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TRANSVERSE SPACE CHARGE EFFECTS IN CIRCULAR ACCELERATORS

Contents
Abstract . . . . . . 0 . 0 0 0 s o e e 0 e
Introduction . . . . . 4 4 e e e e e e e e e
Part I. Uniformly Charged Reams in the Presence of
Gradient Errors . . .
1. Envelope Egquations . . . . . . . . .

The One-Dimensional Beam .

The Two-Dimensioﬁal Beam .

The Three-Dimensional Beam . . . . « + « « « + + o
2. The One-Dimensional 3Ream .

General Sclution of the Envelope Equation

Resonance Crossing . . . .

Summary . . . . .
3. Two-Dimensional Beams . . . . « « ¢« « + « o

A. Equal Freguencies and Emittances

Resonance Crossing . . « + v v v 4 o v« o .
B. General Bezm Configurations . . . . .
SUMLAYY & v ¢ v o o« & + « « o o o« o o

4. Conclusion and Applications

ct

Appli

ion to AGS

[
[¢]

a,
Part II. Collective Ozcillations of One-Dimensional Beamns
Confined by Harmcnic Potentials
1. TNormal Modes for the Uniformly Charged Reams

the Probtlem . . . . . . .

AAS -5137




~iv-

—~
p
’ Low Intensities
High Intensities
- The Dipole and Quadrupole Modes
Excitation by External Forces
= 2. Extension to Nonuniform Beams
Regonant Freguencies for the Uniform Beam
Comparison with the Water-Bag Distribution
a. The stationary distribution
b. Small-amplitude oscillations
Gaussian Beam . . . ¢ 4 v v 4 e 0 4 e e e
3. Conclusion
& Acknowledgments . . . . v v 0 0 e 0 e e e e e e e
Appendices .
A. The Nonexistence of Uniformly Charged Three-
Dimensional Zeams . . .
B. The Amplitude-Phase Egquations for Two-
Dimensional Eeams
A. Equal Freguencies and Emittances
B. General EBeam Configurations
. C. UNormal Modes that Oscillate with the
Frequencies nv
D. Frecguency Spread for Nonuniform Stationary

Distritutions

Footnotes and References

70
76
T7
80
8h
8h
86

a1
93
96

. 100

. 101

. 101

. 105

. 109

111

. 114

. 116



-1- UCRL-18l5L

INTRODUCTION

The beam of particles in an accelerator is a many-body system of
charged particles interacting with one another by electromagnetic forces
and held togéther by external focusing forces. Such a many-body system
has a large number of modes of collective oscillations that can be
excited by machine imperfections at characteristic frequencies. In the
limit of low intensities, the interactions are negligible, and the
collective modes and eigenfreguencies are easy to fird. Consider, for
example, a one-dimensional beam in an external harmonic potential; in

the absence of space charge, the individual particles obey the eguation

d
X v % =0, (1)
ag
X . . . . . . 1 dx
and any distribution of varticles rotates rigidly in the x - > 55

phase space with the frequencey v. A distribution with circular
symmetry (Fig. la) is stationary, while a distribution with circular

symmetry, but displaced from the origin (Fig. 1b), oscillates with the

an
N

(a) (b) (é)
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frequency v - in real space, the beam oscillates rigidly back and forth
at the frequency v. In fact, there is an infinite number of modes with
the circular form of Fig. 1lb, each with a different radial dependence,
but each oscillating at freguency v. Similarly, there is an infinite
number of modes with the elliptical symmetry of Fig. lc; in real space,
these modes expand and contract with frequency 2v. In general, there
is an infinite number of modes with a given n-fold symmetry of rotation,
and each mode oscillates with the frequency nv. Therefore, in éhe
absence of space charge, the eigenfrequencies for any distribution are
Just harmonics of the unperturted betatron frequency, and each eigen-
frequency is infinitely degenerate.

Resonance can occur when an eigenfrequency is an integral
multiple of the rotation freguency in the accelerator, i.e., when
ny = m; this condition is of course identical with that obtained from
the single-particle amproach, which is eguivalent to the many-body
approach in the limit of zero intensity. Thus if a driving tern of the
form x cos k @ 1is added to Eq. (1), the various dipole modes (Fig. 1lb)
will be excited if v =k and n = 0,2,4,---; the gquadrupole modes
(Fig. lc) are excited if v = % and n = 1,%,5,°°*; the sextupole

k -

modes if v =3z and n = 2,4,

3

,°"", and so on for the higher-order
modes.

Space-charge interactions modify these results. For intensities
of interest in synchrotrons, and for small-amplitude oscillations, the
eigenfreguencies are shifted by small amounts proportional to the beam

intensity, and the dezsneracy is renmoved so that the eigenfreguenciss
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oceur in clusters near the unperturbed, degenerate values ny. As a
result, each of the forbidden lines on a tune diagram that would occur
for an integer, half-integer, or subharmonic value of v 1in the absence
of space charge is split into an infinite number of closely spaced
lines. For example, the various dipole modes that are excited for the
same freguency v =k 1in the absence of space charge are'excited in the
presence of space charge at different fréquencies that are clustered
below the value v = k: there is one mode for which the beam oscillates
rigidly back and forth at the unperturbed frequency v, but there is
also an infinite number of nonrigid modes whose eigenfreguencies are
shifted below v = k by amounts provortional to the beam intensity.

The above remarks apply only to small-~amplitude oscillations.
For larger-amplitude oscillations, space charge provides a very effective
mechanism for limiting beam growth through the nonlinear depeﬁdence of
the space-charge forces on the shape and size of the beam. A cguantita-
tive study of this important effect is extremely difficult in the general
case; however, it was shown by Lloyd Smitﬁ'and by P. M. Lapostolle2
that the gquadrupole mode excited by gradient errors in uniformly charged
beams can be analyzed even in the nonlinear regions.

In Part I of this paper we examine this case in detail. In
Section 1, self-consistent equations of motion for the beam boundary
are derived for uniformly cnarged beams with one and two degrees of
freedom. The derivation, which is more general than we need, is
applicable whenever the self-forces and external forces acting on the

individual particles witain the beam are linear. In Section 2, the
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envelope equation for the one-dimensional (planar) beam is solved, and

in Section 3, various two-dimensional (cylindrical) beams are examined.
For either case, the nonlinear character of the space-charge force

causes the frequency of the quadrupole mode of oscillation to depeﬁd on
its amplitude. Thus the beam growth caused by gradient errors is always
bounded. We also investigate the process of resonance crossing that
results from slow variations in external focusing or effective space-
charge force and find, for gradignt-errors of the magnitude normally
encountered in AG synchrotrons; that resonances can be crossed in the
direction of increasing frecuency with only a small increase in beam

size. However, if the resonance is crossed in the direction of decreasing
freguency, a substantial increase in beam size can occur. For example,

if the beam is caused to bunch in the.synchrotron, the space-charge force
increases, and the beam size can grow quite large near the intensity
predicted by the bunched incoherent space-charge limit. However, a
prebunched beam whose intensity is considerably larger than the incoherent
space-charge limit may be successfully accelerated. 1In this case, the
resonance is crossed in the direction cf decreasing space-charge force,
and very little beam growth occurs. Thus, the incoherent space-charge
limit, as usvally defined, need not imvose a limit on the beam intensity.

5

Similar results have been derived bty F. Sacherer,

L

and oy P. M. Lapostolle
and L. Thorndahl.

In Part II we investigate the other modes of collective oscilla-
tion that are excited by machine imperfections. For simplicity we

restrict our attentiocn to one-dimensional, planar teams, and consider
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only small-amplitude oscillations. In this case the twofold infinity

of normal modes (plasma oscillations) and eigenfrequencies can be found
by means of the linearized Vlasov equation and Maxwell's equations.
Harker5 has given a generél prescription for reducing these equations

to an integral equation of the Fredholm type, but numerical methods are
usually required to extract the eigenfunctions and eigenvalues. However,
an important result of this paper is a direct method for finding all

the normal modes and eigenfrequencies for the stationary distribution
corresponding to a uniform chérge distribution in real space.

In Section 1 of Part II, we find the eigenfunctions and eigen-
values for this case, and determine which modes are excited by a given
external driving force. Then, since the complete eigenvalue spectrum
is known, the resonant frequencies for the various dipole, quadrupole,
and higher-order modes can be located on a tune diagram. Besides being
useful in themselves, these results provide considerable insight into
the more difficult normal mode problem for nonuniform beams.

In Section 2, this mode structure is compared with that obtained
by Ehrman6 for the stationary distribution that has a uniform particle
distrivution in phase space. In this case the charge density in real
space is approximately uniform, and we find that the eigenvalue spectra
for the two distribvutions are very similar. We also extend these
results to a distrivution with Gaussian charge density similar to that

measured for the Brookhaven AGS.
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PART I. UNIFORMLY CHARGED BEANS IN THE PRESENCE OF
GRADIENT ERRORS

1. Envelope Fauations

In this section we find self-consistent envelope equations for
the case in which both external forces and self-forces acting on the
particles in a beam are linear. The requirement of linear forces
restricts us to uniformly charged beams and to linear machine imper-
fections, namely gradient errors, but allows us to study the effects
of space charge on large-amplitude oscillations of the beam.

We first consider the simple case of a beam with only one
degree of freedom, then extend the derivation to two degrees of free-
dom, and finally show that the derivation can not be extended to three
degrees of freedomnm.

The One-Dimensional Zeen

In the absence of space-charge forces, we take the eguation of
motion for the individual particles to be

5

K(s) x = 0 , (1-1)
ds :

where K(s) is the external focusing function, s measures distance
along the ecuilibrium orbit, and all the particles are assumed to have

. ds
the same velocity —=f = v_.
av D

The self-forces zcting on a particle arise from the internal
charges and currents witnin the beam,’ z2s well as from the charges

. <ol S 8
and currents induced in the vacuun chamter wzlls, and also from
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collisions between particles. TFortunately, the effect of collisions

is negligible for the times of interest, and for the low particle densi-

ties typical in accelerators.9
We incorporate the image force into the external focusing term

K(s) x, and neglect its nonlinear components and its weak dependence on

the beam size. Then the net effect of the image force is to shift the

tune by an amount that depends on intensity and energy but not on the

beam size,8 in contrast to the direct self-force.

We also neglect the magnetic field component that results from

the transverse particle velocities because is only a hundredth to

ax
dt
a thousandth of the longitudinal velocity g% . The force from the

2
v
D
2
c

remaining magnetic field component is Jjust times the electric

force, and need not be calculated explicitly. The complete self-force
is 1/72 times the electric force.7

The electric field calculation is simplified by neglecting the
curvature of the egquilibrium orbit and by neglecting the variation of
the beam cross secticn with s. Actually the beam is modulated around
the orbit circumference, but the meodulation length is approximately half
the betatron wavelength and is therefore negligible in comparison with
the transverse dimensions of the beam.

The beam geometry then has the rectilinear form shown in Fig. 2,
and in order that tiae selrf-forces be linear, the charge density must be

uniform between the boundary planes, x = #X{(s). We assume for the
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Fig. 2.

moment that the particles can be arranged in the x - %% phase space
to produce the required uniform charge density, and that the charge
density remains uniform as the system evolves under the action of the
assumed linear forces. Then the equation of motion for the individual

particles is

2 2 N
g;%- + K(s)x - hret 1 x = 0 (1-2)

ds 73mvp2 2X(s)

eN
o4 (tv s . '
where 5?(57 is the charge density and eNl is the total charge per

unit surface area. It is convenient to write (1-2) in the form of the

two first-order equations
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&
dS - p 2
2 N
e IR o e LI (1-3)
s 75mvp - 2X(s)

and to define X =(;) so that Egs. (1-3) can be written in the

compact matrix form

I

dX(s ’
s ps) x(s) (1-4)

We also introduce the transfer matrix T(s, sg)
X(s) = s, s;) X(s) (1-5)
and note that the elements of T(s, so) satisfy

dT(s, s
ds

o)

= P(s) T(s, s (1-6)

o)

Since we know tne equations of motion for the individual particles,
we can determine the evoluticn of any distribution of particles in phase
space. In particular, if the distribution at any position 5o has the
elliptical boundary iM-l(sO)X = 1, where M(so) is an arbitrary

symmetric matrix, then the boundary remains elliptical at other values

of s and has the form

™MT(s)X = 1, (1-7)
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where M(s) = T(s, so) M(so) T(s, so). We can use (1-6) to write the
equation of motion for M(s) in the differential form °

M) | p(s) m(s) + M(s) F(s)

ds ’ (1'8)

which depends only on the known guantities F(s).
The relationship between the components of M and the boundary
1
ellipse is showrn in Fig. 3, where the area of the ellipse is VDet M,

which we designate by ~E. We are primarily interested in the beam half-

Fig. 3
width X(s) = Y Mll(s) , and it is convenient to parameterize M(s)
in the form
X2 XP
M = 5 ) ’ (1"9)
XP P+ E§
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2

where P o+ is the maximum extent of the distribution in the

‘trj
P o

X
p-direction. Then the equations of motion for the quantities X(s),

P(s), and E(s) follow immediately from (1-8):

ax

PR & S L P

ap g

T ¢ FpX v FyP o+ Fog ;3 s (1-10)
dE 1

& T 5(%1 ¥ %2>E

For a Hamiltonian systen, F2 = 0, and thus E 1s constant,

o)

Fiqg t

which is just Liouville's theorem. When the form of F(s) corresponding

to Eq. (1-3) is used, Ecs. (1-10) reduce to

2 2 QﬁegN

9—% K(s)X - Eg} - —3———% -0 (1-11)
ds X 7 myp

for the beam half-widtha X(s).

We now demonstrate the Eq. (1-11) is self-consistent, i.e., that
the individual particles can be distributed in phase space to produce
the assumed uniform charge density within x = #X(s). We require that

the particle density in x-o space at s = s have the form

0
f(x, p, sO) = f[%M-l(sO)X}, where f(x, p, s)dxdp is the number of

particles at s within the ranges (x, x + dx) and (p, p + dp). Then
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- ) ~ -l
at arbitrary s -the distribution has the form f(x, p, s) = f[X (s)X],

and the functional form of f is determined by the requirement

N

2_}51(57 = / % (s)xJap ' (1-12)

We solve this eguation by introducing the new variables

' v
1
v = (; :) =.D(s)X, where the matrix D(s) satisfies
v A
2

5(s) D(s) = Mi(s) . (1-13)

Then the quadratic form ?M-l(s)X is transformed into v12 + v 2, and

2
the elliptical distribution becomes circular, as shown in Fig. k.

an) o A
(= Y N3

(a) (v) (c)

Fig. 4.

Actually, the four components of D(s) are not uniquely svecified by

1

(1-13) cecause M(s) depends on ornly thres parameters; the ellipse is

o}

not specified.

4
ct
]
4]
(e
Fl
=
(e
=
4]
'_J
4]

o9

‘rto a cirele Lut the orientaticn o

mapre
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We fix the form of D(s) by requiring that the vertical lines

x = constant be mapped into vertical lines in v (Fig. Le). Then

D, =0, and D(s) is determined by (1-13) to be
1
X © |
D = (1-14)
P X 4
B E

This is a convenient choice for D(s) because it maps the integration

. X(s)
57 with dv2 =5 dp.

The reguirement of uniform charge density is then simply

over p in Eg. (1-12) into an integration over v

N
1 2 2
= = J[.ffvl + v, )dJ2 5 (1-15)
hoaa . . . 2 2
where the range of integration is restricted to vy + V5 < 1. Note
that (1-15) is independent of s. In terms of the radius
r o= vl2 + v22 , Eg. (1-15) becomes

1

Ny le“
1 Jf L )rar (1-16)
2 2
Y1

This integral eguation can be inverted by Abel's theoremlo to give

N L hl

1
=. —T—— =
< -1 jv[p 2
2-EVL - R x 2= VE= - (Xx' - X':c)2 - ()E(—X

(1-17)

I
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which is the unique solution of . (1-12). This demonstrates that the
particle distribution required to produce a uniform charge dénsity does
indeed exist. It occupies the interior of the boundary ellipse

iM-lX = 1, and the particle density approaches infinity at the boundary.
Equation (1-11) is then the envelope equation for this distribution.

| Actually, this method for findiné~self—consistent envelope
equations is not restricted to unifofmly charged beams, but 1s applic-
able whenever the external forces and self-forces are linear. For
example, it was used by H. G. ﬁereward and A. S¢renséen to study longi-
tudinal beam effectsll where, due to the shielding of the vacuun
chamber, a parabolic charge density is reaquired to produce linear self-
forces. For any case, the envelope equations are just equations (1-10)
where TF(s) 1is specified by the equations of motion (1-4) for the indi-
vidual particles. The distribution f(yM_lX) that produces the

required charge density o(x),
S
p(x) = f £(X1 "X)ap (1-18)

can be found by the same procedure that was used for the case of

: X
uniform charge density. The condition Jf o(x)dx = N, requires that
-X

N B
p(x) have the form 2—% g(%), and Eg. (1-18) can be transformed by

D(s) into the circular form

1 2 2
5z &(v) = /f(vl tp v, (1-19)
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aa(v,)

. ' . . 10
which can be inverted by Abel's theorem provided T is continuous.
1

Thus, the self-consistency of the envelope equations is guaranteed
provided p(x) has a continuous first derivative.

The Two-Dimensional Beam

In principle this method can also be extended to beams‘with two
and three degrees of freedom. The matrix eguations remain formally
valid when the vector X(s) 1is increased to four or six component, but
now the constants of the motion ?M—l(s)x describe hyperellipsoids in
the four- or six-dimensional phase spaces. The required distribution
function f(YM-lX) that produces linear self-forces can be found by
transforming the defining equation for f into the circular forn
analogous to (1-19), but now for four or six dimensions.

Consider first the case of a beam with two degrees of freedom.

. . . , . ds
We again assume that all the particles have the same velocity v_ = =—

at ’
and for the purpose of calculating the electric field, that the beam is
in the form of a cylinder with an infinite extent in the s direction.
Then the condition of linear self-forces recuires that the beam have an
elliptical cross section and a uniform charge density. However, the
axes of the elliptical cross section need not be aligned with the
coordinate axes, and the external focusing force may include linear
coupling between the two tranéverSe directions. The evolution of the
distribution is then determined by a four-by-four matrix F(s) (Eq. 1-4),

he motion %M_lx descrive hyperellipsoids in the

t

and the constants of

dx dz

X, -(E-’ Zy a.z piriase

D]

nace.
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We can immediately write the defining equation for f in the

form

2 2 2 2
constant = _j’f(vl t vy t Vg + V), Ydv dvy (1-20)

5

2 2 2
where the integration is restricted to vl2 v, F v3 + v, £1l, and
. . 12 .
where the constant can be determined by the normalization of £, This
shorteut avoids the specification of D(s). With a change of variables,

Eq. (1-20) becomes

y 1
— . f f(a) da , (1-21)
0

where N2 is the number of particles per unit length in the beam. The

required distribution function is the solution of (1-21):

N
f(%a'lx) . —2 s(1 - %a'lx) s (1-22)

:12 VDet M)

where 8(x) 1is the usual delta function. The particles are distributed
with uniform density on the surface of the four-dimensional hyper-
ellipsoid YM-IX = 1, whose shape and orientation 1s specified by the
ten independent éarameters of the four-by-four matrix M(s).

The self-forces are de*termined by the projection of this distri-

bution onto the vhysical x-z wplane. This projection is uniform and

has the boundary
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2 2 2
MBBX + 2M15xz + Mllz = MllM35 - M15 , {1-23)

ol
which describes an el;ipse of area TE\[MllM33 _ M13 . In terms of

the major and minor axes and angle of rotation as shown in Fig. 5,

X
s
Fig. 5.
these matrix elements are
Mil = a2 0052@ + bg sin29 B
M35 ;' a2 sin29 + b2 c0529 s (1'24)

it

2 2y .
(b° - . a")sino coss s

M5
and the self-forces are easily determined.

The evolution of the distribution is then determined by
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dM(s)

- = F(s) M(s) + M(s) F(s) (1-25)

where F(s) contains the known external forces as well as the self-forces,
which depend on the matrix elements Lﬁl’ MlB,'and M35. In general all
ten equations of (1-25) are necessary to describe the evolution of the
system. However, if the equations of motion for the individual particles
do not involve coupling between the two transverse planes, and if the
hyperellivsoid is oriented so that the off-diagonal submatrix with
elements MlB’ Mih’ M25, M2h is zero, then the hyperellipsoid will
maintain this orientation and these matrix elements will remain zero.

The remaining six equations (three for the x direction and three for the

z direction) can be parameterized in the form analogous to (1-9) for the

one-dimensional beam. The self-fields for this case are

e he;wg e heNg
x T TR T 7 x and s = Eri—:fET z, and the envelope eguations
become
2 2
2 Le™
é—é + K (s)X - ﬁﬁ— - - 122 X 1 = 0 ,
ds x X5 75mv * 2
(1-26)
2 2 ke
d g . k(o) - E ] e ﬂ22 - i s = 0
ds Z5 75mv

N

where X(s) and Z(s) are the beam

1alf-widths, and Ex and EZ are

\ . . , dx dz
the beam emittances in the x - == and =z - I vhase svaces. These
AL
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self-consistent envelope equations, which describe a cylindrical beam
oriented with © = 0 1in Fig. 5, were first obtained by I. M. Kapchinsky
- 13 ’

and V. V. Vladimirsky.

The Three-Dimensional Bean

Finally cpnsider the case of a beam with three degrees of
freedom. The condition of linear self-forces reguires that the beam
have an ellipsoidal shape in real space and a uniform charge density.
Then Eq. (1-8) will specify the beam envelope provided a distribution
of the form f(%M-lX) existslthat produces the reguired uniform charge

density. In this case the defining equation for f has the form

2 2 2 2 2 2 )
constant = .J[f(vl MRCE R P S S )dvudVde6

(1-27)

This eguation unfortunately has no solution that can be interpreted as
a distrivution function. The forms of the one- and two-dimensional
distributions indeed suggest that the progression from

s loys . N L U
fa (1 -XM7X) in one dimensicn to f cc 8(1 - XM “X) in two
dimensions will have no extension to three or more dimensions. The
actual proof, due to Maurice Neuman (private communication), is

reproduced in Appendix A.
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2. The One-Dimensional Beam

We are now in a position to investigate the motion of the uni-
form one-dimensional beam in a self-consistent manner. We rewrite the

envelope equation (1-11),

d2X E2 2ne2Nl
—5 K(s)x - = T 3 5 °
ds X ¥ mvp

0 s (2-1)

where X(s) is the beem half-width, xE 1is the beam emittance, N,
is the number of particles per unit surface area of the beam, and vp

is the particle velocity. The external focusing term K(s) includes
both the ideal focusing forces and gradient errors. The nonlinear
emittance term arises from the conservation of the beam emittance, and
has the same form as the centrifugal force term that results from the
conservation of angular momentum in central force problems. It prevents
a beam with finite emittance from becoming arbitrarily small, but in the
absence of space charge, it does not limit the large-amplitude growth.lh
However, in the presence of space charge, the combination of the last
two terms in (2-1) will limit the resonant growth of the beam.

_ We first eliminate the rapidly varying part of K(s) from the
envelope equation by transforming to "smooth" varisbles. In the absence
of space charge, the periodic. solution of (2-1), Xp(s) = Xﬁ(s + C),
where C 1s the orbit circumference, can be found by standard methods

once K(s) is known. It is conventionally written in the form

x,(s) = Vea(s)' (2-2)
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where B(s) is the familiar amplitude function of Courant and Snyder.

Then if we transform to the dimensionless varilables

X(s ds
X - .m( 2 3 ¢ = V_B bl (2_5)
P
the unperturbed enveélope equation (in the absence of space charge and

gradient errors) becomes
—_— + v X - ' = O F} (2—)4)

where vy 1s the number of betatron oscillations per revolution and ¢
increases by 2n each revolution. The general solution of this equation
is

X = 1+4A° + A sin(2vg + o) (2-5)

where A and ¢ are artitrary constants. The matched solution is

A =0 and x =1, and any other solution oscillates about this matched

solution with the frequency 2v. Thus the dimensionless variable x

measures the beam envelope 1n units of the unperturbed matched envelope.
In terms of the wvariables x and Q the complete envelope

equation becomes

2 5 2
+ (v7 + 2vav  cos n@)xz -

o
N

|

Q
RSN
AW
"
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where we have assumed an nth-harmonic gradient error with stopband width

Av_, and where the last term is actually a function of s (or @),
s

2
v263/2(s) ‘ 2re’ Ny

) (2-7)
VE' 73mvP2

EVAVSC 7

In what follows, we replace g(s) by its average value % and neglect
the high-frequency small-amplitude ripple components in the already

small space-charge term. Then: Avsc is independent of ¢ and has the

form
A o1 hﬁeeRg Hl (2-8)
Vse T 2y 3 2 2a
¥ mv
p
where a = iR is the average amplitude of the unperturbed envelope.

The quantity Avsc is the space-charge-induced frecuency shift for a
beam whose envelope is constrained to the constant value aj; it is a
convenient measure of the beam intensity and is in fact identical with
the expression conventionally used for predicting a space-charge limit.
Before solving the nonlinear envelope equation, 1t is informa-

tive to examine its small-amplitude solutions. In the absence of

AVse

2v ?

and for oscillations of small amplitude & about this constant value,

gradient errors, Eg. (2-£2) has the consteant solution x =1 +

the equation becomes

2 n
+ (Ly™ - EVQUS

a
o

RO

c)5 = -2vAv_ cos nd . (2-92
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Thus the envelope oscillates with the natural frequency 2(v - % Avsc),
and resonance occurs for 2(v - %-Avsc) =n. If v 1s larger than a

half-integer by the amount Av, 1i.e., v =3+ Av, then resonance occurs

at a beam intensity corresponding to the value

h . .
Avsc = 3 Ay 3 (2‘10)

which is one third larger than the value usually assumed. The fallacy
in the usual procedure for predicting space-charge limits lies in the
assumption of a constant beam size: 1if the envelope modulation is
neglected, resonance occurs when the individual particle freguency

v - Avsc fails within the stopband at %; in other words, for the
intensity Avsc = Ay. However, the modulation of the envelope causes
.the self-fields to exactly cancel the effect of the gradient error at
this intensity,l6 and the resonance is shifted to INTUN %-Av. This
shift in resonant intensity is not restricted to uniform beams; it
occurs for any mode of collective oscillation and is discussed in detail
in Part IT.

The amplitude of the periodic solutions of the linearized

equation (2-9) are shown in the form of a response diagram for fixed

Ay Av

ZUE in Fig. 6. The vl 0 asymptote represents the free envelope
. . . . X . L

oscillations, which. are periodic for the intensity Avsc = 3 Av. The

remainder of this section is concerned with the distortion of these

curves in the large-amplitude region by the nonlinear terms in (2-8).
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Fig. 6. Response diagram for the linearized envelope equation:

AVS AVsc
= + = t !
X ax 1+ K3AVSC v where the quantity 5y

in

Av

the constant solution x = 1 + has been neglected.



-25- UCRL-18b45k

General Solution of the Envelove Equation

Both the space-charge term and the gradient-error term are

Avsc

small for alternating-gradient synchrotrons--they are of order
Avs 4
and —— compared with the remaining terms. Consequently we treat
v

. dx
these terms as perturbations and use in place of x and 5@ the

variables A and ¢ defined by

X - 1+ A% o+ A sin(oyg + @)

(2-11)
dx

* g

vA cos (2v§ + a)

1

In the absence of perturbations, toth A and « are constant, while
for small perturbations they change slowly in time, with small high-
frequency variations superimposed. If Egs. (2-11) are inserted in the
envelope eguation (2-5), the following first-order equations for A

and O result:

aa _ -Avs‘ 1+ A% cos [(2v - n)@ +a] |, (2-12)

2
Av a 1/ .
av V1 + A% sinf(2v - n)¢ + o] - f V 1t 4% sin 2 qy

1 + A + A gin u

>
S8

(2-13)

plus additional terms that vary with the frequencies 2v, Ly, etec.,
which are neglected.
Equations (2-12) and (2-13) may be combined and integrated to

obtain the constant of the motion,
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Ay
2 V2A
constant = A sin Q + Eﬁy- 01 + A -8 =5 5 E(k) , (2-1k)

Ay
S

where Q = (2v - n)@ + @ and E(k) is the complete elliptic integral of
L7 with modulus kg = 2A . This equation

A+ 1 + A2

the second king

specifies the phase trajectories in the A, Q space, or alternatively
by means of (2-11), in the x - %% phase space at any point along the
orbit, i.e., for any azimuth @. In particular, Figs. (7a) and (7b)
show typical trajectories for azimuth @ = O and for two values of the
beam intensity, while Fig. (7c¢) shows the same trajectories as Fig. (7b),
but for azimuth ¢ = %. As expected, the phase trajectories are always
bounded and the beam size remains finite.

Of special interest are the fixed points, which have constant
values of A and Q. They are determined by Egs. (2-12) and (2-13) to

have Q = += and

. .
Ay Av 2 .
5 V
A - 1 % S 1/1 L2 4 sc ]l J[ A sin v gy
0

Ll + 1 +A
Ay Av 2xn B 5
Vl + A + A sin u
' (2-15)
Avs Avsc
which determines A as a function of Z;— and A + The beam motion
v

correspcnding to these fixed points is described by

¥ = Vi+a° & A cos ng (2-16)
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7. Phase trajectories for —= = 0.0k, TFigure (a) shows the trajectories at azimuth

Awsc
¢ = 0 for the intensity

= 1.40; (b) shows the trajectories at the same

ALY

Av
azimuth but for the larger intensity Aic = 1.h5.

The trajectories in (c) are the

same as those in (b) but now for ¢ = % . The separatrix is the trajectory that

passes through U+.
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which represents a beam oscillating with the periodicity of the gradient
error. The ampli£udes for these periodic cscillations or fixed points
are shown in Fig. 8 for several values of the stopband width Avs. The
response curves are distorted from the linearized diagram Fig. 6 because
the nonlinearity causes the frequency of the envelope oscillations to

Ay
depend on amplitude; the —=2 _ 0 curve shows directly the amplitude

Ay
dependence of the periodic free envelope oscillations. As a result, the

resonant amplitudes are a2lways finite. Another conseguence of this
Ay

distortion is the existence of three fixed points for greater than

Av
cas U s .
the critical value (which depends on ZT—) rather than the usual single
v
. . L + - , + .
fixed point. The two labeled S and S are stable wvhereas U 1is
. 5 . S . . . +
unstable; it can be seen from Fig. 7 that configuration points near §

and 8 oscillate with small amplitude about these points whereas

. + X . 5
points near U may follow the separatrix and make much larger excur-
Av
S

sions. As the guantity decreases, the phase trajectories of
Fig. To are transformed smcothly into those of Fig. 7a; the stable

. + . . .
region around S shrinks down to a point and then disappears for

Av

Avc less than its critical value.

In the absence of both space charge and gradient errors, the
matched beam corresponds to the solution x = 1. In the presence of
space charge and gradient errors, the matched condition corresponds to
the lowest fixed point of Fig. 8. This solution is periodic, so that
the veanm envelope remains stationary with resvect to the accelerator,

but it 1is modulated n times arcund the corbvit circumference, where n



><le(l)(

Fig. 8. Response diagram: x

29~ UCRL-1845k

Dy,
Av
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« = \Yl+A" +4A )% The

s
= 0 correspond to the upper

ma
Av

D

curves to the left of

sign in Egs. (2-15) and (2-16); those to the right
correspond to the lower sign. The points where the
slope is vertical (indicated ty the dashed curve) are

o

referred to as critical points.
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is the periodicity of the gradient error. Any mismateh will lead to slow
oscillations in the envelope about this matched value just as in the more
familiar low-intensity case. The freguency of these oscillations depends
on which phase trajectory of Fig. 7 the beam is on, but near stable

fixed points it is approximately 2Av ‘times per revolution. Note from
Fig. 8 that the matched condition for large intensities closely
approaches the low-intensity matched value x = 1, provided the gradient
errors are small and the intensity is not toc near the resonant value

Av = E Av.

sc 3

Resonance Crossing

The foregoing ccnsiderations apply only to a coasting beam
whose parameters remain fixed. However, the parameters describing an
accelerated beam change with time, and the beam may cross the

L v . . .
Dvg, = 3 Av resonance. We consider the worst case of a slow, adlabatic
crossing.

The envelope eguations can be derived from a Hamiltonian with

the canocnical variables x and , and therefore Liouville's theorem

dx

ag
. N dx . . . .

applies to the x - ETel phase space. Configuration points lying on

closed contours continue to lie on closed contours as the parameters

are varied adiabatically, and the area enclosed by these contours remains

constant. However, the adiabatic assumption breaks down near the

. - -+ .
stagnation point U , so that the area enclosed by the sepatrix changes.

. +
For exammle, the stable rhase area around § becomes smaller as
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Consider first the case of a resonance crossing in the direction

ANV
of decreasing SC | A beam whose intensity is larger than the resonant

Av

value and whose envelope was adjusted before injection to the matched
. + . .
value x =~ 1 oscillates with small amplitude about S in Fig. 8, and

. . . + . s —
corresponds to a point on one of the trajectories around 8 in Figs. 7b

Av
¢ decreases and the stable

and 7c. As the beam is accelerated,
area around S+ shrinks until the configuration point is forced onto
the sepatrix. At this point the beam suddenly oscillates with a larger
amplitude as its configuration point moves around the separatrix. The
meximum beam size can be read directly from Fig. 9, which shows the
maximum and minimum beam siée for a point on the separatrix at the

Ay
“Yse

critical value of X If the vacuum chamber is large enough to

<

accommodate this increase in beam size, then the resonance has been
Av

safely passed and the oscillations become smaller as continues
to decrease.
On the other hand, it is possible for a beam to cross the

resonance in the opposite direction. For example, if the beam is

- - . . n
bunched after injection, Av,, 1increases. Also Av = v - 5 may
Av

change during acceleration and cause to increase. In this case
a nearly matched beam that oscillates around S continues to lie on
Av

. - se¢
a contour enclosing S as = increases, and therefore the beam
v
Av

size increases indefinitely as increases (Fig. 8).

JANY
Summary

es our analysis of the uniform one-dimensional veam.

In the presence of grzadient errors, the beam envelope oscillates, and
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9. The maximum and minimum team sizes are shown for a

Avsc

Av

point on the separatrix at the critical value of s

the value for which the stable area around S+ shrinks

to a point.
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Av;
c

W=

resonance occurs for the beam intensity corresponding to Avs =
this is one third larger than the usual space-charge iimit, which
assumes that the beam size is constant. Furthermore, because of the
nonlinear dependence of the space-charge force on the beam size, the

envelope is always bounded. The amount of beam growth caused by crossing

Av
sc

Av

for nearly matched beams (Fig. 9), and is less than fifty percent for

the resonance in the direction of decreasing has beern calculated

stopband widths Avs.g 0.01 Av. This resonant growth is minimized for
. ' o n ;

small gradient errors and for large values of Ay = v - 5 On the

other hand, adiabvatic resonance crossing in the direction of increasing

FANY)

would produce very large resonant growths, and should be avoided.
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3. Two-Dimensional Beams

The envelope eguations for the two-dimensional cylindrical beam

can be written in terms of the dimensionless variables x and 2z as

2 2
d2x 2 Vx o]
~ + [vx + 2v Av oS nd] - 3 =T, = ° (3-1)
ad x

2 2
dzz 2 vy awD
- T = - = = -
7 + v,” + 2v v, cos nd] 5 s o, (3-2)

where agzin the ripple components have been neglected. The quantities
Vy and v, are the betatron frequencies in the absence of space

charge and gradient errors. As in the last section, x and 2z _are

EXR !EZR
the beam semi-axes measured in units of & = _— and b = —v;—~
v
X zZ

respectively, where a and b are the semi-axes of the matched beam

in the absence of gradient errors and space charge. The quantity

r.R
2
W, = gﬁ-—g—--—}—-, where N 1is the number of particles in the beamn,
P 13 ab 2 3
B
e2
g = —7% the classiczl electrostatic varticle radius, and B 1is the
me

bunching factor (the fraction of the circumference occupied by particles).

The space charge induced frequency shifts for a beam with the constant

b ©F
go)
envelope Xx =1 2z = 1 are A = ‘—— and
P ’ . Vsex a+bh 2y
2
a %
Av = — +=—=— . An nth-harmonic grazdient error has been included
scgz a + b 2y -
Z
with stovband widths Av and  Av
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The overall envelope motion described by (3-1) and (3-2) is
very simple: the envelope has two modes of oscillation, corresponding
to its two degrees of freedom, and the resonant growth of each mode is
limited by the nonlinear space charge terms just as for the one-
dimensional beam. However, the mathematical details are more complicated
now: whereas the motion of the one-dimensional beam depends on only

Av Avs ‘
and ~ and can be represented by a config-

the two parameters
uration point moving on a trajectory in a two-dimensional phase space,
the motion of the two—dimensioﬁal beam devends on six parameters and
reguires a four-dimensional thase space.

Physically, the envelope motion can be characterized by the
degree of coupling between the x and 2z directions, which afises
from the space-charge terms in (3-1) and (%-2). Very loose coupling

occurs vhen the individuzl particle frecguency v - Avs is very

X cX

different from v, " Avscz' Then the envelcpe motion is nearly one-

dimensional and the solutions are similar to those found in the la:

U1
ct

section. On the other hand, very tight coupling occurs when

is apoproximately egual to v - Ay 5 in this case the

v, - A
Vsex z scz

X

x and =z amplitudes of envelope oscillations are approximately egual

and the envelope motion is two-dimensional. 1In the following we
concentrate on a few special cases. In A the solution for the tightly
coupled case Ve TV, and EX =F is presented in deteall; in B

several cases leading to the one-dimensionel limit are briefly examined.
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A. Eoual Freguencies and Emittances

In this case the envelope eguations without gradient errors are

d2x 5 v2 hu&vsc
—5 t VX - T3 - o = o , (3-3)
ag X

2 2 hyay :
R R A (3-4)
ag z

2
Cp
where Ve= V, TV and Avscx': Avscz = Avsc’ with Avsc =Ty It

we consider oscillations of small amplitude 5x, 5Z about the constant

Ay
sc

solution x =2z =1+ 5y

we find a symmetric mode with circular

cross section (BX = 52) that oscillates with the frecuency

2(v - % Avsc), and an antisymmetric mode with elliptical cross section

s civ ~ 3
(BX = -52) that oscillates with the freguency 2(v - " Avsc).

Therefore, in the presence c¢f gradient errors of freguency n, reson-

ances occur for the beanm intensities corresponding to Avsc = 2Av and

to Avsc = % Av where again Av = v - %. Note that these resonant
intensities differ from the usual space-charge limit Avsc = Av that
is calculated for a static beam. Any collective mode of oscillation
produces similar freguency shifts, as will be seen in Part II.

We now examine these two modes in the nonlinear regime. The
symmetric mode is driven by the symmwetric gradient error Avsx = Avsz,

and the antisymmetric mode is driven by the antisymmetric gradient error

Lvo, = - Av . Wnen either zradient error is included in (3-3) and
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(3-4), the equations can be solved by the same method that was used for
the one-dimensional envelope equation. The results are presented here,
vhile the calculations are outlined in Appendix B.

For the symmetric gradient error, we find symmetric solutions

of the form
2
X = zo = 1+ A + A cos(n¢ +Q) , (3-5)
where the slowly varying quantities A and Q satisfy the equation

S in(1 + V1 o+ A2 )

(B13)

r‘———ﬂ Av
constant = A cos Q + gél-\l + A2 - 2
Avs Av

which specifies a trajectory in the two-dimensional A,Q space. The

-

ax
dg

same form as those found for the one-dimensional beam (Fig. 7), but now

. . . . dz
corresponding trajectories in x - space or z - 5@ space have the

the fixed points occur for Q = O,x and for values of A that satisfy

Av Av V 2
A o= 7S \h a2 4 —seNLrA -1 (pg)
2 Hv

These fixed points describe a circular beam that oscillates with the
pericdicity of the gradient error. They are shown in the form of a
regsponse diagram in Fig. 10, which is again distorted from the linearized
diagram so that only bounded solutions are possible. Note from (3-5)

=5_)

that the symumetric character of the normsl mode solution (6X 2

rermains symretric even in the nonlinear regime, the only effect of the

nonlinearity being to 1linmit its resonant arplitude.
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Fig. 10. The resvonse curves for a symmetric gradient error, with

resonance near Av., = 2nv, are suverimposed on those for an

antisymmetric gradient error, with resonance near

:<N1-+A2 +A>%.

N

L
= = Ay. Tor either case X =z
av 3 &v ’ max max

3.2
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/\
For the case of an antisymmetric gradient error, there are
antisymmetric solutions of the form
x2 = V1 + A° + A cos(nd + Q) ,
(3-6)
22 - 1+A° - A cos(n + Q) ,
which describe an elliptical beam. Now A and Q satisfy
Ay
2 s 2 | Klk) .
constant = A cos Q + 22 V1 4 A% -2 C[ZnA———[—L—)-dK],
Ay Ay i k
5 s
(B13)
where K(k) is the complete elliptical integral of the first kind. T
f\

d .
The resulting trajectories in x - ax or 2z - E% space again have the

do

same form as those for the one-dimensional envelope, but now the fixed

roints occur for Q = O,x and for values of A that satisfy

Ov Ly 2
_ ot _s 2 scl 2k (B16
A = F3— 1+A" +——=¢[1 ﬁAgK(k)] s (B16)
where k = —_"—é—"—T . They describe a beam that oscillates antisym-
2
1+ A

metrically with the periodicity of the gradient error, i.e., x 1is
largest when 2z is smallest and vice versa, and are also shown in
Fig. 10. For either mode of envelope oscillation, the Avs = 0 curves
represent the free envelope oscillations that are periodic.

Note from (3%-2) that the antisymmetric character of the normal-

— riode soluiion (Sv = -52) is approximately maintained in the nonlinear
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regime. Indeed, this is a general result: the character of the normal-

mode solutions determined by the linearized envelope equations (the
5x : '
ratio E—) is approximately maintained in the nonlinear regime, the
z :

main effect of the nonlinearity being to limit the resonant amplitudes
of each mode.

The nonlinearity also produces an additional effect that is not
predicted by linear theory, namely, it produces a weak coupling between
a gradient error of one symmetry and a mode of enveloperscillation of
opposite symmetry. Thus the response curve; for the symmetric mode of
oscillation in Fig. 10 are modified by the presence of an antisymmetric
gradient error, and vice versa. Although this effect is small, it hes
been a source of confusion, so we briefly descrite it here. We write

the fixed points in the form

—————r

2 o Viea2 4 oa cos(nd + Q)

2 \/ i (B18)
25 = 1+A - Acos(ng -Q) |,

wnere for the symmetric fixed points, @ = O,n, vwhile for the anti-

717
symmetric fixed points, @ = %, é; . Figure lla shows the fixed-point
Ay
solutions in the absence of gradienterrors, in other words the Z;i =0

curves of Pig. 10. They specify the amplitude dependence of the free
envelope oscillations that are periodic. If now an antisymmetric

gradient error is vresent, *the antisymmetric fixed voints still occur
Av

Av -

in the 9 = 0,~ oplanes, but contrary to linear theory, the

curves for the syrmetric fixed voints are modified, as indicated in
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Fig. 11. The fixed points in the absence of gradient errors
is shown in (a); the transition from a purely antisymmetrie
gradient error tc a purely syrmmetric gradient error is

shown in (o), (c), (8), (e), =nd (£).
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Fig. 11b. The analogous situation occurs for the symmetric gradient
error (Fig. 11f). This coupling between fixed points of one symmetry
and gradient errors of opposite symmetry insures that the transition
from a purely symmetric gradient error to a purely antisymmetric
gradient error occurs in a continuous fashion, as indicated in Figs. 11
(c),.(d), and (e). However, only the smell-amplitude fixed points are
affected, and in the following we neglect this weak nonlinear effect and
assume that a mode of a given symmetry is affected only by driving terms
of the same symmetry.

Resonance Crossing

If only one type of gradient error is present, the resonance
crossing is similar to that for the one-dimensional beam. A nearly
matched beam with x =1, 2z = 1 and whose intensity is larger than
the resonant value oscillates with small amplitude about a stable

Av
fixed point. If

decreases, the statle phase area around the
fixed point shrinks and eventually the configuration point is forced
onto the separatrix. The team then oscillates with a larger amplitude

that can be read directly from Fig. 12, which shows the maximum bean

Av
. . X . L s sc
size for a point on the separatrix at the critical value of = .
v

Note from Fig. 12 that the resonant growth for either mode of the

two-dimensional beam is less than the resonant growth of the one-dimen-

JAYY
. ) S . .
sional beam for the same value of R This was to be expected, since
v

the nenlinearity of the space-charge force is greater for the two-

A

dimensional Tteam than for the one-dimensionzl bean.
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Fig. 12. The maximum beam size for a point on the separatrix at

Ay

the critical value of is shown for either mode of

envelope oscillation for the c¢ylindrical beam with a = b

and Ve TV, Tor comparison, tre maximum beam size for

the one-dimensionazl beam is also shown (from Fig. 9).
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If both types of gradient error are present, as is true in
practice, both resonances may be crossed. One might estimate the total
growth by adding the two separate growths from Fig. 12. However, an
initially matched beam that crosses the first resonance (Avsc = 2Av)
will no lénger be matched when it crosses the second resonance. If
this mismatch is large, the total growth may be considerably larger
than the sum of the two growths. On the other hand, we have so far
neglected the adiabatic damping of the beam size due to the increase in
\/E;ﬁ, which may be large, deﬁending on the acceleration program
employed.

B. General Beam Configurations

In the remainder of this section, the envelope motion for other
v
values of 2 and ;ﬁ is briefly examined. Fortunately, the effect of

o z

the nonlinearity can be largely separated from the linear effects,
i.e., the normal mode solutions determined by the linearized envelope
equations remain approximately valid in the nonlinear regime, the main
effect of the nonlinearity vteing to cause the freguency of each norﬁal
mode to depend on its amplitude. Accordingly, we first examine the
normal-mcde solutions of the linearized envelope equations for several
cases, before including the effect of nonlinearity.

We write the linearized envelope equations, omitting gradient

errors, in the form

fo
o

|

+ M5 = 0 (3-7

RS
N
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where M 1is the two-by-two matrix

' 7
, 2
N b 2
hvx - Wy —5 ¥,
(a + D) (a + D)
Moo= ,  (3-9)
a2 2 2 2ab + 3a2 2
— bv, -7 @
(@ +v)° P (a +v) P

9]

and where & =-<\XI> is related to x and 2z by
&
z

® 2
- 1 L . P
x = L+ L{a + b) Vo * 5x ?
(3-9)
2
a ®p
z = 1+ I(a + ©) . v + BZ
% _iwd
The normal-mode solutions have the form ES::(ﬁ :)e @ , wWhere
z
o)
2 X
[M—m]<6> = 0 (3-10)
vA

18

and where « satisfies det(M - wg) = 0.
We have previously distinguished two limiting types of envelope

motion, tightly coupled motion for which the x and =z amplitudes are
X

equal, B _ = #* 62, and loosely coupled motion for which one amplitude

approaches zero waile the other remains finite. We find from Eg. (3-7)

w

. - . . a-> js) .
that tightly coupled motion results if - = —— . 1= or if

= J = Ve Vx a+b Ly

® 2
a-b> o 1 s
- =2 = where = =(v_ + . The former conditicn

VZ VX T b Ty s e Vv c(/X VZ)
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produces a symmetric mode with Bx = BZ; the latter condition produces
an antisymmetric mode with BX = -Bz, and is identical to the condition

that the individual part1cl¢ freguencies Ve T Avscx and Vg T Avscz

be equal. Both conditions are plotted in Fig. 13. As the parameters

» gy wpg depart from the curves in Fig. 13, the envelope motion

approaches the one-dimensional case.
It is informative to examine a few special cases in detail. For

a circular beam with a = b, the eigenfrequencies for either mode of

envelope oscillation are

2 2 2 2 2 2.2 1 '
w, = 2vx + 2vz - % wp i’ﬂV&va - 2vz )T+ g @ B (3-11)

and there are two limiting cases to consider. If [2v ~ - EVZQ[ << %-wpe,
the eigenfrequencies and normal modes reduce to the tightly coupled

case examined in (4),
2 .2 2 1
w, = v - @y, s &, = N s

1
z
w 2 = ﬁvz -2 2 B s} \\
2 P - "l/

(3-12)

2

2 : 1
where @ =~ = 4 . This case regui 33 -
&p VAV 5 guires that va Vzl << H—AVSC.

On the other hand if \vx - vz\ >> % Avsc, the eigenfrequencies and

normal modes are




47~ UCRL-1845k

0.2

XBL6E8B9-3910

Fig. 13. The beam parameters are shown for which the x and =z
amplitudes of envelove oscillation are egual. The plus
curve is the condition for the symmetric mode, the minus

curve for the antisymmetric mode.
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1
a)x2 = hvxg-%wpg s 6X=<€> s
(3-13)
(DZ2 = hvzg-%wpg s BZ:<J€_> »
AVsc . .
where € = ET:7—17721-<< 1. For this case the frequency difference
‘VX - vZ] is sufficient to overcome the coupling due to the space-

charge force, and the normel modes are one-dimensional. In practice
1 e . X . s
Avsc ~f s SO that the dividing line between tightly coupled motion and
loosely coupled motion occurs for a freguency difference of
l 1 Fa P E) 1 >
|vX - vZ| ~Ig - Thus, due to the weakness of the space-charge coupling,
a relatively small departure from the curves of Fig. 13 suffices to
produce one-dimensiornal motion.
- . " . .. D . , . . .
Now consider the limit Py — 0, but keeping ab constant so that
the charge density remains constant. The beam approaches a planar

configuration, and

! 2 1~ 2 2
2 - vy o By, ey
w = Hy - s 5, = 5
X pe a jo) b4 >
W,
b
o 5 5 0 (B‘lh)
w, = Ly - Bwp s Sz = (l>
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with Fig. 1%. However, as g approaches zero, larger and larger
intensities are required to excite this mode. i.e., to shift W, to
the integral frequency n of the gradient error. In the limit g = 0,
only the 5, mode can be excited, and this mode is identical to the

one-dimensional mode examined in Section 2. 1In fact, the complete

nonlinear envelope eguations reduce to the one-dimensional form

5 2
dx Vx
—5 + Kx(gf)x e o ., (3-15)
dg X
dez V22 a$2
AR e (-16)

in this 1limit. The space-charge forces affect only the 2z motion, and
if vy, is sufficiently far from a stopband that x =1, Eq. (3-16)
reduces to the one-dimensional envelope eguation (2-6).

We conclude from these examples that the envelope motion will be
one-dimensional for a wide range of beam parameters; in fact, due to
the weakness of the space-charge coupling and because of the changing
environment within the beam, the envelope motion is more likely to be
one-dimensional than‘two—dimensional.

We now briefly examine the effect of the nonlinearity. We

consider cases for which a is larger than or equal to b, and for

which v, is closer to a half-integer than Vs SO that

<
N
!

< 1. Then tre resonant amplitudes are larger in the

<
»
!
nlsots



-50~ | UCRL-18454

2z direction than in the x direction, and this is usually the more

serious case.

We construct simplified response diagrams for several values of

g and ). The usual linearized reéponse diagrams have a vertical
asymptote (the Avsx = Avsz = 0 curve) at each of the two resonant
intensities, and the Avsx #:O{ Avsz %:O response curves approach these
asymptotes as the beam intensity approaches the resonant values. The
main effect of the nonlinearity is to cause the freguency of each mode
of envelope oscillation to depend on its amplitude, which distorts these
linear response curves so that only bounded solutions are possible.

For simplicity we consider only the distortion of the Avsx = Avsz =0

asymptotes. We show in Appendix B that these curves are specified by

2 2 .
X = 1 +A + A sin(ng + Q) ,
(B20)
2 2" i ,
zm = 1+ B + B sin(n@ + Q) ,
vhere A and B are determined by the integral equations
2 2= Sy
A - CDp . b A+ 1+ A2 sin u au
2v_Av 2x : x{ax + bz) ’
X X
0
(B21)
2 25
B - ab a B+ V1 + B2 sin u du
2v_Av 2= z(ax + bz) ’
7z Z
0 .
where u=n8 +Q, Ay, =v - 2 and Av_ =y =~ 2. These egquations
: 7 Tk x 27 'z z 2 -
were solved numerically, and the solutions are shown in Fig. 1b
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S -(8) A=y, k=1 (‘”)\:l,K:'g

w

5 !
=S ,K==
(h) A 5

5
5 (b))\=g,K=l io

XBL689 - 3905

Fig. 14. The Avsx = Avsz = 0 asymptotes are shown for various
n
vy - =
. Z 2 b
values of the parameters )\ = o and k = 7 The
v - =
X 2
ordinate is x or z ; the ebscissa is

max max

N AN
Vsez <_ 1 sex

A D v. /
v A x

Z
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Figure 1lba shows the familiar case of equal frequencies and

Av )
equal emittances (the Zgi = 0 curves of Fig. 10). There are two

resonances, corresponding to the two modes of envelope oscillation,
and for each mode, the amplitude of the x motion is equal to the ampli-
tude of the z motion. For the other cases, the two resonant intensities

are further apart, and the amplitudes of the x and =z motions are no
' ) Av

. Z
longer equal. Because of the choice of parameters O <1, av< 1,
b4

the largest amplitude occurs for the z direction and for the lower-
intensity mode. As the fregquencies become different, but a 1is kept
equal to b, Fig. 1k (b) and (c¢) result, and the solutions approach

the limiting one-dimensional modes & = (J'> and B = ( 6) that
X € Z 1

s b
were found before. 1In the other limit, x aovproaches zero and the
solutions also approach the one-dimensional case. In pvarticular, the
curves of Fig. 14 (g), (h), and (i) are irdistinzuishable from the

Avs

Yl 0 asymptote of the one-dimensional beam (Fig. 8). The inter-

mediate case of an aspect ratio g - L is shown in Fig. 1L (a), (e),

b

and (f). 1In this case the lower-intensity mode is also very similar to
that of the one-dimensional beamn.
Sunmnary

We have investigated the envelove motion for a uniformly charged

+

cylindrical beam. 3Because of its two degrees of freedom, the envelope

has two modes of oscillation that can be excited by gradient errors.

The sclutions for a tezm with v, =V, and Ex = Ez were vresented in

ymretric mode of oscillation that is excited rnear the

detail; it has a s
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intensity Avg, = 2ny, and an antisymmetric mode that is excited near

Av . = % Av. TFor any type of beam, the process of resonance crossing
s
is similar to that for the one-dimensional beam. If the resonances are
Av
. c - e s
crossed in the direction of decreasing Ai , the beam grows a finite

amount, whereas if the resonance is crossed in the opposite direction,
Av %
sC b A

. Z
increases. As — or —
a Avx

the beam continues to grow as

approaches zero, the resonances become further separated and the envelope

. i, X . b 1
motion becomes one-dimensional. 1In fact for an aspect ratio of = = 3
<
Av :
z 1 . , . . .
or for X < 5 the resonance in the z direction dominates and the
b's

beam motion is essentially one-dimensional.
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. Conclusion and Apvlications

We have considered the effect of gradient errors on a beam of
charged particles in an alternating gradient synchrotron. TUsually,
gradient errors are assumed to limit the number of particles that can
be accelerated. This 1limit (the tranverse incoherent space charge
1limit) is calculated by assuming that the beam size remains constant;
then the number of particles that can be accelerated is limited to that
number which just lowers the effective betatron frequency to an integer
or half-integer. Actually, the diameter of the beam depends on the
oscillation amplitudes of the individual particles, and if a gradient
error causes these amplitudes to grow, the beam size also grows. Thus
the usual calculation is not self-consistent.

In Section 1 self-consistent ecuations of motion for the beam
envelope are derived for beams with one and two degrees of freedom. We
assume that all the particles within the beam have the same azimuthal
velocity and execute betatron osciilations avout the same eguilibrium
orbit, and that only linear forces act on the individuval particles.

The last assumption reguires that the charge density within the beam be
uniform and that the nonlinear components of the image force be
neglected. The resulting envelope eaquations are nonlinear because of
the nonlinear dependence of the space charge force on the shape and
size of the beam.

These envelove eguations were solved in Sections 2 and 3. For
small arplitude oscillations of the one dimensional (planar) bdezm, th

-

besm osci tes with the frecuency 2(v -
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for n = 2(v - % Avsc)’ i.e., for the beam intensity corresponding to
Av o = % Av. However, for larger amplitudes of oscillation, the

s
frequency of oscillation depends on amplitude as well as on intensity;

for fixed intensity, the frequency increases with amplitude. In

consequence, a slow traversal of the resonance in the direction of
Av

increasing will cause the beam to grow arbitrarily large: near
the resonant condition n = oscillation freguency, the amplitude
increases, which causes the oscillation freguency to increase until the
resonant condition is no longer satisfied; a further increase in AV
or decrease in Ay, lowers the oscillation frequency and restores the

resonance condition, which causes the beam amplitude to again increase,

and so on. On the other hand, a slow traversal of the resonance in the

Dv
. . . S .. . .
direction of decrezsing causes only a finite increase in beam
Avs
size. The amount of beam growth devends cnly on the ratio o and
- v

Av
is less than 50% for ZTEué 0.01.
v

The resonant behavior of the two dimensional (cylindrical) bteam
is very similar. In this case two resonances are possible, although for
a wide range of beam parameters, including most practical configurations,

only one resonance occurs. An adiabatic resonance crossing in the
Ay

direction of increasing causes an arbitrarily large increase in

Avsc

Av

causes only a finite beam growth, which is less than the one-dimensional

Av
. S
beam growth for the same value of =
[any

beam size, whereas a crossing in the direction of decreasing

We conclude that gradient errors will not limit beam intensity

or cause svarticle loss, provided slow rescnance crossings in the
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Av
direction of increzsing are avoided, and provided the ratio
Avs
~ is sufficiently small at the resonant intensity.
v

Application to AGS

As an application of these results, we examine the two modes
of envelope oscillation for the Brookhaven AGS. The relevant parameters

19

are obtained from van Steenbergen, who has measured the vertical phase

space emittance and density distribution in the energy range 50-400 MeV.
First consider the situation immedietely after the injection,

, - 12 . . . . o

when 7.7 x 10 varticles occupy most of the machine circumference

(B ~1). At this time, the betatron frequencies in the absence of space

charge are v _ = 8.35 and v, = 8.92 (as extrapolated from Fig. 6 of

van Steenbergen), and the vertical emittance is 1EZ = 11.6 cm-nrad.

=2.3 cm (R =128 m), and assuming an aspect ratio

a ' . .

= =2, we find Av = 0.1k and Av = 0.28 (from the eguations

b SCX scz *

following 3-2). These are the space-charge-induced frecuency shifts
for the individual particles within the matched beam, with the constant
size a =L4.6 cm and b = 2.3 cm. Gradient errors cause the beam to
oscillate, and for small amplitudes, the two modes of envelope oscilla-
tion are determined by Egs. (3-8) and (3-10). 1In this case, the modes

are nearly one-dimensional, and we find

7 1
O 7 2Vx—gAvscx ’ o = ( >’ (4-1)
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L €
- - — - Lo
W, = 2v, T3V, 5, <1> , (4-2)
1 - 1
where ¢ =~ 0.1, TFor the above paranmeters, 5O, = 8.26 and 3w, = 8.73,

and these frequencies are well removed from the

half-integral resonant values; an intensity of 17 x lO12 particles is
reguired to shift %-wz to the nearest value, 8% . Therefore gradient
errors are not expected to cause particle loss in this region. (These
results are strictly wvalid only for uniformly charged beams, whereas
the AGS beam has a Gaussian charge distribution. We find in Part II
that the freguency shirfts for the Gaussian beam are approximately 1/5
larger than those for the uniform beam, and thus the lowest resonant
intensity is more nearly 13 x 10 12 particles.go)

During the first few synchrotron oscillations after injection
(during the capture process), about #0% of the injected beam is lost,
and smaller losses continue uptil 15 msec (By = 0.5). At this time,
1.9 x lO12 particles remain, and these are assumed to occupy 1/& of the
machkine circumference., After this time, small particle loss occurs in

two regions: the Tirst rear 20 msec {3y = 0.4) is associated with a

207 increzse in tre rnormalized verticzl emittance, while the seccnd near
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30 msec (By = 0.8) 1is associated with a 10% increase in the normalized
vertical emittance. The freguencies W and w, have been calculated
for these times, using N = 1.9 x 1012, B = 0.25, and the measured
values of ﬁEZ, and they are included in Table I.

Because the zero intensity betatron frequencies Vo and v,
change during acceleration, the w, = 17 resonance is crossed near
By = 0.8, in agreement with the observed particle loss at 30 msec.
The resonance crossing is approximately adiabatic since AVSCX/AVX
changes by 0.1 during €00 revélutions, and is in the direction of
decreasing Avscx/Avx' The observed 10% increase in the normalized
vertical emittance is consistent with a stopband width of Avs = 0.002;

Av

. . S L . . .
in this case, - 0.0%, and the vpeam grows 100% in the x direction
x

and about 107 in the 2z direction (using

9

ig. 3-3 and assuming that
the BX mode retains its one-dimensional form in the nonlinear regime).
Further experiments are necessary to confirm this connection
between the particle loss at 30 msec énd the w, = 17 resonance
crossing. For example, if the stopband is enlarged by deliberately
exciting a 17th harmonic gradient error in the machine lattice, the
beam growth should exceed the available horizontal aperture and large

losses should occur about 30 msec after injection.
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Table I. AGS parameters near injection
1 1
proalem)  bvge, vz vk 30 29
0.50 3.8 0.18 8.88 8.46 8.76 8.41
0.60 3.2 0.16 8.86 8.50 8.75 8.h5
0.70 2.8 0.15 8.84 8.53 8.74 8.49
0.80 2.6 0.13 8.83 8.55 8.75 8.51
0.90 2.4 0.10 8.83 8.57 8.76 8.54
1.00 2.3 0.09 8.82 8.58 8.77 8.55
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PART II. COLLECTIVE OSCILLATIONS OF ONE-DIMENSIONAL BEAMS
CONFINED BY HARMONIC POTENTIALS

Tn Part I we considered only one mode of collective oscillatiop
that occurs in only one type of beam, namely the quadrupole mode that
is excited in uniformly charged beams by gradient errors. These restric-
tions enabled us to examine the large-amplitude nonlinear effects of
space charge. In this Part we examine the otner modes of collective
oscillation that occur in both uniform and nonuniform bteams. We restrict
our attention, however, to small-amplitude oscillations and for simpli-
city to one-dimensional beams.

In Section 1, we use the linearized Vlasov eaguation to find all
the normal modes and eigenfreguencies for the uniformly charged beam;
in Section 2, the resulting mode structure is compared with that found
by Ehrman6 for an approximately uniform beam, and with that found by
Weibel21 for a neutralized beam (plasma) with a Gaussian charge
distributicn.

Before proceeding to these cases, it is informative to consider
the seemingly trivial case in which the Coulomb interaction is turned
off. In the absence of svace charge, the eguation of motion for the

individual varticles is

where the symbol will be used in the remainder of this paper to

Vv 5

designate the unverturbed vetatron frecuency. Any particle distribution

09
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rotates rigidly in the x - %— %% space with the frequency 128 and
0

has the form f = f(r, vo¢ + @), where r and © are defined in

Fig. 15. The normal modes are found by a double decomposition of f:

I)—-‘

dx
v @

—

NP

Fig. 15.

the second argument of f 1s expanded in a Fourier series

X -in(vo¢+@)
E: gn(r)e where for each n, gn(r) is an arbitrary function

n

of r and may in turn be expanded in a complete set of functions,

gn(r) = :E: gmn(r). Thus there are a two-fold infinity of normal
m

modes of the form

fmn(r’e’¢) = g

.

where the eigenfrecuencies o = ny

betatron frecuency. Zach eigenfrecuency is infinitely degenerate.
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In the presence of space charge, but on the assumption that the
space~-charge forces are small in comparison with the external focusing
forces, each eigenvalue is split into infinitely many different eigen-

values that are clustered near the value ny and the new eigenfunctions

O)
are mixtures of the unperturbed eigenfunctions. Since the unperturbed
eigenfunctions and the form of the space-charge interaction (Maxwell's
equations) are known, the perturbed eigenvalues and eigenfunctions can
be found by stationary perturbation methods.g2 However, the unperturbed
eigenfunctions are infinitely degenerate, so that an infinite-order
matrix must first be diagonalized. In any event the form of the eigen-
value spectrum is clear: the eigenvalues are discrete and occur in
clusters near the value nv..

0

1. DNormal Modes for the Uniformly Charged Beam

Formulation of the Problem

The Vlasov and Poisson eguations can ve written in the form

of cof 2 2~ of

3 v [—vo x + @ E(x, 8)] v ° o (1-1)

o £ - ,

3 2 [ f(x, v, ¢) av » (1-2)
where v = g;, and x measures distance from the median plane in units
of the half-width of the stationary beam, a. The distribution function

2.2 N
f(x, v, #) is normalized to unity, and the quantity g 2. &53—55 . 5;
73mvp a

(the plasma freguency) has previously been defined as EVOAVSC

[Eq. (2-8), Part 1.
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The stationary solution of (1-1) and (1-2) that has a uniform

charge density is

1
fo(va) = b EO(X) = X ]
2
ol - ¥ - L
YTt TR (1-3)
v
2 2" |
where v = o -~ &b ~ Vg T Avsc, will be used in the remainder of

this paper to designate the effective betatron frequency for the individual .

particles within the stationary distribution. In the x - space, the

<<

particles move in circular orbits, and the stationary distribution

rotates rigidly with the frequency v.

v
v
BNy

}@\
/ x

Fig. 16.

Oscillations of this distribution are described by the perturbed
distribution f(x, v, ¢) = fo(x, v) + fl(x, v, @), which gives rise to
a perturved eleciric field, & (x, §) = Eo(x) + el(x, ¢g). As in

Part I, we neglect the xagnetic field corponents that arise from the
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of of of of
0
T Ve VR -y Ll D5 (2-4)

The left-hand side of (1-4) is the total derivative of f, along an
unperturbed orbit, and consequently we can invert (1-4) and write £,
in terms of an integral of the right-hand side over an unperturbed

orbit.el We do this explictly by writing (1-4) in terms of the polar

coordinates defined in Fig. 16:

2
of of w af
A S J ; 0
% T Ve ) l(r cos 6, ¢) sin 6 = - (1-5)
For the normal mode solutions f. = f(r G)e—. CO €( e ~iad
h lut 1= s s 1= r cos 9)e s

(1-5) becomes

o 2

A
_1;G a 1;9 wD dfO
e 55[6 f(r, 8)] = == Q(r cos 6) sin © = - (1-5)
v

Since the function f(r, 6) must be periodic in 8,

f(r, ) = f(r, & + 2x), the unique solution of (1-6) is

w2 dr -ﬁfe ° %
D 0 S v ' : ' '
f(r, 8) = T G J[ e € (r cos ©') sin &' d9',
v Y e-ox
l-e

(1-7)

. . . . . .
provided " is not an integer. The case of integer values of L s
Y
considered later. Eguation (1-7) can be written in terms of the

Cartesian variables x and Vv as
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2 2 .
1 afo (Dp i l%u 8 v' 8)
- = . . e x') — du 1-
o0 = bt —2— | () Tas (
™y -1 7o
where u = 6' - 8 and
x' = xcosu-=-—sinu
(1-9)
v' = yx sin u + VvV cos u

Equation (1-8) specifies f(x, v) as an integral over the unperturbed
orbit.

The perturbed electric field QJKX, 4) 1is related to
fl(x, v, §) Dby Poisson's Equation (1-2), or alternatively by Maxwell's

second eguation,

o3& @
5 = - 2 _/' vi(x, v, d) av (1-10)

~o0

which follows immediately from Poisson's eguation and the continuity
equation for charge and current density. Using (1-8) and (1-10), we

obtain a single integral equation for E‘(x):

Zmbe * afo 2 4@y v
W) - —— [ eg? [ eV ewia e
Ty ~e0 0
e -1
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General Solution

We solve (1-11) by performing two integrations by parts. 5

First
integrate over v so that
2 2 . 25 19
i E(x) = —E— J[ av £, j[ eV
eniy oo 0
e Voo
cos u oy L osinu a(x") ]

X [_ 2EZ L(x) + 2 = du , (1-12)
where the integrated terms are zero at the limits Vv = + o. Then
integrate by parts over u to eliminate %éi H

2 0 27 .

Qune/v Ci%y
£(x) = — f av fof e’ €(x') sinudu .
212 - o
e V-1 (1-13)
.. ' . 1.2 2 2.,~%
We eliminate the function f = 5:[v (L -x") -v']2 from (1-13) by

a1
X E(x cos u + WJZ— 2

- x~ sin u cos 7) du.

(1-1L)
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Finally replace x with cos &, so that

2 21 2r LW
W 1 1-1u
E(cos ) = =2 5 J[ dn J[ e’ E(cos ¥) du ,
2ny 2712 0 0
e Y -1 (1-15)
where cos ¥V = cos £ cos u + sin £ sin u cos 7. The angle ¢ will be

recognized as the angle between two vectors with polar coordinates 7,

2k

g and O, u respectively, as shown in Fig. 17.

A
o
<j

It is now easy to show that the solutions to (1-15) are just
Legendre polynomials. We use the addition theorem for sphericel

harmonices to write

, ltr * . ~
Foleos v) = mipT y Yo (s M) Yo(w, 00, (2-26)
m
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2, 2 2= LD
(,L)D / Vv 1;11
K - {w) 8 — e P (cos u) sinudu = 1,
n+l o_;® n
e V-1 © (1-17)

which specifies the eigenfrequencies . A few of the functions Kn(w)

are included in Table II; the rest mey be found by using the recursion

relation

2 2 2
K (o) = &0 "2l Vg @) (1-18)
[\

-n vy

The eigenfunctions for the perturbed electric field are therefore

the Legendre polynomials

€. = P ,(x), for m=1,23,"", (1-19)

and for each value of m, the corresponding eigenfrequencies are deter-

mined by

Km(wmn) = 1, for n = m,m~2,m=4, -, (1-20)

In general, each eigenfunction é: (x) has more than one eigenfrequency:
- 1

as can be seen from Table II, there is one eigenfrequency each for
m=1 and m =2, but two for m = 3,4 and three for m = 5,6, and
so on. Ve labvel the various eigenfreguencies of (1-20) so that in the
limit of zero intensity, o aporoaches nvy.

Tane eigenfunctions f__(r, 8) corresponding to the eigen-

mn

frezuencies o are determined by Eg. (1-7) to be
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Table II. The functions Kn(m) are listed for n < 7.

n Kn(a))
2
“p
* 2 2
w - v
2
w
e —P
2 2
o - 2y
a)2 2
3 D . W
22 2 2
e - 3 v w -V
a)g 2 2
i ) w v
2 22 2
- Ly a)-22v2
2
w 22 2
5 js) w -2y W
2 _ 22 2 23 "2
w =5 w - 3y o -V
2
w 2 2 2 2
6 2'_0 5 (.D“BV w - v
B >
- - 621/ 2 _ Llfvg (DE _ 22 2
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2
w ar R . (r) w
p 1.0 mK . omo _
fmn(r, 8) = =TT E - 2(1 —— sin k8 - k cos k8) ,
v
kg2 mg (1-21)
v

where the sum over k 1is finite and involves only even or only odd
numbers. The radial functions Rmn(r) are polynomials in r, and a
few are listed in Teble TII. For m > 2, the sum in (1-21) has more
than one term, and the simple n-fold rotational symmetry of the
unperturted eigenfunctions is ébsent.

Iow Intensities

2 2 . . .
For &b << vy these eigenfunctions and eigenvalues reduce

to the form predicted by perturbation theory. The eigenfrequencies

have the form

1
w = nv + — Av -
mn n sc ’ (1-22)
. 2 2 P
where vy = v -w. = y. - Ay and where a few of the constants
O P 0 sc
p) are listed in Tevle IV. These eigenfreguencies are shown in

Fig. 18a for the intensity corresponding to Avsc = % , but the eigen-~
frecuencies with m > n + 2 are clustered too near the values ny to
be resolved. Figure 18b shows an enlarged region of the spectrum near
nv: all the eigenfréquencies (except Wy = vo) are shifted down from

the unperturved values nv., and as the radial mode number m increases,

O}
the eigenfrecuencies appreach ny. It is also evident from Eg. (1-22)

or Fiz. 18a that as the mode number n 1increzses, the eigenfrequencies

becore more tichtly clustered srcound the frezuencies nv.
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Table III. The radial functions Rmn(r) with

m< 7 are listed.

& 1 > 5
1 r
173 3 3.5
W RN
1/75.7 5 _3-5.3 3-5/7 5 .3 7.5
5 8(@1‘ 2r+3r> i%"('ér'r> g1 T
> %—re
1/5 & 2 5 L
' HE -0 o
5 (7:9 6 L2 v (9 & 4 7.9 6
é B(Té‘f - 7r TJI‘) %E\Er -;r) 2




Table 1IV.

The coeff1c1¢nts Kmn

-72-

are listed for m < 7.

UCRI-1845k

in Eq. (1-22)

n
R 1 5 2
1 1
. 2
1 = 3
3 - = = -0.125 = =1.125
23 Y
5 -1~ -0.0156 5 - om0 2l 1.3
5 'eg ~ =0, 27 ~ =0.35 27 =~ 1.305
n
n 2 L 6
> 1
1 5
4 -1~ _0.2%0 2 - 1.25
2° 22
5 7 327
6 - 2~ ~ -0.039 - ~ -0.438 =L <1.L75
o7 ot ol
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Ty

5yo T
v
42/0—— ny, -

Sv J

3y 4y
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The low-intensity eigenfunctions have the form

af .
n 1 0 =-in® 2
fmn(l”, 8) = ;\;n— Rmn(r) T € + O(wp ) (1-23)

and therefore the complete distridbution £ = fO + fmn becomes

1 2
f = + O(Qb ) P

27y V1 = 7 + eRmn(r) cos n(vg + ©)

(1-2L)

. 2 .
where the term proportional to invelves mixtures of other zero-

order eigenfunctions. A few of the radial functions Rmn(r) are showmn

5

in Fig. 19; note that the perturbation for the modes with m =n 1is
the largest near the surface r = 1, whereas the other modes are close
to zero there. For this reason, the m = n modes are referred to as
surface modes. They produce relatively larze displacenments of the bean
surface, as opposed to the mnm % n modes for which the perturved motion
is largely confined to the interior of the distributicn.

The distribution (1-2!) rotates in an approximately rigid

fashion in the x - space with the freguency nv, and has an approxi-

v
s . . s s, =1
mate n-fold symmetry of rotation and radial variation with —5 nodes;

in real space, the perturbed charge density is provortional to

As m increases, the overall perturbed charge density tends

de

¥
w
pie

is not survrising that the eigen-

e m earnrozch nv; perturbations



Fig. 19. The radial functions
of m and n.

differs from figure to figure for clarity.
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are shown for even values

The vertical scale is not indicated, and
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that produce little net charge density will only slightly perturb the
stationary circular orbits, and consequently will be carried along
nearly intact with the frequency v of the stationary distribution.

The eigenfunctions fmn(f, @) found so far do not form a
complete set.25 For example, among the zero-intensity eigenfunctions
(1-23), there are none with the form gmn(r) e I% nere n =0 or,
in general, where n > m. For completeness, additional eigenfunctions
are required to fill in the blanks of Table IIT, as well as an additional
column at n = 0. It is shown-in Avpendix C that these additional
eigenfunctions exist and have the eigenvalues ny that were excluded by
the form of Eg. (1-7) and following. The new eigenfreguencies do not

change the form of the spectrum, but now the value nv 1is degenerate.

High Intensities

In the opposite limit of very high intensities, the eigenfunctions
and eigenvalues also reduce to a characteristic form. The maximum

intensity occurs for w and corresponds to that value of space-

p - 0
charge force for which the repulsive self-force exactly cancels the
external focusing force -- no net force acts on the stationary distribu-
tion. In this case, the particles comprising the stationary distribution
have no velocity (the beam emittance is zero), and f, 1is completely
characterized by its charge density eno(x). Any perturbation can
therefore be expanded in a single infinity of functicns, rather than in

the two-fold infinity reguired befcre. Furthermore, any perturbation

of such a zero-termerature tlasma (the exterral force is eguivalent to

©

a .

mmotile ions) must oscillate with the

e

a neutralizing cackzround <7
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plasma frequency [Pp' Thus, in this limit, the eigenfunctions must
reduce to a single infinity of functions, and their eigenfreguencies
must all have the same value w, = ab.

This is indeed the case. A few of the eigenfreguencies Won
are plotted as a function of intensity in Fig. 20; as the intensity
increases to its maximum value, the eigenfrecuencies - for the sur-
face modes all approach the plasma freguency whereas the eigenfrecuencies
for the other modes approach zero. The eigenfunctions for the electric
field E(x) [or equivalently the charge density en(x)] remain
Legendre polynomials, and since each eigenfunction £ m(x) now has only
one eigenfrequency, any perturtation is completely specified by the

single infinity of eigenfunctions eln(x).

The Divole &nd GQuadruoole Modes

The dipcle mode with m =1 and n =1 is particularly simple.
The eigenfrecuency W) svecified by Kll(m) =1 is found from

Table IT to be

Wy, = v+t o = vy (1-25)

so that this mode oscillates with the unperturbved betatron freguency

Vs independent of intensity. The perturbed electric field has the
~ _iVOQ
form cl(x, @) = = e , and the complete particle distribution
f = fO + fll is given to Tirst order in ¢ by
1 =
f(r, s, j) = =
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XBLE89 — 3902

20. The eigenvalues specified by Km(w ) =1 are

mn

shown for m = 9,7,5, and 3. As the intensity incresses

to the maximum value correszonding to Wy T Voo the
eigenvsiues for the m = n nmodes zpproaca zero; those
for the m = n modes srTroszca
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where the variable r' is measured with respect to the moving

Yo e sin(vo¢ + ©), as shown in

coordinates x = ¢ cos(vo¢ +08) and "

Fig. 21. Therefore the entire distribution is displaced in the circular

v
v
o
/
1&
\ X
\\.
Fig. 21.

path indicated, and in real space, the beam oscillates rigidly back and
forth at the freguency Vo -

In addition %o this rigid dipcle mode, there is an infinite

number of nonrigid divole modes with n =1 and m= 3%3,5,7,-++ and
de_l(x)
with a charge density proportional to ax The cherge density

for these modes oscillates in a nonrigid fashion, and the eigenfrecuency

approaches Vo = Av as m 1incresases.
Cm1 = ( 0 - sc) =
The quadrupole mode with m = 2 and n = 2 has the eigen-
frecuency
2 o 3
— T ~ - A als
Pop = ey 2l - fave) (1-27)

oscillations of the one-dinensional beanm exanired in Par
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it is straightferward to show that the complete distribution

f= fo + f22 is just the small-amplitude limit of the uniform one-
ol

2 ) A
dimensional distribution, Eg. (1-17) in Part I. © Thus, this is the
"preathing mode" in which the beam expands and contracts, yet maintains
a uniform charge density.

The quadrupole modes with n =2 and m = 4,6,8,--- have a

ar_ . (x)
nonuniform charge density proportional to ——mai——— , and their eigen-

frequencies approach 2(vo - Avs ) as m increases.

)
Crp ¢

Excitation by External Forces

Machine imperfections excite the various normal modes. In this

case, the linearized Vlasov equation has the form

N » of
%g + v %g - vox %% = - wpz[g(x, g) + E(x) e 1p¢] 5;9 s (1-28)

where .E(x) e_ip¢ is the known external driving term and p is an
integer. The forced solutions of (1-28) oscillate with the frequency
p, and can be found by the same methods that were used to fiﬁdlthe
normel mode solutions. In particular, the defining equation for E:(x)
is just Eqa. (1-15), but & (cos ¥) on the right-hand side is revlaced

by E(cos ¥) + E(cos ¥). The solution for the forced electric field is

(1-29)

™
~~
b
S
i
s [~
o
S
o] +
-
a
P
~
S
e
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K_(p) '
an_l = i—ﬁ;(ﬂ [ Pn_l(X) E(X) dx . (1-30)
-1

Thus an external driving term of the form E(x) = Pm_l(x) excites only
the E:m(x) modes, and resonances occur for p near any eigenfrequencies
® where n = m,m-2,m-k,---

mn

A magnetic field error has the form E(x) = €, and excites only

the rigid dipole mode (m =1 and n = 1) with

NES (1-31)

!
no
no

A gradient error has the form E(x) = €x, and excites only the uniform

quadrupole mode (m =2 and n = 2) with

2
€w X

€,(x) (1-32)

1l
AN
e
o
\a

2 2
» - Ll»vo +

3

in agreement with Part I. Nonlinear driving terms excite the higher-
order modes and cause resonances for integral values of Wone In the
next section, we examine these resonances in more detail and compare
them with the resonant frequepcies found by Ehrman for a nonuniform
beamn.

We conclude this section with & few general observations. For
intensities of interest in AG synchrotrons (Avsc.<< vo), the normal
modes T for the varticie density in x - z stace have an apvroximate

mn v Y
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n-fold symmetry of rotation and radial variation with 5 nodes;
de—l(X)
in real space, the charge density is proportiocnal to ———%E;——- .
The distribution oscillates with the frequency
mn e v s . .
@ = n(vo - AVSC) +— Av,. , vhich differs from the zero-intensity

. mn .
value ny by the twec freguency shifts nav and —— Av_. The
0 sc n scC

first freguency shift is a purely geometric effect: a perturbation that
produced no electric field would rotate rigidly with the freguency v

of the stationary distribution, giving rise to the eigenfreguency nv.
However, because the perturbation is charged, the circular orbits of the
stationary distribution are distorted, =nd this distortion gives rise to

the second frequency shift. This freguency shift is largest for the

lower-order, more conerent modes, and becomes progressively smaller

(Table IV) for the higher-order mcces, since the perturbed charge
density tends to cancel wi itself: <the most coherent mode is the
rigid dipole nmode for which = (v - Av__) + Av__, whereas for the
17 sc sc
. - 1
uniform guadrupole mode o 2(va - &v_ ) + % Av__, and for the (3,3)
22 O sc 2 c
%
sextupole mode = VA = AV + % Ay . For the higner-order
P Oz 2 5( 0 sc) 5 “’sc e

modes, esvecially the nonsurface modes, the eigenfrequencies are
shifted very little from the value n{v. - Av_ ).

Finally, because the elgenfreguencies are real and discrete,

\ . 27 Cs . .
there can te no Landau damwping. ' This type of damping recuires a

continuous spectrum and discontinuous eigenfunctions, so that any
p) J

~

nitial perturbation that is analytic ccnsists of an infinite numter

He

esimzlly excited; in the course of time
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the phase relationships between the various modes is destroyed and the
perturbation damps exponentially to zero.28 For any system of charged
particles that are confined by a harmonic potential, the eigenvalue

29

spectrum is discrete and the eigenfunctions are continuous; however,
a very localized perturbation contains many modes and exhibits an

approximate exponential damping until the phases of the various modes

become randomized.
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2. Extension to Iionuniform Beams

Resonant Fregquencies for the Uniform Beam

We have seen in the preceding section that an external driving

term of the form Pm_l(x) e-lp¢ excltes resonances if the integer p

is near any of the eigenfrequencies where n = m,m-2,m-L,---. For
mn
A
. R mn
low intensities, I L Avsc’ and therefore resonances occur

for p near my, (m-2)v, (m -4)y, -.., as indicated below:

The external field causes resonances for p near

PO v

Pl 2v

P2 v v

P5 2v Ly

Ph % 3y Sv

P 2v Ly 6v

D
(2-1)

Dipole modes are excited by PO’ P2, Ph’ »++, gquadrupole modes by
Pl’ P5’ P5, «++ , Sextupole modes by P2, Ph’ *++ , octupole modes Dy
Pj’ P5, -+« , ete. In the limit of zero intensity, these resonances

reduce to those obtainsd from the single-particle apvrrozch; the eguation

of motion for the individual particles is

x) cos g (2-2)
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and if we consider only sma2ll departures ©®x from the statiocnary orbits
x = A cos(v0¢ + @), where A and « are constants, resonance occurs

for p = my (m —2)vo, (m - h)vo, **+, as indicated in (2-1).

O’
However, if nonlinear terms in ©&x are allowed in (2-2), the
resonant growth caused by the driving term x cos p¢ is usually
serious only for m< 2; for larger values of m the amplitude
dependence of >VO’ which results from the nonlinearity of the driving
term, generally causes the respnant growth to De negligible.jo
Presumably this is also true in the presence of space charge. Then,
since % can be expressed in terms of Legendre polynonials of order
less than or equal to m, only the driving terms Pm_l(x) and resonant
frequencies On with m < 3 need be considered, namely W oy

@ w

317 T30

Resonance occurs for integral values of these eigenfreguencies,

and from Table IV we find:

Driving term Resonant condition Mode (m,n)
Py vy = 1 rigid dipole (1,1)
P vo=L 42 Ay uniform quadrupole (2,2)
1 0~ 2 "I “Vse S ’

vo=n + 2 Ay nonrigid dipole (3,1)
0 8 “sc = - ’

P2 . .
VO = 3— - '8— f;vsc Sextupole (5,5)
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where n 1is any integer. These resonant values of are shown in

Yo
Fig. 22 for the beam intensity corresponding to Avsc = % 3 additional

resonances are also included, and the dipole, guadrupole, and sextupole
modes are drawn separately for clarity. The rigid dipole mode is

excited by PO at integral values of Vo whereas the nonrigid dipole

modes are excited by P2, Ph’ <+« for near n + Av,. The uniform

Yo
quadrupole mode that was examined in Part I is excited by Pl at

vg = % + % AV s whereas the quadrupole modes that do not maintain a
for

uniform charge density are excited by P near

30 Ps Yo

2. Av . The sextupole, octupole, and higher-order modes are excited
2 sc ?

n . . X
for vo near ¢+ Av s where are the zero-intensity subharmonic

n
k
freguencies.

Comparison with the Water-Bag Distribution

Ehrman and dePackh6 have examined the oscillations of the
stationary distribution that has a uniform particle density in phase
space; the particles are confined by an external harmonic potential and
oscillate with the frequency Vo in the absence of space charge. Since
the volume occupied by any group of particles in phase space is incom-
pressible (neglecting collisions), this uniform particle distribution
acts as an incompressible homogeneous fluid, and hence the name water-
bag distribution.

a. The stationary distribution

We will examine the stationary distribution in more detail
before descriving its small-amplitude oscilliations. For low intensities,

the distribution has an svproximsately circular boundary in the
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rr ing to Y = are
corresponding A/sc T
quadrupole, and sextupole ncdes

m < 5.
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Fig: 22. The resonant values of Vo for the beam Iintensity

shown for the dipcle,

excited by Pm(x) with
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X - L aﬁ space, and a nonuniform charge density in real space. As
v
0

the intensity increases, the charge density becomes more and more uniform,
until at the limiting intensity for which the space-charge force exactly

balances the focusing force (the plasma frequency equals vo), the charge
density is exactly uniform and the particles within the stationary distri-

bution are motionless (the beam emittance is zero).

1

The zero-order distribution f.(r) = —
0 Vo

, 0 rg1l, is
shown in Fig. 23b, where r is the radius of the individual particle

.
orbits in the x - — %% space in the absence of space charge, and fo

v
0
dx
)

is normalized so that ffodxdv =1 (v = Eﬁ . For AG synchrotrons the

space-charge forces are small in comparison with the external focusing
force, Avsc << Vgs SO that the stationary distribution in the presence

of space charge differs from the zero-order distribution fo(r) by
YANY
sc
Yo
difference is approximately 2%, which is negligible. The normalized

terms of order For Av typically % and ~ 10, this

sc Yo

charge density po(x) = ffo(r)d -2 Vi - X for the zero-order

his
distribution is also shown. Since the charge density is not uniform,
the self-forces are not linear, and the particles within the stationary
distribution oscillate with different frequencies. It is shown in

Apvendix D that the revolution frequencies for the individual particles

Avsc

within the stationary distribution are given to first order in

by
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Fig. 23. The uniformly charged bean (a), water-bag beam (b), and

Gaussian bean (c) are shown: fo(r) is the zero-order
stationary distribution, po(x) is the normalized charge
density for fo(r), and v(r) = vo LV g{r) is the

frequency cof the individual carticles within the statlionary

istritution to first corder in
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wWhere
2x

g(r) = J[ po(r sin w) cos® w dw s (2-5)
0

a1

involves an integration over the unperturbed orbits. The quantity Avsc
has been defined before [Ea. (2-8), Part I]. It is proportional to the
average charge density within the beam, and is identical to the space-
charge-induced frequency shift for a beam with uniform charge density,
i.e., for the normalized chargé density po(x) = constant = %, Eas. (2-k)

and (2-5) give v(r) = constant = vy = Ovg,- For comparison, the zero-

order distribution for the uniformly charged beam (fo = 1 )
2r 1 - 1‘2
Vo

is also shown (Fig. 23%a), as well as the Gaussian distribution observed
1

- 2
in the Brookhaven AG3 9 (Fig. 23%c), namely fO = %;% e 2.2r , with the
o
50 -n.o%°
normalized charge density po(x) = — e . Note that the charge

distribution for the water-bag beam 1s intermediate between that of the
uniform beam and the Gaussian beam.

For the same total charge Nl, and the same beam size a, the
water-bag and Gaussian beams have a higher central charge density than
the uniform beam. As a result, the space-charge-induced frequency
shifts Avscg(r) are larger for the nonuniform beams, since the
cos2 w term in Ea. (2-5) weights the integration over po(r sin w) in
the favor of smrall values of the argunent r sin w. For the water-bag

beaz vy(r) varies vetwesen +(0) = -~ v, and

1‘/0 —
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- - 22 ~ . - : : . :
v(l) = vy 5 Av .~ Vg 1.08 &vg 3 for the Gaussian beam it varies

B

between v(0) =~ vy - 1.67 tv,, and v(l) = vy = 109 oy .

b. Small-amplitude oscillations

Ehrman nhas found the small-amplitude oscillations that perturd
the boundary of the stationary water-bag distribution while maintaining
the uniform particle density in phase space, namely the surface modes.
These modes, for which the perturbation is large only near the bean
boundary, are very similar to fhe m = n surface modes of the uniformly
charged beam. The additional nonsurface modes that perturb the uniform
particle density within the boundary were not found.

For low intensities, the surface modes have an approximate n-fold

rotational symmetry in the x - %— %% space, and oscillate with the
0 .
frequenciesBl
8 n
a)n = nv(l + 3. n—g———l Lﬁvsc R | (2-6)

where n = 1,2,3, . For n =1, W = Vo, and this is the rigid
dipole mode for which the beam oscillates rigidly back and forth at
the zero-intensity betatron frequency. For the first three surface

modes we find
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Water-bag Uniform beam
=Y “1 7 Yo
@, = 2v(1) + 0.454 AV, Wy, = 2v + % Dy
@, = 3v(1) + 0.291 av, Wy = v+ % Bvee . (2em)

For larger values of n, the frequency shift from nvy(l) is very nearly

8

= i . nn .
3 AV s which has the same_form as the frequency shift o OVge for

the uniform beam, where M is a number of order one that increases

slowly with n (Table IV). As n approaches infinity, the eigen-
freguencies w, approach ny(l); the perturbed charge density tends to
cancel with itself, and the perturbation is carried along nearly intact

at the frequency of the boundary particles, v(1) = yvy. - 1.08 Avsc'

0]

As the intensity increases to its limiting value, corresponding

to a% = Voo the eigenfrecuencies ¢ avproach the plasma freguency

&

hrman~ ) as do the eigenfrequencies

=

@, in the same menner (Fiz. 3 of
for the surface modes of the uniform beam (Fig. 20). We conclude that
the eigenfrequencies for the surface modes of both distributions are
very similar.

The low-intensity resonant conditions for the first three

surface modes of the two distributions are



I
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Water-bag Uniform beam
Vo = D v = 1
Vo T % +0.853 av, Vo T % * g BVse
Vo T % +0.985 BV Vo T % * % Nse (2-8)

The driving terms that excite these water-bag modes have not been
determined, but it is reasonable to assume that they are similar to
those for the uniform beam. Fér example, we expect a gradient error to
excite primarily the n = 2 quadrupole mode, but also to excite weakly
the additional nonsurface quadrupole modes. 1In the same spirit, we
expect only the low-order water-bag resonances listed in (2-8), plus
perhaps one or two nonsurface modes, to be detected in accelerators;
the nonlinearity of the driving terms reguired to excite the higher-
order modes should prevent additional modes from being observed.

Gaussian Beam

The eigenfrequencies for the Gaussian beam have not teen found,
. 21 - - T .

but Welbel has solved a very similar proviem. He considers a one-
dimensional system of electrons in an external harmonic potential, and
finds the eigenfreguencies for the small-amolitude oscillstions about a
staticnary Gaussian distrioution. However, he considers only the case
for which the charge density of the stationary distrivution is completely
neutralized by a background of immobille positive ions so that all the

particles within the stationary distri:

o

ution oscillate with the same

In contrast, the charge within an accelerator is not
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neutralized and the individual particle freguencies for the Gaussian

distribution vary between v{0) = v, - 1.67 Av,, and

0 c

v(l) = Vo T 1.09 Avsc' In any event, the eigenfreguencies found by
Weibel have a form very similar to those of the uniform beam and the

water-bag bean.

2.2 =2 2r2
For the neutralized Gaussian distribution fo(r) = Ej_ e 7,
0
Weibel finds oo
(Dll = VO + 1.22 A;VSC' ) (.1)51 = VO + 0-131 AVSC )
Wy = 2vo + 0.356 AVSC s W, = 2vo + 0.089 Avsc B
Wys = Bvg * 0.222 Av (2-9)

and it can be seen that the frecuency shifts from nvy are very

0
similar to the freguency snifts from nv(l) for the water-vag beam

(Eq. 2-7) and from n(vo - Avsc) for the uniform beam. In particular,

the frequency shifts for the surface modes are:

m=n Gaussian Water bag Uniform
1 1.22 Avsc 1.08 Avsc Avsc
2 0.35& Av C.bsk Ay L Av
d ‘/ sc 2 sc
. \ .2 2
5 0.222 LYge 0.291 LVee 8 fVge . (2-10)

For the two nonsurface modes of (2-9),
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(m,n) Caussian Unifornm
(3,1) 0.131 Av, 0.125 av
(4,2) 0.089 IS 0.125 &v_, - (2-11)

These results for the neutralized beam can be extended to the
charged beam provided the effect of the freguency spread v(0) - v(1)
within the charged beam can be neglected: we assume that all the parti-
cles within the stationary distribution oscillate with the same freguency
v and replace Vo in (2-9) by the effective frequency V. The value
of Vv 1s determined by the requirement that the rigid dipole mode,
which in this case is obviously the m =1, n =1 mode, oscillate with
Then v =~

the freguency - 1.22 Avsc; this 1s near the mean

VO-

1

frequency [v(r) fo(r) dxdv - 1.28 Av,, within the stationary
distribution and is a reasonable extrapolation from the effective
frequencies vy T Avsc and Vg T 1.08 Avsc for the uniform and water-
bag beams. With this replacement in Egs. (2-9), the resonant conditions

for the Gaussian beam become

VO = n 3 VO = n + 1.09 AVSC y
L o - 241.0
vo T 3t P Avge vo = 3t 0T v,
= 24115 A (2-12)
Vo T3 2 BV 0

ns from the known resonant conditions

[e]

which are reasonable extrasolati

N
ce

34

I

ms

P
e
e

for the uniform and water-: 2-8).

o
==
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3. (Conclusion

We have investigated the small-amplitude oscillations of a one-
dimensional system of charged particles that interact with one another
by Coulomb forces and are held together by an external harmonic potential.
Because the large number of discrete particles (approximately 1012),
each with two degrees of freedom, has been replaced by a continuous
distribution, the system has a twofold infinity of degrees of freedon
and therefore a twofold infinity of ncrmal modes and eigenfreguencies.

In the limit of zero ihtensity, the eigenfrequencies for any
stationary distribution are Just harmonics of the zero-intensity

betatron freguency and each eigenfrequency is infinitely degenerate.

Vo
Resonances occur for integral values of nvy, and these are Jjust the
integral, half-integral, and subharmonic resonances that are familar from
single~-varticle theory. For intensities of interest in AG synchrotrons
(Avsc << VO)’ the degeneracy 1s at least partially removed, and the
eigenfrequencies occur in clusters near the unperturbed eigenvalues

<

ny For larger intensities, the charge density of the stationary

0"
distributions becomes more and more uniform until at the limiting
intensity, for which ab = Vo the cherge density is exactly uniform.
Consecuently, the eigenfrecuencles for the surface modes apprcach the
plasma freguency, while the eigenfregquencies for the nonsurface modes
approzch zero.

The eigenfrecuencies and norral modes for the stationary

distriopution that n

Ar)

5 a uniform charges density in real spzce have Teen

S

B ~—~1

e

n de

W

[N
3
<
(8
0
ot
'_—I
J
W
ot
[¢]
o
.Jo
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field are particularly sirple, being just Legendre polynomials. For low
A
intensities, the eigenfreguencies are w = nv + Ay , wWhere
™mn n sc
V=V T Avsc is the revolution frequency of the particles within the

A
stationary distribution and —%E Avsc is the frequency shift induced by

the collective oscillation. 1In the x - %— %% space, the eigenfunctions
0

have an approximate n-fold rotational symmetry and a radial variation

with EL%—E nodes; in real space the perturbed charge density is
ap
proportional to _Eg:l' The frequency shift from ny is relatively

large for the low-order, coherent modes, wnile it is very small for the
higher-order modes, for which the perturbed charge density tends to
cancel with itself.

External driving terms of the form Pk(x) cos pf excite the
m=k+1l, n=%k+1, k-1, k -3, +++ modes and cause resonances

: PR

for w,, Rear the integer p. However, the resonances with m > k
will generally be suppressed by the nonlinearity of the driving term
required to excite them. Therefore, from the twofold infinity of
possible modes, only four are likely to be serious for the uniformly
charged beam: the rigid divole mode (=1, n = 1), which is excited
by magnetic field errors for integral values of Vo the cuadrupole

mode (m =2, n = 2), which is excited by gradient errors for

n_ 3 . o, . i .
Vg = 5 + T Avsc’ the sextupole mode (m = 3, n = 3), which is excited
n 7
f J il A : znd ti nrizi i o =
by Pg(x) for vy =3 g Av and the nonrigid dipole mede (m = 3,
U 9
= 1 o o : [ oY Y = = .
n = 1), whicr is excited Y Pg(x) for vy =n+ g AV

Two team: witn noruniform crharge density were also examined, =z

N

Gaussisn oeznm similer to that observed in the Zrookhaven AGS z2nd tre
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water-bag beam, which has a charge distribution intermediate between

that of the uniform beam and the Gaussian beam. Despite the relatively
different charge distributions, the eigenfrequencies for the surface
modes of the water-bag and uniform beams have the same form and very
similar numerical values. The eigenfrequencies for the Gaussian beam
were extrapolated from the known eigenfrequencies for a neutralized
Gaussian distribution, and are also very similar in form and numerical
content to those for the uniform and water-bag beams. Because of this
similarity, it is reasonable té assume that corresponding modes in the
three distributions are excited by the same driving terms; for example,

a gradient error is expected to excite primarily the n = 2 surface

. n . . ;
modes, causing a resonance for vo = 5+ % Lvg, 1n the uniform beam,
n .
for vog =5 0.853 Av,, in the water-bag beam, and for
n . R .
vo =35t 1.04 Lv . 1n the Gaussian beam. In the same spirit, only the

first three surfzce modes and one or two nonsurface modes are expected
to be observable in accelerators, in analogy with the uniform beam.
For the future, it 1s possible that the exact eigenfrequencies

and normel modes for any distribution, at least to first order in

, can be found by stationary perturbation methods, i.e., the

methods that are used in quantum mechanics to compute perturbved eigen-
functions and energy levels. Since only five or six mcdes need be

examined, the perturvaticn approach should converge withoutl excessive

o

calculation. Perturcation methcds might alsc be applied to two-

dimensicnzl tezms to examine the effects of space caarge on sum and
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difference resonances, and to three-dimensional beams to examine the
space-charge coupling between longitudinal and transverse motions. Since
relatively few modes are involved, it might also be feasible to determine

the large-amplitude behavior of these modes by analytical methods.
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APPENDICES

A. The Nonexistence of Uniformly Charged

Three-Dimensional Beamns

We are given an ensemble of three-dimensional harmonic

oscillators with the Hamiltonian

n
fas
N
H

H(P?):-CD = p +4 , 0 (A1)

Because of the ineguality, the accessible region in phase space is a
six~dimensional unit sphere; in configuration space it is a 3-sphere.

2) that

5 . . . . coas 2
Does there exist a spherically symmetric distribution f(p~ + g
has a uniform projection onto the 3-~sphere? The following necessary
condition for the existence of such a distribution has teen found by

Maurice Meuman.

X . . . ‘s . 2 2
Theorem: The spherically symmetric distridbution f(p~ + ¢”) does not

. c o s s 2 2 2 . .
exist if its projection p(c”) = [f(p" + qc)dBp violates any of the
following inejualities:

(3 )2 3
< 3\ ’ OsTsTo
T
p(r)
8 5
< 5 Vi-71 F<TSL . (A2)
5t
The maximum permissivle value of (1), which corresponds to the ecqual
sign, is shown in Fig. (Al). An immediate consesguence of this thecrem

. . 2 2
distrivuticn f(p~ + 27)
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2.0

T 3

P max

Fig. Al. The maximum value of p(7) from Eq. A2 1is shown

as a function of .

oS

XBL6895~3915

Fig. A?. The function gT(t) specified by Ec. (A8) is

shown as a functicn of +.



-10%- - UCRL-18L45L4

Proof of Theorem: f 1is normalized by

3
jf(p2 + ¢9)adpddq = = f £(£)t% at = 1
0

(43)
The mean of any function g(t) is
1
5 5
mean g = T~ Jf g(t) f£(z) t° at (AL)
0
and the resulting number can neither exceed the largest nor fall
beneath the smallest value of g(t) (0 t<1):
inf g mean g L sup g . (A5)
The projection of f is
[oe]
1
ola”) = Jrf(p2 + 02)d3p = 2= J[ £t + qg)t2 at
° (45)
or 1
1
o) =z [ ) (2P e (a7)
T
Consider the function
2
g (t) = (& '2T) for 0K T<t<1

= 0 for t <+ (48)
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which is shown in Fig. A2. Tts mean value is proportional to p(7),

2
-g—— p(T) = mean g, < sweg_ . (A9)
| X h 5
T 1 3 )2
b - < = = —— — — =
But for 3 T<1l, suwp &, = mX g, g'r( 3> 16 ('r » and
for Yao>1 supg =g (1) =V1-+ Q.E.D
3 s T = T } = . . . .
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B. The Amplitude-Phase Equations for Two-Dimensional Beams

In the absence of space charge and gradient errors, the solu-
tions of the two-dimensional envelope Egs. (%-1) and (%-2) can be

written in the form

% = l+A2-]+Asin(2v¢+a)

X 3
ax
£F < vx A cos(2vxﬂ +Q)

Il

2

2° Vi+8° +8 sin(2v2¢ + B)

v, B cos(EVZQ +3) (B1)

N
S
1l

where A, B, @, and 8 are constant. When Egs. (Bl) are inserted into
the complete envelope ecuations with space charge and gradient errors,

we obtain the following first-order eguations for A, B, Qx, QZ:

2

w

2oV 4% 1 o-ar V1 44% cosq , (32)
VX X SX X

&8

2

w 9' )

V—D— V1 + B° I, - Avsz‘\/l +3° cosq , (33)
Z

&l&

2
A M = SEL-N‘ + A V1 4 ;5. sin Q. + 2AA: (BL)
EZ~ - vy % Vsx M X Yy
2

o))
N
@)
—~
td
N
p

B = - —X + Av 1+ 3 sin 9 + 22Av 3
1 3Z Z Z

4

£
<
N
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plus additional terms that vary with the frequencies 2vx, EVZ, va,

hvz, etc. We have defined Q= (QVX -n)¢ + a, Q, = (2vz - n)g + B,

n n
Avx = Ve T 5 sz =V, T % and

I - b COS 4 du with u = ﬁ + Q

x = 25 x(ax + bz) ' =n x
© (B6)

b + 1 + A2 sin u

My = 2n f x(ax + bz) du (37)

0

with similar definitions for IZ and MZ. The quantities Iv and IZ

are relzated by

aAl_ + bBI_ = O . (r8)

A. Eouzl Freguencies and Emittances

In general, Ecs. (B2) - (B5) are very difficult to solve;
however, for the special case of equal frequencies (vx = VZ) and equal

emittances (a = b), analytic solutions exist with the forms

<2 V1 +4° +4 cos(nf + Q) ,

il

2 2

z- = 1 +A" tAcos(ng+a) , (B9)
vhere the plus sign occurs for a symmetric gradient error (Avsx = Avsz)
and the minus sign for an antisymmetric gradient error (Avsx = —Avsz).
For either gradient error, IX =I = 0 and MX = Mz, so that

)} reduce to

23]
o)
)
TN

32) - (3

N
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dA 2 .
Eﬁ = Avs 1L +A sin @ 5 (B1O)
aQ \/ 2 .
A T %Avsc M, +Av Y1 + A" cos Q+28av (B11)
where
57
. 1 +A -1 .
M, = A s for + in B9 (B122)
and
1 2 k2
M = ==l ~-=.-—=FK(k)} , for - in 39 (B12v)
- 2k b 2
A
and K(k) is the complete elliptic integral of the first kind with
modulus k = A
/ 2
V1+a

The phase trajectories in A,

Q

space are found by dividing

Bl1O) b 311l) and integrating the result:
(B10) by (311)

constant =

where

and

(B1L)
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M_dA 1| 2 f x(x)
f———g—:E[ﬂnA-;f—E—dk . (B15)

1+ A
The fixed points %% = 0, %% = 0 satisfy
Av s Av
1 S 2 sc
Q =0, A=-Z=V1+A" +2——mM
or (B16)
Ay Ay
1 S 3/ 2 sc
Q =, AZEAT 1 +A +2AV Mi B

and are shown in Fig. 10, For Avs = 0, these equations specify the
amplitude of the free envelope oscillations that are periodic.
Because of the nonlinearity in the envelove equations, a
gradient error of ones g;mmetry also affects the normal mode solutions
of opvosite symmetry. Thus the symmetric fixed points of (Bl8) are
modified by an antisymmetric gradient error, and vice versa. For

example, in the absence of all gradient errors, the symmetric envelope

oscillation has the form
5 N
= 22 = V1+a® 44 cos ng (B17)

where

An antisymmetric gradient error transforms these fixed voints into
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>
Il

\/i + A2 + A cos(ng +Q) ,

z = 1+4° - A cos(nf - Q) , (B18)

Av
where for Z;i << 1, Eags. (B2) - (B5) becone

Av
Acos 0 = —=
s N ’
2 Av
A sc
. = == . (819)
1/ 2
1+ A -1
Ay

S \ \ -
For small vealues of N they approach very closely the form (Bl7), as
shovm in Fig. 11. The symmetric gradient error mpdifies the antisym-

metric fixed points in an analcgous rwanner.

B. General ZBeam Confizurations

The response curves for Vo . v, and a + b can be obtained
from Eas. (B2) - (B35) by numerical methods. However, for sirplicity,

we consider only the bv o = C, bvg, = 0 asymototes, in other words,

the free envelovpe oscillations that are periodic. Equations (B2) and

(B3) then reguire that 1.=1,

if @ - Q, = 0,7, so that

it

O, and this condition is satisfied

£ = \/Im+ AT + A cin(nd + Q) ,

' (B20)
o) ~
zm = 1 +3° +£3Bsin(ad +Q) .
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The quantities A and B are then determined by (B4) and (B5):

2 en s
A wE b f A+V1+2% sinu

T 2v AV, 2x x(ax + bz) du
X X
0
(B21)
2 2 /.
B = % N B * 1.+B2 sinudu

z(ax + bz)

O\-_“§\

These integral equations were solved numerically, and the solutions are

shown in Fig. 1k.
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C. Normal Modes that Oscillate with the Freauencies ny

The uniformly charged beam (Section 1, Part II) has normal-mode

solutions that oscillate with the freguencies nv, where n is an

= .\/‘VOE - wpg ,

the form E:m(x) = Pm_l(x), and the perturbed particle density is

integer and v The electric field for these modes has

determined by Eq. (1-£) to have the form

-ing (r)

€un ’ (c1 )

f(r, 8) = fmn(r, 8) + e

vhere fmn(r, 6) is given by Ea. (1-21) with ® . =nv. The function
gmn(r) is determined by the condition that f(r, ©) produce the

required electric field, P_ .(x):

m-1.
ar (x)
m-1 .
2 A /f(r, o) av . (c2)

If (Cl) is inserted into (C2), we cbtain the following ccndition for

B (7):
1
de_l(x) cos n9 gwn(r)
(1 -K(ny)] ———— = s rdr (c3)
nm ax ! - o 9\
x|  Vr® - x~
where cos QO = %. For even values of n, the right-hand side of (C3)

is an even function of x, and therefore m must be even; for odd values
of n, m must te odd.
There.is an infinite number of solutions for n =0, 1.e., an

N oy I'4 -
nat differ from f.{r) ©oy

cl

infinite nurber of staticnary distritutions
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an infinitesmal perturbation. Using Abel's theorem > to invert (C3),

we find
2
(£) = 2l1+ 2] ¢ (x)
820\ "/ = 2 L2 | ot
v
© 2
1 2
g.(r) = 3l1+-L (15r° - 11) £ (r)
Lo 2 2 0
Elhy
wz\
g6o(r) = % 1+ ___B_WE. (142rl‘L + lhr2 -1) fO(r) ,
16-16y /
(ck)
Consequently, for m =2 and n = 0,
QPE dfo 1 wD2
f(r, 8) = - :5— T Fcos 28+ 511+ Z:E £, ,(C5)

and similarly for the higher values of m. Since these solutions all
have the same eigenvalue « = 0, any combination will also be a
solution.

For n greater than zero, Km(nv) is infinite if m > n.

Therefore the functions g _(r) specified by (C3) exist only for mn < n,

mn
and these values correspond exactly to the blanks in Table ITI. TFor

exarple, for n =1 or n = 2 there are nc solutions. For n =3

there 1s one solution, with
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£ = fl3(r’ 8) +e glz(r)

{In this case the left-hand side of (C3) is zero, and it is more

convenient to determine ng(r) by the eguivalent relation
1
1 o .
1 - Km(nv)] Pm—l(x) = == J[ rdr sin n@, gmn(r) . (co6)

Equation (C3) is the derivative of (Cé) with respect to x.} For n =14
there is also one solution, whereas for n = 5,6 there are two solutions,

and so on for the higher values of n.
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D. TFrequency Spread for Nonuniform Stationary Distributions

The Hamiltonian for the individual particles within a stationary

distribution f(p, g) is

1,2 22 2
H o= 50 +v07) +af o) (p1)
where
2
- -2 ftmaa (p2)
dqg )

and where [ f(p, a) dp dq = 1. We have chosen the units of q so
that the beam boundary is q = #l1, and have defined ub as the plasma
freguency for the average charge density.
The revolution frequency of the individual particles is deter-
2

mined by (D1) and (D2). For AG snychrotrons, o = << vog, and it

W \2
suffices to find H to first order in (;ED , namely H=H

ot Hl’
2 22 2 .
where Hj = E(p * Vg Q ) and H = @, Qo(q) with
dEQO
—s— = -2 [f(H)dp = -2p,() . (D3)
qu 0 0

In terms of the action and angle variables J,w given by

a =7\ 2 sinw s w = y.¢ + constant, (Dh)
Yo 0’
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the zero-order Hanmiltonian is HO = vOJ; the transformed first order

Hamiltonian Hl(J) ~is just the average of Hl(p, Q) over the

unperturoed orbit,55

2 21«

4 i 27
Hl(J> = -2%~ j(; (DO(\\/_V;O‘ sin w> dw . (D)

Tne freauency of revolution of the individual particles is then

2 21
“ g 27 . p
v(J) = vy * 534/- 2 ;g sin w | dw . (D6)
-0

If the differentiation is performed, followed oy an integration by

parts, Ea. (DS) becones

2
2 . 2
vir) = vo T v, = po(r sin w) cos” w dw (D7)
0]
2J . - X s .
where r = o is the radius of the unperturbed orbits and
0
2
w
D
AVSC T2y, "
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o
o

+ K(s)X - = = 0 ,

no

is equivalent to the two "Cartesian" equations

L 4 x(s)y = 0 ,
ds
2
L2 4 k(s)z = 0
ds

2 2 dz v

where X2 =y +z and E =y S " %2 3s Thus if v falls

within a stopband, both ¥y and =z and conseguently X grow
arbitrarily large while E remains constant. '
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dgx 2vAy
D sc
5t K(s)x_ - T % = ©

where Xp is the x -coordinate of a particle, and the envelove

has the form

Av 2vav_ cos nf
x = 1+ SC _ S
oy L 2 - 2 4
v - CVvav -1
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plus free oscillations. Combining the two eguations, one obtains

e
dx 5

P+ | vS - 2vav_ + 2vav_ cos nf - 2vav

2 sc s sc
ap

2viv  cos ny
X 5%, = 0 ;
uvz - 6vAv -n P
sc

where the nonresonant, free oscillations are neglected. For the

intensity Dv ., = Dv, this equation becomes
o
dx nA\2
gp + (5) X = 0 B
ag P

no resonance occurs.
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0.75 ~
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E Assuming
Vo 5" g
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2 o 1
1 2 v 2 . v v -‘<¢ 2
f(X, V, ¢) = 2av 1-x - 2‘ + 2¢l x -~ l% X—-\;- - -—2 (S 1
v v

. . . - /E dx
where now x 1s measured in units of \ =, V= az, and
v

X

€ = —=— . This expression is identical with f = f. + ..,

F 0 22

v
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ar
e 0 RO N\ ~iaff
— - = = ~ - ne .
f22 5 ar T (1v sin 26 2 cos 2 / e
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~-inw

fpn(J, w) = e 8(J - »), W = nvO(J) ,

n

where (x) is the usual delta function and p 1is a continuous
parameter that varies between zero and Jmax' The normal modes are
now discontinuous functions in analogy with the Van Kampen modes
(Ref. 28) for an infinite homogeneous medium, and the eigenvalue
spectrum 1s continucus in sections near nvO(O).
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2 W
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Wy = BlVg " T35 18! = nv(1) + 3~ 2 1 BVge )
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-+
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