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TRANSVERSE SPACE CHARGE EFFECTS IN CIRCULAR ACCELERATORS 
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INTRODUCTION 

The beam of particles in an accelerator is a many-body system of 

charged particles interacting with one another by electromagnetic forces 

and held together by external focusing forces. Such a many-body system 

has a large number of modes of collective oscillations that can be 

excited by machine imperfections at characteristic frequencies. In the 

limit of low intensities, the interactions are negligible, and the 

collective modes and eigenfrequencies are easy to fir.d. Consider, for 

example, a one-dimensional beam in an external harmonic potential; in 

the absence of space charge, the individual particles obey the equation 

+ 
2 

v x == 0 

and any distribution of particles rotates rigidly in the 1 dx 
x - -; d\O 

phase space with the frequencey v. A distribution with circular 

symmetry (Fig. la) is stationary, while a distribution with circular 

(1) 

symmetry, but displaced from the origin (Fig. lb), oscillates with the 

x' x' x' 
v v v 

x 

(a) (b) 

Fig. l. 



_ ... 

-2- UCRL-18454 

frequency v - in real space, the beam oscillates rigidly back and forth 

at the frequency v. In fact, there is an infinite number of modes with 

the circular form of Fig. lb, each with a different radial dependence, 

but each oscillating at frequency v. Similarly, there is an infinite 

number of modes with the elliptical symmetry of Fig. le; in real space, 

these modes expand and contract with frequency 2v. In general, there 

is an infinite number of modes with a given n-fold symmetry of rotation, 

and each mode oscillates with the frequency nv. Therefore, in the 

absence of space charge, the eigenfreq'J.encies for any distribution are 

just harmonics of the unperturbed betatron frequency, and each eigen-

frequency is infinitely degenerate. 

Resonance can occur when an eigenfrequency is an integral 

multiple of the rotation frequency in the accelerator, i.e., when 

nv = m; this condition is of course identical with that obtained from 

the single-particle ayproac~, which is equivalent to the many-body 

approach in the limit of zero intensity. Thus if a driving tern of the 

form 
n 

x cos k ¢ is added to Eq. (1), the various dipole modes (Fig. lb) 

will be excited if v = k and n = 0,2,4,···; the quadrupole modes 

(Fig. 

modes 

modes. 

le) are excited 

if 
k ar:d v = 3 

if 

n 

k 
v = 2 and the sextupole 

2,4,6,···, and so on for the higher-order 

Space-charge interactions modify these results. For intensities 

of interest in synchro':rons, and for small-amplitude oscillations, the 

eigenfrequencies are stif-ced oy small a"l.ounts proportional to the beam 

intensity, and tl:e d.:o~enerac:-_.- is removed so that the eigenfrequencies 
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occur in clusters near the unperturbed, degenerate values nv. As a 

result, each of the forbidden lines on a tune diagram that would occur 

for an integer, half-integer, or subharmonic value of v in the absence 

of space charge is split into an infinite number of closely spaced 

lines. For example, the various dipole modes that are excited for the 

same frequency v = k in the absence of space charge are excited in the 

presence of space charge at different frequencies that are clustered 

below the value v = k: there is one mode for which the beam oscillates 

rigidly back and forth at the unperturbed frequency v, but there is 

also an infinite nun1ber of nonrigid modes whose eigenfrequencies are 

shifted below v = k by amounts proportional to the beam intensity. 

The above remarks apply only to small-amplitude oscillations. 

For larger-amplitude oscillations, space charge provides a very effective 

mechanism for limiting beam growth through the nonlinear dependence of 

the space-charge forces on the shape and size of the beam. A quantita­

tive study of this i1!I9ortant effect is extremely difficult in the general 

case; however, it was shown by Lloyd Smith
1 

and by P. M. Lapostolle2 

that the quadrupole mode excited by gradient errors in uniformly charged 

beams can be analyzed even in the nonlinear regions. 

In Part I of this paper we examine this case in detail. In 

Sect~on 1, self-consistent equations of motion for the beam boundary 

are derived for unif'orml;:,r c!1arged beams with one and two degrees of 

freedom. The derivation, which is more general than we need, is 

applicable whenever the self-forces and external forces acting on the 

individual ~articles witiin the beam are linear. In Section 2, the 
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envelope equation for the one-dimensional (planar) beam is solved, and 

in Section 3, various two-dimensional (cylindrical) beams are examined. 

For either case, the nonlinear character of the space-charge force 

causes the frequency of the quadrupole mode of oscillation to depend on 

its amplitude. Thus the beam growth caused by gradient errors is always 

bounded. We also investigate the process of resonance crossing that 

results from slow variations in external focusing or effective space-

charge force and find, for gradient- errors of the -magnitude normally 

encountered in AG synchrotrons, that resonances can be crossed in the 

direction of increasing frequency with only a small increase in beam 

size. However, if the resonance is crossed in the direction of decreasing 

frequency, a substantial increase in beam size can occur. For example, 

if the beam is caused to bunch in the synchrotron, the space-charge force 

increases, and the beam size can grow quite large near the intensity 

predicted oy the bunched incoherent space-charge limit. However, a 

prebunched beam whose intensity is considerably larger than the incoherent 

space-charge limit may be successfully accelerated. In this case, the 

resonance is crossed in the direction of decreasing space-charge force, 

and very little beam gro-vrth occurs. Thus, the incoherent space-charge 

limit, as usually defined, need not imnose a limit on the beam intensity. 

Similar results have been derived by F. Sacherer,3 and by P. M. Lapostolle 

4 and L. Thorndahl. 

In Part II we investigate the other modes of collective oscilla-

tion that are excited by machine irc1perfections. For simplicity we 

restrict our attenti::n~ to one-dimensional, planaY oea.11s, anci consider 
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only small-ampl1tude oscillations. In this case the twofold infinity 

of normal modes (:plasma oscillations) and eigenfrequencies can be found 

by means of the linearized Vlasov equation and Maxwell's equations. 

Harker5 has given a general :prescription for reducing these equations 

to an integral equation of the Fredholm type, but numerical methods are 

usually required to extract the eigenfunctions and eigenvalues. However, 

an important result of this :paper is a direct method for finding all 

the normal modes and eigenfrequencies for the stationary distribution 

corresponding to a uniform charge distribution in real space. 

In Section 1 of Part II, we find the eigenfunctions and eigen-

values for this case, and determine which modes are excited by a given 

external driving force. Then, since the complete eigenvalue spectrum 

is known, the resonant frequencies for the various dipole, quadrupole, 

and higher-order modes can be located on a tune diagram. Besides being 

useful in themselves, these results :provide considerable insight into 

the more difficult normal mode :problem for nonuniform beams. 

In Section 2, this mode structure is compared with that obtained 

6 by Ehrman for the stationary distribution that has a uniform :particle 

distribution in :phase space. In this case the charge density in real 

space is approximately uniform, and we find that the eigenvalue spectra 

for the two distributions are very similar. We also extend these 

results to a distrioL<tion with Gaussian charge density similar to that 

measured for the Brookhaven AGS. 
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PART I. UNIFOill'1LY CHA.."'i.GED BEAi•IB IN THE PRESENCE OF 

GRADIENT ERRORS 

1. Envelo-pe Equations 

In this section we find self-consistent envelope equations for 

the case in which both external forces and self-forces acting on the 

particles in a beam are linear. The requirement of linear forces 

restricts us to uniformly charged beams and to linear machine imper-

fections, namely gradient errors, but allows us to study the effects 

of space charge on large-amplitude oscillations of the bea..'Il. 

We first consider the simple case of a beam with only one 

degree of freedom, then extend the derivation to two degrees of free-

dam, and finally show that the derivat:ion can not be extended to three 

degrees of freedom. 

The One-Dir:iensional Bee .. m 

In the absence of space-charge forces, we take the equation of 

motion for the individual :particles to be 

+ K(s) x 0 (1-1) 

where K(s) is the external focusing function, s measures distance 

along the equilibrium orbit, and all the particles are assumed to have 

the same velocity ds 
dt 

v • 
p 

The self-forces acting o:l a :particle arise from the internal 

charges anci curre:i..ts wi F2ir.. -'.:;he beam, 7 as well as fro:n the charges 

and ct<.rre:::.ts induced iD. the vac1J.U..'J. c:C-,a,r:,"'::er -..ralls, 8 and also fr:Jm 
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collisions between particles. Fortunately, the effect of collisions 

is negligible for the times of interest, and for the low particle densi­

ties typical in accelerators.9 

We incorporate the image force into the external focusing term 

K(s) x, and neglect its nonlinear components and its weak dependence on 

the beam size. Then the net effect of the image force is to shift the 

tune by an amount that depends on intensity and energy but not on the 

b . 8 . t t t th d" t lf f earn size, in con ras . .o e irec se - orce. 

We also neglect the magnetic field component that results from 

the transverse particle velocities because 

a thousandth of the longitudinal velocity 

remaining magnetic field component is just 

dx 
dt 

ds 
dt . 

v 
D 

2 

----
2 

c 

is only a hundredth to 

The force from the 

times the electric 

force, and need not be calculated explicitly. The complete self-force 

is 1/12 times the electric force.7 

The electric field calculation is simplified by neglecting the 

curvature of the equilibrium orbit and by neglecting the variation of 

the beam cross section with s. Actually the beam is modulated around 

the orbit circumference, but the modulation length is approximately half 

the betatron wavelength and is therefore negligible in comparison with 

the transverse dimensions of the beam. 

The beam geometry t!1.en has the rectilinear form shown in Fig. 2, 

and in order that the self-forces be linear, the charge density must be 

unifor:n between the boundary planes, x = ±X(s). We assu'-le for the 
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x 

Fig. 2. 

moment that the particles can be arranged in the d.x 
x - ds 

UCRL-18454 

z 

phase space 

to produce the required uniform charge density, and that the charge 

density remains uniform as the system evolves under the action of the 

assumed linear forces. Then the equation of motion for the individual 

particles is 

+ K(s )x 
Nl 

·--- x 0 
' 

(1-2) 
2X(s) 

where 
eN1 

2X(s) is the charge density and eN1 is the total charge per 

unit surface area. It is convenient to write (1-2) in the form of the 

two first-order equations 
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d.x 
ds == p 

' 

[-K(s) 
4rre 

2 
Nl l dp 

ds + 
r3mv 2 • 2X( s) x ' 

p 

and to define X == (;) so that Eqs. (1-3) can be written in the 

compact matrix form 

dX(s) 
---a:s- F(s) X(s) 

We also introduce the transfer matrix T(s, s
0

) 

X(s) 

and note that the elements of T(s, s0 ) satisfy 

(1-3) 

(1-4) 

(1-5) 

(1-6) 

Since we know the equations of motion for the individual particles, 

we can determine the evolution of ar.y distribution of :particles in phase 

space. In :particular, if the distribution at any :position has the 

elliptical boundary 1, where is an arbitrary 

symmetric matrix, then the boundary remains elliptical at other values 

of s and has the form 

(1-7) 
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where M(s) == T(s, s0 ) M(s0 ) T(s, s0 ). We can use (1-6) to write the 

equation of motion for M(s) in the differential form · 

dM(s) 
ds F(s) M(s) + M(s) ~(s) 

which depends only on the known quantities F(s). 

' 
(1-8) 

The relationship between the components of M and the boundary 

ellipse is showr-~ in Fig. 3, where the area of the ellipse is rr '/Det M 
1 

, 

which we designate by :-:-E. We are primarily interested in the beam half-

p 

x 

Fig. ). 

width X(s) 'fMll(s)
1

, and it is convenient to parameterize M( s) 

in the form 

x2 XP 

M 
E2 ' (1-9) 

XP p2 +-
x2 
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~-
where -v.l:' +---;?- is the maximu.m extent of the distribution in the 

p-direction. Then the equations of motion for the quantities X(s), 

P(s), and E(s) follow immediately from (1-8): 

dX 

ds 

dP 
ds 

dE 

== 

ds == ~(Fll 

+ 

+ 

+ 

F22 )E 

E2 
Fl2 3 

x 
(1-10) 

For a Hamiltonian system, F11 + F22 = O, and thus E is constant, 

which is just Liouville's theorem. l1'hen the form of F(s) corresponding 

to Eq_. (1-3) is used, Eq_s. (1-10) reduce to 

+ K(s)X == 0 
' 

(l-11) 

for the beam half-width X(s). 

We now demonstrate the Eq. (1-11) is self-consistent, i.e., that 

the individual particles can be distributed in phase space to nroduce 

the assumed W1iform charge density within x = ±X(s). We require that 

the particle density in x-n space a~ have the form 

f(x, p, s0 ) = f[~1-1 (s0 )"-(], where f(x, p, s)dxdp is the number of 

particles at s ·,;=._ t::--"in the ranges (x, x + dx) and (p, p + dp). Then 
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at arbitrary s ·the distribution has the form f(x, p, s) 

and the functional form of f is determined by the requirement 

00 

f "" -1 f[X.M (s)X]dp (1-12) 

-oo 

We solve this equation by introducing the new variables 

v = c::) = D(s)X, where the matrix D(s) satisfies 

D(s) D(s) (1-13) 

Then the quadratic form Xr1-1 (s)X is transformed into and 

the elliptical distribution becomes circular, as shown in Fig. 4. 

p 

(a) (b) (c) 

Fig. 4. 

Actually, the four components of D(s) are not uniquely specified by 

(1-13) because M(s) depends on ocly three para2eters; the ellipse is 

manned ::.::.to a circ:e ~ut t!:!e orien::aticn of the circle is not specified. 
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We fix the form of D(s) by requiring that the vertical lines 

x =constant be mapped into vertical lines in v (Fig. 4c). Then 

D
12 

= o, and D(s) is determined by (1-13) to be 

D 

1 
x 

p 
E 

0 

x 
E 

(1-14) 

This is a convenient choice for D(s) because it maps the integration 

over p in Eq. (1-12) into an integration over v2, with 

The requirement of uniform charge density is then simply 

' 

where the range of integration is restricted to 

that (1-15) is independent of s. In terms of the radius 

r = \Jv1
2 

+ v2

21
, Eq. (1-15) becomes 

1 

J 

X( s) 
dv2 = -E- dp. 

(1-15) 

Note 

(1-16) 

This integral equation can be inverted by Abel's theorem10 to give 

N 1 

(~x )2' ' 

(1-17) 
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which is the unique solution of. (1-12). This demonstrates that the 

particle distribution required to produce a uniform charge density does 

indeed exist. It occupies the interior of the boundary ellipse 

~ -1 XM X = 1, and the particle density approaches infinity at the boundary. 

Equation (1-11) is then the envelope equation for this distribution. 

Actually, this method for finding self-consistent envelope 

equations is not restricted to uniformly charged beams, but is applic-

able whenever the external forces and self-forces are linear. For 

example, it was used by H. G. Hereward and A. S~renssen to study longi-

11 
tudinal beam effects-- where, due to the shielding of the vacuum 

chamber, a parabolic charge density is req_uired to produce linear self-

forces. For any case, the envelope equations are just equations (1-10) 

where F(s) is specified by the equations of motion (1-4) for the indi­

vidual particles. T!"le distrioution f(Xt~-1x) that produces the 

required charge density p(x), 

00 

p(x) J 
' -oo 

~ -1 
f(XM X)dp (1-18) 

can be found by the same procedure that was used for the case of 
x 

uniform charge density. The condition J () (x)dx = :N
1 

requires that 
-x 

Nl ( ) p(x) have the form 2X g ~ , and Eq. (1-18) can be transformed by 

n·(s) into the circular form 

J J (1-19) 
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which can be inverted by Abel's theorem provided 
. t• 10 1s con .1nuous. 

Thus, the self-consistency of the envelope equations is guaranteed 

provided p(x) has a continuous first derivative. 

The Two-Dimensional Beam 

In principle this method can also be extended to beams with two 

and three degrees of freedom. The matrix equations remain formally 

valid when the vector X(s) is increased to four or six component, but 

now the constants of the motion "" -1( ) XM s X describe hyperellipsoids 

the four- or six-dimensional phase s:paces. The required distribution 

function f(Xi.(1 x) that prod'.lces linear self-forces can be found by 

transforming the defining equation for f into the circular form 

analogous to (1-19), but now for four or six dimensions. 

in 

Consider first the case of a beam with two degrees of freedom. 

We again assume that all the :particles have the same velocity ds 
VP = dt 

and for the purpose of calculating the electric field, that the beam is 

in the form of a cylinder with an infinite extent in the s direction. 

Then the c::mdi tion of linear self-forces re~uires that the beam have an 

elliptical cross section and a uniform charge density. However, the 

axes of the elliptical cross section need r..ot be aligned with the 

coordinate axes, and t!'le external focusing force may include linear 

coupling between the two transverse directions. The evolution of the 

' 

distribution is then determined by a four-by-four matrix F(s) (Eq. 1-4), 

and the constants of the '1:.0tion ~'1-lX describe hy:perelli:psoids in the 

dz dz 
x, ~ z phase sDace. 

ds' ' ds 
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We can immediately write the defining equation for f in the 

form 

(1-20) 

where the integration is restricted to and 

where the constant can be determined by the normalization of f.
12 

This 

shortcut avoids the specification of D(s). With a change of variables, 

Eq. (1-20) becomes 

1 

J f(q) dq 

0 

(1-21) 

where N
2 

is the number of particles per unit length in the beam. The 

required distribution function is the solution of (1-21): 

( ""' -1 5 1 - XM X) 
' 

(1-22) 

where 5(x) is the usual delta function. The particles are distributed 

with uniform density on the surface of the four-dimensional hyper-

ellipsoid ""' -1 XM X = 1, who~e shape and orientation is specified by the 

ten independent paraneters of the four-by-four matrix J.I(s). 

The self-forces are de~ermined by the projection of this distri-

bution onto the physical x-z :plane. This projection is U.'liform and 

has the boundary 
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+ + - ~32 (1-23) 

which describes an elli~se of area In terms of 

the major and minor axes and angle of rotation as shown in Fig. 5, 

z 

/ 

Fig. 5. 

/ 
/ 

these matrix elements are 

M_ 2 2g b~ . 2 _Ll a cos + - sin g 

2 . 2g 2 2 a sin + b cos g 

and the self-forces are easily determined. 

x 

The evolution of the distribution is then determined by 

(1-24) 
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(1-25) 

where F(s) contains the known external forces as well as the self-forces, 

which depend on the matrix elements M11, M
13

, and ~3 . In general all 

ten equations of (1-25) are necessary to describe the evolution of the 

system. However, if the equations of motion for the individual particles 

do not involve coupling between the two transverse planes, and if the 

hyperelli:!)soid is oriented so that the off-d.iagonal submatrix with 

elements is zero, then the hyperellipsoid will 

maintain this orientation and these matrix elements will remain zero. 

The remaining six equations (three for the x direction and three for the 

z direction) can be parameterized in the form analogous to (1-9) for the 

one-dimensional beam. The self-fields for this case are 

e 
x x(x + z) x and z z(x + z) z, and the envelope equations 

become 

+ K (s )X 
x 

2 2 
E 4e n2 1 x 

0 
x3 r3mv 2 • x + z 

p 

2 
(1-26) 

E 2 4e n
2 1 z 

0 
z3 y3mv 2 x + z 

p 

+ K (s)Z 
z 

where X(s) and Z(s) are the bea111 half-widths, and E 
x 

and E 
z 

are 

the bea~ e~ittances in the dx 
x -

cis 
and 

dz 
2 

- ds nhase s:;iaces. These 
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self-consistent envelope equations, which describe a cylindrical beam 

oriented with e = O in Fig. 5, were first obtained by I. M. Kapchinsky 

and V. V. Vladimirsky.
1

3 

The Three-Dimensional Beam 

Finally consider the case of a beam with three degrees of 

freedom. The condition of linear self-forces requires that the beam 

have an ellipsoidal shape in real space and a uniform charge density. 

Then Eq. (l-8) will specify the beam envelope provided a distribution 

of the form f(XM-1X) exists that produces tfie req_uired uniform charge 

density. In this case the defining equation for f has the form 

constant 

(1-27) 

This equation unfortunately has no solution that can be interpreted as 

a distribution function. The forms of the one- and two-dimensional 

distributions indeed suggest that the progression from 

f oc (1 - YJ.( 1X)-~ in one dimension to f oc 5(1 - XM-1X) in two 

dimensions ·will have no extension to three or more dimensions. The 

actual pro::>f, due to Maurice :Neuman (private communication), is 

reproduced in Appendix A. 
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2. The One-Dimensional Beam 

We are now in a position to investigate the motion of tl:ie uni-

form one-dimensional beam in a self-consistent manner. We rewrite the 

envelope equation (1-11), 

+ K(s)X = 0 (2-1) 

where X(s) is the beam half-width, rrE is the beam emittance, Nl 

is the number of particles per unit surface area of the beam, and v p 

is the particle velocity. The external focusing term K(s) includes 

both the ideal focusing forces and gradient errors. The nonlinear 

emittance term arises from the conservation of the beam emittance, and 

has the same form as the centrifugal force term that results from the 

conservation of angular momentum in central force problems. It prevents 

a beam with finite emittance from becoming arbitrarily small, but in the 

absence of space charge, it does not limit the large-amplitude growth. 14 

However, in the presence of space charge, the combination of the last 

two terms in (2-1) will limit the resonant growth of the beam. 

We first eliminate the rapidly varying part of K(s) from the 

envelope equation by transforming to '!smooth" variables. In the absence 

of space charge, tee periodic. solution of (2-1), Xp(s) = Xp(s + C), 

where C is the orbit circumference, can be found by standard methods 

once K(s) is known. It is conventionally written in the form 

X (s) 
p = (2-2) 
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where ~(s) is the familiar amplitude function of Courant and Snyder.
15 

Then if we transform to the dimensionless variables 

x 
X(s) 
X (s) 

:p 
¢ (2-3) 

the unperturbed envelope equation (in the absence of space charge and 

gradient errors) becomes 

+ 0 (2-4) 

where v is the number of betatron oscillations :per revolution and ¢ 

increases by 2rr each revolution. The general solution of this equation 

is 

2 
x 1/1 2' 

+ A + A sin(2v¢ + a) 

where A and a are arbitrary constant.s. The matched solution is 

(2-5) 

A = 0 and x = l, and any other solution oscillates about this matched 

solution with the frequency 2v. Thus the dimensionless variable x 

measures the beam envelope in units of the unperturbed matched envelope. 

In terms of the variables x and ¢ the complete envelope 

equation becomes 

+ 
2 (v + 2v6v cos np)x s 

2 
v 

x3 
2v6v 

SC 
0 (2-6) 
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where we have assumed an ~th-harmonic gradient error with stopband width 

t:w s' and where the last term is actually a function of s (or ¢), 

(2-7) 

In what follows, we replace 13 ( s) by its average value R 
v 

and neglect 

the high-frequency small-aID?litude ripple corn.ponents in the already 

small space-charge term. Then 6vsc is independent of ¢ and has the 

form 

6vsc (2-8) 

a -- \ fiP:'vR where V ~ is the average arnpli tude of the unperturbed envelope. 

The quantity 6v 
SC 

is the space-charge-induced freQ.uency shift for a 

beam whose envelope is constrained to the constant value a; it is a 

convenient measure of the beam intensity and is in fact identical with 

the expression conventionally used for predicting a space-charge limit. 

Before solving the nonlinear envelope equation, it is informa-

tive to examine its small-amplitude solutions. In the absence of 

gradient errors, Eq. (2-6) has the constant solution 
6v 

x = 1 + ~ 
2v 

and for oscillations of small amplitude 5 about this constant value, 

the equation becomes 

+ (4} - 6v6v )5 
SC 

-2v6v cos nd s 
(2-9) 
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Thus the envelope oscillates with the natural frequency 2(v - t 6vsc)' 

and resonance occurs for 2(v - t 6vsc) = n. If v is larger than a 

half-integer by the amount 6v, i.e., 
n 

v = 2 + 6v, then resonance occurs 

at a bea.m intensity corresponding to the value 

4 
6vsc = 3 6v (2-10) 

which is one third larger than the value usually assumed. The fallacy 

in the usual procedure for predicting space-charge limits lies in the 

assumption of a constant beam size: if the envelope modulation is 

neglected, resonance occurs when the individual particle frequency 

v - 6v falls within the stop band at ~2 ; in other words, for the 
SC 

intensity 6vsc = 6v. However, the modulation of the envelope causes 

the self-fields to exactly cancel the effect of the gradient error at 

this intensity,
16 

and the resonance is shifted to 
4 

6v =-6v. 
SC 3 This 

shift in resonant intensity is not restricted to uniform beams; it 

occurs for any mode of collective oscillation and is discussed in detail 

in Part II. 

The amplitude of the :periodic solutions of the linearized 

equation (2-9) are shown in the form of a response diagram for fixed 

in Fig. 6. The asymptote represents the free envelope 

oscillations, which.are periodic for the intensity 6vsc The 

remainder of this section is concerned with the distortion of these 

curves in the large-amplitude region by the nonlinear terms in (2-6). 
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Fig. 6. Response diagram for the linearized envelope equation: 

x max 

6vs 
1 + where the quantity 

,36vsc - 6v I ' 
6vsc 

2v 
in 

the constant solution x 
6vsc 

1 + -- has been neglected. 
2v 
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General Sc:ilution of the Envelone Equation 

Both the space-charge term and the gradient-error term are 
6vsc 

small for alternating-gradient synchrotrons--they are of order 
v 

6vs 
and -- compared with the remaining terms. Consequently we treat 

v 

these terms as perturbations and use in place of 

variables A and a defined by 

2 
x -v 1 

2' 
+A + A sin(2v¢ +a) 

x and dx aw the 

' 
(2-11) 

dx 
x d95 vA cos (2v¢ + a) 

In the absence of perturbations, both A and a: are constant, while 

for small perturbations they change slowly in time, with small high-

frequency variations superimposed. If Eqs. (2-11) are inserted in the 

envelope equation (2-6), the follc:iwing first-order equations for A 

and a: result: 

dA -6v -V1 2' 
[(2v - n)¢ +a] (2-12) dp +A cos 

' s 

2,,-

+ -V1 A2' . 6v 
do: 

6v -/1 
21 

- n )¢ + a:] - SC 

~ 
A + sin u 

A aw= + A sin [(2v 

-V~2+A 
---. s rt 

sin u 

(2-13) 

plus additic:inal terms that vary with the freq_uencies 2v, 4v, etc., 

which are neglected. 

Equations (2-12) and (2-13) may be combined and integrated to 

obtain the constant of the motion, 

du , 
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constant A sin '11 2' 
+A 8 

6v 
SC 

6v 
· 1(2;. E(k) 

k 
(2-14) 

where Q == (2v - n)¢ + ex and E(k) is the complete elliptic integral 

the second kind17 with modulus k2 = 2A This equation 

A + v1 + A2 

specifies the phase trajectories in the A, Q space, or alternatively 

by means of (2-11), in the 

orbit, i.e., for any azimuth 

dx 
x - ~ phase space at any point along the 

¢. In particular, Figs. (?a) and (7b) 

show typical trajectories for azimuth ¢ = 0 and for two values of the 

of 

beam intensity, while Fig. (?c) shows the same trajectories as Fig. (7b), 

but for azimuth ¢ 11 As expected, the phase trajectories are always 
n 

bounded and the beam size remains finite. 

Of special interest are the fixed points, which have constant 

values of A and Q. They are ceterr:iined by Eqs. (2-12) and (2-13) to 

have Q = ~ and 

A 

which determines A 

6v 
SC 

+--
6v 

1 
2n: 

as a function of and 
6vsc 

6v 

corresponding to these fixed points is described by 

2 
x = -V1 2' 

+A ± A cos n9 J 

sin u du 
J 

sin u 

(2-15) 

The oeam motion 

(2-16) 
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Phase trajectories for ~- = 0.04. 
tw 

Figure (a) shows the trajectories at azimuth 

¢ = 0 for the intensity 
6.v 

SC 

!.w 
= 1.40; (b) shows the trajectories at the same 

azimuth but for the larger intensity 

same as those in (b) but now for 

h U+. passes throug 

¢ 

twsc 
6v 

T[ 

n 

The trajectories in (c) are the 

The separatrix is the trajectory that 

) 

I 
!\) 

---J 
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which represents a beam oscillating with the periodicity of the gradient 

error. The amplitudes for these periodic oscillations or fixed points 

are shown in Fig. 8 for several values of the stopband width 6v . s 
The 

response curves are distorted from the linearized diagram Fig. 6 because 

the nonlinearity causes the frequency of the envelope oscillations to 
6vs 

depend on amplitude; the C,v - 0 curve shows directly the amplitude 

dependence of the periodic free envelope oscillations. As a result, the 

resonant amplitudes are always ·finite. Another consequence of this 
6v 

distortion is the existence of three fixed 
6v 
6vs) 

points for SC 

6v 
greater than 

the critical value (which depends on rather than the usual single 

are stable whereas U+ is fixed point. The two labeled S+ and S 

unstable; it can be seen from Fig. 7 that configuration points near S+ 

and S 

points 

sions. 

oscillate with small amplitude about these points whereas 

near U+ may follow the separatrix and make much larger excur-

6v sc 
As the quantity decreases, the phase trajectories of 

6v 

Fig. 7b are transformed srr..oothly into those of Fig. 7a; the stable 

region around S+ shrinks down to a point and then disappears for 

6vsc 

6v 
less than its critical value. 

In the absence of both space charge and gradient errors, the 

matcted beam corresponds to the. solution x 1. In the presence of 

space charge and gradient errors, the matched condition corresponds to 

the lowest fixed }Joint of Fig. 8. This solution is periodic, so that 

the bea'TI envelope remains stationar:r with resyect to the accelerator, 

but it is modulated n -'.:imes arcur:.d tl-:e orci t circumference, where n 
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Fig. 8. Response diagram: x max 

curves to the left of 
6vs 

0 6v - correspond to the upper 

sign in Eqs. (2-15) and (2-16); t~ose to the right 

correspond to the lower sign. The points where the 

slope is vertical (indicated by the dashed curve) are 

referred to as critical uoints. 
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is the periodicity of the gradient error. Any mismatch will lead to slow 

oscillations in the envelope about this matched value just as in the more 

familiar low-intensity case. The frequency of these oscillations depends 

on which phase trajectory of Fig. 7 the beam is on, but near stable 

fixed points it is approximately 26v times per revolution. Note from 

Fig. 8 that the matched condition for large intensities closely 

approaches the low-intensity matched value x = 1, :provided the gradient 

errors are small and the intensity is not too near the resonant value 

6v 
SC 

4 
= 3 f>.v. 

Resonance Crossing 

The foregoing considerations apply only to a coasting beam 

whose parameters remain fixed. However, the parameters describing an 

accelerated beam change with time, and the beam may cross the 

resonance. We consider the worst case of a slow, adiabatic 

crossing. 

The envelope equations can be derived from a Hamiltonian with 

the canonical variables x and 
dx 

and there~ore Liouville's theorem 
dQ ' 

applies to the dx 
x - dO phase space. Configuration points lying on 

closed contours continue to lie on closed contours as the parameters 

are varied adiabatically, and the area enclosed by these contours remains 

constant. However, the adiabatic assumption breaks down near the 

stagnation point _+ .L .L U , so vhav the area enclosed by the sepatrix changes. 

For example, the stable pr1ase area around S+ becomes smaller as 

d.ec::-eases. 
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Consider first 
f'w 

the case of a resonance crossing in the direction 

of decreasing 
SC 

f'w 
A beam whose intensity is larger than the resonant 

value and whose envelope was adjusted before injection to the matched 

value x """ 1 oscillates with small amplitude about S + in Fig. 8, and 

corresponds to a point on one of the trajectories around S+ in Figs. 7b 
f'w 

and 7c. As the beam is accelerated, sc decreases and the stable 
6v 

area around S+ shrinks until the configuration point is forced onto 

the sepatrix. At this point the beam suddenly oscillates with a larger 

amplitude as its configuration point moves around the se:paratrix. The 

maximum beam size can be read directly from Fig. 9, which shoi·rs the 

maximum and minimum beam size for a point on the separatrix at the 
6v 

critical value of SC 

6v 
If the vacuun1 charriber is large enough to 

accom.modate this increase in beam size, then the resonance has been 
6v 

SC 

6v 
safely passed and the oscillations beccm1e smaller as continues 

to decrease. 

On the other hand, it is possible for a beam to cross the 

resonance in the opposite direction. For example, if the beam is 

bunched after injection, 6v 
SC 

increases. Also 6v = v 
n 
2 

may 

change during acceleraticin and cause 
6vsc 

6v 
to increase. In this case 

a nearly matched beam that oscillates around S continues to lie on 

a contour enclosing s as 
6v 

SC 

6v 

size increases indefinitely as 

Surn .. rnary 

increases, and therefore the beam 
f':..v 

sc increases (Fig. 8). 
6v 

This ccr:rpletes our analysis of the uniforr1 one-dimensional bea.11. 

In the nresence of gradien~ errors, the beam envelope oscillates, and 
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point on the separatrix at the critical value of 
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the value for which the stable area around S+ shrinks 

to a point. 



-33- UCRL-18454 

resonance occurs for the beam intensity corresponding to 
4 

6v = -
3 

6v; 
SC 

this is one third larger than the usual space-charge limit, which 

assumes that the beam size is constant. Furthermore, because of the 

nonlinear dependence of the space-charge force on the beam size, the 

envelope is always bounded. The amount of beam growth caused by crossing 
6v 

SC the resonance in the direction of decreasing has been calculated 
6v 

for nearly matched beams (Fig. 9), and is less than fifty percent for 

stopband widths 6v ~ 0.01 6v. s This resonant grovrth is minimized for 

small gradient errors and for large values of n 
6v = v - 2· On the 

other hand, adiabatic resonance crossing in the direction of increasing 

6vsc 

6v 
would produce very large resonant grmrths, and should be avoided. 
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3. Two-Dimensional Beams 

The envelope equations for the two-dimensional cylindrical beam 

can be written in terms of the dimensionless variables x and z as 

2 
d2x 2 vx 

+ [v + 2v 6v cos nG] -
dG2 x x sx · x3 

2 
v 

[ v 
2 

+ 2v 6v cos ndl - z 
z z sz " 3 

z 

tttJ 2 
p 

ax + bz 

ax + bz 

0 (3-1) 

0 (3-2) 

where again the ripple components have been neglected. The quantities 

and v z 
are the betatron frequencies in the absence of space 

charge and gradient errors. 

the beam semi-axes measured 

As in the last section, 

in units of a= 1~ 
v~ 

x and 

and b = 

z are 
fER1 

1 1 z 

v~ 
respectively, where a and b are the ser::ii-axes of the matched beam 

in the absence of gradient er:'or.:; and space charge. The quantity 

2N rOR 1 
--- ---
n:Ll ab 2 3 ' 

i3 y 
where N is the number of :particles in the bea,m, 

the classical electrostatic narticle radius, and B is the 

bunching factor (the fraction of the circumference occupied by particles). 

The space charge 

envelope x = 1, 

- _a_ .ruP 
6v = scz a + b 2v 

induced 

z l 

2 

frequency shifts for a beam 
Cl) 2 

b D are 6v ---·---· - and 
sex a + b 2v 

x 

with the constant 

An nth-harmonic gradient error has been included 
z 

with stop band widths :_\'; and 6v 
SX SZ 
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The overall envelope motion described by (3-1) and (3-2) is 

very simple: the envelope has two m::ides of oscillation, corresponding 

to its two degrees of freedom, and the resonant growth of each mode is 

limited by the nonlinear space charge terms just as for the one-

dimensional beam. However, the mathematical details are more complicated 

now: whereas the motion of the one-dimensional beam depends on only 

6vsc 6vs 
the two parameters and and can be represented by a config-

.6v 6v 

uration point moving on a trajectory in a two-dimensional phase space, 

the motion of the two-dimensional beam depends on six parameters and 

reouires a four-dimensional phase space. 

Physically, the envelope motion can be characterized by the 

degree of coupling between the x and z directions, which arises 

from the space-charge terms in (3-1) and (3-2). Very loose coupli~g 

occurs when the individual particle frequency vx - 6v is very sex 

different from vz - .6v scz Then the envelope motion is nearly one-

dimensional and the soluti::ins are similar to those found in the last 

section. On the other hari_d, very tight co·U:::oling occurs when 

vx - 6v is appr::ixiEately eaual to v
2 

- 6v ; in this case the sex scz 

x and z amplitudes of envelope oscillati::ins are approximately equal 

and the envelope motion is two-dimensional. In the foll::iwing we 

concentrate on a few special cases. In A the solution for the tightly 

coupled case and E x E z is presented in detail; in B 

several cases leading to the one-dicensional limit are briefly examined. 
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A. Equal Frequencies and Emittances 

In this case the envelope equations without gradient errors are 

d
2

x 2 
2 4vlw 

v SC 

d~2 
+ v x 

x3 x + z 0 (3-3) 

d
2z 2 

2 4v.6v 
v SC 

d0
2 

+ v z 
z3 x + z 

0 (3-4) 

2 

where with If 

we consider oscillations of small amplitude 
6.v 

5 , 
x 

5 
z 

about the constant 

solution x z = l+~ 
2v ' 

we fj_nd a syrr..:metric mode with circular 

cross section (5 = 5 ) that oscillates with the frequency 
x z 

1 
2(v - 2 6.vsc)' and an antisyw.rnetric mode with elliptical cross section 

(5 = -5 ) x z that oscillates with the frequency 2(v - ~ 6.v ). 
'+ SC 

Therefore, in the presence of gradient. errors of frequency n, reson-

ances occur for the beam intensities corresponding to 6.v = 2.6v 
SC 

and 

to 
4 

6.v = - 6.v 
SC 3 where again n 

6.v = v - 2· Note that these resonant 

intensities differ from the usual space-charge limit 6v = .6v 
SC 

that 

is calculated for a static beam. Any collective mode of oscillation 

produces similar frequency shifts, as will be seen in Part II. 

We now exa!Tline these two modes in the nonlinear regime. The 

symmetric mode is driven by the syrmnetric gradient error !w sx !'-" v , sz 

and the antisymmetric mode is driven by the antisyr1Jo.etric gradient error 

6v = - .6v • Wnerr either gradient error :.s included in (3-3) and 
SX SZ 



-37- UCRL-18454 

(3-4), the equations can be solved by the same method that was used for 

the one-dimensional envelope equation. The results are presented here, 

while the calculations are outlined in Appendix B. 

For the symmetric gradient error, we find symmetric solutions 

of the form 

2 
x 

2 
z = + A cos(n~ + Q) (3-5) 

where the slowly varying quantities A ·and Q satisfy the equation 

constant A cos Q + 26.v \/1 + A 2 
6.v s 

(Bl3) 

which specifies a trajectory in the two-dimensional A,Q space. The 

corresponding trajectories in dx 
x - dO space or z -

dz 
d9 space have the 

sa.rne form as those found for the one-dimensional beam (Fig. 7), but now 

the fixed points occur for Q, = O,r: and for values of A that satisfy 

A (Bl6) 

These fixed points describe a circular beam that oscillates with the 

periodicity of the gradient error. They are shown· in the form of a 

response diagram in Fig. 10, which is again distorted from the linearized 

diagram so that onl;;,r bounded solutions are possible. Note from (3-5) 

that the s~rrnmetric character of the normal mode solution (6 = 5 ) x z 

renains syrn:::etric ever: in the nonlinear regime, the only effect of the 

r.online:ari ty being to lii:il t its resonant a:r:oli tud.e. 
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For the case of an antisymmetric gradient error, there are 

antisymmetric solutions of the form 

2 
x 

2 
z 

"l 
-V1 

2' 
+A 

2' 
+A 

+ A cos(nc6 + Q) 

A cos(n¢ + Q) 

which describe an elliptical beam. Row A and Q satisfy 

(3-6) 

constant A cos Q + 2 tw -./1 + A2 

.6.vs 
- 2 

.6.v 
SC 

.6.v s 
[2n A - ;. J K~k) dk] , 

(Bl3) 

where K(k) is the cor.cc:plete elliptical integral of the first kind. l 7 

The resulting trajectories in x - or 
dz 

z - d() space again have the 

same form as those for the one-dimensional envelope, but now the fixed 

points occur for Q = o,~ and for values of A that satisfy 

A (Bl6) 

where k 

-Ji 
A 

2' 
+A 

They describe a beam that oscillates antisym-

metrically with the periodicity of the gradient error, i.e., x is 

largest when z is smallest and vice ve::sa, and are also shovm in 

Fig. 10. For either mode of envelope oscillation, the .6.vs = 0 curves 

represent the free e~velope oscillations that are periodic. 

Note from (3-6) that the antisymr:ietric cnaracter of the normal-

r::1ode solu~.ion ro~ - -"'· ) \ - ~ x z 
is ap}'..1roximately aaintained in tne nonlinear 
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regime. Indeed, this is a general result: the character of the normal-

mode solutions determined by the linearized envelope equations (the 

0 
ratio ~) 

oz 
is approximately maintained in the nonlinear regime, the 

main effect of the nonlinearity being to limit the resonant amplitudes 

of each mode. 

The nonlinearity also produces an additional effect that is not 

predicted by linear theory, namel:r, it produces a weak coupling between 

a gradient error of one sym.rnetry and a mode of envelope oscillation of 

opposite symmetry. Thus the response curves for the symmetric mode of 

oscillation in Fig. 10 are modified by the presence of an antisym..rnetric 

gradient error, and vice versa. Although this effect is small, it has 

been a source of confusion, so we briefly describe it here. We write 

the fixed points in the form 

+ A cos(no + Q) 

(Bl8) 
2 

z A cos(n~ - Q) 

where for the sy:rnmetric fixed points, Q = 0, :r, while for the anti-

symmetric fixed points, Tl 
Q = -, 

2 
3," 
2 

Figure lla shows the fixed-point 
.6v s 
.6v 

soluti::ms in the abseDce of gradient erroL°s, in other words the 

curves of Fig. 10. '!'he;:{ specify the amplitude dependence of the free 

envelope oscillations ttat are periodic. If now an antisymmetric 

gradient error is present, -l:te antisymrn.etric fixed points still occur 
.6v 

in the Q = o,~ planes, but contrary to linear theory, the s = 0 
.6v 

curves f'.)r the SJ'::'.':!'2etric fixed ::ioints are ~odified, as indicc:,ted in 

0 
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Fig. 11. The fixed :points in the absence of gradient errors 

is shown in (a); the transition from a purely antisymmetric 

gradient error to a purely s::,11:-'J:ietric gradient error is 

shown in (o), (c), (d), (e), and (f). 
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Fig. llb. The analogous situation occurs for the symmetric gradient 

error (Fig. llf). This coupling between fixed points of one symmetry 

and gradient errors of opposite symmetry insures that the tr&"lsition 

from a purely symmetric gradient error to a purely antisymmetric 

gradient error occurs in a continuous fashion, as indicated in Figs. 11 

(c), (d), and (e). However, only the smaJ_l-amplitude fixed points are 

affected, and in the following we neglect this weak nonlinear effect and 

assume that a mode of a given s:y'Tilffietry is affected only by driving terms 

of the same symmetry. 

Resonance Crossing 

If only one ty-pe of gradient error is present, the resonance 

crossing is similar to that for the one-dimensional beam. A nearly 

matched beam with x ""' 1, z ""' 1 and whose intensity is larger than 

the resonant value oscillates with 
6v 

small amplitude about a stable 

SC 

6v 
fixed point. If decreases, the stable phase area around the 

fixed point shrinks and eventually the configuration point is forced 

onto the separatrix. The beam then oscillates with a larger amplitude 

that can be read directly from Fig. 12, which shows the maximi.:un beam 
6v 

size for a point on the separatrix at the cri t-ical value of SC 

6v 

Note from Fig. 12 that the resonant growth for either mode of the 

two-dimensional beam is less than the resonant growth of the one-dimen-

sional beam for the same value of 
6vs 

6v 
This was to be expected, since 

the nonlinearity of the space-charge force is greater for the two-

dimensional beam than for the one-diCTensional beam. 
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Fig. 12. The maxir.mm oea:n size for a point on the separatrix at 
6v 

the critical value of SC is sho-.m for either mode of 
6v 

envelope oscillation for the cylindrical "beam with 

and v = v . :5':ir comparison, t!'.'.e maximum beam size for x z 

the one-dimensional beam is also shown (from Fig. 9). 
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If both types of gradient error are present, as is true in 

practice, both resonances may be crossed. One might estimate the total 

growth by adding the two separate growths from Fig. 12. However, an 

initially matched beam that crosses the first resonance (.6v = 26v) 
SC 

will no longer be matched when it crosses the second resonance. If 

this mismatch is large, the total growth may be considerably larger 

than the sum of the two growths. On the other hand, we have so far 

neglected the adiabatic damping of the beam size due to the increase in 

~' which may be large, depending on the acceleration program 

employed. 

B. General Beam Configurations 

In the remainder of this section, the envelope motion for other 

values of a 
b and is briefly examined. Fortunately, the effect of 

the nonlinearity can be largely separated from the linear effects, 

i.e., the normal mode solutions determined by the linearized envelope 

equations remain approximately valid in the nonlinear regime, the main 

effect of the nonlinearity being to cause the frequency of each normal 

mode to depend on its amplitude. Accordingly, we first examine the 

normal-mode solutions of the linearized envelope equations for several 

cases, before including the effect of nonlinearity. 

We write the linearized envelope equations, omitting gradient 

errors, in the f0rm 

+ M5 0 , (3-7) 



where M is the two-by-two matrix 

2 
I 4 2 2ab + 3b 2 
I VX - 2 (l)p 

(a + b) 

M 

a
2 2 

2 (l) 

(a + b) P 

and where 5 "Gx) is related to 

z 

b 
x = 1 + 4(a + b) 

a 
z = 1 + 4(a + b) 

x and 

2 
(l) 

l. + o 
v x 

x 

2 
(l) 

_E_ + 0 
vz z 
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b
2 

2 
2 (l) 

(a + b) P 

z 

2 
2ab + 3a 2 

2 (l)p 
(a + b) 

by 

(3-8) 

(3-9) 

The normal-mode solutions have the form x icov (0) . rl. 

5 = 5 e , where 
z 

(3-10) 

and where m satisfies det(M - m2 ) = o. 18 

We have previously distine;uished two limiting types of envelope 

motion, tightly coupled motion for which the x and z amplitudes are 

equal, ox = ± 5 , and loosely coupled motion for which one amplitude z 

approaches zero while the other remains finite. We find 

that tightly coupled motion results if 

2 

fro2 Eq. (3-7) 
(l)-p 

· 4v or if 

2 a - b 
a+ b 

wt.ere v 
1 -;::::-( v + v ) . The former condi ticn 
c_ x z 
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produces a symmetric mode with 5 = 5 ; the latter condition produces 
x z 

an antisym.'!letric mode with 5 = -5 , and is identical to the condi~.ion 
x z 

that the individual particle frequencies vx - 6v and vz - 6v sex scz 

be equal. Both conditions are plotted in Fig. 13. As the parameters 

b 2 
vx' vz' a' mp depart from the curves in Fig. 13, the envelope motion 

approaches the one-dimensione.l case. 

It is informative to examine a few special cases in detail. For 

a circular bee.m with a = b, the eigenfrequencies for either mode of 

envelope oscillation are 

(3-11) 

and there are t-..ro limiting cases to consider. If 

the eigenfrequencies and normal modes reduce to the tightly coupled 

case examined in (A), 

2 
(l) 

where 2 
4v6v . (l) p SC 

On the other hand if 

normal nodes are 

- (l) 
p 

2 

2 3 2 4v - - m 2 p 

This ca.se requires that 

fvx v I 
1 

the - >> 4 6v , z SC 

5 ''() ' + 

5 
1\ 

(_l ) 
(3-12) 

Jvx 
1 - vz I << 4 6.v . 

SC 

eigenfrequencies and 
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2 

x 
~ 2 b I N0..1~ tan-' 3 <;t 0 a 
~N 

.,, 
-I 

-2 

XBL689-3910 

Fig. 13. The beam parameters are s:-:iown for which the x and z 

amplitudes of envelo!Je oscillation are eq_ual. The plus 

curve is the condition for the symmetric mode, the minus 

curve for tte antisymmetric mode. 
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2 

2 

0 x 

0 
z 

== ( 1) 
' 

E 

(3-13) 

== (€) 
' 1 

where E 
6vsc 

4 iv - v I << 1. For this case the frequency difference 
X Z' 

Iv - v J is sufficient to overcome the coupling due to the space­
x z 

charge force, and the normal modes are one-dimensional. In practice 

1 6vsc ""'4" , so that the dividing line between tightly coupled motion and 

loosely coupled motion occurs for a frequency difference of 

1 
lvx - vzl ""'16. Thus, due to the weakr:ess of the space-charge coupling, 

a relatively small departure from the curves of Fig. 13 suffices to 

produce one-dimensional motion. 

Now consider the limit b a --) 0' but keeping ab constant so that 

the charge density remains constant. The beam approaches a planar 

configuration, and 

2 
== 

2 4v x 

4v 2 
z 

2b 2 
- - (l) 

a p 

?rn 2 
p 

0 x 

5 z 

~(4vx 
2 4v 2 

+ 3-Dp 2)' - z 

2 
(l) 

p 

(0) 
(3-14) 

l 

In this case the 0 
x 

::lode cs.n [;ave either of t~--:;e tigh"'.:ly coupled forms 

for s'.li -::;e.:Cle values of /v - '..Jz I x 
e.nd 2 
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with Fig. 13. However, as 
b 
a 

approaches zero, larger and larger 

intensities are required to excite this mode. i.e., to shift illx to 

b 
the integral frequency n of the gradient error. In the limit - o, a 

only the 5 mode can be excited, and this mode is identical to the 
z 

one-dimensional mode examined in Section 2. In fact, the complete 

nonlinear envelope equations reduce to the one-dimensional form 

2 
v x 

0 
x3 

(3-15) + 

2 2 

K (¢)z z 
vz (j) 

_K__ 0 
z3 x + (3-16) 

in this limit. The space-charge forces affect only the z motion, and 

if vx is sufficiently far from a stopband that x = 1, Eq. (3-16) 

reduces to the one-dimensional envelope equation (2-6). 

We conclude from these examples that the envelope motion will be 

one-dimensional for a wide range of beam parameters; in fact, due to 

the weakness of the space-charge coupling and because of the changing 

environnent within the beam, the envelope motion is more likely to be 

one-dimensional than two-dimensional. 

We now briefly examine the effect of the nonlinearity. We 

consider cases for wbich a is larger than or equal to b, and for 

which is closer to a half-integer than so that 

n 
vz - ~ - :::::: 1. n"' 

~hen t'.:e resonant ar:roli tudes are larger in the 
v -x 2 
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z direction than in the x direction, and this is usually the more 

serious case. 

We construct simplified response diagrams for several values of 

b 
a 

and /.. .. The usual linearized response diagrams have a vertical 

asymptote (the 6vsx = 6vsz = 0 curve) at each of the two resonant 

intensities, and the 6v sx =f O, 6v sz =f 0 response curves approach these 

asymptotes as the beam intensity approaches the resonant values. The 

main effect of the nonlinearity is to cause the frequency of each mode 

of envelope oscillation to depend on its alll})litude, which distorts these 

linear response curves so that only bounded solutions are possible. 

For simplicity we consider only the distortion of the 6v = 6v 
SX SZ 

0 

asymptotes. We show in Appendix B that these curves are specified by 

2 -V1 + A2 x = 

2 1./1 2' 
z = + B 

where A and B are deterrl!ined 

2 
(J) 

b 
A 

n 
= 2v 6v 2n: x x 

" c:. 
(1) 

B !l a 
2v 6v 2:c z z 

where u = no + Q, n 
Liv = v - -x x 2' 

+ A sin(n~ + Q) 

(B20) 

± B sin(n~ + Q) 

bv .J the integral equations 

2:-r 

J 
0 

2,, 

~ 
and 

A + .y;-:-;: 
x(ax + bz) 

-v~ 2' 
B ± + B 

z(ax + bz) 

n 
Liv = v z z 2 

sin u du 

(B21) 

sin u du 

These equations 

were solved nu.::ericall:y: ar:d the solu-'.:.ions are shown in ?ig. ll+. 
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5 (a) A=l,K=I 

3 

5 
z 

(b) X= - , K = I z 
5 6 

3 

x x x 
z 

z z 
5 ( c) 

).:l. K=I 2 l 

3 

z 
I 
0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 

XBL689 - 3905 

Fig. 14. The 6v 
SX 

0 as;;-m3)totes are shown for various 

values of the 3)ara~eters f. and 
b The K == a 

ordinate is x or z max' the abscissa is 
max 

6v 

G l 
6v sex'\ scz ---

6v K' \ ~v I ... ,·. 
z x 
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Figure 14a shows the familiar case of equal frequencies and 
6vs 

equal emittances (the !::;v - 0 curves of Fig. 10). There are two 

resonances, corresponding to the two modes of er..velope oscillation, 

and for each mode, the axnpli tude of the x motion is equal to the ampli-

tude of the z motion. For the other cases, the two resonant intensities 

are further apart, and the amplitudes of the x and z motions are no 

6vz b 
longer equal. Because of the choice of parameters ~- < 1, -< 1, 

6vx a 

the largest amplitude occurs for the z direction and for the lower-

intensity mode. As the frequencies beco:ne different, but a is kept 

equal to b, Fig. lh (b) and (c) result, and the solutions approach 

the limiting one-dimensional modes 5 x 

were foW1d before. In the other limit, 

(~) and oz = ( ~) that 

b 
a 

approaches zero and the 

solutions also approach the one-dimensional case. In particular, the 

curves of Fig. 14 (g), (h), and (i) are ir..distinguishable from the 

6vs 
= 0 as:rmptote of the one-dimensio!.'lal beam (Fig. 8). The inter-

6v 

mediate case of an aspect ratio b 
a 

1 
3 

is shown in Fig. 14 (d), (e), 

and (f). In this case the lower-intensity m::ide is also very similar to 

that of the one-dimensional beam. 

Summary 

We have investigated the erwelope m'.:ltion for a uniformly charged 

cylin<iricc.l bea_rn. 3ecause of its two degrees of freed'.:lm, the envelope 

has two m'.:ldes of oscillatior:c that can oe excited by gradient errors. 

The solutions for a bes.CT ·..ri th and E = E were uresented in 
x z 

detail; it, !-,as a s:::::::.":.etric ~::>de o~ oscills.tic:r, t::-.at is e:zcited r:ear the 
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6v == 2.6.v, and an antisymmetric mode that is excited near 
SC 

4 6v == - 6v. For any type of beam, the process of resonance crossing 
SC 3 

is similar to that for the one-dimensional beam. If the resonances are 
6vsc 

crossed in the direction of decreasing --;;::;--' the beam grows a finite 

amount, whereas if the resonance is crossed in the opposite direction, 
6v b 6v SC Z the beam continues to grow as increases. As or 

6v a 6vx 

approaches zero, the resonances become further separated and the envelope 

motion becomes one-dimensional. In fact for an aspect ratio of 
b 1 

' 6vz 1 
a 3 

or for --<- the resonance in the z direction dominates and the 6v 2' x 
beam motion is essentially one-dimensional. 
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l+. Conclusion and Au::ilications 

We have considered the effect of gradient errors on a beam of 

charged particles in an alternating gradient synchrotron. Usually, 

gradient errors are assumed to limit the number of particles that can 

be accelerated. This limit (the tranverse incoherent space charge 

limit) is calculated by assuming that the beam size remains constant; 

then the number of particles that can be accelerated is limited to that 

number which just lowers the effective betatron frequency to an integer 

or half-integer. Actually, the diameter of the beam depends on the 

oscillation amplitudes of the individual particles, and if a gradient 

error causes these ar~,?li t.udes to grow, the beaJn size also grows. Thus 

the usual calculation is not self-consistent. 

In Section 1 self-consistent equations of motion for the beam 

envelope are derived for beams with one and two degrees of freedom. We 

assume that all the particles within the beam have the same azimuthal 

velocity and execute betatron oscillations about the same equili'.:Jrium 

orbit, and that only linear forces act on tne individual particles. 

The last assumption requires tr,at the charge density within the beam be 

uniform and that the nonlinear cor\:)'.)Dents of the image force be 

neglected. The resulting envelope equations are nonlinear because of 

the nonlinear dependence of the space charge force on the shape and 

size of the beam. 

These envelope equations were solved in Sections 2 and 3. For 

sma2.l a!:T:Jli tude oscills..tions of the one dimensior.al (planar) ·ae2,rc.1 

bee..,.':'l oscillates wi tn i:l:.e fre~uency 
-z 

2(v - ? ~v ), and resonance occurs 
'-1- SC 
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for n = 2(v 

4 
6v8 c 3 6v. 

- ~ 6v ), i.e., for the beam intensity corresponding to 
'+ SC 

However, for larger amplitudes of oscillation, the 

frequency of oscillation depends on amplitude as well as on intensity; 

for fixed intensity, the frequency increases with amplitude. In 

consequence, a slow traversal of the resonance in the direction of 
6v 

SC 

6v 
increasing will cause the beam to grow arbitrarily large: near 

the resonant condition n = oscillation frequency, the amplitude 

increases, which causes the oscillation frequency to increase until the 

resonant condition is no longer satisfied; a further increase in 6vsc' 

or decrease in 6v, lowers the oscillation frequencJ' and restores the 

resonance condition, which causes the beam amplitude to again increase, 

and so on. On the other a slow traversal of the resonance in the 

direction of decreasing 

hand, 
6vsc 

6v 
causes only a finite increase in beam 

size. The amount of 

is less than 50~ for 

beam growth de!)ends 
6vs 
--<; 0.01. 
6v 

6vs 
only on the ratio and 

6v 

The resona.11t behavior of the two dimensional (cylindrical) bea.rn 

is very similar. In this case two resonances are possible, although for 

a wide range of beam parameters, including most practical configurations, 

only one resonance occurs. 
6v 

An adiabatic resonance crossing in the 

SC 

6v 
direction of increasing causes an arbitrarily large increase in 

6vsc 

6v 
beam size, ~1ereas a crossing in the direction of decreasing 

causes only a finite -beam growth, which is less than the one-dimensional 
DV 

beam growth for the sar.le value of s 

We conclude that gradierr'.: errors will not limit beam intensity 

or cause ~article loss, provided slow resonance crossings in the 
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direction of increasing 
6vsc 

6v 
are avoided, and provided the ratio 

6vs 

6v 
is sufficiently small at the resonant intensity. 

Application to AGS 

As an application of these results, we examine the two modes 

of envelope oscillation for the Brookhaven AGS. The relevant ;parameters 

. 19 are obtained from van Steenbergen, who has measured the vertical ;phase 

space emittance and density distribution in the energy range 50-400 MeV. 

First consider the situation i:mn1ediately after the injection, 

when 7.7 x 1012 
;particles occupy most of the machine circumference 

(B ~ 1). At this time, the betatron frequencies in the absence of space 

charge are v = 8.35 and v = 8.92 x z (as extrapolated from Fig. 6 of 

van Steenbergen), and the vertical emittance is 11.6 cm-mrad. 

-V¢zR --Thus b = 2.3 cm 
vz 

(R = 128 m), and assuming an aspect ratio 

a . 
b = 2, we find 6v = 0.14 sex 

and 6v = 0.28 (from the equations scz 

following 3-2). These are the space-charge-induced fret;uency sbifts 

for the individual :particles within the matched bearn, with the constant 

size a = 4.6 cm and b = 2.3 cm. Gradient errors cause the beam to 

oscillate, and for small am;plitudes, the two modes of envelope oscilla-

tion are determined by Eqs. (3-8) and (3-10). In this case, the modes 

are nearly one-dimensional, and we find 

7 
2v - 7 6v 

x o sex ' 
5 

x (4-1) 
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(4-2) 

where E: ~ 0.1. For the above parameters, 
1 
2 (.l)x = 8.26 and 1 

- (I) 
2 z 

and these frequencies are well removed from the 

8.0 8.5 9.0 

half-integral resonant values; an intensity of 17 x 1012 particles is 

required to shift 1 
- (1) 2 z to the nearest value, Therefore gradient 

errors are not expected to ca.use particle loss in this region. (These 

results are strictly valid only for uniforrnly charged beams, whereas 

the AGS bear:i has a Ga.ussian charge distribution. We find in Part II 

that the frequency shifts for the Gaussian beam are approximately 1/3 

larger than those for the uniform beam, a!1d thus the lowest resonant 

intensity is more nearly 13 x 10 12 particles. 20 ) 

During the first few synchr:::itron oscillations after injection 

(during the capture process), about 60:j of the injected beam is lost, 

and smaller losses cor.ti!1ue until 15 msec (By= 0.5). At this time, 

1.9 x 1012 particles remain, and these are assumed to occupy 1/4 of the 

machine circumference. After this time, small particle loss occurs in 

two regions: the first near 20 msec (37 = '.J.6) is associated with a 

2'J~ incre=.se in tl':.e r_ormalized vertice.l er:ii-:tance, wbile the second near 
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30 msec (er = o.8) is associated with a 10% increase in the normalized 

vertical emittance. The frequencies mx 

12 
for these times, using N = 1.9 x 10 , 

and m have been calculated 
z 

B = 0.25, and the measured 

values of ~E2 , and they are included in Table I. 

Because the zero intensity betatron frequencies and 

change during acceleration, the (1) = 17 x 
resonance is crossed near 

er = 0.8, in agreement with the observed particle loss at 30 msec. 

The resonance crossing is approximately adiabatic since 6vscx/6vx 

changes by 0.1 during 600 revolutions, and is in the direction of 

decreasing 6vscx/6vx· The observed 10% increase in the normalized 

vertical emittance is consistent with a stopband width of 6v = 0.002; 
s 

6vs 
in this case, 0. 04, and the ·oeam grows 100% in the x direction 

6vx 

and about 10~ in the z direction (usir:g Fig. 3-3 and assuming that 

the 5x mode retains its one-dimensional form in the nonlinear regime). 

Further experiments are necessary to confirm this connection 

between the particle loss at 30 msec and the (1) = 17 x 
resonance 

crossing. For example, if the stopband is enlarged b~r deliberately 

exciting a 17th harr:i.:mic gradient error in the machine lattice, the 

beam growth should exceed the available horizontal aperture and large 

losses should occur about 30 msec after injection. 



-59- UCRL-18454 

Table I. AGS parameters near injection 

a(cm) 
1 1 

t3Y f':::.vscz v v - (!) - (!) 
z x 2 x 2 z 

0.50 3.8 0.18 8.88 8.46 8.76 8.41 

0.60 3.2 0.16 8.86 8.50 8.75 8.45 

0.70 2.8 0.15 8.84 8.53 8.74 8.49 

0.80 2.6 0.13 8.83 8.55 8.75 8.51 

0.90 2.4 0.10 8.83 8.57 8.76 8.54 

1.00 2.3 0.09 8.82 8.58 8.77 8.55 
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PART II. COLLECTIVE OSCILLATIONS OF ONE-DIMENSIONAL BEAMS 

CONFINED BY PiARMONIC POTENTIALS 

In Part I we considered only one mode of collective oscillation 

that occurs in only one type of beam, namely the quadrupole mode that 

is excited in uniformly charged beams by gradient errors. These restric-

tions enabled us to examine the large-amplitude nonlinear effects of 

space charge. In this Part we examine the other modes of collective 

oscillation that occur in both uniform and nonuniform beams. We restrict 

our attention, however, to small-amplitude oscillations and for simpli-

city to one-dimensional beams. 

In Section l, we use the linearized Vlasov eq_uation to find all 

the normal modes and eigenfrequencies for the uniformly charged beam; 

in Section 2, the resulting mode structure is conmared wi"t.h that found 

6 
by Ehrr.:ian for an a:pproximately uniform beam, and with that found by 

Weibel21 for a neutralized beam (plasma) with a Gaussian charge 

distribution. 

Before proceeding to these cases, it is informative to consider 

the seemingly trivial case in which the Coulomb interaction is turned 

off. In the absence of s:Qace charge, the equation of motion for the 

individual "Darticles is 

+ 0 

where the symbol v8 will be used in the remainder of this paper to 

designate the unn:::rt;Jrbed betatron frequency. Any particle distribution 
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rotates rigidly in the 
1 dx 

X - VO d~ 
space with the frequency and 

has the form f = f(r, v
0
¢ + 8), where r and e are defined in 

Fig. 15. The normal modes are found by a double decomposition of f: 

1 dx 

VO~ 

~ ~ ( 8 \ 
x 

Fig. 15. 

the second argument of f is expanded in a Fourier series 

n 

-in(v0¢+e) 
g (r)e 

n 
where for each n, ~ (r) is an arbitrary function 

of r and may in turn be expanded in a corr.:plete set of functions, 

g (r) 
n 

L gran ( r). Thus there are a two-fold infinity of normal 

m 

modes of the form 

-in8 
f (r,8,0) rn.n , 

-im ¢ 
mn 

e 

w'.:-,ere the eigenfrec:_uencies (Dmn = nv
0 

are harmonics of the unperturbed 

betatron fre~uency. 3ac~ eigenfrequency is infinitely degenerate. 
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In the presence of space charge, but on the assumption that the 

space-charge forces are small in comparison with the external focusing 

forces, each eigenvalue is split into infinitely many different eigen-

values that are clustered near the value nv
0

, and the new eigenfunctions 

are mixtures of the unperturbed eigenfunctions. Since the unperturbed 

eigenfur1ction.s and the form of the space-charge interaction (Maxwell's 

equations) are known, the perturbed eigen 1ralues and eigenfunctions can 

be found by stationary perturbation methods. 22 However, the unperturbed 

eigenfunctions are infinitely degenerate, so that an infinite-order 

matrix must first be diagonalized. In any event the form of the eigen-

value spectrum is clear: the eigenvalues are discrete and occur in 

clusters near the value 

1. Normal 1-~odes for tne Uniformly Charged Beam 

Formulation of the Problem 

The Vlasov and Poisson equations can oe written in the form 

df cf 2 2 df 
~ 

+ v + [ - v 0 x + (J)p t ( x' ¢ ) J 6v 0 ox (l-1) 

Cl£ 2 r f(x, v, ¢) dv dx ,) (1-2) 

where dx 
v = d~' and x measures distance from the median plane in units 

of the half-width of the stationary beam, a. The distribution function 

f(x, v, ¢) is norTr'.'llized to unity, end the quantity 

(the plasrc.a freqi.;enc~-) nas previously been defined as 

[Eq. (2-8), Part 1:. 

2 
2 2 N 

4~e R l 
(l) 

p 

2v Av 
USC 

2a 
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The stationary solution of (1-1) and (1-2) that has a uniform 

charge density is 

1 x 
' 

(1-3) 

where - (l\ 
p 

2 
""' v0 - 6.v , will be used in the remainder of 

SC 

this paper to designate the effective betatron frequency for the individual 

particles within the stationary distribution. In the 
v 
v 

space, the x - -

particles :!love in circular orbits, and the stationary distribution 

rotates rigidly with the frequency v. 

v 
v 

Fig. 16. 

x 

Oscillations of this distribution are described by the perturbed 

distribution f(x, v, ~) = r0 (x, v) + f 1 (x, v, 0), which gives rise to 

a perturbed electric field, £ (z, jl) = £0 (x) + 81 (x, \)). As in 

Part I, we neglect tne r::.agnetic field co~onents that arise from the 

transverse particle velocities. The evolution of r
1

(x, v, d) is 

governe:i -::;--.i the 'Ii_asc--.- e::::"Cat.:.on (1-l), ·,..rtic'.-: •1ie li:-iearize aoo-ct f.J ( x, v): 
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(1-4) 

The left-hand side of (1-4) is the total derivative of f 1 along an 

unperturbed orbit, and consequently we can invert (1-4) and write f 1 

in terms of an integral of the right-hand side over an unperturbed 

b •t 21 or i .. We do this explictly by writing (1-4) in terms of the polar 

coordinates defined in Fig. 16: 

2 
ru r d~ 
~ ~l(r cos e, ~)sine dr (1-5) 

For the normal mode solutions -iruo' 
fl= f(r, e)e ·, £ -imo' 

(r cos e )e . ' 

(l-5) becomes 

-i~ i~e 2 
df0 d ru 

v v f(r, e) J u 
£.(r cos e) (1-6) e de[e ~ sin e-2 dr 

v 

Since the function f(r, e) must be periodic in e, 

f(r, e) = f(r, e + 2n:)' the unique solution of (1-6) is 

2 -i~ e 
v 

Q 
i~' 

f(r, e) 
rup . df0 . 
v2 dr ~~~_-2-~-i~-D 

e J ') 
e € (r cos e•) sin e· d9'' 

v e-2;e 
1 - != (1-7) 

m ru provided - is not an integer. The case of integer values of - is 
v v 

cor..sidered later. Equation (l-7) can be written in terms of the 

Cartesian variables x and v as 
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cir
0 

2 2rr .([) 
ill 

~ 
l-U v' 

f(x, v) 
1 p v £ (x') du (1-8) . ..,......- e 
v dv 2 .([) v 

rri-
- 1 e v 

where u g• - g and 

x' x cos u - v sin u 
v 

(1-9) 
v' = vx sin u + v cos u 

Equation (1-8) s:pecifies f(x, v) as an integral over the unperturbed 

orbit. 

The :perturbed electric field £1 (x, ¢) is related to 

f 1 (x, v, d) by Poisson's Equation (1-2), or alternatively by Maxwell's 

second eq_uation, 

00 

- 2 J vf ( x, v, 0) d v 
' 

(1-10) 

-oo 

which follows irrmediately fror:1 Poisso~' s eq_uation and the continuity 

equation for charge and current density. Using (1-8) and (1-10), we 

obtain a single integral equation for £ (x): 

2ro 2 00 ()f
0 

2rc .(l) 

J ~ 
l-U 

v' 
im £ (x) "P dv v e (x' )- du ..,......- e 

;::i.·m dV v _;::1-
v 

l 
-oo 

e -

(1-11) 

where x' v' e..re given b~/ ( 1 _-:)) - / . 
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General Solution 

We solve (l-11) by performing two integrations by parts.
23 First 

integrate over v so that 

im E (x) 
2.m 2 00 2rr .ill 

f ~ 
i-u 

p 
dv r

0 
v e 

2 .ill n:i-
v - 1 

-oo 
e 

v 
£. (x') + sin u dC (x') ) du 

v du J (1-12) x [- cos u 

where the integrated terms are zero at the limits v == ± 00. Then 

integrate by parts over u to eliminate d[ 
du 

a 2 I 2 00 2;c . ill 
op : v 

J ~ 
i-u 

£ (x) dv fo 
v £ (x') sin du e u 

(i) 
2:-ri-

v 1 -oo 
(1-13) e -

We eliminate the fu!1ction 

replacing v by v lf 1 - x
2 1 

cos TJ, so that 

£ex) 
2 2 2rr 2;-c ·ill 

ill IV 

~ J 
i-u 

1 p I 
dT] v 

2n 
e 

2nise_ 
v 

1 
0 e -

r .. r--;;i 
c.(x cos u + V1 - x- sin u cos TJ) du. 

(1-14) 
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Finally renlace x with cos s, so that 

£(cos s) = 

(J.) 
1) 

2 

2 
2nv 

e 

1 

2 
.Cl) 

ni­
v - 1 

£(cos \[!) du ' 
(1-15) 

where cos 1lr = cos s cos u + sin s sin u cos 11. The angle y will be 

recognized as the angle between two vectors ·,./ith polar coordinates 'I, 

and O, u t • l ' • T, • , 24 re spec 1 ve_y, as . sno1m iri .rig. _,_ 7. 

Fig. 17. 

It is now easy to show that the solutions to (l-15) are just 

Legend.re polynomials. We use the addition theorem for spherical 

harmonices to write 

P (cos -~r) 
n 2n + 

\y* (t 
l L H:Il ~, 

m 

11) Y (u, 0) mn (1-16) 

where the integration over 1 in (1-15) insures that only the n 0 

ter::::;. P (cos s) P (cos u) contrib'.ltes to t'.::e SU".ll. Thus, if 
n n 

Cn+l (x) Pn(x), ~:;.. (l-2-5) is sa'::i.s:::'ie2. ide'.'.ticall~r ;ro·,-i.ded. 
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• (1) 
l-U 

v p (cos u) sin u du 
n 

1, 

(1-17) 

which specifies the eigenfrequencies c.o. A few of the functions Kn (c.o) 

are included in Table II; the rest may be found by using the recursion 

relation 

(1-18) 

The eigenfunctions for the perturbed electric field are therefore 

the Legendre polynomials 

£ (x) m pm-1 (x) ' for m 1,2,3,···, (1-19) 

and for each value of m, the corresponding eigenfrequencies are deter-

mined by 

1, for n m,m-2~m-4, · · ·. (1-20) 

In general, each eigenfunction f:- (x) has more than one eigenfrequency: 
m 

as can be seen from Table II, there is one eigenfrequency each for 

m = 1 and m = 2, but two fo.r m = 3,4 and three for m = 5,6, and 

so on. We label the various eigenfrequencies of (1-20) so that in the 

limit of zero intensity, mmn ap:;iroaches nv. 

Tne eigenfu:1ctions f (r, 8) mn corresponding to the eigen-

fre~uencies :.ur:u."'l are determined b:,r E~. (l-7) to be 
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Table II. The functions K (w) are listed for n < 7. 
n 

n K (m) 
n 

2 

1 
2 2 

(l) - v 

2 

2 

2 
2 (l) 

3 
n (() 

2 32 2 2 2 
(J.) v (l) - v 

2 
2 2 (l) 

p (() - v 
2 - 42v2 2 - 22v2 CJ.) (l) 

4 

2 
2 (l) 22 2 2 

p m v (l) 

2 h2 2 2 32v2 2 2 
(l) - ) v (l) (l) - v 

5 

2 
2 CJ.) 32v2 2 2 p (1) (l) - v 

2 - 62v2 2 42v2 2 22 2 (l) (l) - (1) - v 

6 



f (r, 9) 
mn 

= 

2 
m 1 dfo 
_L._. 

2 r dr 
v 

~ 
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R , (r) 
Jn..i\. ( ----2 i 

(.l) 

mn sin k9 - k cos k9) 
v 

} 

k 
(.l) 

k2 _ mn 
-2- (1-21) 

v 

where the sum over k is finite and involves only even or only odd 

nun1bers. The radial functions R (r) mn are polynomials in r, and a 

few are listed in Table III. For m > 2, the sum in (1-21) has more 

than one term, and the simple n-fold rotational symmetry of the 

unperturbed eigenfunctions is absent. 

Low Intensities 

For 
2 ? 

(l.)p << VO-' these eigenfunctions and eigenvalues reduce 

to the form predicted by- perturbation theory. The eigenfrequencies 

have the form 

\an 
nv + -- 6.v 

n SC 
(1-22) 

where v - 6.v 0 SC 
and where a few of the constants 

/Jn.n are listed in Table IV. 'I'hese eigenfrequencies are shown in 

Fig. 18a for the intensity corresponding to t:,.v 
SC 

1 
= 4 ' but the eigen-

frequencies with m > n + 2 are clustered too near the values nv to 

be resolved. Figure 180 shows an enlarged region of the spectrum near 

nv: all the eigenfrequencies (except w11 = v0 ) are shifted down from 

the unperturbed values nv0 , and as the radial mode munber m increases, 

the eigenfrequencies B?proach nv. It is also evident from Eq. (1-22) 

or Fig. 18a tlce.t as t'.-:e mode nu!'J.be:r n increases, tte eigenfrequer;.cies 

beco:::e rr:.'.Jre ti;?:tl:/ clc:.stered s.round tt,e fre~uencies nv. 
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The radial functions R (r) with 
mn 

m < 7 are listed. 

3 5 

3 1 (3 3 ·) 2 4 r - r 

1 c- 7 h 3 - 3 ) 5 I 8 ) B ' r) - ~) r + 3r 

2 

4 

6 

2 

1 2 
2 r 

5 (7·9 - 6 h lb ~ r - 7r 
~ 2) + )r 

3: 5 (I r5 _ r3) 5 · 7 r5 
l~ 8 S·l6 

5 4 
16 r 

7 (9 6 
32 \2 r - 5r 4) 

6 

7·9 6 r lo·l6 
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Table IV. The coefficients A in Eq. (1-22) . mn 

~I 
1 

3 

5 

2 

4 

6 

are listed for m < 7. 

1 

1 

1 
-0.125 - 23 = 

1 I' 
- ~ ~ -0.0150 

2 

2 

1 

1 - 2 = -0.250 
2 

3 

32 
3 = 1.125 
2 

2 . 
3 ·5 - -7- ~ -0.350 

2 

4 

52 = 1.25 
2 

5 

5
2

·7 
7 ""' 1. 365 

2 

6 
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7v 
--

6v 

--
5v 

4v m=n 

3v 
--

2v 

v 

0 

( a ) ( b) 

XBL689-3904 

Fig. 18. Eig:en-value s-:::ectrum for .6.v = ~ : (b) is an enlarged 
- - SC 4- ' -

regio~ near nv. The eigenvalues occur in clusters near 

nv and, as n :.;:.creases, '=~-e clusters tecoCTe more tight2~r 

grcu-:Jed arc~..:r:.d n v. 



The low-intensity eigenfunctions have the form 

f (r, g) 
mn 

1 dfo -in9 2 
A. n Rmn ( r) r dr e + 0 (ro ) ' 

mn :p 

and therefore the cor.Iplete distribution f f + f becomes o mn 

f == 
________ l _______ + O(m 2) 

2nv\Jl - r2-:-ER~(r) cos n(v¢ + g) p 

(1-23) 

' 

(l-24) 

where the term proportional to involves mixtures of other zero-

order eigenfunctions. A few of the radial functions R (r) mn are shmm 

in Fig. 19; note that the perturbatio::i. for the modes with m = n is 

the largest near the surface r == 1, whereas the other modes are close 

to zero there. For this reason, the m = n modes are referred to as 

surface modes. They produce relatively large displaceaents of the bea:::i 

surface, as opposed to the l m 7 n modes for 1·rhich the }_)erturOed rr~otion 

is largely confined to the interior of the distribution. 

The distribution (l-2h) rotates in an approxiaately rigid 

fashion in the v x - - space with the freque::i.cy nv, and has an a:p-proxi­
v 

mate n-fold symmetry of rotation and radial variation with m - n 
2 

nodes; 

in real space, the perturbed charge density is proportional to 

dPm-l(x) 

dx 
As m increases, the overall perturbed charge density te~ds 

to cancel with itse::._f, a~d t~us it is not eigen-

frequencies for tne :m:::;des wit":~ ::._s.rge m 2.""'.)c>ros.ch nv; pertur'Jations 
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r 

R42 R44 

r r 

R62 Rs4 RGs 

r r r 

Rs2 Rs4 RsG Ras 

r r r 

XBLG89- 3903 

Fig. 19. The radial functions R (r) are shown for even values 
run 

of m and n. The vertical scale is not indicated, and 

differs from figure to figure for clarity. 

r 
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that produce little net charge density will only slightly perturb the 

stationary circular orbits, and consequently will be carried along 

nearly intact with the frequency v of the stationary distribution. 

The eigenfunctions f (f, 8) 
mn 

found so far do not form a 

complete set. 25 For example, among the zero-intensity eigenfUi.1ctions 

(1-23), there are none with the form g (r) 
mn 

-in8 
e where or, 

in general, where n > m. For completeness, additional eigenfunctions 

are required to fill in the blanks of Table III, as well as an additional 

colurr..ill at n 0. It is shown in Appendix C that these additional 

eigenfunctions exist and have the eigenvalues nv that were excluded by 

the form of Eq. (1-7) and following. The new eigenfrequencies do not 

change the form of the spectrum, but now the value nv is degenerate. 

High Intensities 

In the opposite limit of very high intensities, the eigenfunctions 

and eigenvalues also reduce to a characteristic form. The maximum 

intensity occurs for and corresponds to that value of space-

charge force for •·1hich t:Ge repulsive self-force exactly cancels the 

external focusing force -- no net force acts on the stationary distribu-

tion. In this case, the particles comprising the stationary distribution 

have no velocity (the bea!n. emittance is zero), and f
0 

is completely 

characterized by its charge density en
0

(x). Any perturbati6n can 

therefore be expanded in a single infinity of functions, rather than in 

the h10-fold infinity req_uired before. Furthermore, any perturbation 

of such a zero-te~::-_;;e:-.·atu::·e :;:Jasn:a (the exterr:al force is equivalent to 

a neutralizi:::g cack3rou:::d ·::f immo'cile ions) Dust oscillate with the 
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plasma frequency CD • p 
Thus, in this limit, the eigenfunctions must 

reduce to a single infinity of functions, and their eigenfrequencies 

must all have the same value CDn = Cllp • 

This is indeed the case. A few of the eigenfrequencies rnmn 

are plotted as a function of intensity in Fig. 20; as the intensity 

increases to its maximu!rl value, the eigenfreq_uencies rumm for the sur-

face modes all a:pproach the plasma frequency whereas the eigenfreq_uencies 

for the other modes a:pproach zero. The eigenfunctions for the electric 

field £ (x) [or equivalently the charge density en(x) J remain 

Legendre polynomials, and since each eigenfunction £ (x) m 
now has only 

one eigenfrequency, any :perturbation is col"pletely specified by the 

single infinity of eige:-ifunctions £ (x). 
m 

The Di:;:iole e.nd Quadru-oole Modes 

The di:pole mode with m = l and n = l is particularly sim:ple. 

The eigenfrequency w11 s:pecified oy K11 (w) = l is found from 

Table II to be 

+ (1) 
p 

(1-25) 

so that this mode oscillates with the unperturbed betatron frequency 

v0 , indeper:dent of intensity. Tbe perturbed electric field has the 
-ivoP 

form £1 (x, ¢) "" "' e and the cor'.l:;:ilete particle distribution 

f = f 0 + f 11 is given to first order in E by 

f(r, l l 

(l-2~) 



3 

2 

0 

Fig. 20. 

-78-

0.4 0.8 0 

w2 /Z12 
p 0 

The eigenvalues specified by 
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0.4 0.8 

XBL689- 3902 

K (;.u ) = 1 m mn are 

shown f:Jr m = 9,7,5, and 3 . .A.s the intensity incres.ses 

eigecivE,lues f:Jr the m ,;o ~ m:ides e.!Jproe.c'.1 zero; those 
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where the variable r' is measured with respect to the moving 

coordinates x = E cos(v0¢ + G) and 
v 
v 

= E sin(v
0
¢ + G), as shown in 

Fig. 21. Therefore the entire distribution is displaced in the circular 

v 

v 

x 

Fig. 21. 

path indicated, and in real space, the beam oscillates rigidly baci<::. e.nd 

forth at the freq_uency v
0 

. . 

In addition to this rigid dipole mode, there is a:..-1 infinite 

number of nonrigid dipole modes with 

with a charge density proportional to 

n = 1 and 
dPm-l(x) 

dx 

m = 3,5,7, ... and 

The charge density 

for these modes oscillates in a nonrigid fashion, and the eigenfrequency 

Cl)rnJ. approaches (v0 - 6vsc) as m increases. 

The quadrupole mode with m = 2 and n = 2 has the eigen-

freq_uenc;;-

+ CD p 
2 

""' 2 ( v - ~ 6 1J ) 0 L! SC 

which is the sa;ne freq_uency a3 ~v"as found for t};_e s'.1':all-e.::1plitude 

(1-27) 

oscillati~ns of ~~e C)~e-di:.:J.2:".:.siG~al "bee.:-~ exe::~ir..e:i in Ps.r~ :=. In fact, 
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it is straightforward to show that the complete distribution 

f = f
0 

+ f
22 

is just the small-amplitude limit of the uniform one­

dimensional distribution, Eq. (1-17) in Part I. 
26 

Thus, this is the 

"breathing mode" in which the beam expands a.11d contracts, yet maintains 

a uniform charge density. 

The quadrupole modes with n = 2 

nonuniform charge density proportional to 

and m = 4,6,8,··· have a 
dPm-l(x) 

dx , and their eigen-

frequencies wm2 approach 2(v0 - Lv ) 
SC 

Excitation by External Forces 

as m increases. 

Machine imperfections excite the various normal modes. In this 

case, the linearized Vlasov equation has the form 

2 df 
v x dv 

• r1, cir0 -lpf'J e ....--
d v ' 

(1-28) 

where .E(x) e-ip¢ is the known external driving term and p is an 

integer. The forced solutions of (1-28) oscillate with the frequency 

p, and can be found by the same methods that were used to find the 

normal mode sCJlutions. In :particular~ the defining equation for £ (x) 

is just Eq. (1-15), but £(cos ~r) on the right-hand side is replaced 

by £(cos*) + E(cos ~). The solution fCJr the forced electric field is 

c(x) \ 2n + 1 
/ ~- 2. p (x) '---' _ n n ' (1-29) 

n 

where the coefficients ~ are determined by 
~n -
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1 

~ Pn_1 (x) E(x) dx 

-1 

UCRL-18454 

(1-30) 

Thus an external driving term of the form E(x) = P 1 (x) m-
excites only 

the £ (x) modes, and resonances occur for p near any eigenfrequencies 
m 

Cl) where n - m m-2 m-l+ · • · 
mn - ' ' . ' . 

A magnetic field error has the form E(x) = E, and excites only 

the rigid dipole mode (m = 1 ·and n = 1) with 

Ell 
"O 

2 

(1-31) 

A gra,dient error has the form E(x) = Ex, and excites only the uniform 

quadrupole node ( m = 2 and n = 2) with 

2 
p 

2 
Ell X 

+ "m ./ p 
2 (1-32) 

in agreement with Part I. Nonlinear driving terms excite the higher-

order modes and cause resonances for integral values of mmn In the 

next section, we ex'lmine these resonances in more detail and compare 

the!'!l wi tic the resone,nt frequencies found by Ehrma.'1 for a nonuniform 

beam. 

We conclude this section with a few general observations. For 

intensities of interest in AG synchrotrons (6v << v
0

), the normal sc. 

modes for the :particle densi t~,r in 
v 

x 
v 

s-sace have a..ri a-p:;iroxirr:e,te 
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n-fold sym.rnetry of rotation and radial variation with m - n 
--

2
- nodes; 

in real space, the charge density is proportional to 

The distribution oscillates with the frequency 

A.mn 
romn = n(v0 - 6v ) + -- 6v , which differs from 

SC n SC 

value nvo by the two frequency s1'ifts 11/--"-v and 
SC 

first frequency shift is a purely geometric effect: 

dPm-l(x) 
dx 

the zero-intensity 

"· mn " -- uV The 
n SC 

a perturbation that 

produced no electric field wo~ld rotate rigidly with the frequency v 

of the stationary distribution, giving rise to the eigenfrequency nv. 

However, because the perturbation is c'.1arged, the circular orbits of the 

stationary distribution are distorted, and this distortion gives rise to 

the second frequency shift. This freq_uer..cy shift is largest for the 

lower-order, more coherent modes, and becor::ies progressively smaller 

(Table IV) for the higber-order mod.es, since the :perturbed charge 

densi t~r tends to cancel with itself: t!:.e most coherent mode is tD.e 

rigid dipole r1ode for which 

uniform quadrupole mode ill
22 

C!J.l = (v0 - 6vsc) + 6vsc' whereas for the 

1 = 2(v0 - 6v ) + -2 6v , and for the (3,3) 
SC SC 

sextupole m:::>de 
"i 

m,. 3 = 3(v0 - 6v ) + ~ ~v . 
') SC :) SC 

For the higher-order 

modes, es?ecially the nonsurface ~::>des, the eigenfrequencies are 

shifted very little from t!"le va2-ue n(-/
0 

- 6v ) . 
SC 

Finally, because tr-,e eigenfrequencies are real and discrete, 

there can be no Landau de_r::,ping. 27 This type of dasping requires a 

continuous spectrum and discontir:uous eigenfunctions, so that any 

initial perturbatio:r. t:.Ca t is ana:i_~.-tic c:::c-,s is ts of an i:r.fini te n'J.r.<'c"cer 

of eige:if~n.ctio:is, es.c:: i:::f'i:litesi::.e.llJ- exc2--seci; i~1 tte co~..:;.rse o~ -cime 
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the phase relationships between the various modes is destroyed and the 

perturbation damps exponentially to zero. 28 For any system of charged 

particles that are confined by a harmonic potential, the eigenvalue 

spectrum is discrete and the eigenfunctions are continuous; 29 however, 

a very localized perturbation contains many modes and exhibits an 

approximate exponential damping until the phases of the various modes 

become randomized. 
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2. Extension to I:;onuniform Beams 

Resonant Frequencies for the Uniform Beam 

We have seen in the preceding section that an external driving 

term of the form P (x) e-ipj6 
m-1 excites resonances if the integer p 

is near any of the eigenfrequencies wmn where n == m,m-2,m-4,···. For 

"-mn 
low intensities, w == nv + -- L.v , and therefore resonances occur mn n sc 

for p near mv, (m-2)v, (m -4)v, · .. , as indicated below: 

The external field causes resonances for p near 

Po v 

pl 2v 

p2 v 3v 

p3 2v 4v 

P4 v 3v 5v 

p""' 2v 4v 6v 
J 

(2-1) 

Dipole modes are e~cci ted by PO' p2' P4, ... 
' 

quadrupole modes by 

octupole modes by 

, etc. In the limit of zero intensity, these resonances 

reduce to those obtained. fro'.11 tO.e single-particle approach; the eCJ_uatbn 

of motion for the individual particles is 

2 
+ v x 

0 ' 
(2-2) 



and if we consider only small departures DX from the stationary orbits 

x =A cos(vJ + o:), where A and o: are constants, resonance occurs 

for (m -2)v0 , (m - 4)v0 , ···,as indicated in (2-1). 

However, if nonlinear terms in DX are allowed in (2-2), the 

resonant growth caused by the driving term xm cos pjO is usually 

serious only for m,::; 2; for larger values of m the amplitude 

dependence of v
0

, which results from the nonlinearity of the driving 

term, generally causes the resonant growth to be negligible.30 

Presumabl~r this is also true in the presence of space charge. Then, 

since m x can be expressed in terms of Legendre polynomials of order 

less than or equal to m, only the driving terms p l(x) m- and resonant 

frequencies romn with m,:::; 3 need be considered, namely Cl\l' ro22 , 

Resonance occurs for integral values of these eigenfrequencies, 

and from Table IV we find: 

Driving term Resona:it condition Mode (m, n) 

Po VO = n rigid dipole (l,l) 

pl 
n 

VO - + 
2 

3 
lj" DVSC uniform quadrupole (2,2) 

<VC n + 2_ 6v 
8 SC 

p2 
7 n 

VO - + S !wsc 3 

nonrigid dipole (3,1) 

sextupole (3,3) 

(2-3) 
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where n is any integer. These resonant values of are shown in 

1 
Fig. 22 for the beam intensity corresponding to .6vsc == 4 ; additional 

resonances are also included, and the dipole, quadrupole, and sextupole 

modes are drawn separately for clarity. The rigid dipole mode is 

excited by P
0 

at integral values of v
0

, whereas the nonrigid dipole 

modes are excited by P2, P4, · · · for near n + 6v . 
SC 

The uniform 

quadrupole mode that was examined in Part I is excited by P1 at 

n . 3 v0 == 2 -r 4 6vsc' whereas the quadrupole modes that do not maintain a 

uniform charge density are excited by P3' P
5

, · · · for near 

n 
2 + .6v . 

SC 
The sextupole, octupole, and higher-order modes are excited 

for 
n n 

v0 near k + .6vsc' where k are the zero-intensity subharmonic 

frequencies. 

Comparison with the Water-Bag Distribution 

6 Ehrman and dePackh have examined the oscillations of the 

stationary distribution that has a uniform particle density in phase 

space; the particles are confined by an external harmonic potential and 

oscillate with the frequency v
0 

in the absence of space charge. Since 

the volume occupied by any group of particles in phase space is incom-

pressible (neglecting collisions), this uniform particle distribution 

acts as an incompressible homogeneous fluid, and hence the name water-

bag distribution. 

a. The stationary distribution 

We will examine the statiol!ary distribution in rr:ore detail 

before describing its small-amplitude oscillations. For low intensities, 

the distribution has al! 5.:;rproxir:ately circular boundary in the 
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Sex tu pole 
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n n+ ! 
2 n+I 

vo-

XBL689- 3901 

Fig. 22. The resonant values of v
0 

for the beam intensity 

corresponding to 6v = i are shown for the dipole, 
SC '+ 

quadrupole, and sextu:pole r.10des excited by Pm (x) with 
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x - space, and a nonuniform charge density in real space. As 

the intensity increases, the charge density becomes more and more uniform, 

until at the limiting intensity for which the space-charge force exactly 

balances the focusing force (the plasma frequency equals v0 ), the charge 

density is exactly uniform and the particles within the stationary distri-

bution are motionless (the beam emittance is zero). 

1 
The zero-order distribution f 0 (r) ~ , 0 < r ~ 1, is 

0 
shown in Fig. 23b, where r is the radius of the individual particle 

l dx orbits in the x - - ~ space in the absence of space charge, and 
VO df' 

is normalized so that ff0 dxdv = 1 (v = ~). For AG synchrotrons the 

space-charge forces are small in comparison with the external focusing 

force, 6vsc << v0 , so that the stationary distrfoution in the presence 

of suace charge differs from the zero-order distribution f 0 (r) by 
6 Vsc 1 

terms of order For 6vsc typically 4 and v0 """10, this 
VO 

difference is approximately 2%, which is negligible. The normalized 

charge density p0 (x) = ff0 (r)dv for the zero-order 

distribution is also sho\·:n. Since the charge density is not uniform, 

the self-forces are not linear, and the particles within the stationary 

distribution oscillate with different frequencies. It is shown in 

Appendix D that the revolution frequencies for the individual particles 

within the stationary distribution are given to first order in 

by 

v(r) (2-4) 
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1.0 1.0 P. ( x) 
0 2.0 g ( r) 

(a) 

0 x 1.0 0 r 1.0 0 r 1.0 

1.0 1.0 2SJ 

( b) 

0 x 1.0 0 r 1.0 0 r 1.0 

1.0 1.0 2.0 I" 

( c) 

0 r 1.0 0 x 1.0 0 1.0 r 

XBL689-3900 

Fig. 23. The uniforml:r charged beam (a), water-bag beam (b), and 

Gaussian beam (c) are show:!: f 0 (r) is the zero-order 

stationary distribution, p0 (x) is the normalized charge 

density for v(r) = v0 - Lv 
SC 

g(r) is the 

freguenc:t cf tte i!idivid_ual :;.art::.c:..es 'tl~thi~ tte stati.or.ar:r 

distri~utio~ to first order in 
Lv 

SC 
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where 

2rr 

g(r) 2~ rr 
2 

p
0

(r sin w) cos w dw 

involves an integration over the unperturbed orbits. 

UCRL-18454 

The quantity 

(2-5) 

6v 
SC 

has been defined before [Eq. (2-8), Part I]. It is proportional to the 

average charge density within the beam, and is identical to the space-

charge-induced frequency shift for a beam with uniform charge density, 

i.e., for the normalized charge density 1 p0 (x) = constant = ~' Eqs. (2-4) 

and (2-5) give v(r) = constant = v0 - 6v . 
SC 

For comparison, the zero-

order distribution for the uniformly charged beam 

is also shown (Fig. 23a), as well as the Gaussian distribution observed 

. t· B V-" A,,'"'l9 (~· 23 ) 1 in ne , roo_._'"aven 00 -" ig. c , na!ne y 

normalized chare?;e density ( ) -{q2.2. 
00 x = --
' :1 

2 
-2.2x 

e 

-2 2r2 
e · , with the 

Note that the charge 

distribution for the water-bag beam is intermediate between that of the 

uniform beam and the Gaussian beam. 

For the same total charge N
1

, and the same beam size a, the 

water-bag and Gaussian beams have a higher central charge density than 

the uniform beam. As a result, the space-charge-induced frequency 

shifts D.v g(r) are lar!:';er :for the nonuniform beams, since the 
SC 

2 
cos w term in EQ. (2-5) weights the integration over p

0
(r sin w) in 

the favor of src.all ve,lues of the argur1ent r sin w. For the water-bag 

v(r) va:cies v(O) 
4 

bea:·:: oe-c.vreen = VO - - !'_ '! and 
:1' SC 
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v(l) = v 0 -
32

2 6vsc ""'v0 - 1.08 6vsc; for the Gaussian beam it varies 
3:c 

between v(O) ""' v -0 

b. Small-amplitude oscillations 

and v(l) ""' v0 - 1.09 6v 
SC 

Ehrman has found the small-amplitude oscillations that perturb 

the boundary of the stationary water-bag distribution while maintaining 

the uniform particle density in :phase space, namely the surface modes. 

These modes, for which the perturbation is large only near the beam 

boundary, are very si!llilar to the m = n surface modes of the uniformly 

charged beam. The additional nonsurface modes that perturb the uniform 

particle density within the boundary were not found. 

For low intensities, the surface modes have an approximate n-fold 

rotational symmetry in the 1 dx 
X - VO dJ' space, and oscillate with the 

f . 31 requencies 

(l) 
n 

nv(l) + §_ __ n_ 6v 
30: n2 1 SC - 4 

where n = 1,2,3, · · ·. For n == 1, ~ = v0 , and this is the rigid 

dipole mode for which the beam oscillates rigidly back and forth at 

the zero-intensity betatron frequency. For the first three surface 

modes we find 

(2-6) 
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Water-bag Uniform beam 

~ VO ~l = VO 

2v(l) + o.454 2v 
1 

(!)2 6v (!)22 + - 6v 
SC 2 SC 

lD_3 3v(l) + 0.291 6vsc lD_35 3v + .2. 6v 8 SC (2-7) 

For larger values of n, the frequency shift from nv(l) is very nearly 

8 which has the form --6v same 
3:c:n sc' 

the freq_uency shift 
"nn 

as --6v n SC 

the uniform beam, where '"nn is a number of order one that increases 

slowly with n (Table IV). As n approaches infinity, the eigen-

for 

frequencies lOn approach nv(l); the perturbed charge density tends "i:.o 

cancel with itself, and the perturbation is carried along nearly intact 

at the frequency of the boundary particles, v(l) ~ v0 - 1.08 6v . 
SC 

As the intensity increases to its limiting value, corresponding 

to lOP = v0 , the eigenfre~uencies ('\ -11 approach the plasma frequency 

h 
lOP in the same manner (Fig. 3 of Ehrman~) as d.o the eigenfrequencies 

for the surface modes of the uniform beam (Fig. 20). We conclude that 

the eigenfrequencies for the surface modes of both distributions are 

very similar. 

The low-intensity resonant conditions for the first three 

surface modes of the two distributions are 
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Water-bag Uniform beam 

VO n VO n 

n 
0.853 

n 3 
VO 2 + 6v VO 2 + 4 .6vsc SC 

n n 1 6v VO = 3 + 0.983 6vsc VO - + (2-8) 3 8 SC 

The driving terms that excite these water-bag modes have not been 

determined, but it is reasonable to assume that they are similar to 

those for the uniform beal!l. For example, ·we expect a gradient error to 

excite primarily the n = 2 quadrupole mode, but also to excite weakly 

the additional nonsurface quadrupole modes. In the same spirit, we 

expect only the low-order water-bag resonances listed in (2-8), plus 

perhaps one or two nonsurface modes, to be detected in accelerators; 

the nonlinearity of the driving terms required to excite the higher-

order modes should prevent additional modes from being observed. 

Gaussian Beam 

The eigenfrequencies for the Gaussian beam have not ceen found, 

but Weibe121 has solved a very similar problem. He considers a one-

dimensional system of electrons in an external harmonic potential, and 

finds the eigenfrequencies for the small-amplitude oscillations about a 

stationary Gaussian distrioution. However, he considers only the case 

for which the charge density of the stationary distribution is com3:Jletely 

neutralized by a bac~ground of immobile positive ions so that all the 

particles within the stationary distribution oscillate with the same 

frequency v
0

. In contrast, the c~arge wit~in an accelera~or is not 
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neutralized and the individual particle frequencies for the Gaussian 

distribution vary between v(O) ~ v0 - 1.67 6v and 
SC 

v(l) ~ v
0 

- 1.09 6v . In any event, the eigenfrequencies found by 
SC 

Weibel have a form very similar to those of the uniform beam and the 

water-bag beam. 

For the neutralized Gaussian distribution 

Weibel finds3 2 

U\1 v
0 

+ 1.22 6v 
SC 

2v0 + 0.356 6v 
SC 

2 
-2.2r 

e 
' 

3v0 + 0.222 6v , 
SC 

(2-9) 

and it can be seen that the frequency shifts from nv
0 

are very 

similar ta the frequency snifts fro:n nv(l) for the water-bag beam 

(Eq. 2-7) and from n(v0 - 6v ) 
SC 

for the uniform beam. In :particular, 

the frequency shifts for the surface ;:rcodes are: 

m n Gaussian 

l 1.22 6v 
SC 

2 0.356 twsc 

3 0.222 !'::.v 
SC 

For the b;o nonsurface modes of (2-9), 

Water bag 

1.08 6v 
SC 

o.454 6v 
SC 

0.291 6v 
SC 

Uniform 

l 

6v 
SC 

- 6v 2 SC 

2. tw 
8 SC (2-10) 
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(m, n) Gaussian Uniform 

(3,1) 

(4,2) 0.125 .6vsc (2-11) 

These results for the neutralized bea!!l can be extended to the 

charged beam provided the effect of the frequency spread v(O) - v(l) 

within the charged bea;;i can be neglected: v.-e assume that all the parti-

cles within the stationary distribution oscillate with the same frequency 

v and replace v
0 

in (2-9) by the ef~ective frequency v. The value 

of -v is determined by the requirement that the rigid dipole mode, 

which in this case is obviously the m = 1, n - l mode, oscillate with 

the frequency v
0 . Then v """ v0 - 1.22 .6v ; this is near the mean 

SC 

frequency v 0 - 1.28 .6v 
SC 

within the stationary 

distribution and is a reasonable e;drapolation from the effective 

frequencies v - L':,.v and v - 1. O·B .6v for the uniform and WEtter·-0 SC 0 SC 

bag bearn.s. With this replacement in Eqs. (2-9), the resonant conditions 

for the Gaussian bean become 

VO = n VO n + 1.09 .6v 
SC 

~ + 1.04 VO .6v VO SC 

n 
2 + 1.07 .6v 

SC 

n 
+ 1.15 (2-12) VO - .6vsc 3 

whict: are reasona"':ile extra:9olatio:1s from the kri.own resonant conditions 

for the uniform and ~·rs:~er-':Js.g 'cea.'.!',s (Eq. 2-8). 
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3. Conclusion 

We bave investigated the small-amplitude oscillations of a one-

dimensional system of charged particles that interact witb one another 

by Coulomb forces and are held together by an external harmonic potential. 

Because the large number of discrete particles (approximately 10
12

), 

each with two degrees of freedom, has been replaced by a continuous 

distribution, the system has a twofold infinity of degrees of freedora 

and therefore a twofold infinity of normal modes and eigenfrequencies. 

In the limit of zero intensity, the eigenfrequencies for any 

stationary distribution are just harmonics of the zero-intensity 

betatron frequency v
0

, and each eigenfrequency is infinitely degenerate. 

Resonances occur for integral values of nv0 , and these are just the 

integral, half-integral, and subharmonic resone.nces that are familar from 

single-:;:iarticle theory. For intensities of interest in AG synchrotrons 

(l:wsc << v
0

), the degeneracy is at least partially removed, and the 

eigenfrequencies occ'.lr in clusters near tbe unperturbed eigenvalues 

nv0 . For larger intensities, the che.rge density of the stationary 

distributions becomes more and rr,ore unifor~rr until at the limiting 

intensity, for which v
0 , the charge density is exactly uniform. 

Consequently, the eigenfreq_uencies for the surface modes approach the 

plasma frequency, w'.1ile the eigenfrequencies for the non surface modes 

approach zero. 

The eigenfreq_·u.encies and norrc.a2. r:crodes for the stationary 

distriOuti0n t~a.t hc .. s a ·J.~if8r:-::i c~arg2 densi t:y- in real s:pe..ce have Cee:i 



~ •. -97-

field are particularly simple, being just 

intensities, the eigenfrequencies are (D 
mn 

Legendre polynomials. 

t...mn 
= nv + -- 6v where n sc' 

For low 

v = v - 6v is the revolution frequency of the particles within the 
0 SC f... 

mn stationary distribution and -- 6v is the frequency shift induced by 
n SC 

the collective oscillation. In the 
1 dx 

X - VO ij3' space, the eigenfunctions 

have an approximate n-fold rotational symmetry and a radial variation 

with m - n ---
2 

nodes; in real space the perturbed charge density is 

dPm-1 
to 

dx 
The frequency shift from nv j_s relatively proportional 

large for the low-order, coherent modes, while it is very small for the 

higher-order modes, for w::ich the perturbed charge density tends to 

cancel with itself. 

External driving terms of the form Pk(x) cos pj6 excite the 

m = k + 1, n = k + 1, k - l~ k - 3, ··· modes and cause resonances 

for near the integer p. However, the resonances with rn ~ 4 

will generally be sup:pressed by the nonlinearity of the driving term 

required to excite them. Therefore, from the twofold infinity of 

possible modes, only four are likely to be serious for the uniformly 

charged beam: the rigid d2-:pole mode (L1 = 1, n = 1), which is excited 

by magnetic field errors for integral values of v
0

; the quadrupole 

mode (m = 2, 2) - . ' n = , wnicn is excited by gradient errors for 

n 
+t6vsc; the sex-tmwle mode (m 3, 3)' which is excited VO 2 = n = 

n '7 

by P
2

(x) for VO + 8 D.v ; and the nonrigid dipole mode (m = 3, 3 SC 

for 

Two bean2 ·.d -.:::-~ :l:)nunifor:n c'::-:arge der.si ty were also examined, a 
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water-bag beam, whicb has a cb..arge distribution intermediate between 

that of the uniform beam and the Gaussian beam. Despite the relatively 

different charge distributions, the eigenfrequencies for the surface 

modes of the water-bag and uniform beams have the same form and very 

similar numerical values. The eigenfrequencies for the Gaussian beam 

were extrapolated from the known eigenfrequencies for a neutralized 

Gaussian distribution, and are also very similar in form and numerical 

content to those for the uniform and water-bag beams. Because of this 

similarity, it is rea.sonable to assume t!lat corresponding modes in the 

three distributions are excited b;.r the same driving terms; for example, 

a gradient error is expected to excite primarily the n = 2 surface 

modes, causing a resonance for n 
v - - + 0 - 2 ~ Lv 

'+ SC 
in the uniform beam, 

for 
n 0.853 in the water-bag beam, and for VO = 2 + DV 

SC 
n 1.04 in VO = - + DV 2 SC 

the Gaussian beam. In the same spirit, only the 

first three surfe.ce modes and one or two nons'J.rface mcides are expected 

to be observable in accelerators, in analogy with the ur1iform beam. 

For the future, it is possible that the exact eigenfrequencies 

and normal modes for any cl.istribution, at least to first order in 

can be found by stationary perturbation methods, i.e., the 

methods that are used in quantum mechanics to compute perturbed eigen-

functions a:".d energy levels. Since only five or six mcides need be 

exa::iined, the :perturoaticn approach sb:::i'.lld converge without excessive 

calculation. Pertur-oe,tio:! met';,cds mig':-1t alsQ be ap:plied to two-

dimensional bea~s to exanine tte effects of space c~arge on sum and 
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difference resonances, and to three-dimensional beams to examine the 

space-charge coupling between longitudinal and transverse motions. Since 

relatively few modes are involved, it might also be feasible to determine 

the large-amplitude behavior of these modes by analytical methods. 
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APPENDICES 

A. The l'Jonexistence of Uniformly Charged 

Three-Dimensional Beams 

We are given an ensemble of three-dimensional harmonic 

oscillators with the Hamiltonian 

H(p, Ci) 2 2 
p + q (Al) 

Because of the inequality, the accessible region in phase space is a 

six-dimensional unit sphere; in configuration space it is a 3-sphere. 

Does there exist a spherically symmetric distribution 2 2 
f(p + q ) that 

has a uniform projection o:lto the 3-sphere? The following necesse.ry 

condition for the existence of such a distribution has been found by 

Maurice =:nunan. 

Theoren: ~he spherically syITLrnetric distribution 
? 2 

f(p- + q ) does not 

exist if its projection 
2 

p(q ) 
2 ,., 3 ff(p + q~)d p violates any of the 

following inqualities: 

~ 
4 ( 3 ) 3/2 
2 4T ' ;[ 

p(T) 

< 8 -V1 2 - T (A2) 
7L 

The r"axi;:;.uJ11 permissible value of p(T), which corresponds to the eq_ual 

sign, is s!:.::n·m in Fig. (Al). An i:t:n1ediate conseque:1ce of this theorem 

is t'.':.e n:Jnexistence of e_ spr,ericall:.r sy-::i:":letric distribution 

wit~ a u~iform projection, 
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)( 

0 

2.0 

e 1.0 
~ 

0 0.2 0.4 0.6 0.8 1.0 
T 

Fig. Al. The maximum value of p(-r) from Eq. A2 is shown 

as a function of T. 

0 

Fig. A2. 

T iT 
3 

The function g (t) specified by Eq. (AS) 
T 

shown as a funct::.cn of t. 

t 

XBL689-3915 

is 
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Proof of Theorem: f is normalized by 

l 

J(3 J 2 4 f(t)t dt 

0 

l 

(A3) 

The mean of any function g(t) is 

mean g 

l 

_3 J )L 

4 .0 
g(t) f(t) t

2 
dt J (A4) 

and the resulting number can neither exceed the largest nor fall 

beneath the smallest value of g(t) (0.:;;; t < 1): 

inf g ...:;(mean g.:;;; sup g (AS) 

The projectiori of f is 

or 

Consider tne 

2 
p( q ) 

.co ..... 
.!. Ur!.C ulOn 

g ( t) 
T 

T 

0 

2 l_ 
f( t + q )t2 dt 

(A6) 

1 
f(t) (t - ,-)2 dt (A7) 

for 0 ~ T ~ t .:;;; l 

for t < 1 J (AS) 
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which is shown in Fig. A2. Its mean value is :proportional to p(T), 

But for 
4 
3 

T < 1, 

for 4 
3 

T > 1, 

sup g 
T 

mean g ~ sup g 
T T 

1 
16 

Q,.E.D. 

(A9) 

and 
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B. The Amplitude-Phase Equations for Two-Dimensional Beams 

In the absence of space charge and gradient errors, the solu-

tions of the two-dimensional envelope Eqs. (3-1) and (3-2) can be 

written in the form 

2 
x 

dx 
x d.0 

2 z 

dz 
z~ 

== -/1 + Ail + A sin (2vj + ex) 
' 

vx A cos(2vj + ex) 

' 

' 
(Bl) 

where A, B, a, and p are constant. When Eq_s. (Bl) are inserted into 

the complete envelope ec;_uations with s:Qace charge and gradient errors, 

we obtain the following first-order equations for 

dQ 
x 

A dJ 

dQ z 
B d;T 

2 
(I) 

-V1 2 _J2_ +A 
v x 

2 
(I) 

~ n -
v z 

2 
(I) 

2-- l·l + 6.v 
vx x 

2 
:.!) 

D :.-r + l\v 
v z 

z 

6.v -J1 I + x SX 

6.v i./ 1 I + z sz 

-ri-;~2· sin 
SX 

-V1 ?' 
T 3- Sl.ll sz 

2, 
A cos Qx (B2) 

2' 
Qz B cos (B3) 

Q.x + 2Ar::,v 
x 

(B4) 

(35) Qz + 23-~ '! ' - z 
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plus additional terms that vary with the frequencies 2v , 2v , 4v x' x z 

4v , etc. We have defined Q = (2v - n)¢ + a, Qz = (2v - n)¢ + ei, z x x z 
n n 

and .6.vx vx - 2' .6.vz vz - 2' 

2rr 

I 
b I cos u du with n¢ + Qx 2Jl x(ax + bz) u x 

(B6) 

2rr 
1/1 2, 

M 
b 

~ 
A + +A sin u du (B7) x 2rr x(ax + bz) 

witb similar definitions for I and M • The quantities I and I 
z z x z 

are related by 

aAI + bBI x z 0 (BS) 

A. Equal Frequencies and Emittances 

In general, Eqs. (B2) - (BS) are very difficult to solve; 

however, for the special case of equal frequencies (vx = v
2

) and equal 

emi ttances (a b), analytic solutions exist with the forms 

2 ~r 2' 
x Vl +A +A cos(n¢ + Q) 

2 
z -,Jl + A

2 
±A cos(n¢ + Q.) (B9) 

where the plus sign occurs for a s;ymmetric gradient error (.6.v = 6v ) 
SX SZ 

and the minus sign for an antisym_rnetric gradient error 

For eitter gradient error, 

Eq_s. (32) - (35) reduce to 

I x T = 0 and M -z x 

(!w = -.6.v ) • 
SX SZ 

so that 



A dQ 
~ 

where 

and 

M 
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_, 2' 
6v Vl + A sin Q 

s 

-V1 - 1 
2A 

== ~[1 - ~ · k
2 

K(k)] 
2k ~ A2 

UCRL-18454 

(BlO) 

, (Bll) 

for + in B9 (Bl2a) 

for in 39 (Bl2b) 

and K(k) is the complete elliptic integral of the first kind with 

modulus A 
k - ----

/ ~·-2 

Vl+A 

The phase trajectories in A, Q, space are found b~{ dividing 

(BlO) by (311) and integrating the result: 

constant 

where 

and 

26v "'r 2 
A cos Q + -- V 1 + A 

6v s 

~ 2n ( 1 + \./ l + A 
2 

) 

dA 

(Bl3) 

(Bl4) 



'I'he fixed :points 

Q o, A 

or 

Q = re' A 

o, dQ 
d9 0 
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satisfy 

l 6vs 
-r;_-;A2 

.6v 
- --- + 2 ~ M 

2 6v .6v ± 

l 6vs -v l + A2 + 2 
6vsc 

--- --M 
2 6v .6v ± 

(Bl5) 

(Bl6) 

and are shm·m in Fig. 10. For 6v = o, these equations specify the 
s 

amplitude of the free envelope oscillations that are periodic. 

Because of the nonlinearity in the envelo:;ie equations, a 

gradient error of one s~T.L>netry also affects the normal mode solutions 

of o:p:posi te symmetry. Thus the syrrm1etric fixed points of (Bl6) are 

modified by an antisyr.i.metric gradient error, and vice versa. For 

example, in the absence of all gradient errors, the syrmnetric envelope 

oscillation has the form 

where 

2 
x 

A 

2 
z -v;-:-;; + A cos ny 

.6v 
2~M 

.6v + 

An antis:/~r.11etric gradie:r..t error transforms tnese fixed :points into 

(Bl 7) 
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\./1 + A
2 

- A cos(n9 - Q) 

6v 
where for 6.vs << 1, Eqs. (B2) - (B5) become 

6v 
A cos 0 s --

6v 

A2 6v 
SC 

= --
-v 1 + A2 

6v 
- 1 

UCRL-18454 

(Bl8) 

(Bl9) 

For small values of 
6v s 
6v 

they a:;iproach very closely the form (Bl7), as 

shmm in Fig. 11. The syr:i.metric gradier-,t error modifies t~e antisym-

metric fixed points in an analogous ~anner. 

B. General 3ea'1l. Config'.l.rations 

The res~onse curves for and a lb 
T can be obtained 

from Eqs. (32) - (35) b;;.r n1..l!C.erical methods. However, for simplicity, 

we consider only the 6v = 0, 
SX 6vsz 0 asynr9totes, in other words, 

the free envelone oscillations that are ~eriodic. Equations (B2) and 

(B3) then require that I 
x 

if ~ - Qz = O,:-c, so that 

I = o, and this condition is satisfied 
z . 

x
2 ~+ A2 

+A sin(n~ + Q) 
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The quantities A and B are then determined by (B4) and (B5): 

2 2n: 
(l) 

b 

~ 
A + V 1 + A2-, sin 

A E u du = 2v .6v • 2n: x(ax + bz) ' x x 

(B21) 
2 2:r.: 

£7sin 
(I) r B B p a I ± u du 

2v .6v 2:-c J z(ax + bz) z z 
0 

These integral equations were solved numerically, and the solutions are 

shovm in Fig. 14. 
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C. Normal Modes that Oscillate with the FreC!uencies nv 

The uniformly charged beam (Section 1, Part II) has normal-mode 

solutions that oscillate with the frequencies nv, where n is an 

integer and v == 
2 

(j) 
p The electric field for these modes has 

£ (x) == P 
1

(:c), m m- and the perturbed particle density is the form 

determined by Eq. ( 1-6) to have the form 

f (r, 9) mn (Cl) 

where f (r, 9) mn is given by Eq. (1-21) with CD mn nv. The function 

g (r) is determined by the condition that f(r, 9) produce the mn 

required electric field, Pm-l (x): 

d.Pm-l(x) 
dx 2 J f(r, G) dv (C2) 

If (Cl) is inserted into ( C2), we obtain the following condition fcff 

where 

[l - K (nv)] 
m 

cos x g - -0 -- r 

dP 1 (x) m-_,_ 
dx 

1 

jl !x 

For even values of 

cos n9
0 

g (r) 
TfLtl rdr 

,~--, 

-\/ 2 2 r - x 

n, the right-hand side of (c3) 

is an even fur1ction of :-c, e.nd therefore m must be even; for odd values 

of n, m must be odd. 

There.is an infinite number of solutions for n == o, i.e., an 

infinite :J.Ur.Q.ber of Sl:?.tiCr!2.Y::f distrit:uc:ions t:C:at differ from f)r) oy 
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an infinitesmal perturbation. 10 
Using Abel's theorem to invert (c3), 

we find 

~c + mp: ) f 
0 

( r ) 
4v 

~ (1 2 ) 
(!) 2 + p (15r - 11) f 0(r) 
64v2 

5 (1 (l)p 2 ) 4 2 
4 + 

16·16v2} 
(42r + 14r - 1) f 0(r) 

Consequently, for m = 2 and n O, 

f(r, e) = 

2 
wP df0 -----r 

2 dr 
v 

cos 28 + ~ ( 1 +:~:) £0 

' 

(c4) 

, ( c5) 

and similarly for the higher values of m. Since these solutions all 

have the same eigenvalue m = O, any combination will also be a 

solution. 

For n greater than zero, K (nv) 
m 

is infinite if m ~ n. 

Therefore the functions g (r) mn specified by (C3) exist only for m < n, 

and these values correspond exactly to the blanks in Table III. For 

example, for n = 1 or n = 2 there are no solutions. For n = 3 

there is one solution, wi t~'1 the form 



-113- UCRL-18454 

f 

(In this case the left-ha.11d side of ( c3) is zero, and it is more 

convenient to determine g
13

(r) by the equivalent relation 

[l - K (nv)] P 1 (x) 
m m-

rdr (c6) 

Equation (c3) is the derivative of (c6) with respect to x.} For n == !f 

there is also one solution, whereas for n == 5,6 there are two solutions, 

and so on for the higher values of n. 
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D. Frequency Spread for Nonuniform Stationary Distributions 

The Hamiltonian for the individual particles within a stationary 

distribution f(p, q) is 

1 2 2 2 2 
~(q) H 2(p + VO q ) + (.1) 

' p (Dl) 

where 

d2~ 
- 2 f f(H) dp 

dq2 
(D2) 

and where f f(p, q) dp dq 1. We have chosen the uni ts of q so 

that the beam boundary is q = ±1, and have defined m as the plasma 
p 

frequency for the average cl:arge density. 

The revolution frequency of the individual particles is deter-

mined by (Dl) and (D2). For AG snychrotrons, 2 
<<VO 

2 and it (.1) 
' 

((.1)-o \2 
p 

.suffices to find H to first order in -;-; ' namely H "" H0 + Hl, 

1 2 2 2 2 
oo(q) where H = -(n + VO q ) and Hl = mp with 0 2 ~ 

(D3) 

In terms e>f·the actie>n and angle variables J,w given by 

q \ f2J sin w 1;; w vo¢ + constant, (D4) 



/ 
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the zero-order Hamiltonian is H
0 

= v
0
J; the transformed first order 

Hamiltonian H
1 

(J) . is just the average of H
1 

(p, q) over the 

unperturbed orbit, 33 

2 2n 

w) dw 

(J) 

~ ~(.fl Hl(J) _R_ sin (D5) 2;i: 0 v 
0 

The frequency of revolution of the individi.:.al particles is then 

v(J) sin w) dw (D6) 

If the differentiati::::m is performed, followed by an integration by 

parts, Eq. (D6) becomes 

2r 

v(r) 
2 

~ o0 (r sin vr) 2 w dw VO - tw cos 
' SC - (D7) 

where r =""' f2J is the radius of the unper:urbed orbits and 
v~ 

6vsc 
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SC 

2v 
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2 2 
4v - cv.'.'.iv - n ' 

SC 



-119- UCRL-18454 

plus free oscillations. Combining the two equations, one obtains 
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SC S SC 

x 
2v6v cos 

s 

4v2 
- 6v6v 

SC 

n¢ .] 
2 x 

- n J? 
0 
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v v 2 
v v . 
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2 2 l L.v I 

SC ' 
3n n - 4 I 

eigenfrequencies 
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n 
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1 L.v SC 
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