf. [ma] p.794 ) 

<< -path/hilfsfile reads in and evaluates the auxiliary file Hilfsfile. The part -path/ 
represents the path to Hilfsfile in terms of the UNIX operating system but is not restricted 
to UNIX. This path has to be specified by the user. For further details see section 2.2 . 

Needs["Graphics'ComplexMap"') loads the package Graphics'ComplexMap' when it 
is not in the kernel yet. The package defines two graphics commands CartesianMap[ J 
and Polar Map[ J of which we will need the first one only. 

CartesianMap[/, { x 0 , x 1 , dx }, { y 0 , y 1 , dy }, options J plots the image of the Carte
sian coordinate lines in the given range (x 0 , x 1 ; Yo, y 1 ) under function f. f has to be a 
pure function of one complex argument z = x + iy. The stepwidth dx and dy of the 
variables x (y) between x 0 and x 1 (y0 and yi) is optional. In case you omit dx and/or 
dy CartesianMap[ J chooses dx and dy so that the number of lines in each direction x 
and y is equal to the value of the option PlotPoints of Plot3D[). (On most computers 
PlotPoints has the default value 15.) 
However, specifying dx and/ or dy overrules the option PlotPoints . 
The function f must not necessarily be conformal as in our case since CartesianMap[ J can 
deal with singularities and extremely high and low values of a complex function /(x+iy) 11

. 

The warning massages, however, are still printed. 
The default options, except for the one fixing the number of lines (Options[Plot3D, 
PlotPoints ]) are those of Graphics[ ). 
You can change the options of Graphics[). (cf. [map. 802]) by resetting the local options 
in CartesianMap[ J directly or by resetting the global options using Set Opt ions[ Graphics, 
options -> rules ], which is not so good an idea . 
The main part of CartesianMap[) draws the electric field and equipotential lines whereas 
the option 
PlotRange -> All makes Mathematica plot all calculated points of CartesianMap[] 
(The default option Automatic includes just those points of the calculation that are not 
to far from the "centre" of the picture.): 
AxesLabel - > { "textu", "textv" } adds the texts textu, textv to the u- and iv-axes 
respectively: 
Axes - > None snrpresses the drawing of axes and the option 

11 For further details see [mae] section 1. 7 . 
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Epilog-> { Thickness[.011], { Line[{{ui,vi}, ... , {uj,vj}}], 

Line[{{uk,vk}, ... , un,vn}}] }} 
draws the condenser planes about thrice the thickness of the fieldlines by connecting the 
points ( ui, vi) in the Line[ ] suboption by lines. 

ParametricPlot[ {fu, fv }, { t, tmin, tmax } ] produces a parametric plot with u and v 
co-ordinates f u and f v generated as a function of parameter t ranging between tmin and 
tmax. The list {fu, fv } can be exchanged by { {fu, fv }, {gu, gv }, ... } to get several 
curves f (t), g(t), ... together in one picture. 
ParametricPlot[] is used to plot the surface charge density and the electric field along 
the condenser planes, where fu is the surface charge density/cl. field of the argument 
u and fv is the real part ~{C} or 8m{C} of the curve C that represents the condenser 
plane in the complex W-plane as a function of v. Thus the paramet:-ic curve gives the 
graphical image of the surface charge density/field of the argument 11, and v in the complex 
W-plane in the range x = Xmin (=tmin) and x = Xmax (=tmax). 
The option 
PlotRange -> { { umin,umax},{ vmin,vmax}} specifies the range of the graphics to be 
displayed where umin, umax ; vmin, vmax are the minimum/maximum values of the 
functions f u and fv that are plotted; 
Axes Origin - > { u 0 , v0 } moves the origin to the point ( u 0 , v0 ) of the JR 2 ; 

the option 
AxesLabel -> { "textx", "texty" } is the same as in CartesianMap[ ]; 
For reference the option 
Epilog -> { Text[ ... ], Text[ ... ] } adds some text to the graphics and 
PlotLabel -> "text " adds some text heading the picture. 
The option 
DisplayFunction -> Identity lets Mathematica calculate the curves. However, it does 
not display the graphics. In the Mathematica programs of chapter 2 the names given to 
these "invisible" pictures have the extension "inv". If you want to change some more 
options of ParametricPlot[] consult the lists on page 802, 33g and 842 of [ma]. 

Show[graphics, options] displays the graphics graphics using the new options options. 
The option Display Function-> $DisplayFunction makes an "invisible" graphics visi
ble. 

Show[GraphicsArray[{ list}, options], options] draws an array of all pictures con
tained in the list list using the options options for the whole array. 
One important option of GraphicsArray [ ] is 
GraphicsSpacing -> number. This option adds the space number between the graphics 
opjects given in { list } . The second options belong to the Show[ ] command which 
displays the array of graphics designed by GraphicsArray [ ]. These two options are 
a bit different in what they do but to explain their difference needs some experience with 
M athcmatica . 
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For reference the option 
Epilog -> {Text[ ... ] } adds some text to the graphics and 
PlotLabel -> "text " adds some text to the picture. 
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Frame -> True frames the graphics array. If you do not want a frame for all sides but just 
for, say, the second and third one you can replace True by { False, True, True, False } . 
Then FrameLabel - > { '"', "text1", "text2", '"' } puts the text text1 and text2 to 
the second and third frame line. The two quotation marks '"' represent an "empty" text 
printed to the first and fourth frame line. If you chose some "real" text instead Mathema
tica would nevertheless ignore this text since it cannot put text to a frame line which does 
not exist. 
The PlotRange -> { vmin, vmax } command cuts the v-range of the picture produced 
by GraphicsArray [] (default range is { {O, 1},{0, ratio between the length of the 
u- and v-axes in internal Mathematica units } } ) leaving the u-range untouched. 
To repace old values of options in some or all graphics of the list by new ones you add: 
(option -> old value) -> (option -> new value) to the options of the Show[ ] com
mand. 
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2 The Mathematica Programs 

This is the main chapter which gives you some hints how to execute my programs best. 
It is followed by the sections for various conformal maps and graphics. The last section 

- gives an outlook to the difficulties that arise when one wants to round the corners in a 
condenser configuration treated by the Schwarz-Christoffel transformation. 

2.1 How to Use the Programs 

The Mathematica programs are designed in a way that even users with no experience in 
the computer language Mathematica may have the programs' graphics plotted provided 
they type the programs correctly. Before you do that, however, you should read section 
2.1 to 2.3 in which many things are explained that occur in the programs later on. 
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All sections of chapter 2 except for number 2.1 and 2.2 are arranged in the same way. They 
contain text and pictures in the following order: 

£ about the conformal map w = f(z): poles off (z), f'(z) and its zeros , domain Dz 

£ the image of the condenser-plates in the W-plane (picture). 

£ calculation of the parametric curve C representing the condenser planes and the 
normal unit vectors in W-space. 

£ calculation of the complex electric field E and the surface charge density 'r/ in terms 
of x and y. 

£ what the electric field and the equipotential lines look like 

£ how will the electric field strength and the surface charge density on the plates 
behave 

£ Mathematica program 

£ coments on and tricks used in this sect.ion's Mathematica program 

£ tips for variants of the Mathematica program 

£ the graphics that can be generated by the Mathematica program 
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The Mathematica programs are quite similar one to another: 

£. At the beginning the package Graphics'ComplexMap is loaded and the dimensions of the 
condenser as, e.g., thickness of the plates, their distance and their voltage must be specified 
by hand. 
The user makes his/her choice whether he/she wants the pictures of the surface charge 
density or the electric field plotted. 
£. When the conformal function contains any elliptic functions or integrals FindRoot[ 
searches for the value of the parameter m belonging to the input data. 
£. Then all functions needed in the graphics commands are defined. 
Values that speci~y some graphics parameters are calculated. 
The auxiliary file Hilfsfile which contains some additional variables used in the plots is 
loaded. 
£. The main part consists of the commands ParametricPlot[ ] and CartesianMap[ ] in 
the order: 
ParametricPlot(s) for the upper plate , CartesianMap , ParametricPlot(s) for the 
lower plate. 

When you run the programs you should divide them into these four sequences so that you 
do not have to run through the whole program when an error in one of these parts arises. 
This will save you a lot of trouble, time and nerves. 

However, in my Mathematica programs there is one operation where difficulties may arise. 
This is the FindRoot[ ] command followed by the ReplaceAll[ ] ~ /. command. Even 
with Mathematica it is not possible to devise programs which work for any values of the 
condenser parameter. 
After the dimensions of the condenser in the first part of the program have been specified 
FindRoot[ ] searches for a solution of its argument that is a function of those new values. 
Then the program replaces the value of the variable - say a - by the solution found by 
FindRoot[ ] . 
For a tested range of condenser diameters a list of parameters for each FindRoot[ J com
mand is given at the end of each program. 
If yon want the graphics for values of parameters outside the ranges listed there yon have to 
find out the parameters and options in FindRoot[ ] yourself. Unfortunately one error in 
finding the solution by FindRoot[ ] entails a number (256) of errors when Mathematica 
tries to repbce the old value of a by the new incorrect one. 
To prevent this yon have to divide the program right behind the first command : 
fra = FindRoot[ lhs == rhs, {a, amin, a max}, options] 
So the other part will begin with: 
; a = a/. fra ; 
Now run the program up to this FindRoot[ ] command and change the parameters and 
options within FindRoot[ ] until Mathematica gives you no more warning messages. 
Then merge the two parts again and divide after the second FindRoot[ ] command. Do 
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this until you reach the last FindRoot[ ] and merge the parts. The program should run 
without trouble. 
This procedure looks very tedious but it is the quickest way to get the wanted results. 

As mentioned before the options in ParametricPlot[ ] and CartesianMap[ ] can be 
changed too. The following changes will be the most needed: 

for ParametricPlot[ ] : 

£ The original labeling of the axes done by the option Epilog - > { ... } should some
times be modified by hand when using other "starting values" for your condenser. 
Therefore the numbers within the first { } i!:' the Text[ ] suboption must be 
changed. These numbers are the co-ordinates of the text "text" in the graphics. 
If you want to render any text inoperative as an option you just surround the option 
and the preceding comma by (* , option*) in this case (*, Epilog -> { ... }*). 
Mathematica disregards everything wrapped by (* *); later on you may use the 
option again after erasing the (* *). 

£ Some graphics showing the electric field and surface charge density are labeled with 
ticks in SI units using the specifications (thickness, distance, voltage) from above. 
If you wanted to use different units instead, you have to change the variable mult 
in the Hilfsfile to your purpose. 

£ If you want to change the range of the plot to look at a certain detail you may do 
this by changing the co-ordinates in the PlotRange option. For further details cf. 
section 1.3 or [ma, p. 413ff] 

for CartesianMap[ ] : 

£ Pictures for special parts of the condenser are plotted by changing the PlotRange 
option as indicated in section 1.3 and [ma, p. 413ff] 

£ When you want to change the number of gridlines you can do this by adding: 
" , PlotPoints -> number '' (don't forget the comma!) 
to the options or by changing dx and dy in CartesianMap[ ] (cf. section 1.3). 

£ Due to roundoff errors during the calculation the points near the condenser plates 
may have wrong values which lead to zigzag lines across the picture. If that is true 
you have to modify the y co-ordinates in CartesianMap[ ] so that you add some 
tiny number to the lower limit y 0 and subtract it from the upper limit y 1 . The tiny 
numbers for the upper and lower limit do not have to be of the same value and these 
values must be found out by trial and error. 
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Each program can be used exclusively without parts of any other program except for the 
auxiliary program Hilfsfile presented in section 2.2 . So you just have to type those programs 
you really want to use. When you want to use more than one program at the same time 
you should not try to scratch out lines that occur in any of the programs. You might get 
funny graphics you did not want to get. Normally you should not get into more troubles 
than that the graphics are of different size and not exactly one below the other. 

There are some rules however which have to be strictly followed when typing and executing 
my programs: 

1. Note that all Mathematica commands begin with capital letters. Even the parts of 
compound words start with capital letters. Nevertheless compound words must in 
any case be written without space in between. 

2. Do not forget to type all brackets. There must be the same number of opening as well 
as closing brackets ( whether they are round, curly or square brackets.) Mathematica 
would give an error message otherwise. 

3. Do not try to modify the program before you have not tried to run exactly the one 
discussed in the thesis. If an error arises you should check whether it results from 
a slip committed in typing the program or from your computer which may not like 
certain commands or options due to an older Mathematica version than 2.0 or a bad 
installation of Mathematica . 

4. It is advisable to start a brandnew Mathematica session when you run these pro
grams. Otherwise some specifications of options in the Mathematica commands 
Graphics[ ] and ParametricPlot[ ] that are not the default ones - they are 
assumed when working with my original programs - could still be in the kernel. 

These four items arc valid for all programs presented in this paper. Sometimes some warning 
messages appear which can be ignored when the program ran correctly for at least one time. 
These messages arc: 

General::spell: Possible spelling error: new symbol name "sym" is similar to 
existing symbols list of symbols. 

General::spelll: Possible spelling error: new symbol name "sym1" is similar to 
existing symbol "syrn.i". 

Since I often used quite similar names for variables and functions in the Mathematica 
programs these warning messages may occur. They will not do any harm: so ignore them ! 
There is another message yon cannot do much about. It orrurs when the working precision 
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in FindRoot[ ] is above the working precision of a function f (usually 16 -19 digits) used 
as the argument of FindRoot[ ] . 

FindRoot::precw: Warning: The precision of the argument function (!) is less 
than WorkingPrecision (number). 

Unless you are an expert in Mathematica ignore it too. For further information about these 
and other error messages see: Mathematica Warning Messages which came with your copy 
of Mathematica . 
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2.2 Information About Hilfsfile and its Mathematica Program 

This short section explaines the way the auxiliary file Hilfsfile works. 

When you run one of the Mathematica programs (cf. section 2.5 to 2.14 except for 2.8) you 
have to decide whether you want the graphics to be plotted for the electric field strength or 
for the surface charge density along the condenser planes. Specifying the variable decide 
in the program makes this switch between the electric field (ef) and the surface charge 
density (scd). The line<< -path/hilfsfile in the progams reads in and evaluates the file 
Hilfsfile where -path/ represents the UNIX commands for the path: home directory ~ 
Hilfsfile. This path has to he specified by hand. Easiest would be to use the home directory. 
Then < < - path/ hilfsfile reduces to < < hilfsfile. When you execute the Mathematica 
programs by a computer that is not run by the UNIX operating system you may have to 
modify -path/ to the proper commands of your operating system. 

I will explain Hilfsfile with the aid of its computer program. 

Clear[branch,mult,sgn,tex1,tex2,tex3,fr,frl,frtex] 
Which[decide === ef, 

mult = V 1000/a; sgn = -1; branch= 1; 
tex1 = "E[V/m] "; tex3 = "E"; 
fr = {False,False,True,False}; 
frl = {"","",frtex,""}, 
decide === scd, 
mult = V 8.85 10--9/a; sgn = 1; branch= O; 
tex1 = "eta[C/m] "; 
tex3 = FontForm["h" ,{"Symbol" ,10}]; 
fr = {True,False,False,False}; 
frl = {frtex,"","",""}, 
decide=!= scd && decide=!= ef, 
Print ["Your input is wrong ! "]] ; 

tex2 = FontForm["h I E",{"Symbol",10}] 

(* This must be an ASCII text file *) 

In the first line all previous specifications for the variables used in Hilfsfile arc cleared. In 
the following branching command Which[ ] the current value of the variable decide is 
compared to the three possibilities: ef, scd, neither ef nor scd . If the value equals ef 
Hilfsfile exports the graphics parameters needed for plotting the electric field. If the value 
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equals scd Hilfsfile exports the graphics parameters needed in the main program for plotting 
the surface charge density. If the value is non of those Hilfsfile sends a warning. 

The variables contained in the Which[ ] command are: 

£. mult defines a multiplication operator which specifies the scale of the y-axes in SI 
units. mult of scd equals 1000~ . The factor 1000 derives from the scaling of the 
u- and iv-axes in mm (1 meter = 1000 millimetres) for a given voltage of Vo Volt 
and a plate distance a mm. 
mult of ef equals lOOOVo /a (cf. eqs ( 27)). 

£. sgn defines a multiplication operator which specifies the scale's sign on the y-axis 
(cf. eqs (27)). 

£. branch is used to specify one limit (lower limit for the upper - upper limit for the 
lower plate) of the PlotRange in the GraphicsArray[ ] . 

£. texl defines the text containing the SI units to label the y-axes with. 
£. tex3 is the same as texl without units. 
£. fr specifies the frame lines to be drawn in the GraphicsArray[ ]. 
£. frl tells Mathematica to add the text frtex (specified in the main program) to the 

frame line in GraphicsArray[ ]. 

tex2 defines the text for graphics without ticks that are the same for the electric field as 
well as for the charge density. 
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2.3 Mathematica Program for the Infinite Plane Condenser 

/(z) = ldentity(z) = z 

The Infinite Plane Condenser is the basis for all other condenser configurations since its 
electric field and all other related quantities are known. These may then be mapped 
conformally to the other condensers presented in the following sections. 
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The Infinite Plane Condenser is a condenser whose two parallel plates run from minus to 
plus infinity for two of the three Cartesian co-ordinates x,y,z. The electric field E between 
these plates is homogenous and can be calculated from the voltage applied to these plates 
and for the distance d. 

E = -v<r> with (16) 

if> denotes the potential between the plates and b.V is the potential difference of the plates. 
This expression corresponds to one condensor plane located in the xz-plane and the other 
one in a plane parallel to the first one at the distance d. 
Since the electric field is homogenous the surface charge density defined in equation (14) is 
constant. 

'f/ = =fco b.V /d (17) 

The minus, plus sign respectively applies to the positively, to the negatively charged plate 
respectively. 

Up to now in this section I talked about electric quantities in real space IR.3 • Now I switch 
to the complex plane. As in section 1.2 I drop the z component of the IR.3 space. The 
remaining components x and y become the real ( x) and imaginary part (y) of the elements 
z (don't confuse it with the third real component z !) in the complex plane. 
For many condenser configurations conformal maps are known which transform the problem 
to that of a two dimensional Infinite Plane Condenser. When you know such a function 12 

the electric field, the potential, the surface charge density and the electric field strength on 
the surface of this condenser can be computed a lot easier. The Infinite Plane Condenser 
which I choose to work with on the complex plane is one whose plates are located on the 
x-axis and at z = x +in, a line parallel to the x-axis at the distance d = i7r. After this 
choice I map the Infinite Plane Condenser to the Flat Condenser, which matter is the content 
of the next section. To this configuration in the upper half of the complex plane I apply the 
Schwarz-Christoffel formula to get all other condenser configurations treated in this thesis. 

The conformal map for the Infinite Plane Condenser is the identity function. It is conformal 
in the whole complex plane. The domain for the Infinite Plane Condenser would therefore 

12 A standard book for conformal mapping is [ko]. 
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be Dz= fC. 
This domain, however, is oversized, since it is larger than the size of the Infinite Plane 
Condenser which is the starting-point for all other configurations. 
That is why I restrict the domain Dz to Did := {zl z = x + iy with x ElR A YE[O, 7r]}. 
So the domains for further conformal functions can only be subdomains of Did· Moreover 
zeros of the first derivative of the following conformal maps that are not within this domain 
Did will not be mentioned. 
Nevertheless you have to be careful when choosing the domain for the computer programs. 
You might get false graphics results especially for conformal maps including square roots, 
elliptic functions and integrals due to errors arising from numerical calculation. 

The potential of equation (16) must be slightly modified when changing to complex co
ordinates: It must be holomorphic in the domain Did and must fulfill the boundary con
ditions. Thus the correct expression for <I> is 

. Vo z 
<I>(z) = -i- . 

7f 
(18) 

Since the complex potential for the lower plate ( z = x) equals <I> = -i~ and <I> = Vo - i~ 
for the upper plane (z = x + i7r) we see that the voltage at the upper plate is Vo and is 
zero at the lower plate. 

iy 

i7T 
-i 

z 
x 

Figure 2: Curve C and normal vectors of the Infinite Plane Condenser 

Figure 2 represents the plane condenser in domain Dz= Did indicated by the caligraphic 
z. Apart from the condenser planes entitled C1 and C2 you sec two tiny arrows pointing 
upwards and downwards and some triangles giving a direction to the lines that represent the 
two dimensional planes (The second dimension was skipped when changing to the complex 
plane.). 

The arrows arc the unit vectors nz normal to the condenser planes. Of course there is a 
unit vector for every point on each plane, but since all nz of one plate are the same I plotted 
one representative for each plane. They are constructed as follows: 

Let C(s) be the parametric representation of a curve C with s the parameter of C(s). 
I3y definition the normal vector Nc(s0 ) in the point s0 of the curve C(s) is normal to 
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the tangent vector Tc(so) in the same point. The tangent vector Tc(s0 ), however, can be 
calculated when I know the curve C(s). It is the total derivative of C(s) in the point s0 

Tc(so) = d~,;s) l.
0 

(19) 

On the Gaussian plane the multiplication of Tc with one of the complex numbers ei(2k+l),,./2 

(k E Z) leads to a set of normal vectors N~. This is evident when you consider that the 
multiplication of a complex number by ei'P can be interpreted as the rotation of the corre
sponding vector by the angle a. I choose k = 013

. Thus the normal unit vector in the point 
s0 becomes 

nc = i (dC(s)/ I dC(s) I) 
ds ds 

s=so 

(20) 

The denominator in equation (20) is the modulus of the numerator added to normalize the 
normal vector N~. 
With the knowledge of one parametric representation for the condenser plates I may calcu
late the normal unit vectors immediately. As you will see all our curves which are closed 
loops on Riemann's sphere result clearly from the curve for the infinite plain condenser14 • 

For the problem of the Infinite Plane Condenser the parametric curve C(s) consists of two 
parts C1 and C2 

(21) 

where the parameters of the curve C(s) was replaced by the variable x. 
To understand the minus sign in C2 ( x) you have to look at the image of the infinite condenser 
planes on the Riemann sphere (they have the shape of a deformed figure eight, crossing at 
the north pole) or at figure 2: 
Imagine two lines connecting the two parts C1 and C2 forming a closed loop with these. I 
now run along C1 to the point where the fictious line at the right leaves to C2 ; I follow that 
line up to C2 ; then I follow C2 in the negative sense to the left auxiliary line; I get down 
to C1 again to complete the loop. When you let the two auxiliary lines tend to plus and 
minus infinity you get expressions for C1 and C2 that are equal to equation (21). 
If I chose the plus sign instead, I would again get the shape of an eight form on Riemann's 
sphere, but I would have to follow the upper loop of the eight form in the unusual sense 
so that the normal vector pointed to the outside of the loop. This would mean that the 

13 Since Did is not the whole complex plane k is restricted to kE{-1,0}. I choose k = 0 whose 

multiplication factor e•~1 2 turns Tc counterclockwise into Ne which is the mathematical direction for 
closed loops and of the complex polar angle c.p. Choosing k = -1 the surface charge density '7 changes 
sign which does not lead to new solutions since \fl in t/k=D can be replaced by -\fl to get the same 
results. 

14 \\'hich is quite evident since the conformal functions which map the Infinite Plane Condenser to all 
others are single-valued. Even for points on the planes that do not belong to the domain the limit 
from the condenser's interior is single-valued. 
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charge on the plates had the same sign and the two plates would therefore not form a 
condenser. Mathematically speaking the loop integral of the surface charge density would 
not equal zero. This cannot be correct since the field between the plates does not have any 
singularities which the Cauchy integration formula would demand. Hence the tangent and 
normal (unit) vectors read 

Tz = dC(s) = { 1 for part Ci (s) 
ds -1 for part C2 (s) 

(22) 

nz = eirr/2 • Tz = idC(s) = { i for part Ci (s) 
ds -i for part C2 (s) 

(23) 

The subscript z of T and n again indicates the domain Dz wherein the above vectors arc 
defined. 

With the help of eqs (23), (18) and (15) the surface charge density of the condenser plates 
can be calculated as 

{ .d( .Voz)} coVo 
1] = -E0 ~ =t=i dz -i---;- = ±--;- (24) 

As I mentioned before 77 has a constant value, whereby the plus sign in the equation belongs 
to the upper and the minus sign to the lower plate. In physical terms this means that the 
charge density is the same all over both planes; yet the densities are oppositely charged. 
Since I always use this Infinite Plate Condenser as a basis to calculate all the others except 
for those in section 2.13 and 2.14 I insert its potential ( eq. (18)) into formula (1.2) of the 
surface charge density in the W-plane. 

' ( d ( . ) 1 ) ( iVo 1 ) 1Jw(C)=-Eo1Re nw-d -iVoz/7r ~ =Eo~ nw- V, 
,z f'(z) 7r f'(z 

ZEC ZEC 

_ EoVcl <:>< ( 1 ) _ , r: - -- srn nw ~ - 77(C) (2v) 
7r .f'(z) 

ZEC 

You sec that the surface charge density 77(C,) = 77(C C Rw) for plates in the W-plane tends 
to infinity for the limit z --+ z0 when .f'(z0 ) = 0. Nevertheless it stays finite in Rw since 
z0 f/: Dz. Fortunately all inner points w; E Rw on the W-plane have a finite electric field as 
f(z) is conformal in Dz. 
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The electric field strength Ew on the W-plane can be obtained by the same procedure. I 
have to insert equation (18) into (12 b) and obtain 

(26) 

If the nomal unit vectors nw are simply ±1 or ± i as in all cases except for the One 
Rounded Corner of 90° Condenser the relation between the electric field strength and the 
surface charge density is quite simple. 

7Jn,,,=1(v) = Eo Eu(v) 

7Jn,,,=-1(v) = -£0 Eu(v) 

17n.,=Ju) = Eo Ev(u) 

77n..,=-;(u) = -£0 Ev(u) (27) 

This equations show that the surface charge density and the electric field on the plabs are 
the same apart from the factor ±£0 . This permits one to create one Mathematica program 
for both the field and charge density (cf. sections 2.1 & 2.2). 
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As everything to make up the Mathematica program has been collected time has come to 
present it. 

Mathematica program 1: for the Infinite Plane Condenser 

Needs["Graphics'ComplexMap'"] 

al = CartesianMap[# &,{-2,2},{0,Pi}, Axes -> None, 
Epilog -> { Thickness[.011], 

{ Line[{{-2.1,Pi},{2.1,Pi}}], Line[{{-2.1,0},{2.1,0}}] }} ] 

This first Mathematica program consists of just two commands (apart from the options) 
and I do not suppose you would like to vary it. 
Therefore I show the graphics plotted by the program straight away: 

(al) 

Figure 3: Graphics produced by the Mathematica program 1 for the Infinite Plane Condenser. 

The Infinite Plane Condenser is not very instructive: so we go to the next one. 
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2.4 Mathematica Program for the Flat Condenser 

This section as the previous one is more of an explanatory character because it prepares 
the foundation for the other problems as indicated in section 2.3. The condenser plates 
are located on the r-axis which is the real axis with the one plane extending from minus 
infinity to zero, the other one (oppositely charged) extending from zero to infinity with a 
gap at zero15 . The conformal map which does the transformation is: t = e. The equation 
.f(t) =A f

1
tJt - t0 )-

1dt + B = Aln(t - t 0 ) + B maps the upper half of the T-plane to the 
Infinite Plane Condenser . I choose t0 to be t0 = 0. When I let t = ±1 be transformed to 
z = O and z =in respectively I get 0 = Alnl + B =Band in= Aln(-1) = inA =>A= 1. 
So the transformation reads z = ln t 16 

. Its inverse function 1-1 
( z) = ez = t gives the 

conformal map as written above. 

The conformal map t = .f ( z) = ez is holomorphic in the whole complex plain CC. Its first 
derivative f'(z) = f(z) gets zero for values z = -oo (mEZ) which is not in Did· 
With that the domain Dz is Dz= Did 

is 

T 

r 

Figure 4: Curve C and normal vectors of the Flat Condenser 

The image C of the curve C in the T-plane is shown in the picture above. As C it consists 
of two partsC2 andC 1 . C1 is the image of C1 andC2 the image of C2 in the T-plane since 

.f(Ci) = e" 2 O ==::::} C\(r) = f(Ci) = r for r > 0 

15 The derivative of the conformal map /(z) = f'(z) = e' is zero for :: = -oo. Therefore t = 0 is 
not an element of the domain D, which fits our physical purpose well because we can place an ideal 
insulator at the zero-point to prevent the charged particles to move from one plate to the other without 
spoiling the mathematical description. 

16 The function f ( t) = ln t = z is multi-valued since its im·erse is periodic. To get a unique solution 
for lnt I have to cut the range. I choose a new range with R, = {z = x + iy lxEIR,yE(-7r,7i']}. 
This is a superset of the plane condenser's domane Did· The new function f is therewith Lnt = z the 
principal branch of the logarithm. 
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Here f(C;) denotes the image of the curve C; located in the Z-plane under the function f. 
Since f ( C1 ) is real and monotonically increasing from 0 to infinity for increasing x it has to 
be aquivalent to the positive branch of the r-axes. The real negative and with x increasing 
function f(C2 ) must therefore be the negative branch of the r-axes. With these parametric 
curves for the condenser plates I compute the unit normal vectors in the W-plane. 

They are calculated to n 1 = i ~~ = i which is the same result as for the lower plate of the 
Infinite Plane Condenser . Inserting the derivative for the points of the curve C and the 
normal vectors nw into equation (25) I get the surface charge density for the two parts C1 

and C2 in terms of x: 

EoVo {' 1 } EoVo 1 
for X EJR: C'i (x) = e" re (x) = -- <Jm i- = 

1 n e" n e" 

EoVo { 1 } EoVo 1 
for X EJR: C2 (r) = -e-" 7}: (x) = --- <Jm i-- = +--

2 n -e-" n e-" 

In this special case I can even write down the surface charge density as a function of r 
when I insert the representations forC 1 andC2 in terms of x. In all the other problems this 
cannot be done by analytic expressions. This is performed by the Mathematica command 
ParametricPlot[ ]. 

EoVo 1 
1i: (r) = -- -

' n r 

EoVo 1 re (r) = --
2 n r 

for r > 0 

for r < 0 
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Mathematica program 2: for the Flat Condenser 

Needs["Graphics'ComplexMap'"] 

Clear [VJ 
V = Pi/1000 (* Voltage between the plates in Volt *) 

af20[z_] = V 1000/Pi Exp[z] ; 

a2 = CartesianMap[af20, {-1.1,1.1},{0,Pi}, Axes ->None, 
Epilog -> { Thickness[.011], 

{ Line[{{-3.1,0},{-.1,0}}], Line[{{.1,0},{3.1,0}}] }} ] 

b2 = Para.metricPlot[{{ af20[t], -af20[-t] }, { -af20[-t], af20[t] }}, 
{t, -1.1314, 1.1314}, AspectRatio -> .5, 
AxesLabel -> {"r [mm]", "E [V /m] "}] ; 

32 

This program like all the following ones consists of a combination of ParametricPlot [ ) and 
CartesianMap[ ). The first one draws the surface charge density, the latter one the con
denser planes with their electric field. No special tricks for the design of this program 
were needed except for the use of the option AspectRatio which renders the output of 
ParametricPlot[ ] as large as the graphics of CartesianMap[ ). Since I do not suppose 
that you will want to change this program no variants are mentioned. 
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Here are the Graphics: 

(a2) 

E [V/m] 

3 

2 

1 (b2) 

r [mm] 
-3 -2 -1 2 

-1 

-2 

-3 

Figure 5: Graphics produced by the Mathematica program for the Flat Condenser. The 
labels indicate that parts of the program which produced the pictures. 
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2.5 Mathematica Program for the Semi-Infinite Plane Condenser 

w = ~(1 + z + ez) 

34 

This is the first realistic problem which deals with the Semi-Infinite Plane Condenser. The 
upper plate extends from minus infinity to zero and ends there. I call this a semi-infinite 
plate to distinguish it from the infinite plate. The lower plate is at the u-axis. Although 
all pictures of this section show only one semi-infinite plate at u + ia and an infinite plate 
the problem is com11atible with that of two semi-infinite plates at u ± ia as shown in the 
variations of the Mathematica program. 

The conformal map for this problem is holomorphic for all z E «C and the first derivative 
f'(z) = ;(1 + ez) is zero for z = i7r. With that the domain Dzbecomes Dz= Did\{i7r}. 

w 

Figure 6: Curve C and normal vectors of the Semi-Infinite Plane Condenser 

The image of the curve C in the complex W-plane is given in the picture above. It consists 
of three parts. Ci is the image of Ci, C2 the image of C2 for x :S 0 and C3 the image of 
C2 for x ~ 0 on the W-plane. 
Allthough both curvesC2 andC3 are at the same distance ia from the u-axis they are drawn 
as seperate lines for clarity. 

.f (Ci) = ;(1 + :i: + e") ===:} C'i (u) = f (Ci) 'lJ, for u E IR 

.f(C2) = ;(1 - x + 'i'Tr - e-"') ===:} 
{ ~z(u) = f(C2(x < 0)) 'IJ, + ia for u<O 

C3(u) = f(C2(x > 0)) = -n + ia, for u>O 

The curves f ( C; ( x)) can be transformed to the parametric curves Ci ( u) of the condenser 
plate in the W-plane as indicated in the previous section by simply st11dying their mono
tonicity for the real and imaginary part. The minus sign in C3 ( n) ha.'> to be interpreted 
similar to the one for the upper plate of the Infinite Plane Condenser . 

So the unit normal vectors arc calculated to nw(Ci) = nw(C2) = i and nw(C3) = -i. With 



-

-

section 2.5 Mathematica Programs & Graphics for Conformal Maps 35 

these the surface charge density in terms of x is 

EoVo ~ { i 7r } coVo 
T/c1 (x) = -----:;- SITT a(l + c"') a 

1 
1 +ex 

for x E R : G\ ( x) = -; ( 1 + x + ex) 

ry·(x)=-EoVo ~{ i 7r. }=-coVo 1 
C2 7r a(l + e-x+11r) a 1 - e-x 

for x < 0 : C2 (x) - ia = ;(1 - x - e-"') 

Eo Vo ~ { -i 7r } co Vo 1 
T/c,(x) =-----:;-SITT a(l +e-x+irr) =+-a- 1- e-x 

for x > 0 : C3(x) - ia = ;(1 - x - c-x) . 

The surface charge density and the electric field of the upper plate becomes infinite in 
w = ia for both the top and bottom of this plate. 
This pole results from the sudden change of direction in the point w = ia. In this case I 
cannot get rid of the infinite values since the application of the modified Schwarz-Christoffel 
formula will not lead to a smooth curve as the plates are infinitely thin. Their ensuing 
singularity is a consequence of the sharp edge. For a plate of finite thickness (cf. the next 
section), however, a mapping function which produces an electric field and a surface charge 
density that are finite all over the plates may be constructed. 
The asymptotic behaviour of the electric field and charge density on the plates for u --+ ±oo 

can be considered quite easily: 
For u --+ -oo field and charge density at the bottom of the upper as well as at the lower 
plate have to approach their values of the Infinite Pia ne Condenser: these values equal - ~ 
For the field and ±~ for the charge density. The plus sign in the last term holds for the 
upper, the minus sign for the lower plate. 
for u -t -cxo on the top of the upper plate and for v. -t +cxo on the lower plate the field and 
charge density tend to zero since. the distances between the charges of these plates tend to 
infinity. 
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Mathematica program 3: for the Semi-Infinite Plane Condenser 

Needs["Graphics'ComplexMap'"] 

Clear[V,a,b,c,d,e,t,frc,decide] 
V = 1 (*Voltage between the plates in Volt*); 
a = 3 (* Distance of the plates in mm : 
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for all 1.1 10--5 < a< 2 10-2 (scd) and 1.1 10--5 < a< 3 10-5 (ef) *) 
decide = scd (* Decide whether you want the electric field (ef) or 

surface charge density (scd) of the plates *) ; 

af30[z_,t_] = a/Pi (1 + z + t) 
af31[t_] = 1/(1 + t) 
t[z_] = Exp[z] ; 

b = -5.7155 ; d = af30[-c,t[-c]]; e = af30[b,t[b]] 
frc = FindRoot[e - af30[-c,-t[-c]] ,{c,-2,-3}]; c = c/.frc 

<< -path/hilfsfile 

a3 = ParametricPlot[{ Re[af30[I Pi - x,-t[-x]]], -mult af31[-t[-x]] }, 
{x,.001,c}, PlotRange -> {All,{O,mult 5}}, 
AxesLabel -> {"u [mm]", tex1}, PlotLabel -> "Upper Plate: Top" ] ; 

a3inv = ParametricPlot[{ -Re[af30[I Pi - x, -t[-x]]], -mult af31[-t[-x]] }, 
{x,.001,c}, PlotRange -> {{-e,0},mult 5{branch sgn,1}}, 
DisplayFunction -> Identity ] ; 

b3 = ParametricPlot[{ Re[af30[I Pi - x, -t[-x]]], sgn mult af31[-t[-x]] }, 
{x,-b,-.1}, PlotRange -> {{e,0},{0,sgn mult 5}}, 
AxesLabel -> {"u[mm]",tex1}, PlotLabel ->"Upper Plate: Bottom"] 

c3 = CartesianMap[af30[#,t[#]] &,{-c,b},{0,Pi}, 
PlotRange ->All, AxesLabel -> {"u[mm]","iv[rrun]"}, 
Epilog -> { Thickness[.011], 

{ Line[{{d,0},{e,O}}], Line[{{e,a},{O,a}}] }} ] ; 

d3 = ParametricPlot[{ af30[x,t[x]], -mult af31[t[x]] }, {x,-c,b}, 
AxesLabel -> {"u[mm]","Lower Plate"}, 
Epilog -> { Text[texl,{-e/8,-mult/3},{0,0},{0,1}] } ] ; 
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Show[GraphicsArray[{b3,a3inv}, GraphicsSpacing -> O ]/. 
(Ticks-> Automatic) -> (Ticks-> None) /. 
(AxesLabel -> {"u[mm]",tex1}) -> (AxesLabel -> {None,None}) /. 
(PlotLabel ->"Upper Plate: Bottom") -> (PlotLabel ->None) /. 
(PlotRange -> {{e,O},{O,sgn mult 5}}) -> 

(PlotRange -> {{e,O},mult 5{branch sgn,1}}), 
Epilog -> { Text ["u -> <- u", 

{.5,If[decide == ef,.19,,.04]}], 
Text[tex3,{.47, .27}] }, PlotLabel ->"Upper Plate"] 

Show[c3, Axes -> None] ; 
Show[d3, Ticks-> None, AxesLabel -> {"u","Lower Plate"}, 

Epilog -> { Text[tex2,{-e/8,-mult/3},{0,0},{0,1}] } ] 

Comments: 
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The first pictures (a3, b3, c3, d3 except for b3inv) are drawn with ticks (b3inv is 
calculated but stays invisible). The following three Show[ ] commands produce pictures 
without ticks to see the qualitative behaviour of the curves whereby the first i.e. the 
Show[GraphicsArray[ ]] command puts the pictures of the upper plate a3, b3inv into 
one picture without ticks. The image of b3inv looks like the picture of b3 with the u-axis 
pointing into the other direction. This change of direction is indicated by the reverse arrow 
in the FrameLabel option. 

Variants: 

&. it is possible to change ParametricPlot[ ] and CartesianMap[ ] as described 
in section 2.1. 

&. since you will normally deal with condensers that consist of two semi-infinite plates 
you can obtain that condenser by replacing the limits for the y co-ordinate: { O,Pi} 
in CartesianMap[ ] by {-Pi,Pi}. The surface charge density of the lower 
plane will than be of opposite sign. In order to avoid confusion by the surface 
charge density of the middle plate that is not any more existent, wrap (* *) around 
d3 = ParametricPlot[ ... ] ; and Show[d3, ... ] ;. To get the line for the lower 
condenser plate instead of that of the middle plate replace Line[{ {d,O},{e,O} }] in 
the Epilog option of c3 by Line[{ {e,-a},{0,-a}}]. 
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Upper Plate: Top 
E[V/m] 
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75 (a3) 
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Upper Plate: Bottom 
E[V/m) 

-4 -3 -2 -1 
u[mm) 

-250 

(b3) 

-100 

-125 

-1500 
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(c3) 

Lower Plate 

-4 -2 2 4 6 8 10 u[mm] 

(d3) 

Figure 7: Graphics with ticks plotted by the Mathematica program for the Semi-Infinite 

Plane Condenser. The labels indicate the parts of the program which produced the pictures. 
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Upper Plate 

E 

u -> <- u 

first Show[ ] 

second Show[ ] 

Lower Plate 

third Show[ ] 

Figure 8: Graphics without ticks plotted by the three Show[ ] commands of the Mathe
matica program for the Semi-Infinite Plane Condenser. 
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Figure 9: Symmetric Semi-Infinite Plane Condenser without ticks which is produced by the 
variant of the Mathematica program for the same condenser parameters as used in the 
previous pictures. 
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2.6 Mathematica Program for the Thick Semi-Infinite Plane Condenser 

w = 11"~ { y'tTI y't + p + (p + 1) ln[v't+T + y't + p] -

2Jp ln[ViJ v'fTI + y't + p] + Jp Int} - * ln(p + 1) 

with t = ez and b 
a 
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This section contains a variant of the previous problem with a condenser plate of finite 
thickness b which is at a distance a from the u-axis. For thin plates the electric field looks 
nearly the same as in the previous problem. For thick plates and near the end of the upper 
plate, however, the field shows some new aspects. The map which is given in [fl, p. 76] 

f(z) = ,,:fp{ Jt+T Jt+p + (p+ 1) ln[Jt+T + Jt+p ]-

2y'P l~ y'P Jt+T + Jt + p] + y'P ln t }- ~ ln(p + 1) 

with t = ez and ! = C!f0Jl 2 

is holomorphic in CC when y'P =/:- 0 (which is always 

satisfied) and real (a > b). The first derivative f'(z) = ,,'0>~ Jp + ez is zero at 

z = i 7r and z = i 7r + ln p. Therefore the domain Dz becomes Dz= Did\ { i 7r, i 7r + ln p}. 

C2 
ia+ib ~----'----1 c 

lV 

w 
-i 

---+-----+-___ ......__.,. _ __... 11 

Figure 10: CurveC and normal vectors of the Thick Semi-Infinite Plane Condenser 

As seen in the picture above the condenser's curveC on the W-plane consists of four parts: 
C1 is the image of C1 , C2 of C2 (x < -lnp) , C3 of C2 (-lnp < 1: < 0) and C4 of C2 (x > 0). 
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f(Ci) 

f(C2 (x < -lnp)) 

Mathematica Programs & Graphics for Conformal Maps 

= 7r~ { JCX+T Jex+ p + (p + 1) ln( JCX+T +Jex+ p) -

-2JP ln( JP Jex+ 1 +Jex+ p) + JPx }- ~ ln(p + 1) 

===> C\(u) = f(C1) = u for u E 1R ; 

=_a_. {-Jex - lJcx - p + (p + 1) ln(i( Jex - 1 + Je-x - p)) -
nJP 
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- 2 JP ln ( i (JP J e- x - 1 + J e- x - p ) ) + JP (in - x) } - ~ ln (p + 1) 

= _a_ { -Je-x - 1 Je-x - p + (p + 1) ln( Je-x - 1 + Je-x - p) -
nJP 

-2JP ln( JP Je-x - 1 + Je-x - p) - JP x} - ~ ln(p + 1) + i(a + b) 

===> (\ ( u) = f ( C2 ( x < - ln p)) = u + i (a + b) for - oo < u < 0 ; 

f(C2 (-lnp<x<O)) = 7r~{ iJcx-lJp-e-x +(p+l) ln(iJcx-1 +Jp-e-x)-

-2JP ln(iJP Je-x -1 + Jp- c-x) + JP(in - x) }- ~ ln(p + 1) 

= ~ {Jex -1 Jp - e-x + (p + 1) arctan[~]-7r JP p-e-' 

-2JP arctan[ vP~] + JPn} 

===> (\(v) = f(C2 (x < - lnp)) =-iv for - (a+ b) < v <-a. 

= 7r~ { -./1 - e-x Jp - c-x + (p + 1) ln( ./1 - c-x + Jp - e-x) -

-2..JP ln( ..JP Jl - c-x + Jc-x - p) - JPx 1- !!_ ln(p + 1) + ia 
I 1f 
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Here I used a formula given in [bs, §3.4.4.2.2] to write down the logarithm for complex 
arguments as a sum of its real and imaginary part. 
Since the images of the cuve C(x) are a lot longer now I plotted the functions J(C) with 
Mathematica's P~ot[ ] command to find out their monotonicity. When the function 
increases with x C follows the positive u or v direction. When it decrea.ses it runs against 
those directions. 

The unit normal vectors are calculated to nw(C1 ) = nw(C2 ) = i, nw(C3 ) = 1 and nw(C4 ) = -i. 
The surface charge density in terms of x is 

() coVo °' {· 7rVP } 
7};, x = ---;:- sm i a.~ VP+ ex = 

co Vo VP 
a. Jf+C""X .jp + ex 

for x E 1R: C\(x) = J(C1(x)) 

( ) co Vo ('\,,__ { . - 7r VP } _ 
7}; X = --- ::.:>Hl i -

2 7r a.Jex - 1 Je-x - p 
eoVo VP 

a Je-x - 1 Je-x - p 

for x < -lnp: C2 (x) = 3?e{f(C2 (x < -lnp))} ; 

7l: (x) =_co Vo 8'm {i 7rVP } = 
3 

7r ia.je-x - 1 Jp - e-x 
co Vo VP 

a Je-x - 1 VP - e-x 

for -lnp < x < 0: C3 (x) = 8'm{f(C2 (-lnp < x < O))} ; 

( ) co Vo °' { . 7r VP } · x - --- srn -i = 
7};, , - 7r , a../l - e-x .jp - e-x 

co Vo VP 
a ,/l - e-x .jp - e-x 

The electric field and the surface charge density on the lower, on the top and the bottom 
of the upper plate behave as in the previous problem. At the front of the upper plate 
they tend to infinity both for iv = ia. and iv = i(a + b) but they are not symmetric since 
the points with smaller values of iv arc nearer to the oppositly charged lower plate than 
those points with larger values. In addition the charge density anr1 the electric field tend 
to infinity as p- 1 /

3 (p is the distance from the corner): whereas theses quantities become 
infinite as p- 112 for the infinitely thin plate. 
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Mathematica program 4: for the Thick Semi-Infinite Plane Condenser 

Needs ["Graphics' ComplexMap' "] 

Clear[V,a,b,c,d,e,f ,g,p,t,sp,frc,frd,decide] 
V = 1 (*Voltage between the plates in Volt*); 
a= 3 (*Distance of the plates in mm*); 
b = .5 (*Plate's thickness in mm*); 
decide = scd (* Decide whether you want the electric field (ef) or 

surface charge density (scd) of the plates *) ; 

Solve[(sp -1)-2/(2 sp) - N[b]/a == O,sp] ; 
sp = sp/.% //N ; 
If[First[%] >Last[%] ,sp =First[%], sp =Last[%]]; p = sp-2 

af40[t_] = a/(Pi sp) (Sqrt[t + 1] Sqrt[t + p] + 

(p + 1) Log[Sqrt[t + 1] + Sqrt[t + p]] -
2 sp Log[sp Sqrt[t + 1] + Sqrt[t + p]] + 

sp Log[t]) - b/Pi Log[p - 1] 
af41[t_] = sp/(Sqrt[t + 1] Sqrt[t + p]); 
t [z_] = Exp [z] ; 

e = af40[t[c]]; f = af40[t[d]]; g = Im[af41[-t[.5 Log[p]]]] ; 
frc = FindRoot[e + 1.5(a + b), {c,-6,-5}]; c = Re[c]/.frc ; 
frd = FindRoot[e + N[a + b] I - af40[-t[d]] ,{d,Log[p] + .5,5}, 

Maxiterations -> 300]; d = Re[d]/.frd ; 

<< -path/hilfsfile 

a4 = ParametricPlot[{ Re[af40[-t[-x]]], -mult Re[af41[-t[-x]]] }, 
{x,-d,-Log[p] - .00001}, PlotRange -> {{e,0},{0,mult 3}}, 
Axes Label -> {"u [mm]", tex1}, PlotLabel -> "Upper Plate: Top" ] ; 

44 

a4inv = ParametricPlot[{ -Re[af40[-t[-x]]], -mult Re[af41[-t[-x]]] }, 
{x,-d,-Log[p] -.00001}, PlotRange -> {{-e,O},mult 3{branch sgn,1}}, 
DisplayFunction -> Identity ] ; 

b4 ParametricPlot[{ Im[af40[-t[-x]]], -mult Im[af41[-t[-x]]] }, 
{x,-Log[p] + .00001,-.00001}, PlotRange -> {{a,a + b},{0,mult 7}}, 
AxesLabel -> {"iv[nun]",texl}, PlotLabel -> "Upper Plate: Front"] ; 
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c4 = ParametricPlot[{ Re[af40[-t[-x]]], sgn mult Re[af41[-t[-x]]] }, 
{x,.000001,-c}, PlotRange -> {{e,0},{0,sgn mult 3}}, 
Axes Label -> {"u [mm]", tex1}, PlotLabel -> "Upper Plate: Bottom" ] 

d4 = CartesianMap[af40[t[#]] &,{c,d},{O,Pi}, 
PlotRange ->All, AxesLabel -> {"u[mm]","iv[nun]"}, 
Epilog -> { Thickness[.011], 

{ Line[{{1.02 f,0},{1.02 e,O}}], 
Line[{{1.02 e,a},{0,a},{O,a + b},{1.02 e,a + b}}] }} ] 

e4 = ParametricPlot[{ af40[t[x]], -mult af41[t[x]] }, {x,c,d}, 
PlotRange -> {{e,f},{-mult,O}}, 
AxesLabel -> {"u[mm]", 1111

}, PlotLabel ->"Lower Plate", 
Epilog -> { Text[tex1,{f/20,-.4 mult},{0,0},{0,1}] } ] 

45 

Show[GraphicsArray[{c4,Show[b4, PlotRange -> {{a,a + b},mult 3{branch sgn,1}}, 
Ticks -> None, AxesLabel -> None, PlotLabel -> None, 
DisplayFunction -> Identity], 

a4inv}, GraphicsSpacing -> O] /. 
(Ticks-> Automatic) -> (Ticks-> None) /. 
(AxesLabel -> {"u[mm]",tex1}) -> (AxesLabel -> {None,None}) /. 
(PlotLabel ->"Upper Plate: Bottom") -> (PlotLabel ->None) /. 
(PlotRange -> {{e,0},{0,sgn mult 3}}) -> 

(PlotRange -> {{e,O},mult 3{branch sgn,1}}), 
PlotRange -> {0,.2}, PlotLabel ->"Upper Plate", 
Epilog -> { Text[tex3,{.69,.18}], 

Text ["u -> (iv) -> 
{. 5, If [decide -- ef,.13,,.04]}]}] 

Show[d4, Axes -> None] ; 
Show[e4, Ticks-> None, AxesLabel -> {"u",""}, 

Epilog -> {Text[tex2,{-f/20,-.5 mult},{0,0},{0,1}] } ] 

<- u", 
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Comments: 

In the first part of the program a new command Solve[ ] is used to solve an equation 
symbolically; here the equation {sp - 1} A2/(2 sp) - N[b]/a == 0 given above is solved 
for the variable sp. A list of solutions for the equation (of two elements for this problem} 
is returned. Hence the If[ ] command chooses the solution with larger value to work with 
in the further program. As in the previous section the first pictures (a4, b4, c4, d4, e4 
except for a4inv) are plotted with ticks. The following three Show[ ] commands pro
duce pictures without ticks to display the qualitative behaviour of the curves whereby the 
first, i.e. the Show[GraphicsArray[ ]], command gathers the pictures of the upper plate 
a4inv, b4, c4 in one picture without ticks. The pictures, however, can only be obtained 
for a certain range of values for the plate distance a and the plate thickness b : 

lOA -4 to lOA -2 

13 to 500 

Variants: 

10--2 to .5 
13 to 700 

.5 to 4 
6 to 700 

4 to 40 40 to 600 
20 to 700 50 to 700 

600 to 870 
100 to 700 

870 to 10A5 
50 to 650 

£ it is possible to change ParametricPlot[ ] and CartesianMap[ ] as described 
in section 2.1. 

£ since you will normally deal with condensers that consist of two thick semi-infinite 
plates you can obtain that condenser by replacing the limits for the y co-ordinate : 
{O,Pi} in CartesianMap[ ] by {-Pi,Pi}. The surface charge density of the 
lower plane will than be of opposite sign. In order not to arise confusion by the 
surface charge density of the central plate, that is not any more existent, wrap (* *) 
around e4 = ParametricPlot[ ... ] ; and Show[e4, ... ] ;. 
To get the line for the lower condenser plate instead of that of the central plate 
replace Line[ { { 1.02 f,O} ,{ 1.02 e,O}}] in the Epilog option of d4 by 
Line[{{l.02 e,-a},{0,-a},{0,-a - b}, {1.02 e,-a - b}}]. 
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(a4) 

(b4) 

(c4) 

Figure 11: Graphics with ticks produced by the Mathematica, program for the Thick Semi
Infinite Plane Condenser. The labels indicate the parts of the program that plotted the 
pictures. 
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iv[mro] 

(d4) 

Lower Plate 
-5 -2.5 2. 5 5 7.5 10 12. 5' [mm] 

-50 

-100 

-150 (e4) 

iv[mm) 

variant 

Figure 12: Graphics with ticks produced by the Mathematica program for the Thick Semi
Infinite Plane Condenser. The third picture was plotted using the variant for the same 
condenser parameters as before. The labels indicate the parts of the program that plotted 
the pictures. 
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Upper Plate 

~E 

u -> (iv) -> <- u first Show[ ] 

second Show[ ] 

Lower Plate 

third Show[ ] 

Figure 13: Graphics without ticks produced by the Mathematica program for the Thick 
Semi-Infinite Plane Condenser. 
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2. 7 Mathematica Program for the One Corner of 90° Condenser 

w = ~ {i7r + 2i'\l"ez - 1 - ln[
1 + iv'ez -

1
]} 7r 1 - i·vez - 1 

50 

This section is about a condenser whose lower plate is the u-axis. The upper plate is parallel 
to the positive part of the u-axis located at a distance ia with a 90° corner at w = ia; there 
it turns to ioo along the iv-axis. It may be considered as the limiting case of the Thick 
Aperture CondensP.r of section 2.11 for large values of the thickness 2b. As in sections 2.5 and 
2.6 one gets a condenser with two unconnected edges by application of Schwarz 's reflection 
principle (cf. the variants of the Mathematica program). 
The problem is described in [vb, p. 142f] with the difference of an additional term ia in 
the conformal function to get the two-corner version more easily. 
The mapping function for this problem is holomorphic for any z E (C; the first derivative 
f'(z) = ~(ez - 1) 112 is zero for z = 0. With that the domain Dzbecomes Dz= Did\{0}. 

iv 

w 
1a 

-i 

Figure 14: Curve C and normal vectors of the One Corner of 90° Condenser 

The image of the curve C in the W-plane is shown in the picture above. Again it consists 
of three partsC1 , C2 andC3 .C1 is the image ofC1 for x < 0, C2 the image ofC1 for x > 0 
and C3 the image of C2 on the W-plane since : 

a{ - [1-~]} f (C1 (xix< 0)) = - i7r - 2J'l"=- ex - ln R 
7r 1 + 1 - ex 

===> C\(u) = f(C 1 (x < 0)) = -u+ia. : u < 0 

.f(C1(xx>0)) =- 7r+2vex-l -arctan I ia. { ~ (2JCX="T)} 
7r 2 - ex 
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f(C2) = !!:_ {i7f - 2Ve-" + 1 + ln[Je-z + 
1 

+ 
1
]} 

7f Je-" + 1 - 1 

=} C3(u) = f(C2 ) = u: UEIR 

The normal unit vectors are calculated to nw(C 1 ) = -i , nw(C2 ) = -1 and nw(C3 ) = i. 

The surface charge density in terms of :i; is 

re (x) =-Eo\'o 'Sm{-i 7r/a }=+Eo\'o 1 
1 7f Jl - e" a JI - e" 

for x < 0: C1 (x) = f(C1(:i: < 0)) - ia ; 

) EoVo ~ { i7r/a} EoVo 1 
TC2(x =--~ -l ~1 =+- Je--1 7f vex - .l a "~ 

for x > 0: C2(x) = f(C1(x > 0)) 

re (x) = _ EoVo 'Sm {i 7r/a } = _ Eo\'o 1 
3 7f Jl + e-" a JI + e-" 

for XEIR: C3(x)=f(C2) 

The surface charge density and the electric field on the upper plate get infinite at w = ia. 
n, tends to ~ (the field to -~) for u -+oo and n, and the field tend to zero for v -+oo. ·c1 a a ·c2 . 

The surface charge density and the field on the lower plate both tend to zero for u -+ -oo 

and to -~ , -~ respectively for u-+ +oo. 
a a 

The singularity on the upper plate is of the order u- 1/ 3 and v- 1 / 3 respectively. To prove 
this the function f(C1 (x)) has to be inverted for the limit x -+ 0. Inserting this into re, 
and re

2 
proves the edge condition to be valid in this case. 

Proof for the horizontal part of the upper plate: 

C\(u) = -u + ia = f(C1 (x < 0)) = ~ {i7f - 2~ - ln[l - ~]} (\ 
7f 1 + 1 - ex 

u<O 

The second approximation of C1 (u.) for x-+ o- leads to (the first one gives a constant for 
the variable u and is therefore useless) : 

=} C1 - ia = -u = ~(-x) 3 12 =} ~ ,....., (-u.) 113 . 
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Here I used the series expansion of the exponential function 

ex = 1 + x + ... ==> JI - ex ~ M > 0 

and that of the natural logarithm ([bs, p.33]) 

In -- = - In -- = -2 t + - + ... ( 
1 - t ) ( 1 + t ) [ t

3 
] 

l+t 1-t 3 

Inserting the approximation of u into the surface charge density gives 

Eo Vci 1 1 
71~ (x) ,....., ~ __ '"" (-u)-1/3 
·.:'., · · -a-. vT-=ex Fx 

Proof for the vertical part of the upper plate: 

The first approximation of 62 ( v) for x --t o+ leads to: 

C2(v--tO+)~- 7r+2../X--- =- 1f'+2x312 . ia { 2 ../X } ia { } 
7r 1-x 7r 

==> ~{ C1 - ia} '""x 312 
,....., v ==> JX '"" (11) 113 

Here I used the series expansion of the exponential function and of the arcus tangent 
([bs, p.34]) 

t3 
arctan t = t - 3" + ... 

Inserting the approximation of v into the surface charge density gives 

EoVo 1 1 
~ (x)'"" __ ~ _ '"" 11 -1/3 

' a, Jex - 1 Vx 

52 

Nevertheless for realistic condensers field and charge density have to stay finite. For this 
purpose the corner has to be rounded which is shown in the next section. 
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Mathematica program 5: for the One Corner of 90° Condenser 

Needs["Graphics'ComplexMap'"] 

Clear[V,a,b,c,d,e,f,g,decide] 
V = 1 (*Voltage beween the plates in Volt•); 
a = 3 (* Distance of the plates in mm : 

for 1.5 10~-5 < a< 2 10-2 (scd) and 1.5 10--5 < a < 2 10-5 •) 
decide = ef (* Decide whether you want the electric field (ef) or 

surface charge density (scd) of the plates •) ; 

af50[z_] =a/Pi (I (Pi+ 2 Sqrt[Exp[z] - 1]) -
Log[(! + I Sqrt[Exp[z] - 1])/ 
(1 - I Sqrt[Exp[z] - 1])]) ; 

b = 3.37465 ; c = Re[af50[I Pi + b]] ; d = Re[af50[I Pi + e]] 
e = -8.46758 ; f = Re[af50[e]] g = Im[af50[b]] ; 

<< -path/hilfsf ile 

a5 ParametricPlot[{ af50[x]/I , sgn mult/Sqrt[Exp[x] - 1] }, 
{x,.1,b}, PlotRange -> {All,{0,3 sgn mult}}, 
AxesOrigin -> {a,O}, AxesLabel -> {"iv[mm]",tex1}, 
PlotLabel -> "Upper Plate: Vertical" ] ; 

a5inv = ParametricPlot[{ -af50[x]/I, sgn mult/Sqrt[Exp[x] - 1] }, 
{x,.1,b}, PlotRange -> {{-a,-g},{0,3 sgn mult}}, 
AxesOrigin -> {-a,O}, DisplayFunction -> Identity ] 
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b5 = ParametricPlot[{ af50[x] - a I, sgn mult/Sqrt[1-Exp[x]] }, {x,e,-.001}, 
PlotRange -> {{O,f},{0,3 sgn mult}}, AxesLabel -> {"u[mm]",tex1}, 
PlotLabel -> "Upper Plate: Horizontal" ] ; 

cS = CartesianMap[af50, {e,b},{O,Pi-.001}, PlotRange -> All, 
AxesLabel -> {"u[mm]","iv[mm]"}, 
Epilog -> { Thickness[.011], 

{ Line[{{O,g},{O,a},{f,a}}], Line[{{c,0},{d,O}}] }} ] 
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d5 = ParametricPlot[{ af50[-x +I Pi], -mult/Sqrt[Exp[-x] + 1] }, 
{x,-b,-e}, PlotRange -> {{c,d},{-V 10--13,-mult}}, 
AxesLabel -> {"u [mm]",""}, PlotLabel -> "Lower Plate", 
Epilog -> { Text[tex1,{f/12,-.6 mult},{0,0},{0,1}] } ] 

Show[GraphicsArray[{a5inv,b5}, GraphicsSpacing -> O]/. 
(Ticks-> Automatic) -> (Ticks-> None)/. 
(AxesLabel -> {"u[mm]",tex1}) -> (AxesLabel -> {None,None})/. 
(PlotLabel ->"Upper Plate: Horizontal")-> (PlotLabel ->None), 
PlotRange -> {O,. 3}, PlotLabel -> "Upper Plate", 
Epilog -> { Text[tex3,{.47,.05}] }, 
Frame -> fr, FrameTicks -> None, 
frtex = "<- (iv) u ->"; FrameLabel -> frl] 

Show[c5, Axes->None] ; 
Show[d5, Ticks ->None, AxesOrigin -> {0,0}, AxesLabel -> {"u", 1111

}, 

Epilog -> { Text[tex2,{f/10,-.6 mult},{0,0},{0,1}] } ] ; 

54 
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Comments: 

As usual the first pictures (a5, b5, c5, d5 except for a5inv) are plotted with ticks. The 
following three Show( ] commands produce pictures without ticks to see the qualitative 
behaviour of the curves whereby the first, i.e. the Show(GraphicsArray( ]], command 
gathers the pictures of the upper plate a5inv ,b5 in one picture without ticks. 

Variants: 

ii. it is possible to change ParametricPlot( ] and CartesianMap( ] as described 
in section 2.1. 

ii. since you will normally deal with condensers that consist of two corners you can 
obtain that one by application of the Schwarz reflection principle. You have to 
delete the", Line[{ {c,O},{d,O} }] " suboption (don't forget the comma!) in the 
Epilog option of c5 and to add another picture: 
c5low = CartesianMap(Conjugate(af50(#]] &, {e,b},{O,Pi - .001}, 
PlotRange -> All, Prolog -> { { Thickness(.011), 
Line({{O,-g},{0,-a},{f,-a}}] }} ] ; 
The Prolog option does the same as Epiolg, however, not after but before the 
picture is plotted. That is why a second pair of curly brackets is wrapped around 
the Thickness and Line suboptions to prevent that all lines are drawn so thick. 
To display both the upper (c5) and lower (c5low) part of the Two Corners of 90° 
Condenser in one picture you add: 
Show(c5, c5low] ; 
If I used the Epilog option in c5low instead of Prolog I would get a Two Corners 
of 90° Condenser with just one thick line since Mathematica executes the Epilog 
option of the first graphics in the list of the Show( ] command only. 
This picture is drawn with ticks. To get the "pure" version add: 
", Axes -> None" as an option to the Show( ] command. The surface charge 
density of the lower plane will than be of opposite sign. In order to avoid confusion 
by the surface charge density of the middle plate that is not any more existent wrap 
(* *) around d5 = ParametricPlot( ... ] ; and Show[d5, ... ] ; . 
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(d5) 

Figure 15: Graphics with ticks produced by the Mathematica program for the One Corner 

of 90° Condenser. The labels indicate that part of the program which plotted the pictures. 
The voltage betwen the plates is 1 V; the distance of the parallel branches is 3 mm. 
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Upper Plate 
<- (iv) u -> 

First Show[ J 

E 

Second Show[ J 

Lower Plate 

Third Show[ ] 

Figure 16: Graphics without ticks produced by the Mathematica program for the One Corner 
of 90° Condenser for the same condenser parameters as for the pictures on the previous page. 
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5 

(c5low) 

iv[mm] 

5 
u[mm] Show[c5,c5low] 

Figure 17: Graphics produced by the variants of the Mathematica program for the One 

Corner of 90° Condenser for the same condenser parameters as for the pictures on the 
previous pages. 
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It is not only possible to have the electric field strength of the plates plotted, but I may 
also get a picture of the field for any equipotential line between the plates. Eq.(26) is still 
valid when I interpret the curve C as the equipotential curve which is a straight line on 
the Z-plane of the Infinite Plane Condenser. 

All I have to do now is to insert the conformal function f(z\I and its derivative f'(z).I 
YzEC rzEC 

restricted to the curve C into the ParametricPlot( ] command in the following way : 

ParametricPlot( Re(/ (z) lz EC], -1000 V lm(l/ f'(z) lz EC], options ] : or 

ParametricPlot( Im(f(z)/zEC]' -1000 V Re(l/f'(z)/zEC], options]; 

with C the equipotential line on the Z-plane of which I want to know the field on the 
W-plane. 
Since I usually do not know the location of the equipotential line on the Z-plane I have to 
calculate one of its co-ordinates by the FindRoot( ] command: 
Let the equipotential curve on the W-plane include the point 'IJ!? = U? +iv?. To get the 
inverse image Z? = X? + iy? with w? = f (z?) I insert this equation into FindRoot( ] in 
the form : 

With that the curve C is represented by C(x) = x + i~{z?} which can be inserted into 
the ParametricPlot( ] commands given above. 

I can of course plot several graphs for different equipotential lines in one picture as is shown 
in figs 18 and 23 . In these four pictures I chose the 15 equipotcntials of the electric field 
distributions of c5 and c6 respectively. Those equipotential curves arc the two plates and 
13 equipotentials in between. 
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Figure 18: These graphics show the values of the electric field strength at 15 equipotential 
curves of the One Corner of 90° Condenser together in one picture. 
These equipotentials are exactly those drawn in the pictures produced by c5 or the second 
Show[ ] command for the same condenser parameters. The upper picture for the real 
part (E(v) =Eu) of the field shows how the field increases monotonically from zero at the 
lower plate (d5) to the value on the vertical part of the upper plate (a5) when I hop from 
the lower to the upper plate measuring the field on the plates and on 13 equipotentials in 
between. The lower picture for the imaginary part (E(u) = Ev) of the field shows how the 
field decreases on the left side whereas it increases in the center (it has to tend to the same 
constant at the right side) when moving from the lower plate to the horizontal part of the 
upper plate (b5). (cf. the pictures on page 71) 



section 2.8 Mathematica Programs & Graphics for Conformal Maps 61 

2.8 Mathematica Program for the Rounded One Corner of 90° Condenser 

w = 2 i A{ yT-=p - VP arctanJt-; P + ,\~t - q - Jq arctanJt ~ q)} + ia 

with -b = 2"'-A{t - Jq Artanh II.qi} A= a vP 1 
yq 1r p+A.yq 

A = { ;~ [ 1 - VP arctan ff,) - VP } / Jq q = c + P and 

This section deals with a variant of the previous problem. In contrast to the last condenser 
this one has a rounded instead of a sharp edge which causes the electric field and the surface 
charge density to stay finite all over the plates. The function is calculated in [we, p.373-376]. 
I multiplied it by the imaginary unit i to rotate the condenser in order to compare it with 
the previous one. 

Although the conformal map is the same in [we] and this thesis (for E = 1) the conclusions, 
however, are a bit different. For a radius b = a/8 of the smoothed edge, [we, p.375] gets 
a corresponding>. = .787. For the same b I compute>. to >. = .800845. To get a value of 
>. = .787 my b has to equal b = a/7.1346. 
On page 376 [we] compares the contour of the rounded corner as the image of the conformal 
function with a quater circle. The contour looks a bit wavy whereas my contour looks very 
smooth (cf. the pictures on p. 72). 
Since [we] was published in 1950 the numerical algorithm used then to solve the equation for 
>. may have been a bit inaccurate which may cause the differences I mentioned. Moreover 
I found that E should be chosen as E = 0.96. 

The map 

f(z) = 2iA{ ~ - ../P arctan/t ~ p + .x( ~ - Jq ardan/t ~ q)} + ia 

with A = ; .fi~>.. Jq and t = c' 

is holomorphic on the whole Z-plane. The first derivative f'(z) = iA[Jf=P + >. J['=q"} 
has no zeros. So the domain D, becomes D,= Did 
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Figure 19: Curve C and some normal vectors of the Rounded One Corner of 90° Condenser 

The picture looks quite similar to the one of section 2.7. Nevertheless there is one important 
difference: The normal unit vectors for the straight parts of the upper plane are the same as 

before. Yet those of the curved part are functions of the variables u and v which complicates 
the calculation of the surface charge density a lot. 

The curve C in the W-plane consists of four parts. CI is the image of CI for x < lnp, C2 

the image of c1 for lnp < x < lnq, c\ the image of CI for x > lnq andC3 the image of 
C2 on the W-plane: 

f(C1 (xlx < lnp)) 

= -2 A{ Jp - e"' - ..JP Artanhji¥ + >.( ~ - ..fo Artanh/9¥)} + ia 

==> C\ ( u) = f ( C 1 ( x < ln p)) = u + ia : b < u < oo ; 

f ( C1 ( x I ln p < x < ln q)) 

= 2iA{ Je"' - p - ..JP arctanR + >.(iJq - e"' - i..fo Artanh/9¥)} + ia 

==> (\(v.,v) = f(C1(lnp < x < lnq)) = -u +iv: -b < u < 0 and a< v <(a+ b) 

with approximatly u 2 + v2 = b2 ; 

f(C1(xlx > lnq)) 

= 2 i A{ Jex - p - ..JP arctanR + >. (Jex - q - ..fo arctan~)} + ia 

==> l\(v.) = f(C1(x > lnq)) =iv: a< v < oo 

f(C2) 

= -2A{ Je-x + P - .jP ArtanhJc-~+p + >.( Je-x + q - Jp + 1 ArtanhJc-:+q)} + ia 

==> C,1(u) = f (C2) = u: u ElR . 
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The normal unit vectors are calculated to nw(l\) = -i , nw(C3) = -1 and nw(C4) = i. 
The fourth normal vector nw(C2 ) cannot be calculated exactly. To approximate this one I 
assume the rounded edge of the upper plate to be a quarter circle ( u 2 + v2 = b2

). Than the 

curve C2 ( u, v) can be written in the form: 

C2 (u,v)=-u+iv=-1L+iJb2 -u2 =Vb2 -v2 +iv. 

Differentiation with respect to u or v respectively and multiplication by the imaginary unit 

gives 

r.c' ( )) _ i11 - Jb 2 
- v 2 

_ iv 
nw~ 2 v - - - - 1 

Jb2 - v2 u 

Here u is the real and v the imaginary part of the function f(C1 (x/lnp < x < lnq)). This 
expression is rather lengthy but the simplest one I could find. To get a result even more 
accurate one must approximate the rounded corner by an ellipse ( u 2 /a + v2 //3 = 1) with 
individual a and /3 for every ratio a/b. 

The surface charge density in terms of x is 

Eo Vo °' { . -1 } Eo Vo 1 
71:1(x) =----;-~ -iA[Jp-e"+>.~J =-?rA ~+>.~ 

for x<lnp: C1 (x)=f(C1(x<lnp))-ia 

1C (x) = _ Eo1fo 8'm { -1( ~ - i) } 
,(u) ?r A[iJe"' - p - >. ~] 

_ Eo1fo ;~ - ).~ 

?r A (e(l - >.2) - p + Vq) 

for lnp < x < ln q and v = Jb2 - u2 : C2(x) = u = -~{f(C1 (lnp < x < lnq))} 

Eo Vo { -1 ( !.!'. - 1) } 11: (x) = -- CSrn u 
,(v) ?r A[iJe"' - p - >. ~] 

_ Eo1fo ~).~ -~ 

?rA (e(l - >.2) - p + >.2q) 

for ln p < x < ln q and u = Jb2 - v2 : C2 (.r) = 1J = CJrn{.f(C1 (lnp < x < lnq))} 

rc,(x) = _ EaVo 'srn {-l 1 } = _ Eo% ____ 1 ___ _ 
?r Ai[Je"' - p + >. Je - q] ?rA Je - p + >. Je - q 

for .r>lnq: C3 (.r)=CSrn{f(C1 (x>lnq))}: 

71:, (.1:) Ea Vo ~ { . - 1 } Ea Vo 1 
= - ---;:--- sm. i A [ y' e "' + p + >. J e - " + q ] = + ?r A -ylr-e===="' =+=J=-J -:-+~>.:-yl--;=e =,,=+=q 

for x dR: C\ (.r) = .f(C2 (.r)) . 
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The surface charge density and electric field on the condenser plates are finite now although 
the division of the representations of charge density and field for the round part of the upper 
plate is a great disadvantage that cannot be prevented. To get charge density and field at 
this part one has to add these quantities by hand or again try to approximate the relation 
between u and v using the equation for circles or ellipses. 

To show that the approximation by a circle should suffice your purposes the curve of the 
upper condenser plate for three values of E is plotted on page 72. 
The curves for E = 0.95 and E = 0.96 are very close to a quarter circle, although the point 
f(p) moves to the left for smaller values of E. That is why I choose E = 0.96 since f (p) is 
closer to the circle than in the E = 0.95 case. For E = 1 the points f (p) and f ( q) arc located 
exactly on the circle. This causes Lhe electric field strength and the surface charge density 
at these points to be as close as possible to the case when the curve were an exact quarter 
circle. 
You can also see that the connections of the curved and the straight parts of the upper 
plate are continuous but not smooth. So the graphs for the field and the charge density at 
the connecting points (f (p), f (q)) cannot be smooth either. The field and charge density 
in the interior of the condenser, however, has to be smooth. 
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Mathematica program 6: for the Rounded One Corner of 90° Condenser 

Needs ["Graphics 'CornplexMap' "] 

Clear[V,a,b,c,d,e,p,A,eps,frc,frd,frp,lambda,decide] 
V = 1 (* Voltage between the plates in Volt *) ; 
a = 3 (* Distance of the plates in mm : 
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for any 1.5 10--5 <a< 2 10-2 (scd) and 1.5 10--5 <a< 2 10-5 (ef) *); 
b = a/3 (* Radius of circular arc in mm 

for any a/50000 < b < a/2 *) 
decide = ef (* Only the electric field (ef) is available *) 

A= a/Pi 1/(Sqrt[p] + lambda Sqrt[q]) ; 
lambda= ((2 a/(Pi b)(1 - Sqrt[p] ArcTan[Sqrt[l/p]]) -

Sqrt[p]))/Sqrt[q]; q = p + eps; eps .96 
af60 = 2 lambda A(1 - Sqrt[q] ArcTanh[Sqrt[l/q]]) 

frp = FindRoot[af60 == -b, {p,.1,.5}, 
AccuracyGoal -> (6 - Floor[N[Log[10,b]]]), 
WorkingPrecision -> $MachinePrecision - If[b < 1,Floor[N[Log[lO,b]]],O]] 

p = pl. frp ; 

t [z_] = Exp [z] 

af61[t_] = 2 I A (Sqrt[t - p] - Sqrt[p] ArcTan[Sqrt[(t - p)/p]] + 
lambda(Sqrt[t - q] - Sqrt[q]* 

ArcTan[Sqrt[(t - q)/q]])) +I a; 
af62[t_] = 1/A 1/(Sqrt[t - p] + lambda Sqrt[t - q]) 

e = Re[af61[t[c]]]; f = Irn[af61[t[d]]]; g = Re[af61[-t[d]]] 
frc = FindRoot[e - 2.5 a, {c,-5,-10}]; c = c/.frc 
frd = FindRoot[f - 3.5 a, {d,6,10}]; d = d/.frd ; 

<< -path/hilf sf ile 

a6 = ParametricPlot[{ Irn[af61[t[x]]], sgn rnult Re[af62[t[x]]] }, 
{x,Log[p] ,d}, PlotRange -> {All,{O,sgn mult Pi/a 1.3}}, 
AxesLabel -> {"iv[mm]",texl}, PlotLabel -> "Upper Plate: Vertical"] 

b6 = ParametricPlot[{ Re[af61[t[x]]], -sgn mult Irn[af62[t[x]]] }, 
{x,c,Log[l + p]}, PlotRange -> {All,{O,sgn mult Pi/a 2}}, 
AxesLabel -> {"u[mm]",texl}, PlotLabel -> "Upper Plate: Horizontal"] 
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c6 = CartesianMap[af61[t[#]] &, {c,d},{O,Pi}, PlotRange ->All, 
AxesLabel -> {"u[mm] ","iv [mm]"}, 
Epilog -> { Thickness[.011], 

{ Line[{{g,O},{e,O}}], Line[{{e,a},{b,a}}], 
Line[{{O,a + b},{O,f}}], 
Circle[{b,a + b},b,{-Pi,-Pi/2}] }} ] ; 

d6 = ParametricPlot[{ af61[-t[-x]], mult Im[af62[-t[-x]]] }, 
{x,-c,-d}, PlotRange -> {0,-1.1 mult Pi/a}, 
AxesLabel -> {"u[mm]","Lower Plate"}, 
Epilog -> { Text[tex1,{.07 e,-.6 mult Pi/a},{0,0},{0,1}] } ] 

Show [a6, Ticks -> None, AxesLabel -> {"iv", tex3}] ; 
Show[b6, Ticks -> None, AxesLabel -> {"u",tex3}] 
Show[c6, Axes -> None] ; 
Show[d6, Ticks ->None, AxesLabel -> {"u","Lower Plate"}, 

Epilog -> { Text[tex2,{.07 e,-.4 mult Pi/a},{0,0},{0,1}]}] 
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Comments: 

The program is structured like the other ones. The pictures (a6, b6, c6, d6) are plotted 
with ticks. The following four Show[ ] commands produce these pictures without ticks. In 
this section, however, no common picture of the upper plate's components can be plotted 
since the electric fields or charge densities cannot be added by one or two Mathematica 
commands only. 
Moreover only the electric field strength can be plotted. If you want the surface charge 
density you may include the very long nw terms into the ParametricPlot[ ]commands 
by yourself (You have to replace u and v in nw((\(uiv)) by the real and imaginary part of 
the curve f(C1 (lnp < x < lnq)) so that the terms for the round part of the upper plate 
become very lengthy). 

Variants: 

£ it is possible to change ParametricPlot[ ] and CartesianMap[ ] as described 
in section 2.1. The ranges of the iv co-ordinate in a6,b6 as well as the starting 
values in frp, frd vary for different values of b or b/a respectively and have to be 
modified by hand: 

FindRoot[ 1 values of b starting values values of b starting values 
frp a/50000 to a/300 {10, 50 } a/300 to a/2 {.1, .5 } 
frd a/50000 to a/300 { 6, 10 } a/300 to a/2 {2, 5 } 

Graphics iv coordinates for b = a/50000 iv coordinates for b = a/2 
a6 {. .. , ... Pi/ a 2.5 } { ... , ... Pi/a } 
b6 { ... , .. . Pi/ a 2.5 } { ... , ... Pi/a 2 } 

£ since you will normally deal with condensers that consist of two rounded corners you 
can obtain that condenser by application of the Schwarz reflection principle. You 
have to delete the", Line[{ {g,O},{e,O}}]" suboption (don't forget the comma!) 
in the Epilog option of c6 and to add another picture: 
c6low = CartesianMap[Conjugate[af61[t[#]]] &, {c,d},{O,Pi}, 
PlotRange -> All, Prolog -> { { Thickness[.011), { Line[ { {e,-a},{b,-a} }], 
Line[ { {0,-a - b },{0,-f} }], Circle[ {b,-a - b },b,{Pi/2,Pi}] } } } ] ; 
To display both the upper (c6) and lower (c6low) part of the Rounded Two Corners 
of 90° Condenser in one picture you add: 
Show[c6, c6low] ; 
This picture is drawn with ticks. To get the "pure" version add the option", Axes . 
-> None " (don't forget the comma !) to the Show[ ] command. The surface 
charge density of the lower plane will than be of opposite sign. In order to avoid 
confusion by the surface charge density of the middle plate that is not any more 
existent wrap (* *) around d6 = ParametricPlot[ ... ] ; and Show[d6, ... ] ; 
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E[V/m] Upper Plate: Vertical 

-50 

-100 (a6) 

-150 

-200 

-250 

-300 

-350 

E[V/m] 
Upper Plate: Horizontal 

-100 

(b6) 

iv[mm] 

(c6) 

Lower Plate 
~~~~~~~~~~-.----~~~~~~~ u[mm] 
-10 -7.5 -5 -2.5 2.5 5 7.5 

-50 (d6) 

Figure 20: Graphics with ticks produced by the Mathematica program for the Rounded One 

Corner of 90° Condenser. The labels indicate that parts of the program which plotted the 
pictures. The voltage betwen the plates is 1 V: the distance of the parallel branches is 3 
mm. 
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E Upper Plate: Vertical 

first Show[ ] 

E Upper Plate: Horizontal 

second Show[ ] 

third Show[ ] 

Lower Plate 
u 

fourth Show[ ] 

Figure 21: Graphics without ticks produced by the Mathematica program for the Rounded 

One Corner of 90° Condenser. 
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5 

(c6low) 

Show[ c6,c6low, 
Axes-> None] 

Figure 22: Graphics produced by the variant of the Mathematica program for the Rounded 
One Corner of 90° Condenser for the same condenser parameters as on the previous pages. 
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iv(mm] 
6 8 10 

-100 

-200 

-300 

E(v)[V /m] 

u(mm] 
-10 5 7.5 

-500 

E(u)[V /m] 

Figure 23: These graphics show the values of the electric field strength at 15 equipotential 
curves of the Rounded One Corner of 90° Condenser together in one picture. 
These equipotentials are exactly those drawn in the pictures produced by c6 or the second 
Show[ ] command for the condenser parameters used there. The upper picture for the 
real part (E(v) = Eu) of the field shows how the field increases monotonously from zero at 
the lower plate (d6) to the value on the vertical part of the upper plate (a6) when I hop 
from the lower to the upper plate measuring the field on the plates and on 13 equipotentials 
in between. The lower picture for the imaginary part (E(u) = Ev) of the field shows how 
the field decreases on the left side whereas it increases in the center (it has to tend to the 
same constant at the right side) when moving from the lower plate to the horizontal part 
of the upper plate (b6). For reference read the text on page 59. (cf. the pictures on page 
60). 
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Figure 24: Approximation of the rounded corner (as given hy the second equation on page 
62) by a circle (dashed) for three different values of E. [we] uses an E = 1 but the default 
value for my program is E = 0.96. 
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2.9 Mathematica Program for the One Step Condenser 

w = _: {b In[y'"Pvft+T + v't+Pl -a In[v't+T + v't+Pl }- !!_Int 
7r VP=! VP=! 7r 

with t = ez and 
a~ 

p= ~ 

This condenser is comparable to the Infinite Plane Condenser with a step in one plate. The 
first plate is located at the u-axis. The other plate follows the negativ u-axis at a distance 
-ia with a corner of 90° at w = -ia, it aproaches the other plane via the negativ iv-axis 
and after bending for 90° at -ib follows the positiv u-axes at a distance -ib. So the whole 
looks like a roofed step. 
The problem is very shortly trrnted in [fl, p. 76]. I moved the plates down for -ia units 
(i mm) so that the One Step Condenser can be reflected at the real u-axis which is easier 
than reflecting it at the line with z = x + ia using the Schwarz reflection principle. 

The conformal map 

w = ~ { b ln [ Jp Vf+1 + Jt + p] - a ln [ Jt+I + Jt + p] - (b - a) lnJP=l} - ! ln t 

2 

with t = ez and p = ~2 is holomorphic in CC when a> b > 0 and a, bare positiv. 

Its first derivative f'(z) = - ;~~~:: has a zero at z = i7r and so the domain Dz is 
Dz= Did\ { i 7r}. 

IV 

(\ u 
-i 

c4 
-ib 

-1 c3 
C2 w 

-1a 

Figure 25: Curve C and normal vectors of the One Step Condenser 

The condenser's curve C consists of four parts: 
C1 is the image of C1 , C2 that of C2 (x < -lnp) , C3 that of C2 (-lnp < x < 0) and 
C1 is the image of C2 (x > 0) . 
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They are given by : 

_ 2 { [VP vex+T + Jex+P ] - [ vex:tr + Jex+P] - bx } - - b ln ~ a ln r.::---11 2 
7r yp-1 yp-i. 

=? C\ (u) = f (Ci)= -u for u E Ill ; 

f(C2(x < - lnp)) 
2 { [·VP Je-x - 1 + ..je-x - p] - [· Je-x - 1 + ..je-x - pl )J _ b(in - x) 

= - b ln i ;;:::---T a ln i r:::-Tl 
7r yp-1 yp-i. 7r 

= ~ {bln[VP ../e-x - 1 + ..je-x - p] - aln[../e-x - ~e-x - pl +bx}- ia 
7r yp=l p-1 2 

=? C2 (u) = f (C2 (x < - lnp)) = u - ia for u < 0 ; 

2 { [i..;P Je-x - 1 + ..jp - e-x l [i../e-" - 1 + ..jp - e-x l} b(in - x) 
f(C2(-lnp < x < 0)) = - bln c-;-

1 
-aln ;::---Tl -

7r yp-i. yp-i. 7r 

= i -b + - b arctan - a arctan { 2 [ (VPJe-x -1) (Je-" -1 )] } 
7r ..jp - e-x VP - e-" 

==?- C3 (v) = f(C2(-lnp < x < 0)) =iv for - a< v < -b ; 

-- bn -an +- -i 
_ 2 { l [..JP Vl - e-" + VP - e-x l l [ Vl - e-x + VP - e-x l bx} .b 

7r /iJ-1 ..;p=-r 2 

==?- C4 (u)=f(C2(x>O))=u-ib for u>O. 

Again I used [bs, §3.4.4.2.2] to write down the functions for the curve C as the surn of their 
real and imaginary parts. 
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The unit normal vectors are calculated to nw(C:\) = -i, nw(C2) = nw(C4) = i and nw(C3) = -1 

The surface charge density in terms of x is 

() EoVo (':< { .-1f~} ff x = --- 0111 -i 
1 7f a~ 

= 

for x dR : C\ ( x) = .f ( C 1 ( x)) 

EoVO <;Jm{.-7rJe-x-p} EoVO Je-x-p 
ff2(x) = ---:;:;:- i a.Je-x -1 =-a- Je-x -1 

for x < -lnp: C2 (x) = f(C2(x < -lnp)) 

EoVo { -7T:Jp-e-x} EoVo Je-x-p 
ff,(x) = --7r- <;Jm -1 iaJe-x -1 =-a- -vr=e"""-x=_=l 

for -lnp < x < 0: C3 (x) = .f(C2 (-lnp < x < 0)) 

( ) 
Eo Vo ex.,.., {. -7r,/p - e-x } 

ff X - --- 0ni i 
• - 7f a,/1-e-x 

Eo Vo VP - e-x 
a J1-e-x 

for x > 0: C4 (x) = f(C2(x > 0)) . 

The behaviour of the surface charge density and the electric field at the corner at the bot
tom of the step is opposite to that at the corner of the step's top. Surface charge density 
and electric field go to minus/plus infinity at the convex corner and to zero at the concave 

one. 
Field and charge density of the upper and lower plate tend to - ~ and ±Vo /a. respectively 

for u-> -=;to-~ and ±Vo /b respectively for u ->oo. 

For the limit b-> 0 the step condenser approaches the Infinite Plane Condenser. 
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Mathematica program 7: for the One Step Condenser 

Needs ["Graphics' ComplexMap' "] 

Clear[V,a,b,c,d,e,p,t,frc,frd,frtex,decide] 
V = 1 (* Voltage between the plates in Volt *) ; 

a = 3 (* Distance of the plates at the left in mm 
for 2 10--5 <a< 10-4 (ef) and 2 10--s <a< 2 10-2 (scds) *); 

b = 2 (* Distance of the plates at the right in mm : 
for a/10 < b < a/1.0001 *); 

decide = ef (* Decide whether you want the electric field (ef) or 
surface charge density (scd) of the plates *) ; 

p = a-2;b-2; 
af70[t_] = 2/Pi (b Log[a/b Sqrt[t + 1] + Sqrt[t + p]] -

a Log[Sqrt[t + 1] + Sqrt[t + p]] -
(b - a) Log[Sqrt[p - 1]]) -

b/Pi Log [t] ; 
af71[t_] = Sqrt[t + p]/Sqrt[t + 1] ; 
t [z_] = Exp [z] ; 

e = Re[af70[t[c]]] 
frc = FindRoot[e + 1.5 a, {c,0,8}, 

AccuracyGoal -> 5 - Floor[N[Log[10,a]]]]; c = c/.frc; 
frd = FindRoot[Re[af70[t[d]]] + e, {d,-10,-5}]; d = d/.frd ; 

<< -path/hilfsfile 

a7 = ParametricPlot[{ Re[af70[t[x]]], sgn mult af71[t[x]] }, {x,d,c}, 
PlotRange -> {{e,-e},{0,1.05 sgn mult a/b}}, 
AxesLabel -> {"u[rnm]", "Upper Plate"}, 
Epilog -> { Text[tex1,{-e/15,.5 sgn mult a/b},{0,0},{0,1}]}] 

b7 CartesianMap[af70[t[#]] &,{d,c,(c - d)/50},{0,Pi,Pi/20}, 
PlotRange ->All, AxesLabel -> {"u[mm]","iv[mm]"}, 
Epilog -> { Thickness[.011], { Line[{{e,0},{-e,O}}], 

Line[{{e,-a},{O,-a},{0,-b},{-e,-b}}] }} ] 
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c7 = ParametricPlot[{ Re[af70[-t[-x]]], -mult Re[af71[-t[-x]]] }, 
{x,-c,-Log[p] - 10--7}, PlotRange -> {{e,0},{0,-mult}}, 
AxesOrigin -> {O ,O}, AxesLabel -> {"u [mm]", texl}, 
Plot Label -> "Lower Plate: Left" ] ; 

d7 = ParametricPlot[{ Im[af70[-t[-x]]], sgn mult Im[af71[-t[-x]]] }, 
{x,-Log[p] + 10--1,-10--7}, AxesLabel -> {"iv[mm]",texl}, 
AxesOrigin -> {-b,0}, PlotRange -> {{-a,-b},{0,-6 sgn mult}}, 
PlotLabel -> "Lower Plate: Middle" ] ; 
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e7 = ParametricPlot[{ Re[af70[-t[-x]]], -mult af71[-t[-x]] }, {x,10--7,-d}, 
PlotRange -> {{0,-e},{0,-1.5 a/b mult}}, AxesOrigin -> {0,0}, 
AxesLabel -> {"u[mm]",texl}, PlotLabel ->"Lower Plate: Right"] ; 

Show[a7, Ticks-> None, AxesLabel -> {"u","Upper Plate"}, 
Epilog -> { Text[tex3,{-e/15,.5 sgn mult a/b}] } ] 

Show[b7, Axes-> None] ; 

Show[GraphicsArray[{c7,d7,e7}, GraphicsSpacing -> O]/. 
(Ticks-> Automatic)-> (Ticks-> None) /. 
(AxesLabel 
(AxesLabel 
(Plot Label 
(Plot Label 
(Plot Label 

-> 
-> 
-> 
-> 
-> 

{"u[mm]",texl}) -> (AxesLabel -> {None,None}) /. 
{"iv[mm]",texl}) -> (AxesLabel -> {None,None}) /. 
"Lower Plate: Left") -> (PlotLabel ->None) /. 
"Lower Plate: Middle") -> (PlotLabel ->None) /. 
"Lower Plate: Right")-> (PlotLabel ->None)/. 

(PlotRange -> {{e,0},{0,-mult}}) -> 
(PlotRange -> {{e,0},{-1.5 a/b branch mult,-1.5 a/b sgn mult}}) /. 

(PlotRange -> {{-a,-b},{0,-6 sgn mult}}) -> 
(PlotRange -> {{-a,-b},{-1.5 a/b branch mult,-1.5 a/b sgn mult}}) /. 

(PlotRange -> {{O,-e},{0,-1.5 a/b mult}}) -> 
(PlotRange -> {{O,-e},{-1.5 a/b branch mult,-1.5 a/b sgn mult}}), 

PlotRange -> {0,.21}, 
Epilog -> { Text ["u -> iv -> u ->", 

{.5,If[decide == ef,.12,,.18]}] }] 
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Comments: 

The graphics commands named a7,b7,c7,d7,e7 plot the pictures of the electric field or the 
surface charge density and the field distribution with ticks. The three Show[ ] commands 
draw the pictures a 7 to e7 without ticks whereby the third Show[ ] unites c7 ,d 7 ,e7 in 
one picture. 

Variants: 

£ it is possible to change ParametricPlot[ ] and CartesianMap[ J as described 
in section 2.1. 

£ The case of the Two Steps Condenser which is symmetric with the u-axis can be 
obtained by replaceing the limits for y: {O,Pi,Pi/20} in CartesianMap[ ] by {
Pi,Pi,Pi/40}. The surface charge density of the lower plane will than be of opposite 
sign. In order not to arise confusion by the snrface charge density of the central plate, 
that is not any more existent, wrap (* *) around a7 = ParametricPlot[ ... ] 
and Show[a7, ... J ; . 
To get the line for the lower condenser plate instead of that of the central plate 
replace Line[ { { e,O} ,{-e,O}}] in the Epilog option of b7 by 
Line[ { { e,a},{ O,a} ,{ O,b}, {-e,b}}]. 
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Figure 26: Graphics with ticks produ~ed by the Mathematica program for the One Step 

Condenser. The labels indicate that pc:.rts of the program which plotted the pictures. The 
voltage between the plates is 1 V. The distance of the plates is 2, 3 mm respectively. 
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Figure 27: Grnphics with ticks produced by the Mathematir:a progrnm for the One Step 

Condenser. The labels indicate that parts of the program which plotted the pictures. 
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Upper Plate 

E first Show[ ] 

second Show[ ] 

u -> iv -> u -> third Show[ ] 

Figure 28: Graphics without ticks produced by the Mathematica program for the One Step 

Condenser. The labels indicate that parts of the wogram which plotted the pictures. 



-

section 2.10 Mathematica Programs & Graphics for Conformal Maps 82 

2.10 Mathematica Program for the Sharp Bend Condenser 

2( [v't+T+~] . r~+iyqVt+l]) ia . w = - b In J:::""'T""" - a i In J:::""'T""" + - In t - i b 
~ yq+l yq+l ~ 

with t = ez and 

Unlike most condensers in this thesis this one is not symmetric relative to the u- or iv-axis. 
It consists of two plates: one plate C!t the positive u-axis with an edge to the negative 
iv-axis at the origin; and the second plate below the positive u-axis at a distance b with an 
edge at z = a - ib and a part that is parallel to the negative iv-axes at a distance a. So 
the whole thing looks a bit like a knee of a robot or a street with a very sharp bend (with 
edges instead of the curves). 
The conformal map 

w = - n - ai n + - n t - i 
2 (bl [v't+I" +./[=q] ·1 [./[=q+i~v't+l]) ial "b 
'Tr Vq+I yfqTI 'Tr 

with t = ez and q = ~: is holomorphic in CC for a ~ 0 and b > 0. 

The first derivative f'(z) = ~~::~i is zero at z = ln q. So the domain Dz is Dz= Did\ {ln q }. 

The picture of the Sharp Bend Condenser is shown below: 

IV 

ll 
-i 

-ib 

-1 

w 

Figure 29: Curve C and normal vectors of the Sharp Bend Condenser 
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The curve C consists of four parts : 
(\ is the image of C1 (x < lnq) , C2 the one of C1 (x > lnq) , C3 derives from C2 (x < 0) and 
C4 from C2 (x > 0). 

f(C1(x < lnq)) =a+ i{ 2; (~ - ln[ ~+Jg JI+ e"] + ln Jl+q) + ~ arctan(~ ~ ::) - b} 

==} C\(v) = f(C1(x < lnq)) =iv+ a for -oo < v < -b ; 

2b [v'e" + 1 + ~1 2a (.j<j JCXTI) . f(C1(x > lnq)) = - ln + - arctan ~ - ib 
7r 1 + q 7r v e" - q 

==} C2 (u) = f(C1(x > lnq)) = u - ib for a< u < oo 

= -a - - arctan + - n ----==,------2a ( Je-" + q ) 2b l [.,/e-" + q + Je-x - 1 l 
7r .j<j Je-" - 1 7r JI+(j 

==} C3(u) = f (C2(x < 0)) = -u for -oo<u<O ; 

·{2 [ax [Jq+e-" +.fijJI-e-"] b (Jq+e-")] b} = i - - - a ln rro-::: + arctan -
7r 2 v 1 + q .,/I - e-x 

==} C4 (v) = f(C2 (x > 0)) =-iv for 0 < v < oo . 

Again I used the formula Ln z = ln I z I + i arg z to represent the images of the curve C as 
sums of real and imaginary terms. 
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The unit normal vectors are calculated to nw(C1 ) = -1, nw(C2 ) = i, nw(C3 ) = -i and nw(C4 ) = 1. 
The surface charge density in terms of x is 

71:: (x) = _ EoVo ~ {-l ~vr+ex} = _ EoVo vr+ex 
I 7r ib~ b Jq - e"' 

for x < lnq: C'i(x) = f(C1(x < lnq)) ; 

71:: (x) = _ EoVo ~ {i 7rJeX+l} = EoVo JCX+l 
2 7r bJe"' - q b Jc" - q 

for x > lnq: C\(x) = f(C1(x > lnq)) 

_ (x) = _ EoVo ~ {-i ?rv'e-"' - 1} = EoVo Jc-" - 1 
71::3 7r bJe-"' + q b v'e-"' + q 

for x < 0: C\(x) = J(C2 (x < 0)) 

( ) Eo Vo "'--{ 7rv'l - e-"' } Eo Vo 71:: X = --- '-l'ffL 1 = • 7r ibJq+e-"' b 

for x > 0: C4 (x) = J(C2 (x > O)) . 

In contrast to the last example the surface charge density and electric field are zero in the 
corner of the upper and infinite in the corner of the lower plate. Field and charge density 
on the horicontal upper and lower plate tend to the constant values -f and ±~ for 
u -+oo. They tend to .li.. and ±sLll on the vertical part of the upper and lower plate for 

a a 
1! -+ -oo. 
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Mathematica program 8: for the Sharp Bend Condenser 

Needs ["Graphics' ComplexMap' "] 

Clear[V,a,b,c,d,e,q,t,frc,frd,sgn8,decide] 
V = 1 (* Voltage between the plates in Volt *) ; 

a = 3 (* Vertical plates' distance in mm : 
for 10--5 <a< 2 10-2 (scd) and 10--5 <a< 10-5 (ef) *); 

b a/2 (* Horizontal plates' distance in mm : 
for a/10 < b < a/1.0001 *); 

decide = ef (* Decide whether you want the electric field (ef) or 
surface charge density (scd) of the plates *) ; 

q = a-2;b-2 ; 
af80[t_] = 2/Pi (b Log[(Sqrt[t + 1] + Sqrt[t - q])/Sqrt[q + 1]] -

a I Log[(Sqrt[t - q] + I a/b Sqrt[t + 1])/ 
Sqrt[q + 1]]) + I (a/Pi Log[t] - b) ; 

af81[t_, sgn8_] = Sqrt[t + sgn8]/Sqrt[t - sgn8 q] ; 
t[z_] = Exp[z] ; 

e = Re [af80 [ -t [c]]] 
frc = FindRoot[e - 1.5 a, {c,0,10}]; c = c/.frc 
frd = FindRoot[Im[af80[-t[d]]] + e, {d,-5,-3}]; d = d/.frd 

<< -path/hilfsfile 
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a8 = ParametricPlot[{ Re[af80[-t[-x]]], sgn mult a/b Re[af81[t[-x] ,-1]] }, 
{x,-c,-.000001}, PlotRange -> {{0,1.02 e},{0,1.01 sgn mult a/b}}, 
AxesLabel -> {"u [mm] 11

, tex1}, PlotLabel -> "Upper Plate: Horizontal" ] 

b8 = ParametricPlot[{ Im[af80[-t[-x]]], mult a/b Im[af81[t[-x] ,-1]] }, 
{x,.000001,-d}, PlotRange -> {{-1.02 e,O},{O,mult}}, 
AxesLabel -> {"iv[mm]",tex1}, PlotLabel -> "Upper Plate: Vertical"] 

c8 = CartesianMap[af80[t[#]] &, {d,c,(c - d)/30},{0,Pi}, 
PlotRange ->All, AxesLabel -> {"u[mm]","iv[mm]"}, 
Epilog -> { Thickness[.011], 

{ Line[{{0,-1.02 e},{0,0},{1.02 e,0}}], 
Line[{{a,-1.02 e},{a,-b},{1.02 e,-b}}] }} ] 
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d8 = ParametricPlot[{ Im[af80[t[x]]], sgn mult a/b Im[af81[t[x] ,1]] }, 
{x,d,Log[q] - .000001}, 
PlotRange -> {{-1.02 e,-b},{0,-3 sgn mult a/b}}, 
AxesOrigin -> {-b,0}, AxesLabel -> {"iv[mm]",tex1}, 
Plot Label -> "Lower Plate: Vertical" ] ; 

e8 = ParametricPlot[{ Re[af80[t[x]]], -mult a/b Re[af81[t[x] ,1]] }, 
{x,Log[q] + .000001,c}, AxesLabel -> {"u[mm]",tex1}, 
PlotRange -> {{a,1.02 e},{0,-3 mult a/b}}, 
PlotLabel -> "Lower Plate: Horizontal" ] 

Show[GraphicsArray[{b8,a8}, GraphicsSpacing -> O]/. 
(Ticks-> Automatic) -> (Ticks-> None)/. 
(AxesLabel -> {"u [mm]", tex1}) -> (AxesLabel -> {None ,None}) I. 
(AxesLabel -> {"iv[mm]",tex1}) -> (AxesLabel -> {None,None})/. 
(PlotLabel -> "Upper Plate: Horizontal") -> (PlotLabel ->None)/. 
(PlotLabel ->"Upper Plate: Vertical") -> (PlotLabel ->None)/. 
(PlotRange -> {{0,1.02 e},{0,1.01 sgn mult a/b}}) -> 

(PlotRange -> {{0,1.02 e},{1.01 branch sgn mult a/b,mult}})/. 
(PlotRange -> {{-1.02 e,0},{0,mult}}) -> 

(PlotRange -> {{-1.02 e,0},{1.01 branch sgn mult a/b,mult}}), 
PlotLabel ->"Upper Plate", 
Epilog -> { Text[tex3,{.48,.3}], 

Text["(iv) -> u ->", 
{.5,If[decide -- ef,.115 a/b,,.02]}] } ] 

Show[c8, Axes -> None] ; 
Show[GraphicsArray[{d8,e8}, GraphicsSpacing ->OJ/. 

(Ticks-> Automatic) -> (Ticks-> None)/. 
(AxesLabel -> {"u[mm]",tex1}) -> (AxesLabel -> {None,None})/. 
(AxesLabel -> {"iv[mm]",tex1}) -> (AxesLabel -> {None,None})/. 
(PlotLabel -> "Lower Plate: Horizontal")-> (PlotLabel ->None)/. 
(PlotLabel ->"Lower Plate: Vertical") -> (PlotLabel ->None)/. 
(PlotRange -> {{a,1.02 e},{0,-3 mult a/b}}) -> 

(PlotRange -> {{a,1.02 e},{-3 branch sgn mult a/b,-3 mult a/b}})/. 
(PlotRange -> {{-1.02 e,-b},{0,-3 sgn mult a/b}}) -> 
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(PlotRange -> {{-1.02 e,-b},{-3 branch sgn mult a/b,-3 mult a/b}}), 
PlotLabel -> "Lower Plate", 
Epilog -> { Text[tex3,{.48,.28}], 

Text["(iv) -> u ->", 
{.5,If[decide == ef, .13,, .28]}] } ] ; 
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Comments: 

The graphics commands named a8,b8,c8,d8,e8 plot the pictures of the electric field or the 
surface charge density and the field distribution with ticks. The three Show[ ] commands 
draw the pictures a7 to e7 without ticks whereby the first and third Show[ ] unites a8,b8 
and d8,e8 in one picture. 

Variants: 

,t, it is possible to change ParametricPlot[ ] and CartesianMap[ ] as described 
in section 2.1. 

,t, This problem can be changed to form a condenser symmetric relative to the u- or iv
or both axes. The condenser symmetric with the u-axis is obtained by erasing the 
last term in the list of the first Line[ ] suboption in c8's Epilog plus the preceding 
comma: 

{{0,-1.02 e},{0,0},{1.02 e,O}} =? {{0,-1.02 e},{O,O}} 

To get the upper part of the condenser c8up I have to add : 

c8up = CartesianMap[Conjugate[afBO[t[#]]] &, {d,c,1/4.49618},{0,Pi}, 
Prolog -> { { Thickness[.011}, { Line[{ {0,1.02 e },{O,O} }], 
Line[{ { a,1.02 e} ,{ a,b} ,{1.02 e,b}}] } } } ] ; 

and Show[c8,c8up] ; to get both parts in one picture with ticks. I chose the funny 
value of dx = 1/4.49618 so that Mathematica plots a field line intersecting with 
the origin. 
The condenser symmetric with the iv-axis is obtained by erasing the first term in 
the list of the first Line[ ] suboption in the original c8's Epilog plus the following 
comma: 

{{0,-1.02 e},{0,0},{1.02 e,O}} =? {{0,0},{1.02 e,O}} 

To get the left part of the rnndenser c8left I have to add : 

c8left = CartesianMap[-Conjugate[af80[t[#]]] &, {d,c,1/4.49618},{0,Pi}, 
Prolog -> { { Thickness[.011), {Line[{ {0,0},{-1.02 e,O} }], 
Line[{{-a,-1.02 e},{-a,-b},{-1.02 e,-b}}] } }} J ; 

and Show[ c8 ,c8left J ; to get both parts in one picture with ticks. 
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To get a condenser that is symmetric with both axes I have to add another part 
c8leftup to get a condenser that looks like a cross (cf. fig.33): 

c8leftup = CartesianMap[-af80[t[#JJ &, {d,c,1/4.4961},{0,Pi} J 

and one Show[c8,c8up,c8left,c8leftup] ; to get the whole condenser with ticks. 
The ticks can be omitted by adding Axes-> None. 
Obviously I may construct a condenser consisting of three parts but I will not list 
all possibilities here (cf. fig.33). 
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E [V /m] 
Upper Plate: Horizontal 

0,..,.--.~~~~~~~~~~~~~~~~u[mm] 

1 2 3 4 
-100 

-200 

-300 

-400 

-500 

-600 

Upper Plate: Vertical 
E[V/m] 

300 

250 

200 

150 

-4 -3 -2 -1 0 
iv[nun] 

iv[mrn] 

u [mm] 

-4 

89 

{a8) 

{b8) 

{c8) 

Figure 30: Graphics with ticks produced by the Mathematica program for the Sharp Bend 
Condenser. The labels indicate that part of the program which plotted the pictures. The 
voltage between the plates is 1 V. The vertical distance between the plates is 1.5 mm, the 
horizontal distance is 3 mm. 
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Figure 31: Graphics with ticks produced by the Mathematica program for the Sharp Bend 
Condenser. The labels indicate that part of the program which plotted the pictures. 
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(iv) -> 

(iv) -> 

Upper Plate 

E 

Lower Plate 

E 

u -> first Show[ ] 

second Show[ ] 

third Show[ ] 
u -> 

Figure 32: Graphics without ticks produced by the Mathernatirn program for the Sharp 
Bend Condenser. The labels indicate that part of the program which plotted the pictures. 
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Show[c8,c8left] 

iv [mm] 

u rmm1 Show[ c8,c8up,c8left,c8leftup] 

Show[ c8 ,c8up,c8leftup, 
Axes-> None] 

Figure 33: Graphics produced hy the variants of the Mathematica program for the Sharp 

Bend Condenser. 
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2.11 Mathematica Program for the Infinitely Thin Aperture Condenser 

This problem can be considered as a preliminary to the next one - the Thick Aperture 
Condenser - when I let the distance between the corners tend to zero. We get something that 
looks like a. hole in a. screen, in optics simply called an aperture. As in the problems before 
only the upper half of the aperture is constructed which can be continued holomorphica.lly 
to the lower half by the Schwarz reflection principle as indicated in section 2.5. 
The function 

w = J(z) = 2ez/2 - ~2 e-z/2 

maps the Infinite Plane Condenser to one whose one plate extends a.long the iv-axis with a 
hole between 0 and ia. The second plate is the u-axis. 
The function is holomorphic in CC. For a= 4 the function f(z) is simply 4 sinh(z/2). 
The first derivative f'(z) = e'l2 + ~~e-z/2 gets zero at z = ln(-~~) = iK+ 2ln ! and so the 
domain D, is D,= Did\ { iK + 2 ln ! } . 

iv 

w c3 
-1 C2 

ia - - - - - - - - - - - - - - - - -

Figure 34: CurveC and normal vectors of the Infinitely Thin Aperture Condenser 

The picture above shows the images of the condenser planes on the W-pla.ne. The condenser 
consists of three parts which read 

f(C1) = 2ex/2 - a82 c-x/2 ~ C\ (u) = J(Ci) '11. for U Efil , 

J(C2) = 2ic-x/2 + ;~2 c"/2 ~ { C2(v) = f(C2(x < 2ln !)) = -'lV for !<v<oo 

C3(v) = .f (C2(J; > 2ln ~)) iv for ~<v<oo 
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So the surface charge density in terms of x is 

11:', (x) = - Eo~ <J'm { i ex/2 + ~e-x/2} = 

for x EIR: C\(x) = 2e"/2 - a
8

2 
e-x/2 

Eo VcJ 0.< { l -i } . x - --- :sm 11:'2 ( ) - 7r -x/2 _ ~ x/2 
<'- 16 e 

EoVcJ 

EoVcJ 

7r 

1 
r_x/2 + P2r_-x/2 
• 16 • 

1 
e-x/2 _ ~ex/2 

16 • 

Eo Vo "' { -i } Eo Vo 1 11:' (x) = --- ':sm, -1 2 = --- ------
a 7r e-x/2 - !!...ex/2 7r e-x/2 - ~ex/2 

16 16 
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Surface charge density and electric field of this example are very simple since the charge 
density for the left side of the upper plate is the same as for the right side. The field is of 
opposite sign on both sides. For v -too field and charge density tend to zero and for v -t a 
they tend to infinity. The field and charge density on the lower plate are given by a bell 
shaped distribution. 
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Mathematica program 9: for the Infinitely Thin Aperture Condenser 

Needs["Graphics'ComplexMap'"] 

Clear[V,a,b,c,d,e,f,frb,fre,frf,chs,sgn9,decide] 
V = 1 (* Voltage between the plates in Volt *) ; 

a = 3 (* Shortest distance between the plates in mm : 
for 7 10--5 < a < 20 (scd) and 7 10--5 < a < 10-5 (ef) *) 

decide = ef (* Decide whether you want the electric field (ef) or 
surface charge density (scd) of the plates *) ; 

af90[z_, sgn9_] = 2 Exp[z/2] + sgn9 a-2/8 Exp[-z/2] 
If[a < 1.7008433 10-2, chs = 1, chs = -1] 

c = af90[b,1] ; d = af90[b,-1] ; 
frb = FindRoot[d - 3 a, {b,1,10}]; b = b/.frb ; 
fre = FindRoot[af90[e,-1] + 3 a,{e,-5,-15}]; e = e/.fre 
frf = FindRoot[af90[-f,1] - c,{f,-10,-5}]; f = f/.frf ; 

<< -path/hilfsf ile 

a9 = ParametricPlot[{ af90[-x,1], 2 chs sgn mult/af90[-x,-1] }, 
{x,f,-2 Log[a/4] - chs .1}, PlotRange -> {All,{O,sgn mult 6}}, 
AxesOrigin -> {a,O}, AxesLabel -> {"iv[mm]",tex1}, 
PlotLabel -> "Upper Plate: Left" ] ; 

a9inv = ParametricPlot[{ -af90[-x,1], 2 chs sgn mult/af90[-x,-1] }, 
{x,f,-2 Log[a/4] - chs .01}, 
PlotRange -> {{-a,-c},mult 6{-branch ,1}}, 
AxesOrigin -> {-a,0}, DisplayFunction -> Identity] 

b9 = ParametricPlot[{ af90[-x,1], -2 chs mult/af90[-x,-1] }, 
{x,-2 Log[a/4] + chs .01,-f - 4 Log[a/4]}, 
PlotRange -> {{a,c},{0,mult 6}}, AxesOrigin -> {a,O} , 
AxesLabel -> {"iv [mm]", tex1}, PlotLabel -> "Upper Plate: Right" ] 

c9 CartesianMap[af90[#,-1.] &,{b,e},{O,Pi}, 
PlotRange ->All, AxesLabel -> {"u[mm]","iv[mm]"}, 
Epilog -> { Thickness[.011] ,{ Line[{{0,1.05 a},{0,1.02 c}}], 

Line[{{1.02 d,0},{-1.02 d,O}}] }} ] 
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d9 = ParametricPlot[{ af90[x,-1], -2 mult/af90[x,1] },{x,b,e}, 
PlotRange -> {{d,-d},{0,-mult .7}}, 
AxesLabel -> {"u [mm]", "Lower Plate"}, 
Epilog -> { Text[tex1,{d/15,-mult .4},{0,0},{0,1}] } ] 

Show[GraphicsArray[{a9inv,b9}, GraphicsSpacing -> O] /. 
(Ticks-> Automatic)-> (Ticks-> None)/. 
(AxesLabel -> {"iv[mm]",tex1}) -> (AxesLabel ->None)/. 
(PlotLabel ->"Upper Plate: Right")-> (PlotLabel ->None) /. 
(PlotRange -> {{a,c},{0,mult 6}}) -> 

(PlotRange -> {{a,c},mult 6{-branch ,1}}), 
Epilog -> { Text["<- (iv) (iv) ->", 

{.5,If[decide == ef,.2,,.07]}], 
Text[tex3,{.46,.29}] }, 

DisplayFunction -> $DisplayFunction ] 

Show[c9, Axes -> None] ; 
Show[d9, Ticks-> None, AxesLabel -> {"u","Lower Plate"}, 

Epilog -> { Text[tex2,{d/10,-mult .4},{0,0},{0,1}] } ] 
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Comments: 

The program is structured like the other ones but I added a variable chs which does not 
occur in the other programs. For a = 170.08433 the lower limit xmin in a9,a9inv ,b9 
becomes the upper limit xmax and vice versa. At this point the function changes sign 
which can be prevented by introduction of the variable chs. The pictures (a9, b9, c9, d9) 
are plotted with ticks. The following three Show[ ] commands produce these pictures 
without ticks. The first Show[ ] produces one picture of the left and right upper plate 
using a9inv,b9. 

Variants: 

£ it is possible to change ParametricPlot[ ] and CartesianMap[ ] as described 
in section 2.1. The ranges of the iv co-ordinate and the location of the text plotted 
by the Epilog option of a9, a9inv, b9, the first and thirdShow[ ]as well as the 
starting values and options in frb, fre, frf vary for different values of a and have 
to be modified by hand (the location of the text is written in brackets behind the 
co-ordinates' value) : 

FindRoot[ ] values of a starting values values of a starting values 
frb 7 10--5 to 1 {-1, -10} {1,10-5} {1, 10 } 
fre 7 10--5 to 10-2 {-5, -15 } { 10-2, 10-5} {-5,-15} 
frf 7 10--5 to 10--1 { 10, 5 } { 10--1, 10·5} {-10, -5 } 

Graphics iv coordinates for a = 7 10--5 iv coordinates for a = 1 iv coordinates for a = 10- 5 
a9, a9inv,b9, first Show { ... , ... mult 10·5} {... , . . . mult 10 } {... , . . . mult 10 --4 } 

d9, third Show[ ] { ... , ... mult 10-4 3 (2) } { ... , ... mult 2 (1) } {... , . . . nmlt 10 --5 2 ( 1) } 

£ since you will normally deal with condensers symmetric with the v.-axis you can 
obtain that condenser by application of the Schwarz reflection principle. I have to 
replace they co-ordinates {O,Pi} in the Epilog option of c9 by {-Pi,Pi} and the 
"Line[{ {1.02 d,0},{-1.02 d,O}}]" suboption by: 

Line[ { { 0,-1.05 a},{ 0,-1.02 c}}] 

The surface charge density of the lower plate will than be of oposite sign. In order 
to avoid confusion by the surface charge density of the middle plate that is not any 
more existent wrap (* *) around d9 = ParametricPlot[ ... ] ; and 
Show[d9, ... ] , . 
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Figure 35: Graphics with ticks produced by the Mathematica program for the Infinitely Thin 

Aperture Condenser. The voltage bc~tween the plates is 1 V. The distance between the plates 
is 3 mm. 
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E 

<- (iv) (iv) -> 
first Show[ ] 

second Show[] 

Lower Plate 

third Show[ ] 

Figure 36: Graphics without ticks produced by the Mathematica program for the Infinitely 
Thin Aperture Condenser. 
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2.12 Mathematica Program for the Thick Aperture Condenser 

w = ai [k' 2 r - 2E{am{ r, k), k) - cs( r, k) dn{ r, k) J /{2E - k'2 K) - b 

with T = sn-1g 

100 

In this section half of an aperture with finite thickness is treated. The symmetry plane of 
this configuration is a metallic plate coinciding with the u-axis. The lower plate consist of 
three parts of which two are located at both sides of the iv-axis at a distance b. They both 
extend from -oo to v = -a. The third part connects these at w = ±b - ia making two 
corners. 

The conformal function for this problem was calculated by N. Davy in the 1940's (cf. [<la]). 
In this paper the whole problem is also treated numerically for the special thickness to 
gapwidth ratio b/ a = 1/2 [<la, p.824-833]. My Mathematica program can be applied to any 
ratio b/a between 0.0003 and 4.71. 

The mathematic functions used in this section are not so familiar as those in the previous 
sections but they are still quite tractable from the mathematical point of view. In case you 
are not intimate with elliptic functions and integrals you should read part two of section 
1.1 (anew). 
The Mathematica programs, however, are of the same length. Unfortunately the time and 
memory space the computer needs for calculating the graphics will become quite long and 
large due to the complicated functions used. 
Unlike the previous sections the symmetric condenser will be calculated, but Mathematica 
will only plot the upper or the lower half. The second half has to be constructed by use of 
the Schwarz refection principle. 

11 
-i 

C3 
-1a --------------....--....-..;----. 

-1 

w 1 

Figure 37: CurveC and normal vectors of the Thick Aperture Condenser. 

For the convenience of the reader I show how the conformal map was constructed. Figure 38 
shows the two problems that have to be solved: At first the mapping function f2 ( t) which 
maps the Flat Condenser to the Thick Aperture Condenser has to be found and integrated. 
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Figure 38: Image of the Infinite Plane Condenser in the Z-plane, that of the Flat Condenser 
in the T-plane and that of the Thick Aperture Condenser in the W-plane to demonstrate 
the application of the Schwarz-Christoffel transformation for this example. 

Then the function f 1-
1 (t) must be constructed and inverted. The coupling of these two 

functions f 1 (t) and f 2 (t) makes up the conformal function w = f (z) = f 2 (t) o f 1 (z) mapping 
the Infinite Plane Condenser to the Thick Aperture Condenser. 

The application of the Schwarz-Christoffel transformation formula to the H-shape of the 
Thick Aperture Condenser leads to the equation 

+ B 

t 

J ~~dt - A vi- - i3 vi- - i4 + B 
- to Jt2 - ti Jt2 - t~ Jt2 - t~ Jt2 - t~ . 

(28) 

I choose t5 = -oo to remove the term Jt2 - t~ from the product under the integral; moreover 
I let t 2 = 0 and t 4 = -1. In addition I rename t3 = -k . k will turn out to be the modulus 
of the elliptic functions and integrals in f 2 ( t). variable t 1 is given no special value. 

To get the wanted form of the Thick Aperture Condenser I let all lines indicated by -+= in 
figure 38 tend to infinity: w 1 ,w1 ,w2 ,w2 ,w5 ,w5 ,w6 ,w6 -+=.With that eq.(28) given above 
becomes 

t 

J Jt2 - k2 y't2=-I dt 
w = f 2 (t) =A t + B . (29) 

to 

I substitute t for t = 1/sn( T, k) to get a form that can be integrated right away: 

- -( ) - -AJT cn2 (T,k) dn
2
(T,k) dT 

11) - f2 T - 2 ( k) + fl , sn T, 
(30) 

To 

where I used eqs (731.01),(129.01) and (120.02) of [bf] (In the following I will always use 
formulas of [bf] without mentioning the somce cxplicitcly. All equations of the form (123.45) 

-oo 
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are taken from [bf]). The use of (121.00) to rewrite eq.(30) in terms of sn2 (r, k) and 
integrating the terms using (311.02) and (310.02) of [bf] leads to the equation 

f 2 (t) =-A [k'2 r - 2E(am(r, k), k) - cn(r, k) dn(r, k)/sn(r, k)] + B 
with T = sn-1(1/t, k) . 

(31) 

To determine the constants A and BI calculate the values of f 2 (t) fort= t 3 = -k, t = t 3 = k, 
t = t4 = -1 and t = t 4 = 1. Using eqs (122.00), (122.01), (130.02) and (111.09) I get the 
corresponding r's: 

r 3 = -(K + iK'), r 3 = K + iK' and r 4 = -K, r4 = K . 

After expressing the incomplete elliptic integral of the second kind Elam(r, k),k) in terms 
of .Jacobi's Zeta function using (140.01) a.swell as (141.01), (122.02), (122.18) and (122.01) 
I obtain 

w 3 = b + ia = -A { (-k'2 + 
2
:) (K + iK') - ~} + B , 

w 3 = b - ia = -A { ( k'2 
-

2
:) (K + iK') + ~} + B , 

w1 = -b+ia = -A{(-k'2 + 
2:)K} + B , 

. { ,2 2E } 
W4 = -b- ia =-A (k - K)K + B . 

(I) 

(II) 

(II I) 

(IV) 

This is a system of four equations for the unknowns A, B. Solving the system of the la.st 
two equations gives 

I I I - IV =? A = w and 
k12 K - 2E 

II I+ IV =? B = -b . 

With that the function which maps the Flat Condenser to the Thick Aperture Condenser is 

f 2 (t) = ]2 (r) = ia [A:'2 r - 2E(am(r, k), k) - cs(r, k) dn(r, k)] /(2E - k'2 K) - b 
with T = sn- 1(t, k) . 

(32) 

Inserting A and B into eqs (I), (II), application of Legendre's relation ( 110.10) and solving 
for b/a gives the relation between a, b ;i,nd the modulus k: 

b (k'2 - 2)K + 2E' 
-=±------
a. 2(k'2 K - 2E) 

(33) 
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The plus sign belongs to the solution of (II) and the minus sign to that of (I). When I 
choose the plus sign the modulus 0 < k < 1 leads to a ratio 0 < a/b < oo. Choosing the 
minus sign would demand a complex k to solve the equation for real ratios a/b. I choose the 
plus sign and therefore a given thickness and distance leads to a certain modulus 0 < k < 1 
which must be computed before I can insert this modulus into the conformal map. 
The function 11-

1 can be obtained by the Schwarz-Christoffel fomula, too. It is 

z=alnt+/3 

with a and j) still to be determined. Since z changes by -2i7r when t changes bye;,. in going 
from t 2 to t2 , a = -2. I let the point z = i7r correspond to the point t = -Jk which becomes 
the centre of the line connecting t3 with t 4 • Therewith j) becomes j) = i7r+2 ln( -Jk). Using 
equation i7r = ln(-1) = 2 ln i I get 

Now I insert the transformation formula t = 1/sn(T, k)_ into the equation from above, invert 
the function obtained and get the modified function J1 

(34) 

With that the relation J(z) = ]2(T) o ] 1(z) is 

w = f (z) = ia [k'2T - 2E(am(T, k), k) - cs(T, k) dn(T, k)] /(2E - k'2K) - b 

with T = sn- 1(F"if, k). 

This is exactly the equation given by Davy. It can be simplified a lot when the relation 
(131.01) in [bf] is used. I have to write down sn- 1 (t, k) as the inverse functions of am(T, k), 
cs(T, k) = cn(T, k)/dn(uT, k) and dn(T, k) and insert these into the function w = f(z). The 
result looks a lot nicer than before (I have also used (130.02)) : 

in. [ I ~ J1 - k2t
2 l f(z) = 

2
E _ k'ZK k 2 F(arcsin t, k)) - 2E(arcsin t, k)) - t - b 

(35) 

with t= M 
For any ratio of bf a. the modulus k is 0 < k < 1; which bounds can be veryfied by a graph 
of the above equation. So the function f ( z) is holomorphic in <C and the derivative 

I 'lO. ~ )1 - J.:2t2 

J (z) = 4E - 2k'2 K t 
is zero for z = i7r ± lnk. 

With that the domain D, is D,= D;d\{z = i7r ± lnk}. 
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The curve C on the W-plane consists of four parts : C1 is the image of C1 , C2 that of 
C2 (x < - ln k) , C3 that of C2 (-ln k < .T < ln k) andC 4 that of C2 (.r > ln k). 

= k F(arcsm(it), k) - 2E(arcsin(it), k - _ - b ia [ 12 • .- - ) Jl + e-x /k Jl + ke-x l 
2E - k 12 K it 

= -a {(1 + k 2 )F((3, k 1
) - 2E((3, k 1

) + 2 tan [(3 - J1 - k 12 sin2 (3] - v'1+t'2 '(l + k
2
i

2 
}- b 

2E - k 12 K t 

i = Je-x / k , sinh[ln(-i + Jl + t2 )] =tan/} 

- f(C2 (x <-ink)) = k F(arcsint,k)- 2E(arcsint,k)- , - b 
ia [ 12 , , Jl - ex/ k Jl - kex l 

2E - k'2 K t 

==? C2 (v)=f(C2 (x<-lnk))=-b+iv for -"°<v<-a 

ia [ 1 , , iJex/k-lJl-kexl 
f(C2 (lnk<x<lnk))=

2
E-k 12 K k 2 F(arcsint,k)-2E(arcsint,k)- i -b 

= - a [(1 + k2 )F(A, k 1
) - 2E(A. k 1

) + Jex /k - 1. Jl - kex] - b - ia 
2E - k 12 K ' t 

A = arcsin [ ~] 
k 1t 

==? C3 (u)=f(C2 (-lnk<x<lnk))=u-ia for -b<n<b 

f ( C2 ( x > ln k)) 
ia [ 12 . , . - i .j e" / k - 1 J kex - 1] 

= k F ( arcsm t, k) - 2 E ( arcsm t, k) - , - b 
2E - k12 K t 

= ia [k12 F(a. k) - 2E(a. k) +Jex /k - ~ Jkex - 1] + b 
2E - k 12 K I"' f'' t 

{3 = arcsin [l] 
kt 

==? C.1(v) = f(C2 (.r > lnk)) = -b- iv for a< v <ex: . 
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The unit normal vectors are calculated to nw(C\) = -i, nw(C2 ) = -1, nw(C3) = i and nw(C4 ) = 1. 

The surface charge density in terms of x is: 

Eo Vo 0.< { • 4E - 2k'
2 

K i ~ } 
1t1 (x) = ----:;;:- 'OSTn -i ia Jl + e-x /k /1 + kcx 

EoVo 4E- 2k'2 K ~ 
a 7r Jl + e-x /k /1 + ke-x 

for x ElR : C1 (x) = .f(Ci) : 

EoVo C" { 4E - 2k'
2
K iJCilk } 

rc,(.T) = ----:;;:- sm, -l ia Jl - eX I k /l - h;eX 

EoVo 4E - 2k12 K JCi7k ----
a 7r Jl - ex/ k /l - kex 

for x<-lnk : C2 (x)=.f(C2 (x<-lnk)) 

Eo Vo 0.< { • 4E - 2k'
2 

K JCi7k } 
TCJx) = ----:;;:- 'OSTn i ia iJex /k - 1 /1 - kex 

Eo Vo 4E - 2k'2 K JCi7k 
- --

a n Jex/k - 1 /1- kex 

for -lnk<x<lnk : C3 (x)=.f(C2 (-lnk<:r.<lnk)) 

Eo Vo { 4E - 2k'
2 K ~ } 

Jt,(x) = ----:;;:- srn 1 ia -Je')k- l Jke -1 

Eo Vo 4E - 2k'2 K Jei7k, 
= 

a 7r Je"/k-l/kcx-l 

for .T > ln k : C1 ( x) = f ( C2 ( 3; > ln h:)) 
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Mathematica program 10: for the Thick Aperture Condenser 

Needs ["Graphics' ComplexMap' "] 

Clear[V,a,b,c,d,e,t,ksq,frc,frksq,sgn10a,sgn10b,decide] 
V = 1 (* Voltage between the plates in Volt *) ; 
a = 3 (* Half the distance of the plates in mm : 

for all 2 10--5 <a< 25 (scd) and 2 10--5 <a< 10-5 (ef) *); 
b = a/2 (* Half the thickness of the plates in mm : 

for all .0003 a< b < 4.71 a*); 
decide = ef (* Decide whether you want the electric field (ef) or 

surface charge density (scd) of the plates *) ; 

af100 = .5 (2 EllipticE[1 - ksq] - (1 + ksq) EllipticK[1 - ksq])/ 
(EllipticK[ksq] (1 - ksq) - 2 EllipticE[ksq]); 

frksq = FindRoot[af100 - b/a, {ksq,.01,.05}]; ksq = ksq/.frksq 

t[z_, sgn10a_] = Sqrt[sgn10a Exp[z]/Sqrt[ksq]] ; 
af101[z_] =a I/(2 EllipticE[ksq] - (1 - ksq) EllipticK[ksq])* 

((1 - ksq) EllipticF[ArcSin[t[z,-1]] ,ksq] -
2 EllipticE[ArcSin[t[z,-1]] ,ksq] -
Sqrt[1 - ksq t[z,-1]-2] Sqrt[1 - t[z,-1]-2]/t[z,-1]) - b ; 

106 

af102[z_, sgn10b_] = 2(2 EllipticE[ksq] - (1 - ksq) EllipticK[ksq])/a * 
t[z,1]/(Sqrt[1 + sgn10b t[z,1]-2] Sqrt[1 + sgn10b ksq t[z,1]-2]) 

d = 1.01 af101[c]; e = 1.01 Im[af10Hc - I Pi]] ; 
frc = FindRoot[af101[c] - 2.5 a - b,{c,1,10}, 

AccuracyGoal -> 5 - Floor[N[Log[10,a]J]]; c = c/.frc 

<< -path/hilfsf ile 

a10 = ParametricPlot[{ af101[-x], sgn mult af102[-x,1] }, {x,-c,c}, 
PlotRange -> {All,{0,sgn mult/a 3.2}}, AxesLabel -> {"u[mm]","Upper Plate"}, 
Epilog -> { Text[tex1,{d/10,sgn mult/a},{0,0},{0,1}] } ] ; 

b10 CartesianMap[af101, {-c,c},{-Pi + 10--10, -10--10}, PlotRange -> All, 
AxesLabel -> {"u[mm]","iv[mm]"}, 
Epilog -> { Thickness[.011], 

{ Line[{{-d,O},{d,O}}], Line[{{-b,e},{-b,-a},{b,-a},{b,e}}] }} ] 
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c10 = ParametricPlot[{ Im[af101[-Pi I+ x]], -sgn mult Re[af102[x,-1]] }, 
{x,-c, Log[Sqrt[ksq]] - .001}, PlotRange -> {{-a,e},{0,-sgn mult/a 7}}, 
AxesOrigin -> {-a,0}, AxesLabel -> {"iv[mm]",tex1}, 
PlotLabel -> "Lower Plate: Left"] 

d10 = ParametricPlot[{ Re[af101.[-Pi I+ x]], mult Im[af102[x,-1]] }, 
{x, Log[Sqrt[ksq]] + 10--5, Log[1/Sqrt[ksq]] - 10--5}, 
PlotRange -> {All,{0,-mult/a 10}}, 
AxesLabel -> {"u[mm]","Lower Plate: Horizontal"}, 
Epilog -> { Text[tex1,{b/15,-mult/a 8},{0,0},{0,1}] } ] ; 

e10 = ParametricPlot[{ Im[af101[-Pi I+ x]], mult Re[af102[x,-1]] }, 
{x, Log[1/Sqrt[ksq]] + .001,c}, PlotRange -> {{-a,e},{0,-mult/a 7}}, 

AxesOrigin -> {-a,0}, AxesLabel -> {"iv[mm]",tex1}, 
PlotLabel -> "Lower Plate: Right"] 

eiOinv = ParametricPlot[{ -Im[af101[-Pi I+ x]], mult Re[af102[x,-1]] }, 
{x, Log[1/Sqrt[ksq]] + .001,c}, 
PlotRange -> {{a,-e},-mult/a 10{-branch,1}}, 
DisplayFunction -> Identity] ; 

Show[a10, Ticks-> None, AxesLabel -> {"u","Upper Plate"}, 
Epilog -> {Text[tex2,{d/10,sgn mult/a},{0,0},{0,1}] } ] 

Show[b10, Axes -> None] ; 

Show[GraphicsArray[{c10, d10, e10inv}, GraphicsSpacing -> O] /. 
(Ticks-> Automatic) -> (Ticks-> None) /. 
(AxesLabel -> {"iv[mm]",tex1}) -> (AxesLabel -> {None,None}) /. 
(AxesLabel -> {"u[mm]","Lower Plate: Horizontal"}) -> 

(AxesLabel -> {None,None}) /. 
(PlotLabel ->"Lower Plate: Left")-> (PlotLabel ->None) /. 
(PlotLabel ->"Lower Plate: Right")-> (PlotLabel ->None) /. 
(Epilog -> { Text[tex1,{b/15,-mult/a 8},{0,0},{0,1}] }) -> 

(Epilog -> { Text[tex3,{b/10,-mult/a 7}] }) /. 

(PlotRange -> {{-a,e},{0,-sgn mult/a 7}}) -> 
(PlotRange -> {{-a,e},-mult/a 10{1,-branch}}) /. 

(PlotRange -> {All,{0,-mult/a 10}}) -> 
(PlotRange -> {All,-mult/a 10{1,-branch}}), 

Epilog -> { Text[" (iv) -> u -> 
{.5,If[decide == ef,.13,,.16]}] }, 

<-(iv)", 

PlotLabel ->"Lower Plate", DisplayFunction -> $DisplayFunction] ; 
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Comments: 

The graphics commands named alO,blO,clO,dlO,elO plot the pictures of the electric field 
or the surface charge density and the field distribution with ticks. The three Show[ ] com
mands draw the pictures alO to elO without ticks whereby the third Show[ ] unites 
clO,dlO,elOinv in one picture. 

Variants: 

&. it is possible tu change ParametricPlot[ ] and CartesianMap[ ] as described in 
section 2.1. The ranges of the iv co-ordinate and the location of the text in Epilog 
of alO,clO,dlO,elO,elOinv and the first and third Show[ ] as well as the starting 
values and options in frksq vary for different values of b /a and have to be modified 
by hand (the location of the text is written in brackets behind the co-ordinates' 
value) : 

value of b frksq starting values WorkingPrecision Max Iterations 
.0003 a to a { .01, .05 } 

a to 4.71 a { 10--14, 10--15 } 25 30 

Graphics iv coordinates for b = .0003 a iv coordinates for b = a iv coordinates for b = 4. 71 a 
alO { ... , ... mult/a 2 (1)} { ... , ... mult/a 3.2 (1) } { ... , ... mult 3.2 (1) } 

clO, elO { ... , ... mult/a 10 } { ... , ... mult/a 7 } { ... , ... mult 7} 
dlO { ... , ... mult/a 1000 } { ... , ... mult/a 10 } {... , . .. mult 10 } 

first Show[ ] ({ ... , ... mult/a }) ( { ... , ... mult/a 2 } ) ({ ... , ... mult/a 2 }) } 
elOinv,third Show[ ] mult/a 200{ ... } mult/a 10{ ... } mult/a 10{ ... } 

&. The case of the Thick Aperture Condenser which is symmetric with the u-axis can be 
obtained by application of the Schwarz reflection principle. I have to delete the ", 
Line[{ {-d,O},{d,O}}]" suboption (don't forget the comma!) in the Epilog option 
of blO and to add another picture: 
blOup = CartesianMap[Conjugate[afJ.01[#]] &, {-c,c}, 
{-Pi + lOA-10, -lOA-10}, PlotRange -> All, Prolog -> {{ Thick
ness[ .011 ], 
Line[{ {-b,-e},{-b,a},{b,a},{b,-e}}] } } ] 
The Prolog option does the same as Epiolg, however, not after but before the 
picture is plotted. That is why a second pair of curly brackets is wrapped around 
the Thickness and Line suboptions to prevent that all lines arc drawn so thick. 
To display both the upper (blOup) and lower (blO) part of the symmetric con
denser in one picture you add: 
Show[blO, blOup] ; . 
This picture is drawn with ticks. To get the "pure" version add: 
'', Axes-> None '' as an option to the Show[ ] command. The surface charge 
density of the upper plate will than be of opposite sign. In order to avoid confusion 
by the surface charge density of the middle plate that is not any more existent wrap 
(* *) around alO = ParametricPlot[ ... ] ; and Show[alO, ... ] ; . 
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Figure 39: Graphics with ticks produced by the Mathematica program for the Thick Aperture 
Condenser. The potential difference between the plates is 1 V. The distance between the 
parallel branches of the plates is 3 mm. The thickness of the lower plate is 1.5 mm. 
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Figure 40: Graphics with ticks produced by the Mathematica program for the Infinitely Thin 

Aperture Condenser. 
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Upper Plate 

Lower Plate 

IE 

u -> 

u 

<- (iv) 

first Show[ ] 

second Show[ ] 

third Show[ ] 

Figure 41: Graphics without ticks produced by the Mathematica program for the Infinitely 
Thin Aperture Condenser. 
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Figure 42: These graphics show that the electric field of the Thick Aperture Condenser for 
large values of the ratio: plate thi<:kness to distano~ (b/a = 4.71 for a= 3 mm, V = 1 
Volt) can be approximated by use of the One Corner of 90° Condenser. The picture a) shows 
the fields of the ''thick'' upper and that of the ''one corner'' lower plate (dashed), where the 
origin of d5 was shifted by 4. 71 a. The picture b) shows the fields of the left half of the 
''thick" horizontal lower and that of the ''one corner'' horizontal upper plate (dashed) (the 
origin of b5 was shifted). The picture c) shows the fields of the right ''thick" vertical lower 
and that of the "one corner'' vertical upper plate (dashed) (the origin of a5 was shifted). 
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2.13 Mathematica Program for the Finite Plane Condens_er 

a 
w = f(z) = -{(E' - K')F(arcsint,k} + K' E(arcsint,k)} with t = sn(z,k) 

71" 

In section 2.3 I treated the Infinite Plane Condenser, in section 2.5 the infinitely thin Semi
Infinite Plane Condenser followed by the finitely thick version in section 2.6 . In a line with 
these problems this chapter deals with the Finite Plane Condenser whose two plates are of 
zero thickness but have limited length: This corresponds to two equal and parallel strip 
lines17

. 

The construction of this example's conformal map is published in [od] and very brievely in 
[bf, (119.01) and (ll9.03)]. 
The function 

f(z) = 2:{(E' - K')F(arcsiny,k)+K E(arcsiny,k)} with y(z) =sn(z,k) 
1f 

can again be simplified by the use of equations (130.02) of [bf] and sn( u, k) = sin( am( u, k)) 
as indicated at the beginning of the previous section. 
This yields 

a f (z) = -{ (E' - K') z + K E(am(z, k), k)} 
1f 

a function with just one elliptic function as argument of an elliptic integral (the complete 
elliptic integrals are constant and therefore don't count). The function is holomorpic in <C 
for 0 < k < 1. 
As in section 2.10 the ratio of distance a to length b of the planes is directly connected to 
the moduli k and k' by the equation 

~ = ~ (K' E[arcsin( ,
1 

Jl - E'/K'), k'] - E' F[arcsin( kl Jl - E'/K'), k']) 
a. 1f ,,;' ,' 

The first derivative 
J'(z) = 2: [E' - k2 K'sn2 (z, k))] 

1f 

has an infinite number of zeros at the points 

z + 4mK + 2niK' = nd- 1 (±?:._VE'/K', k) 
k 

17 The Schwartz-Christoffel formula for the finite condenser with finitely thick plates leads to an equation 
which is not even an elliptic integral but something really ugly since it is of the form I = J VP/ VQ dt 
where P, Q are 4th order polynomials of the variable t with different coefficients. 
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where n and m are integers including zero. 

Therefore the domain Dz becomes <C\{nd- 1(±·h/E'/K', k) + 4m K + 2n iK'}. 

The infinite number of zeros results from the periodicity w = 4m K + 4n iK' of the elliptic 
function sn(u,k). Since corresponding points of different period parallelograms on the Z
plane are mapped to the same points on the W-plane and since sn(u + 2K, k) = -sn(u, k) 
[bf, (122.04)] the domain for the conformal map will be half18 a period parallelogram. This 
implies the domain Dz used here is finite; so this differs from the domains used in the 
previous examples. The potential for the" Infinite" Plane Condenser has to be modified too, 
since its plates are now located parallel to the iv-axis. It reads <I> = ~ + f with Vo the 
voltage between the plates. So the left plate is at zero potential and the right one is at the 
potential Vo . 
With this new potential the cq.(15) for the surface charge density is 

Equations (27), however, are still valid. 

iy lS lV 

-K+iK' K+iK' 
T 

-K 

C2 t=sn(z,k) 

' ' ' ' ' ' ' ' - - - - - ---- -- - - - - - - - _, 

K x 
I -x -1 

1 
k 

1 
w=f(t) 

-1 -1 

h 
r 

II II 

!! !! 
w 11 II : :........-... ..,__.......:: 

It E., .!!:, II 
L' 2 2 !...' 

Figure 43: Domains and ranges for the Finite Plane Condenser. 

The picture above shows in detail how the domain DzCZ-plane is mapped to the T-plain 
by the sine amplitude and from there to W-plane by the function .f (t). The thick lines 
denote the parts which become the condenser plates in the upper half of the W-plane. The 
dashed lines in the pictures are the boundaries of the lower half of the domain Dz and of 
its images. Although the domain Dz is finite its images are the whole T- and W-plane, 
which arc both infinite. 

Unlike curves C in the other sections the cnrve C here is finite and it consists of two 

18 Consider the sine with a period of 2r.. Allthough the function"s value after half the period is of opposite 
sign its range [-Ll] is already complete. Thus for symmetric problems like ours half the period is 
enough. 

u 
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unconnected parts which are located parallel to both sides of the iv-axis at a distance 
K and have a length 2K'. The unconnected parts C 1 and C2 in combination with the 
sine amplitude which maps the (finite) fundamental periodic parallelogram to the whole 
Gaussian plane is the trick which has to be used to get two unconnected plates as the image 
of a simply connected domain. The images of the upper half of the curve C in Z-plane are 
(the lower half might be gotten by the Schwarz reflection principle which, as mentioned, 
means to apply the conformal map to the lower part of the domain Dz): 

.f(Cl) ; { (E' - K')(-K - iy) + K' E[arcsin(sn(-K - iy, k) ), k]} 

= -% - ~ {E' y - K' E[am(y, k'), k'] + k'2 K' sd(y, k') cn(y, k')} 

, { .f(C1(-K' < y < -nd- 1 (fVE'/K',k) )) = iv for 0 < v < ~ 
=} C1 (v) = 

.f(C1 (-nd-
1
(-~JE'/K',k)<y<O)) =-iv for -t<v<O 

.f(C2) ; { (E' - K')(K + iy) + K' E[arcsin(sn(K + iy, k)), k]} 

% + ~ {E'y - K' E[am(y, k'), k'J + k'2 K' sd(y, k') cn(y, k') }· 

O<v<~ 

_£_ < v < 0 
2 

Since the left and right sides of the plates have the same co-ordinates it is particularly 
important not to mix up the directions of the curves. 

The unit normal vectors are shown in the picture above. With these the surface charge 
density in terms of y is 

coVo { n:[, 2 . 2 . 'J-1} coVon: rc,(y)=-
2

K Tho =i=l~E -k K·sn(-K-iy,k)J =±
2
aK 

for - K' < y < 0 : C 1 (y) = the expressions from above : 

[E' - k2 K'nd2 (y,k'))]-
1 

TC2(y) = - c;~ Tho { =i=l~[E' - k2 K' sn2 (K + ·iy, k))r
1

} = ± E;~K7r [E' - k2 K' nd2 (y,k'))]-l 

for 0 < y < K': C2 (y) =the expressions from above . 

The plus sign of the surface charge density given above holds for the left side, the minus 
sign for the right side of the plates respectively. 
The rnrrect parametric representation C;(y) corresponding to r7;(y) can be found by looking 
at .f(C,) =} C;(y) : the left sides of the plates belong to C;(y) = f (C;( ... )) =-iv, the dots 
" ... " representing the range of y that has to be inserted into C; ( y). 
Again the edges muse infinities, as those in the case of the Semi-Infinite Condenser. The 
electric field and surface charge density tend to constant values for the limit 11 -+ 0. These 
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constants depend on the ratio length to distance. They are larger between the plates than 
on the outside. 
For long plates the limits at the inside approach ±2~ and±~; and at the outside they 
approach zero as in the case fo the Semi-Infinite Condenser which is the limit for the length 
b tending to infinity. 
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Mathematica program 11: for the Finite Plate Condenser 

Needs["Graphics'ComplexMap'"] 

Clear[V,a,b,m,sn,elk,mprime,frmprime,decide] 
V = 1 (* Voltage between the plates in Volt *) 
a = 3 (* Distance of the plates in mm : 

for all 2 10--5 < a < 10-2 (scd) and 2 10--5 < a < 10-5 (ef) *) 
b 2 (*Plate length in mm : for any 10--2 a< b < 8.75 a*) 

decide = ef (* Decide whether you want the electric field (ef) or 
surface charge density (scd) of the plates *) ; 

af110 = 2/Pi (EllipticK[mprime] EllipticE[ArcSin[1/Sqrt[mprime]* 
Sqrt[1 - EllipticE[mprime]/ 
EllipticK[mprime]]] ,mprime] -

EllipticE[mprime] EllipticF[ArcSin[1/Sqrt[mprime]* 
Sqrt[1 - EllipticE[mprime]/ 

EllipticK[mprime]]] ,mprime]); 
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frmprime = FindRoot[af110 - b/a ,{mprime,.99,.999}]; mprime mprime/.frmprime 
m = 1 - mprime ; 

elk= Pi/(2 EllipticK[m]) 
af111[z_] a/Pi ((EllipticE[mprime] - EllipticK[mprime]) z + 

EllipticK[mprime] EllipticE[JacobiAmplitude[z,m] ,m]) 
af112[z_] 1/(EllipticE[mprime] - m EllipticK[mprime] JacobiND[z,mprime]-2) 
sn = InverseJacobiSN[Sqrt[(1 - m EllipticK[mprime]/EllipticE[mprime]) I mprime], 

mprime] ; 

<< -path/hilfsfile 

a11 = ParametricPlot[{{ Im[af111[EllipticK[m] - 10--5 + I y]], -elk mult af112[y] }, 
{ -Im[af111[EllipticK[m] - 10--5 + I y]], -elk mult af112[y] }}, 
{y,sn + 10--6, EllipticK[mprime] - 10--6}, 
PlotRange -> {{-1.02 b/2, 1.02 b/2},{0,elk mult 4}}, 
AxesLabel -> {"u[mm]","Upper Plate's Outside"}, 
Epilog -> { Text[tex1,{b/15,elk mult 3},{0,0},{0,1}] } ] 
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b11 = ParametricPlot[{{ Im[af111[EllipticK[m] - 10--s +I y]], elk sgn mult af112[y] } 
{ -Im[af111[EllipticK[m] - 10--5 +I y]], elk sgn mult af112[y] }}, 
{y,O,sn - 10--6}, PlotRange -> {{-1.02 b/2, 1.02 b/2},{0,elk sgn mult 4}}, 
AxesLabel -> {"u[mm]","Upper Plate's Intside"}, 
Epilog -> { Text[tex1,{b/15,elk sgn mult 3},{0,0},{0,1}] } ] 

b11inv = ParametricPlot[{{ Im[af111[EllipticK[m] - 10--s +I y]], elk mult af112[y] }, 
{ -Im[af111[EllipticK[m] - 10--s +I y]], elk mult af112[y] }}, 
{y,0,sn - 10--6}, PlotRange -> {{-1.02 b/2, 1.02 b/2},{0,elk mult 4}}, 
PlotStylP. -> Dashing[{.02}], DisplayFunction -> Identity] ; 

c11 = CartesianMap[I af111[#] &, {-EllipticK[m] + .0001, EllipticK[m] - .0001}, 
{-EllipticK[mprime] + .0001, EllipticK[mprime] - .0001}, 
PlotPoints -> 25, PlotRange -> {{-2 b,2 b},{-2 a,2 a}}, 
AxesLabel -> {"u[mm]","iv[mm]"}, 
Epilog -> { Thickness[.011], 

{ Line[{{-b/2,a/2},{b/2,a/2}}], 
Line[{{-b/2,-a/2},{b/2,-a/2}}] }} ] ; 

Show[a11,b11inv, Ticks-> None, AxesLabel -> {"u","Upper Plate: In- & Outside"}, 
Epilog -> { Text[tex2,{b/15,elk mult 3},{0,0},{0,1}] }, 
DisplayFunction -> $DisplayFunction ] 

Show[c11, Axes-> None] ; 
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Comments: 

The field distribution is plotted by ell where the plates arc rotated by 90° in multiplying 
the function f (z) by the imaginary unit so that the field of the Infinite Plane Condenser, the 
Semi-Infinite Condenser, the Thick Semi-Infinite Condenser and the Finite Plane Condenser can 
be compared easier. Here the potential for the upper plate is positive for positive voltage 
between the plates and zero for the lower plate. 
The graphics commands of all,hll plot the pictures of the electric field or the surface 
charge density of the upper plate with ticks. The charge density of the lower plate is of 
opposite and the field of the same sign. 
The two Show[ ] commands draw the pictures without ticks whereby the first Show[ ] uni
tes all,hllinv in one picture. To compare the electric field of the insice to that of the 
outside it is drawn with positive sign both times (the inside curve is dashed). 

Variants: 

£ it is possible to change ParametricPlot[ ] and CartesianMap[ ] as described 
in section 2.1. The ranges of the iv co-ordinate and the location of the text drawn 
by the Epilog option of all,bll,bllinv as well as the starting values and options 
in frmprime vary for different values of b/a and have to be modified by hand (the 
lokation of the text is written in brackets behind the co-ordinates' value) : 

value of b frmprime starting values WorkingPrecision Max Iterations 
10--3 a to .8 a { 10--9, 10--11 } 

.8 a to 2.3 a { .99, .999 } 
2.3 a to 4.5 a { 1 - 10--7' 1 - 10--9 } 25 30 
4.5 a to 6.6 a { 1 - 10--10, 1 - 10--13} 60 30 

6.6 a to 8.75 a { 1 - 10--13, 1 - 10--15 } 60 30 

Graphics iv coordinates for b = a/1000 iv coordinates for b = a iv coordinates for b = 8. 75 a 
all, bll, bllinv { ... , ... mult 2000 (1500) } { ... , ... mult 5 (3) } { ... , ... mult .7 (.5) } 

£ If you want the correct sign for the electric field without ticks yon have to replace 
the bllinv in the first Show[ ] by hll and replace tex2 in Epilog by tex3. 
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Figure 44: Graphics with ticks produced by the Mathematica program for the Finite Plane 

Condenser. The potential difference between the plates is 1 V, their distance is 3 mm, their 
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Upper Plate: In- & Outside 

first Show[ ] 

---- ------

u 

second Show[ ] 

Figure 45: Graphics without ticks produced by the Mathematica program for the Finite 

Plane Condenser. 
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Figure 46: These graphics show that the electric field of the Finite Plane Condenser for large 
values of the ratio: plate length to distance (b/a = 8.75 for a = 3 mm , V = 1 Volt) 
can be approximated by use of the Semi-Infinite Plane Condenser. The picture a) shows the 
fields of the outside of the upper finite and the top of the upper semi-infinite plate (dashed), 
where the origin of a3 was shifted by -8. 75 /2 a. The picture b) shows the fields of the 
inside (just the right half) of the upper finite and the bottom of the upper semi-infinite 
plate (dashed) (the origin was again shifted). 
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2.14 Mathematica Program for the Three Plates in Line Condenser 

a 
w =±(a+ b) dc(izK', k) with k = -

a+ b 
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The section for this condenser was suggested by Prof. Dr. St. Lindenmeier, FBH-Berlin. 
The condenser consists of three parts in a line : two semi-infinite plates are at hoth sides of 
a finite plate of the length 2a. The distance from the central plate is b for both semi-infinite 
plates. The problem is symmetric with respect to the two axes. 

iy lV 
ih _______ ---.l+ih 

z w=f(z), 

x (\ -(a+b) u 
-a a 

w 

Figure 47: Mapping of the Three Plates in Line Condenser. 

The inverse conformal map which maps the W- to the Z-plane is treated in [hm, p.2] 
(without loss of information I let the variable "a" of [hm] be 1 (the a. of this thesis is "w" 
in [hm]).): 

-ia j dw -ia. F [ .. 
z = k K' y'w2 - (a.+ b)2 Jw2 - a.2 = K' arcsm 

------,k w2-(a+b)2 l 
111 2 _ a.2 

This equation has to be inverted. Use of [bf, (130.02), (121.00)] gives 

111 = f(z) =±(a.+ b) dc(izK', k) with 
a. 2K 

k = -- and h = -
a.+ b K' 

I choose the positiv branch of the function . 

. f .. )" 1 1 h .. ""'\{±;4(m+l) K+4-in K'} . h z Tlus unction f( z ts 10 omorp ic m \lJ K wit n, m E . 

The singularities of the function arc the left/right ''ends" of the right/left semi-infinite 
plates. 
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The first derivative 

f'(z) = -i(a + b) k'2 K' sn(i~K') 
· cn2 cizK') has zeros at z E {2n K + im K'}. 
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This would lead to a very complicated domain Dz, but as in the other cases I restrict Dz to 
Dz= {zlz = x + iy,x E[-1, lJ,yE[O,h] \ {h/2}}. 

The potential has be chosen as : <I> = Vo z so that the left plate on the Z -plane has zero 
potential and the right plate has the potential Vo . The potentials on the W-plane are Vo 
at the semi-infinite plates and zero at the central plate. 

The curves on the W-plane in terms of y are: 

{
C1 =f(C1(-h<y<-h/2))=u for -oo<u<-(a+b), 

f(C1) = (a+ b) dc(yK', k) ==> • · 
· C3 = f(C1 (-h/2 < y < 0)) = u for (a+ b) < u < oo ; 

J(C2 ) = (a+ b) dc(iK' - yK') = acd(yK') ==> C2 = J(C2 ) = u for - a< u <a . 

For the evaluation of f(C2 ) I used [bf, (122.07), (122.00)]. The value of the normal unit 
vectors is the imaginary unit. So the surface charge density modified for the new potential 
is: 

re, = Eo Vo 1 { en 2 
( y K ', k) } 

7r (a+ b)k'2 K' sn(yK') 

for -h < y < -h/2 : C1 (y) = .f (C1 (-h < y < -h/2)) 

c:0 Vo 1 {cn2 (iK'-yK',k)} c:0 Vo 1 {dn
2
(yK',k)} 

1C 2 ---:;--- (a.+ b)k 1ZK' 3re sn(iK' - yK') = ---:;--- k 12 K' sn(yK') 

for -h < y < 0 (Jz(y) = .f (C2) 

Eo Vo 1 { en 2 
( y K ', k) } 

7r (a+ b)k'2 K' sn(yK') 

for -h/2<y<O : C1 (y)=.f(C1(-h/2<y<O)) 

The electric field and the snfoce charge density for the upper sides of the plate tend to zero 
for v,-+ ±'Xi and to infinity for n-+ ±a. and to minus infinity for n-+ ±(a.+ b). 
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Mathematica program 12: for the Three Plates in Line Condenser 

Needs["Graphics'ComplexMap'"] 

Clear[V,a,b,c,d,e,f,h,ksq,frc,frd,decide] 
V = 1 (*Voltage between the plates in Volt*); 
a = 1 (* Half the length of the central plate in mm : 

for any 10--5 <a< 25 *); 
b = 3 (* The gap between the central and the outer plates 

for any a/200 < b < 2.5 a *) ; 

in mm 

decide = ef (* Decide whether you want the electric field (ef) 
surface charge density (scd) of the plates *) 

ksq = (a/(a + b))-2; h = 2 EllipticK[ksq]/EllipticK[1 - ksq]; 
af120[z_] = (a+ b) JacobiDC[I z EllipticK[1 - ksq], ksq] 
af121[z_] = Sqrt[ksq]/((1 - ksq) Pi EllipticK[1 - ksq])* 

JacobiCN[I z EllipticK[1 - ksq], ksq]-2/ 
JacobiSN[I z EllipticK[1 - ksq], ksq] ; 

e = -af120[-I c]; f = -af120[-I d]; 
frc = FindRoot[e + 1.75(a + b),{c,-.5 h/2,-.7 h/2}, 

AccuracyGoal -> 4 - Floor[N[Log[10,(a + b)]]], 
WorkingPrecision -> 40]; c = c/.frc ; 

: 

or 

frd = FindRoot[f - 1.75(a + b),{d,-1.3 h/2,-1.5 h/2}]; d = d/.frd 

<< -path/hilf sf ile 

a12 = ParametricPlot[{ -af120[-I y], mult af121[-I y] }, {y,-.001,c}, 
AxesOrigin -> {-a - b,O}, PlotRange -> {All,{10--15,-.35 mult}}, 
AxesLabel -> {"u [mm]", tex1}, Plot Label -> "Left Plate: Top" ] ; 
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b12 = ParametricPlot[{ -af120[1 +I y], mult af121[1 +I y] }, {y,.0001,h - .001}, 
PlotRange -> {All,{O,mult}}, AxesLabel -> {"u[mm]","Middle Plate: Top"}, 
Epilog -> { Text[tex1,{a/10,.7 mult},{0,0},{0,1}]}] ; 

c12 = ParametricPlot[{ -af120[-I y], mult af121[-I y] }, {y,d,-h + .001}, 
PlotRange -> {All,{10--15,-.35 mult}}, AxesOrigin -> {a + b,0}, 
AxesLabel -> {"u [mm]", tex1}, Plot Label -> "Right Plate: Top"] ; 
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d12 = CartesianMap[af120, {-.9999,1},{0,h}, PlotPoints -> 30, 
AxesLabel -> {"u[mm]","iv[mm]"}, 
PlotRange -> {{-1.75(a + b),1.75(a + b)},{-a - b,a + b}}, 
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Epilog -> { Thickness[.011], { Line[{{-1.S(a + b),O},{-a - b,O}}], 
Line[{{-a,0},{a,O}}], Line[{{a + b,0},{1.8(a + b),O}}] }} ] ; 

Show[a12,b12,c12, PlotRange -> {{-1.S(a + b), 1.8(a + b)},{-.35 mult,.6 mult}}, 
Ticks -> None, AxesOrigin -> {0,0}, 
AxesLabel -> {"u","Top & Bottom of All Plates"}, PlotLabel ->None, 
Epilog -> { Text[tex2,{.1(a + b),.4 mult},{0,0},{0,1}] } ] 

Show[d12, Axes -> None] ; 

Comments: 

The program is structured like the other ones. The pictures (a12,h12,c12,dl2) are plotted 
with ticks. The following two Show[ ] commands produce these pictures without ticks. 
I do not have to use the combined commands Show(GraphicsArray( ]] here to put the 
pictures a12, h12, c12 together in one picture since the location of the plates is on one 
line. 

Variants: 

£. it is possible to change ParametricPlot[ ] and CartesianMap[ ] as de
scribed in section 2.1. The ranges of the iv co-ordinate in a12,h12,cl2 and the 
first Show( ] vary a bit for different values of b/a and have to be modified by 
hand: 

Graphics iv coordinates for b = a/200 iv coordinates for b = a iv coordinates for b = 2.5 a 
a12, c12 { ... , -7 mult } { ... , -mult } { ... , -.2 mult } 

b12 { ... , 2 mult } { ... , .8 mult } { ... , .6 mult } 
Show[ ] {-7 mult, 2 mult } {-mult, .8 mult } {-.2 mult, .6 mult } 
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Left Plate: Top 
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Figure 48: Graphics with ticks produced by the Mathematica program for the Three Plates 

in Line Condenser. The potential difference between the plates is 1 V. The central plate lrn .. <; 
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Top & Bottom of All Plates 

u first Show[ ] 

second Show[ ] 

Figure 49: Graphics without ticks produced by the Mathematica program for the Three 

Plates in Line Condenser. 
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2.15 Difficulties in Calculating Condensers with Rounded Edges 

In the first section of this thesis I talked about the Schwarz-Christoffel formula to calculate 
conformal functions for condensers with corners whose angles a; are 0 < lad $ ?T. Unfortu
nately the elecric field strength in the vicinity of convex corners tends to infinity. To avoid 
this singularity I introduced the modified Schwarz-Christoffel transformation. 
I can always apply this modified Schwarz-Christoffel transformation to condensers with 
corners of angles: lo:;I < ?T. (examples with la;I = 7r are the Semi-Infinite Condenser and 
Finite Plate Condenser; their mapping functions cannot be modified so that the field at the 
edge becomes finite.) 
This application, however, causes serious trouble in calculating some new parameters that 
did not appear in the original Schwarz-Christoffel formula. Nevertheless these parameters 
have to be computed to get the conformal map for a wanted radius of the curve(s) repre
senting the edges. Unfortunately Mathematica is no longer a good tool to calculate these 
parameters as it was to compute the elliptic moduli k with the FindRoot[ ] command 
(section 2.12 and 2.13) or the parameter p in section 2.8 

Two examples will illuminate the difficulties : 

£ rounding the upper corner of the Sharp Bend Condenser 
£ rounding both corners of the Thick Aperture Condenser 

Rounded Sharp Bend Condenser : 

The conformal map for the Sharp Bend Condenser is 

2 (b 1 [Vt+I + ;r=q l . 1 [;r=q + i~v't+l l) ia. l .b w = - n - a.i n + - n t - i 
7T jqTI jqTI 7T 

2 

with t = e=and q = ~' 

When I want to round the upper convex corner I have to apply the modified Schwarz
Christoffcl transformation: 
The start and end points of the curve on the W-plane arc denoted by w. and We, the origin 
by wq and the cross point of the horizontal lines (crossing at infinity) by wP (the cross 
point of the vertical lines is at infinity on the W-plane as well as on the T-plane which 
reduces the order of the product under the integral by one). The corresponding points on 
the T-planc arc then t. = -L tc = 1, tq and tp, with tp and tq > tP > 1 to be calculated 
later on. 
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The modified Schwarz-Christoffel formula gives : 

dw = A Jt+1 + >. .;t=l 
dt (t-tp) ~ 

An integral of this form can be found in [gw, p.31, eq. (213.5b)]. This yields: 

w =A{ i JtP + 1 ln r~ Jt;TI +i,;r;;=T;, Jt+T] -ln r~ + vft+ll 
tq - tp vr=-r; Jt;+I - i Jtq - tp Jt+1 vr=-r; - vft+1 

+ >. (i J tP - 1 
ln [ Jt=t; y't;=1 + i ,;r;;=T;, .;t=l] - ln [ ~ + .;t=l l ) } + B . 

tq - tp vr=-r; Jt;=1 - i Jtq - tp .;t=1 vr=-r; - .;t=1 

The constant A can be calculated by eq.(6) : 

ib= -i7r AIT(tp-t;)-°'' =-7rAV"P I .L V"P .L' [ l rn + >. Jt--=-I 

i-tp Jtq - tp 

A __ ib ,;r;;=T;, 
- 7r Jt;+I + >. Jt;=1 

When I choose the variable t = tq; (wq = 0) and insert this symbolical value oft into the 
equation from above I get the value for B : 

with the parameters tp, tq still to be calculated. [we] refers to an older paper that calculated 

a best>.= Juq + 1)/(tq - 1). 
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When I insert two specific values for t = ±1 into the equation this leads to two transcen
dental equations for tP and tq· 

a - 'i(b + c) =>.A {iJ tP + 1 
ln [iJt;-=l J1+Tg - ./2 Jt;=t;] -ln [Jf+Tg + ./2]} + B 

tq - tp i A-=-1 J1+Tg + ./2 .jtq - tp J1+Tg - ./2 
n+c-i - i ---n -n + .b - A { -~p + 1 1 [iyt;TI Jt;-=-I + i./2 Jtq - tP] 1 [iJt;-=-I + ./2]} B 

tq - tp iyt;TI A-=-1 - i./2 Jtq - tp iJt;-=-I - ./2 . 
This sounds all very easy since the conformal function for this problem looks like the sum 
of two conformal functions of the Sharp Bend Condenser, but I have to solve these two 
coupled transcendental equations for tP and tq. That means I have to find solutions for 
these parameters at the same time. FindRoot finds solutions for two polynomials of low 
order but not for the equations mentioned above. 
I suppose there are very good programs existing in some FORTRAN or C library which 
manage the problem in a rather comfortable way. 

Rounded Thick Aperture Condenser : 

Now I want to round both corners of the Thick Aperture Condenser. Its conformal function 
IS : 

w [ Jf=t2 Jl - k2t2 l .f(z) = 
2
E- k'2 K k'2F(arcsint,k))- 2E(arcsint,k)) - t -b 

with t= R 

Application of the modified Schwarz-Christoffel formula with t 2 ( w 2 ) and t 5 ( w5 ) as for the 
Thick Aperture Condenser and the start and end points of the left and right smooth 
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f
t ( /t2 - k2 + A1 ..jt - t~e) ( ../t2 - tfs + A2 Jt=l) dt 

w=A +B t2 
0 

[ f
t Jt2 - k2 ..jt2 - tTs dt ft Jt2 - k2 Jt2="1 dt 

=A t2 + A2 t2 
0 t 0 t 

f. Jt2 _ t2 Jt2 _tr dt f Jt2 - t2 ~ dt] +A re s + A A ....c._ ___ re'------
1 t2 1 2 t2 

0 0 

+B. 

I can again substitute t by t = 1/sn(T;, k;) where T1 = sn-1(t18 /t, ki), k1 = k/t18 ; 
T2 = sn-1(1/t, k2), k2 = k; T3 = sn-1(t18 /t, k3), k3 = tre/t1s; T4 = sn-1(1/t, k4 ), k4 = tre are 
the substitutions for the i'h integral. 

With the help of [bf, (129.01), (121.00), (120.02)] I get : 

+B. 

As for the original condenser these integrals can be integrated using [bf, (121.00), (310.02), 
(311.02)]. There are still three dependent moduli, two A; and the constants A and B to 
be calculated. Spending a week I can find values for A and n. Inserting these into the 
integrated equation and solving for different t = (±1, tie, trs) lear!s to four equations for the 
unknown tic, trs (the A; have to be chosen so that the rounded corners can be approximated 
by circles). This is absolutely impossible for standard Mathematica commands. 
I chose a very nasty example to demonstrate the difficulties to obtain the values of the 
parameters that determine the conformal function f ( z). 

As soon as the values of the parameters tp,, tq, and A; are known I can inserte these into the 
general form and have the graphics plotted by Mathematica . One way would be to transfer 
the parameter values from the FORTRAN I C program via MathLink. For informations 
you have to study the Mathematica book [ma] or the MathLink Reference Guide of your 
Mathematica version. 
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