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Abstract

The International Muon Ionization Cooling Experiment (MICE) is designed to demonstrate

the currently untested technique of ionization cooling. Theoretically, this process can con-

dition the high quality muon beams required to build a neutrino factory or muon collider

which will be the next generation of machines for the study of Particle Physics. The beam

line to transport muons into the MICE cooling channel lattice cell was installed in December

2009. Step I of the experimental programme, whose goal was to demonstrate that the beam

line can generate beams similar to those expected in a neutrino factory cooling channel, was

completed in August 2010.

Methods were developed to use time difference measurements in the MICE time of flight

counters (TOFs) to obtain a transverse spatial resolution of approximately 10 mm and to

track muons through the focusing elements of the beam line, thus allowing the trace space

vectors of individual muons to be reconstructed and their integrated path length to be

calculated. The TOFs were used to make an absolute measurement of the momentum of

muons with zero bias and a systematic error of less than 3 MeV/c.

The measured trace space vectors of single muons were used to estimate the emittances

and approximate optical parameters of eighteen muon beams. The results of beam line

simulations were compared with the measurements and, once the effects of experimental

resolution had had been included, found to be in good agreement.

A sample of individual muons whose phase space vectors had been measured was injected

into a simulation of the full MICE cooling channel; the beam was found to be suitable for

demonstrating muon cooling, although some fine tuning of the cooling channel optics will

eventually be required.
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Introduction

The International Muon Ionization Cooling Experiment (MICE) is designed to demonstrate
the principle of ionization cooling for the first time. Chapter 1 explores the scope for Particle
Physics discovery of the neutrino factory and the muon collider: two facilities for which
ionization cooling is an indispensible technology. Chapter 2 describes the Accelerator Physics
of ionization cooling in the context of the MICE experiment and the design of the new muon
beam line at the Rutherford Appleton Laboratory.

The subject of this thesis is the characterization of the muon beams generated by the new
beam line. The crux of the analysis is the development of an innovative technique to measure
the phase space beam distributions using the MICE timing detectors. Chapter 5 describes
an algorithm which reconstructs the longitudinal and transverse momentum of individual
muons. Chapter 6 focuses on parameterizing the properties of the beams in transverse phase
space. Both chapters feature comparisons of the measured momentum spectra, emittances
and optical parameters with Monte Carlo simulations.

The purpose of the prior two chapters is to lay the groundwork for these measurements.
Chapter 3 measures the resolution of the existing calibration of the MICE time of flight
counters and describes the development of a new technique to measure transverse position
with them which is optimized for the requirements of phase space reconstruction. Chapter 4
applies these time and position measurements to the data to measure the stability of the
calibration and define data sets for the subsequent analysis based on particle identification
using the time of flight peaks. The Monte Carlo simulations used throughout the thesis
are introduced at this stage and simple comparisons of the time of flight and position are
presented.

The final chapter is a brief look to the future. In Chapter 7 a sample of measured muon
phase space vectors is inserted into a simulation of the full MICE cooling channel in order
to evaluate the suitability of the beams for demonstrating ionization cooling.

1



Chapter 1

The key to precision in neutrino

physics and at the energy frontier

Super beams are currently continuing the historically fruitful search for new neutrino
physics, but suffer from systematic uncertainties which may limit their ability to
discover CP violation and constrain the neutrino mixing matrix. A neutrino factory
based on muon storage rings has a greater scope for discovery but would require
beam cooling within the lifetime of the muons. The only proposed solution is the
undemonstrated principle of ionization cooling. Muon storage rings could in the
future also provide muon collisions at the energy frontier.

Cosmological models predict that three-hundred low energy neutrinos populate every cubic
centimetre of the universe today, having fallen out of thermal equilibrium seconds after the
Big Bang. Every second, fusion reactions in the sun generate a flux of 7×1010 neutrinos per
square centimetre at the orbital radius of the earth, with an energy distribution peaked at
0.3 MeV. Slightly higher energy neutrinos are emitted at lower fluxes by radioactive decays
in the earth’s core, fission in nuclear reactors and supernovae bursts which occur at a rate
of about three a century; a still broader distribution which extends to PeV is generated by
the interaction of cosmic rays with the atmosphere. The spectrum ends at EeV with very
low fluxes from active galactic nuclei, and the decays of pions created by high energy cosmic
rays interacting with cosmic microwave background photons at the ∆ resonance. As well
as offering a plethora of sources, studying neutrinos creates interesting challenges for the
experimenter: the mean free path of a 1 GeV neutrino in water is 2 × 108 km.

Neutrinos are created in particle-antiparticle pairs in Z0 decays, and alongside a charged
lepton in W± decays. Evidence suggests that the three observed charged lepton eigenstates
are mirrored by three neutrino eigenstates, and that the matrix which connects these bases
in charged current interactions is not only non-diagonal, like the matrix which governs the
interactions of the W with the +2

3
e and −1

3
e quarks, but contains large non-diagonal compo-

nents. The rotation of the basis appears to be approximately tribimaximal, parameterized
by Euler angles arcsin (1/

√
3), π/4 and 0, and an unknown CP violating phase. The first two

angles have been measured using solar and atmospheric neutrinos, and an upper limit has
been placed on the third angle using reactor neutrinos [1–3], however recently published ev-
idence from the T2K and MINOS experiments indicates a non-zero value [4,5]. If this is the
case, and the phase is also non-zero, leptonic charged current interactions violate CP sym-
metry, and fulfil the second of Sakharov’s three conditions for Baryogenesis: such a model
has the potential to explain the matter-antimatter asymmetry in the observed Universe [6,7].

2



1.1 A brief historical introduction to neutrinos 3

W−
µ−

νµ

ν̄e

e−

Figure 1.1: A Feynman diagram illustrating the decay of a muon (µ−). The muon decays into a
muon neutrino (νµ) and a virtual weak gauge boson, W−, which decays after a short period
governed by the Heisenberg Uncertainty Principle into an electron (e−) and an anti-electron
neutrino (ν̄e).

The T2K and MINOS experiments use accelerator neutrinos of a few GeV from the decays
of pions and kaons. The dominant systematic error in this type of experiment arises from
uncertainties on particle production cross-sections when high energy proton beams interact
with a nuclear target to generate these particles. This error can be eliminated by instead
studying a neutrino beam which originates from muon decays, as illustrated in Figure 1.1.
Such a facility is called a neutrino factory, and would produce a well understood neutrino
beam with a narrow energy spectrum, ideal for constraining the neutrino mixing matrix. The
key technology, however, is the currently undemonstrated principle of ionization cooling, a
way to reduce the emittance of a beam in microseconds, which was initially conceived for a
muon collider. The Muon Ionization Cooling Experiment (MICE) is designed to demonstrate
ionization cooling for the first time.

1.1 A brief historical introduction to neutrinos

In 1930, Wolfgang Pauli hypothesized the emission of a light, electrically neutral spin-1
2

particle, as a ‘desperate remedy’ to preserve the principle of energy-momentum conservation
in the theory of nuclear β-decay. It had been observed that the recoil energy of the electron
did not account for the mass difference between the neutron and the proton; furthermore it
was not a singular value, as expected for a three-body interaction, but a continuum. In 1956,
Reines and Cowan made the first direct measurement of the ‘neutrino’ (ν) by observing the
products of the inverse interaction ν̄p → ne+ when reactor anti-neutrinos interacted with
the nuclei of water molecules inside their detector.

The years following Pauli’s hypothesis saw the discovery of new particles as cosmic rays
impinged on magnetized cloud chambers and photographic emulsions. Anderson discovered
the positron (e+) in 1932, following Dirac’s prediction of antimatter in 1928, by observing
tracks which appeared to be electrons but curved the other way. Seven years later, he and his
student observed tracks which curved more sharply than those of electrons, but less sharply
than those of protons at the same velocity, suggesting a particle with intermediate mass.
This ‘mesotron’ was initially mistaken for the next particle to be discovered, Yukawa’s pion
(π+), observed by Powell, Lattes and Occhialini in 1947. The mesotron is now known as the
muon (µ−), and decays into an electron and two neutrinos. The charged pion distinguished
itself by its decay into the muon and only one neutrino.

While the discovery of the pion vindicated Yukawa’s prediction of 1935, the discovery of the
muon was a surprise. The muon is over two-hundred times more massive than the electron
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Lepton Q/|e| Mass Le Lµ Lτ

e− −1 0.5110 MeV 1 0 0
µ− −1 105.67 MeV 0 1 0
τ− −1 1776.8 MeV 0 0 1
νe 0 }

< 0.7 eV
1 0 0

νµ 0 0 1 0
ντ 0 0 0 1

Table 1.1: The charge, mass and flavour quantum numbers of the leptons [8]. Cosmic microwave
background data from the Wilkinson Microwave Anisotropy Probe have been analysed to
give a 95% confidence limit on the sum of the neutrino masses in the absence of direct
measurements [9]. The charge and lepton flavour quantum numbers of the corresponding
antiparticles have the opposite sign.

and unstable, but apparently identical in other respects. The set of charged ‘leptons’ was
completed in 1975 with the discovery of the still more massive tau lepton (τ−). In 1990
the picture was shown to be complete, at least in the energy domain currently accessible,
by the measurement of the number of neutrino flavours Nν = 3 via the measurement of the
width of the decay of the Z boson. In the Standard Model each charged lepton is partnered
by a similarly flavoured neutrino (e−, νe), (µ−, νµ) and (τ−, ντ ). The properties of the six
leptons are shown in Table 1.1. The lifetimes of the muon and tau lepton are 659 m/c and
8.11 µm/c respectively, where c is the speed of light. The other leptons are stable in the
Standard Model.

The leptons are distinguished from quarks by not coupling to the strong force, and by the
strict conservation of the flavour quantum numbers Le, Lµ and Lτ at charged current vertices.
This is illustrated by the decay of the muon, shown in Figure 1.1. The muon generates a
muon neutrino, and an electron is created alongside an anti -electron neutrino. Limits on the
rates of lepton flavour non-conserving processes µ→ γe and µ→ 3e have been measured to
be less than 1.2× 10−11 and 1.0× 10−12 respectively. Furthermore, neutrinoless double beta
decay (Z,A) → (Z + 2, A) + 2e−, with ∆Le = 2, has been shown to have a half life in excess
of 1.9 × 1025 years at 90% confidence in 76Ge.

1.2 Neutrino oscillations

Compelling evidence for lepton number non-conservation emerged in 1998, when the Super-
Kamiokande experiment reported a zenith angle dependent deficit in the flux of νµ from
the atmosphere [10]. The collaboration expected to observe νe and νµ generated by the
interactions of cosmic rays with nuclei in the atmosphere in the ratio 1:2, as a result of the
decay chain π+ → µ+νµ; µ+ → e+νeν̄µ. While the total νe flux and the flux of ‘downward’ νµ

from interactions directly above the location of the detector agreed with their predictions, a
statistically significant deficit of ‘upward’ νµ created in the atmosphere on the opposite side
of the earth was observed.

This and other observations of neutrino disappearance were interpreted as flavour oscillations
according to the theory of Pontecorvo and Maki, Nakagawa and Sakata, in which νe, νµ and
ντ are not mass eigenstates [11, 12]. These ‘flavour eigenstates’ are the mixtures of the
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true mass eigenstates ν1, ν2 and ν3 which interact with a W boson to produce each of the
charged leptons e, µ and τ . The mixing is parameterized in terms of three Euler angles and
a CP-violating phase:





νe

νµ

ντ



 =





c12c13 s12c13 s13e
−iδ

−s12c23 − c12s13s23e
−iδ c12c23 − s12s13s23e

−iδ c13s23

s12s23 − c12s13c23e
−iδ −c12s23 − s12s13c23e

−iδ c13c23









ν1

ν2

ν3



 , (1.1)

where cij ≡ cos θij, and sij ≡ sin θij. Each element of the matrix is the amplitude for a
particular neutrino mass eigenstate to be created in a charged current interaction with a
charged lepton of a particular flavour. The unitarity of the matrix expresses the hypothesis
that if other neutrino mass eigenstates exist, they do not mix with the electron, muon or
tau lepton.

1.2.1 Atmospheric neutrino oscillations

Long baseline 15 km . L . 12, 000 km atmospheric νµ disappearance may be explained
as pseudo two-flavour oscillations, with a single rotation of the neutrino mass basis about
the atmospheric mixing angle θA. Suppose that two of the neutrino mass eigenvalues are
approximately degenerate m1 ≈ m2, and mixed in some superposition ψ12 = − sin θ12ν1 +
cos θ12ν2. The mass eigenstates evolve in time according to the Schrödinger equation, by
gaining a phase factor e−iEt. Assume that there is no ν3 component in νe: as the ν1 and ν2

components must have been created with the same momentum and have degenerate masses,
the terms gain the same phase factor, remain in the same proportion, and νe retain their
flavour, as observed experimentally.

The Super-Kamiokande detector is capable of detecting and distinguishing νe and νµ in the
energy range 0.1 GeV to 10 GeV. Consider the hypothesis that some of the νµ ‘oscillate’ to
become ντ , and suppose that the νµ and ντ flavour eigenstates are a rotation R(−θA) of ψ12

and ν3:
(

νµ

ντ

)

=

(

cos θA sin θA

− sin θA cos θA

)(

ψ12

ν3

)

.

If a particle is created as a pure νµ flavour eigenstate in the atmosphere its wave-function
will evolve as |Ψ(t)〉 = cos θAe

−iE12t |ψ12〉 + sin θAe
−iE3t |ν3〉 and a νµ → ντ oscillation am-

plitude 〈ντ |Ψ(t)〉 = e−iE12t sin θA cos θA(ei(E12−E3)t − 1) develops after a time t. After some
simplification, the oscillation probability is given by

Prob(νµ → ντ ) = |〈ντ |Ψ(t)〉|2 = sin2(2θA) sin2 ∆m2
AL

4E
, (1.2)

where ∆m2
A ≡ m2

3 −m2
1, L is the distance from creation to observation, and E ≈ p is the

energy of the neutrino. Although mass differences are significant, as Table 1.1 shows they
make a negligible difference to the total energy.

The hypothesis that νµ oscillate to ντ with a probability given by Equation 1.2 was found
to fit the Super-Kamiokande data well, and was corroborated by a similar observation of
the disappearance of νµ in an accelerator neutrino beam by the MINOS experiment [13].
Both data sets were found to be consistent with ∆m2

A = 2.40 × 10−3 eV2 and θA = π/4.
Such a mixing angle is called maximal, as the oscillation probability will eventually equal
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unity at L/E = 2π/∆m2
A, and at intervals of 4π/∆m2

A thereafter. Therefore in the Super-
Kamiokande experiment, all 1 GeV atmospheric νµ will have oscillated to ντ after a distance
L = 330 km. As this is considerably larger than the distance from the atmosphere to
the detector, but considerably smaller than the diameter of the earth, the theory elegantly
explains the observation that no downward neutrinos ‘disappear’, but that ∼ 50% of upward
neutrinos do.

1.2.2 Solar neutrino oscillations

The sun is a source of electron neutrinos. Its energy comes from the pp chain: pp→ de+νe;
pd → 3He γ; 3He 3He → 4He ppγ, resulting in a flux of 7 × 1010 νe cm−2 s−1 at the orbital
radius of the earth. In addition, a number of other reactions create more energetic neutrinos
at fluxes which are orders of magnitude weaker, but significant, as detection cross-sections
increase with neutrino energy. The pep chain, and the creation and decay of 7Be and 8Be
take the neutrino spectrum up to 14 MeV [14].

Between the 1960s and the end of the twentieth century, a number of experiments reported a
deficit in the flux of neutrinos from the sun. In particular the Homestake, SAGE, GALLEX
and Kamiokande detectors all reported varying fluxes accounting for between 30% and 60%
of the predicted flux [14].

The solar deficit may be explained by the hypothesis that a small difference ∆m2
⊙ = ∆m2

12

between the approximately degenerate m1 and m2 mass eigenvalues leads to oscillations of
νe to some superposition ψµτ of νµ and ντ . As with atmospheric neutrinos, this mixing may
be explained by a single rotation R(−θ⊙):

(

νe

ψµτ

)

=

(

cos θ⊙ sin θ⊙
− sin θ⊙ cos θ⊙

)(

ν1

ν2

)

In a similar manner as in Section 1.2.1, an equation analogous to Equation 1.2 may be
derived; however the analysis of solar neutrinos is complicated by the interaction of neutrinos
with the electrons in sun. While νe and oscillated νµ and ντ can all recoil from virtual Z
bosons emitted by solar electrons, νe have an additional amplitude (forbidden for νµ and ντ

by flavour conservation) to interact with solar electrons by exchanging a virtual W boson.
This ‘matter effect’, postulated by Wolfenstein in 1978 and developed by Mikheyev and
Smirnov in 1986, alters the oscillation probabilities [15,16].

Solar neutrino oscillations were confirmed by the SNO experiment, which was capable of de-
tecting both the νe flux and the total flux of all flavours [1], and confirmed by the KamLAND
experiment, which observed ν̄e in the range 2 to 10 MeV from nuclear reactors across Japan
at a flux-weighted average travel distance L = 180 km [17]. By observing oscillations in the
disappearance probability as a function of neutrino energy, KamLAND is the only experi-
ment to have directly observed neutrino oscillations. The solar neutrino data are consistent
with ∆m2

⊙ = 7.58 × 10−5 eV2 and θ⊙ = arcsin (1/
√

3) [8].
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1.2.3 Current experimental searches

The neutrino mixing matrix in Equation 1.1 is known as the Pontecorvo-Maki-Nakagawa-
Sakata matrix after some of the pioneers of the theory. As the introduction to this chapter
observes, it is directly analogous to the Cabibbo-Kobayashi-Maskawa matrix, which contains
the amplitudes for each of the +2

3
e quarks to couple to each of the −1

3
e quarks when inter-

acting with a W boson. One may consider ν1, ν2 and ν3 to be fundamental particles with
probabilities to interact with either a e, µ or τ given by the modulus squared of the elements
of the PMNS matrix.

The analyses in Section 1.2.1 and Section 1.2.2 only compute the effect of a single rotation,
and a single mass splitting in isolation. A better approach is to take into account all three
rotations and eigenstates simultaneously [8]. The resulting confidence limits on the mixing
angles are quite broad, and depend on the mass hierarchy. As observing neutrino oscillations
only provides information on mass differences, the absolute scale of the mass eigenvalues is
not known (an upper limit has been derived from cosmological data; see Table 1.1), and it
is not yet known whether m3 is greater than or less than m1 and m2.

The hypothesis from Section 1.2.1 that there is no |ν3〉 component in |νe〉 is equivalent to
setting θ13 = 0. Note that the value of δ is irrelevant to the mixing in this case. The
atmospheric and solar basis rotations may be combined consistently by setting θ23 = θA and
θ12 = θ⊙. In the maximal θ23 = π/4 case, ψµτ = (νµ − ντ )/

√
2, and ν3 = (νµ + ντ )/

√
2. If

θ13 = arcsin (1/
√

3), the PMNS matrix is tribimaximal, however this particular arrangement
should only be considered an aide-mémoire, as the angles are predicted to run at different
energy scales [18]. There is no known reason for the angles to be so much larger than those
in the CKM matrix.

A further peculiarity is that only left-handed neutrinos and right-handed antineutrinos have
been observed in nature. Neutrinos are therefore unique in the Standard Model as massless
Dirac fermions with one of the spin-substates missing. One might more economically imagine
the neutrino to be a single spin-1

2
Majorana particle (ν ≡ ν̄) with two substates νL and νR. If

neutrinos are Majorana particles one must add two extra CP violating phases to the PMNS
matrix, although it is anticipated that these would not be observable.

In addition, two unexpected signals have been observed in recent years. The LSND experi-
ment challenged the unitarity of the PMNS matrix, with inconclusive evidence for a sterile
flavour [19], and the CPT invariance of the Standard Model has been challenged by the MI-
NOS atmospheric neutrino data, as the 90% confidence measurements of (θ23,∆m

2
23) differ

for the ν̄µ → ν̄e and νµ → νe data sets [20].

A number of ‘super beams’ (T2K and MINOS, and in the future CNGS and NOνA) are
designed to measure θ13. These neutrino beams, predominantly composed of muon neutrinos,
are generated by colliding protons with a stationary target and allowing the resulting pions
and kaons to decay. The beam is directed towards a detector which searches for electron
neutrino appearance. For small θ13 the measurement is complicated by intrinsic electron
neutrinos in the beam, flavour mis-identification and significant uncertainties on the cross-
sections to produce pions and kaons, which result in uncertainty on the initial ratios νµ : ν̄µ :
νe : ν̄e. If θ13 is large, as recently indicated by T2K and MINOS [4,5], the reactor experiments
Double Chooz, Daya Bay and RENO should be able to confirm the result [21–23]. While
matter effects do not affect the rate of νe disappearance in reactor experiments due to the low
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neutrino energy, they are significant for super beams, potentially allowing the determination
of the neutrino mass hierarchy, through comparison of the rate of νe and ν̄e appearance.

Remarkably the OPERA experiment, which reported the first ντ appearance candidate in
2010 [24], recently released evidence that neutrinos in their beam travel faster than the speed
of light [25]. The result will now be independently checked at the T2K and MINOS super
beams. If confirmed, the result would contradict Einstein’s theory of relativity [26].

1.3 The advantages of a neutrino factory

The proposed neutrino factory is designed to measure θ13 and search for evidence of CP
violation in leptonic charged current interactions. The latest International Scoping Study
base line design is shown in Figure 1.2 [27]. The key features are the final race-track shaped
muon storage rings, within which bunches of either µ− or µ+ circulate until they decay, as
illustrated in Figure 1.1. The energy of the storage ring will have a well defined energy, yet
to be finally determined, of several tens of GeV. As E ≫ mµ, when the µ− (µ+) decay, the
νµ and ν̄e (ν̄µ and νe) are emitted within narrow cones aligned with the axis of the long
straight edges of the storage rings, allowing neutrino beams to be directed at large detectors
at two base lines.

If θ13 . 0.01 it may not be possible for super beams to measure it, due to the uncertainty on
the initial flux and the backgrounds [28]. This uncertainty could be eliminated by generating
the neutrino beam from muon decays, with the muon and electron flavours created in equal
proportion. Neutrino factory detectors would probably be magnetized, and therefore able
to distinguish the charge of the lepton produced in neutrino interaction inside the fiducial
volume, as well as its flavour. The θ13 oscillation signal would then be a ‘wrong sign’ muon:
a νe → νµ oscillation yields a µ− rather than the µ+ which would be associated with the
interaction of an intrinsic ν̄µ. This signal gives better precision than νµ → νe because charge
identification is easier with muons than electrons, as they ionize media over a long track
rather than showering.

A great advantage of a neutrino factory is that the signal for CP violation would simply be
a difference in the rates of νµ → νe and ν̄µ → ν̄e. As with the transit of solar neutrinos
through the sun, the physics is complicated by matter effects, which nevertheless allow δ
to be eliminated from the νe → νµ oscillation probability to second order in the small
hierarchy parameter ∆m2

12/∆m
2
23 at a ‘magic’ base line 7300 km . L . 7600 km which

depends only on the density of the earth [29]. This disentanglement may allow the two
variables to be measured with greater precision. Super beams may be able to measure δ,
by observing the oscillation probability as a function of neutrino energy, however this is a
difficult measurement which can only be performed for large θ13 and δ. This analysis could
also be performed at a neutrino factory.

In a neutrino factory the muon beam is generated by the decay of pions created by the
interactions of a high energy proton beam with a nuclear target [30]. As the muons are a
tertiary beam, they are created with a large distribution of transverse displacements and
are highly divergent. The principal difficulty in building a neutrino factory is to transport
a high flux of muons into the accelerating part of the lattice, indicated in Figure 1.2 by
a combination of linacs, recirculating linacs (RLAs) and fixed field alternating gradient
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Figure 1.2: The International Scoping Study neutrino factory design [27]. The design may be
divided into two sections: the target, front-end and cooling channel, which have solenoidal
beam transport; and the acceleration lattice (not finalized) and storage rings. This design
has a storage ring energy of 25 GeV.
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accelerators (FFAGs). Whichever combination of RLAs and FFAGs is chosen for the final
acceleration stages, only muons which can be transported into the finite acceptance of the
acceleration lattice can contribute to the final neutrino flux. In order to maximize the flux it
is therefore important to maximize the number of particles in the region of transverse phase
space within which particles can be accelerated. The measure for the volume of phase space
occupied by a beam in a solenoidal focusing lattice is the normalized emittance, described
in Chapter 2: the compression of transverse phase space is the subject of this thesis.

1.4 Ionization cooling and the muon collider

The concept of cooling beams using ionization energy loss in media appears to have first
been suggested by O’Neill in the 1950s in response to the desire to replace the fixed target
accelerators of the time with colliders [31]: such machines have the advantage that the
centre of mass energy scales as twice rather than the square root of the beam energy, but
they require low emittance beams. O’Neill writes:

“In order to prevent the beams striking the inflectors on subsequent turns, each
ring contains a set of foils, thick at the outer radius but thinning to zero about
one inch inside the inflector radius. The injected beam particles lose a few Mev
[sic] in ionization in the foils; so their equilibrium orbit radii shrink enough to
clear the inflectors after the first turn. After several turns, the beam particles
have equilibrium orbits at radii at or less than the inside edge of the foils.”

While other cooling techniques have come to be used to cool electron and proton beams, no
conventional technique is fast enough to cool the beam before it decays. Interest in ionization
cooling has therefore continued since Budker identified it as an indispensible technology for
a muon collider in 1969 [32].

The muon collider has enjoyed a surge in interest recently because it would provide finely
tuned, high centre of mass energy lepton collisions. Unlike in hadron colliders, the interaction
energy would not be convoluted by parton distribution functions, and in contrast to e+e−

colliders the energy would not be limited by synchrotron radiation losses. In addition to
the economy of re-using RF cavities via recirculation in synchrotrons, and the advantage of
the machine being relatively small, the muon collider also has the strategic bonus that the
front-end could be shared by a neutrino factory. ‘Project X’ at Fermilab is the first step
towards such a facility [33].

The design of a muon collider differs from that of a neutrino factory after the initial cooling
lattice because significant further 6D cooling is required to achieve a high luminosity [34].
Although technologically sophisticated, the requisite techniques are based on O’Neill’s origi-
nal foil wedge. The technique proposed for the neutrino factory and the initial muon collider
cooling lattice is simpler still, and illustrated in Figure 1.3. Rather than a wedge, a symmet-
rical absorber is placed directly in the path of the beam to reduce the momentum of each
particle; a set of RF cavities immediately replaces the lost longitudinal momentum, and the
beam remains bunched at the design momentum of the channel. In a full cooling channel
a particle loses enough energy to have been stopped a number of times: by including RF
cavities, pz remains constant, and the net effect is to reduce the transverse momentum.
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Absorber RF cavities

Figure 1.3: A sketch of the principle of ionization cooling. The arrows represent a particle’s
momentum before and after a liquid hydrogen absorber, and following a set of RF cavities.
Ionization energy losses in the absorber reduce the transverse and longitudinal momentum.
Electric fields inside the RF cavities replace the lost longitudinal momentum.

1.5 Conclusion

Given the strict conservation of lepton number at interaction vertices, and the approxi-
mately diagonal coupling of the three generations of quarks with the W , the observation
of large neutrino mixing angles was unexpected. If θ13 and δ are both non-zero, CP viola-
tion in leptonic charged current interactions could potentially explain the matter-antimatter
asymmetry observed in the Universe.

Recently published analyses of data from the T2K and MINOS super beams indicate θ13 6= 0
at ∼ 2.5σ significance. Whether or not the signals are statistical fluctuations, it may not be
possible to answer the remaining questions in the neutrino sector without new experiments.
At present it is not known whether the neutrino is a Dirac or Majorana fermion, and no data
is available to measure δ, the mass hierarchy, or the absolute mass scale. In addition, the
unitarity and CPT invariance of the PMNS matrix has recently been called into question.

If θ13 . 0.01 a neutrino factory is uniquely well placed to measure θ13 and δ because it
produces well defined beams of high energy electron neutrinos, allowing the study of the
golden channel νe → νµ. Like a muon collider, which would provide high energy lepton
collisions without the expense of the linear acceleration of electrons, it would require fast
emittance reduction of the tertiary muon beam. The proposed cooling technology in both
cases is the currently undemonstrated principle of ionization cooling.



Chapter 2

The design and status of the MICE

ionization cooling demonstration

Ionization cooling is a putative accelerator physics technique designed to reduce the
emittance of a neutrino factory muon beam by a factor of six in a microsecond. The
Muon Ionization Cooling Experiment is designed to demonstrate the operation of a
fully engineered lattice cell of an ionization cooling channel. Step I of the experiment,
which was completed in 2010, was devoted to generating and characterizing the muon
beams which will be used by MICE.

Ionization cooling is an essential technology for a neutrino factory or muon collider. The
Muon Ionization Cooling Experiment (MICE) is designed to demonstrate the operation of a
neutrino factory cooling channel for the first time.

A key element of an ionization cooling demonstration, in addition to the assembly and
instrumentation of a lattice cell, is the insertion of a range of muon beams with properties
like those expected in a neutrino factory. Step I of the MICE experiment, which took
place between November 2009 and August 2010, was devoted to generating these beams
and measuring their properties. The purpose of this chapter is to describe the design of the
cooling channel, the new muon beam line and the Step I data taking campaign.

The chapter begins by using parameterizations of beam distributions in phase space to deal
quantitatively with the physics of ionization cooling and describe the expected performance
of MICE. The final section explores the physics of Step I in detail, explaining how the beam
line is capable of generating muon beams with a range of emittances and momenta which
will be matched with the required optical parameters in the cooling channel.

2.1 Ionization cooling

Liouville’s theorem states that the ‘phase flow preserves volume’: if a surface in the phase
space (~x, ~p) of position and momentum evolves according to Hamilton’s equations the en-
closed volume remains constant [35]. In accelerator physics the independent variable of the
phase flow is usually the longitudinal position z, and one studies the horizontal and vertical
phase spaces (x, px) and (y, py), the 4D transverse phase space (x, px, y, py) or the 6D phase
space (x, px, y, py, t, E).

The purpose of the neutrino factory front-end is to insert muons into the finite acceptance

12
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of the acceleration lattice before a substantial fraction decay: the remaining lifetime in the
laboratory frame is then rapidly extended by the time dilation factor γ = E/mµ as the
beam’s energy is increased. For muon beams it is necessary to use the undemonstrated
principle of ionization cooling, because the techniques conventionally used to cool electron
and proton beams require too much time. Ionization cooling uses stochastic forces from
matter interactions to disrupt the phase flow, violating Liouville’s theorem. Such effects
usually tend to cause the beam to expand in phase space, but by carefully choosing the
matter in the channel, and by introducing certain phase space correlations using focusing
magnets, it is possible to compress the phase flow. This section uses parameterizations to
quantify the effect.

2.1.1 Trace space, emittance and the Twiss parameters

The longitudinal momentum pz is often factorized from the conjugate momentum px when
considering transverse phase space in beam lines where pz remains approximately constant.
The new ‘trace space’ of x and the angle to the axis x′ = px/pz ≈ dx/dz is an attractive
choice because the matrix to transport (x, x′) through drift lengths does not depend on pz.

The most basic pieces of information about how particles are distributed in trace space are
the first and second moments. In both horizontal and vertical trace space, displacement is
defined relative to the trajectory of a particle with the design momentum pz which passes
through the centre of the magnets, and so the first moments are typically zero. The second
moments are encapsulated by the covariance matrix:

Σ =

(

σxx σxx′

σxx′ σx′x′

)

. (2.1)

Jaynes has argued that given only this information, if one does not wish to apply any further
stipulations it is logical to model the probability distribution as being Gaussian [36]:

f(x, x′) =
1

2πǫ
exp

{

−(x, x′)TΣ−1(x, x′)

2

}

=
e−A/〈A〉

π 〈A〉 , (2.2)

where A is the amplitude or single particle emittance. Defined to be positive, the amplitude
follows a chi-square distribution with zero mode. For Equation 2.2, contours of constant A
are similar ellipses. The RMS ellipse γx2 + 2αxx′ + β(x′)2 = ǫ, illustrated in Figure 2.1, is
useful for parameterizing the distribution. The Twiss parameters α, β and γ ≡ (1 + α2)/β
parameterize the correlations of the distribution and are obtained from the covariance matrix:

Σ =

(

ǫβ −ǫα
−ǫα ǫγ

)

. (2.3)

As the ellipse follows the phase flow its orientation may change but according to Liouville’s
theorem the enclosed area πǫ will remain constant. The emittance ǫ =

√
det Σ = 〈A〉 /2 is

the standard measure of the volume of a beam in phase space.
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Figure 2.1: The Twiss parameterization of trace space using the RMS ellipse γx2 + 2αxx′ +
β(x′)2 = ǫ. The Twiss parameters α, β and γ ≡ (1 + α2)/β define the orientation.
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Figure 2.2: In ionization cooling the decrease in emittance can be maximized by focusing the
beam. While the decrease in σx′x′ due to energy loss is exponential, the increase in emittance
due to multiple scattering is minimized for low σxx.

2.1.2 Beam correlations for optimal cooling

Ionization cooling reduces the emittance by compressing the trace space distribution along
the x′ axis. As all components of momentum are reduced, cooling is most efficient when
the beam is at its most divergent, at a minimum in β. This effect is counteracted by
the stochastic effect of multiple scattering off atomic nuclei, as the RMS scattering angle
is added in quadrature with the angular divergence σx′x′ . As sketched in Figure 2.2, the
resulting increase in the emittance is minimized when the beam has a narrow distribution
in x. Therefore focusing the beam tightly is essential to the success of ionization cooling.

In modern accelerators beams are usually focused using quadrupole magnets. In a typical
transfer line such as the MICE muon beam line (described in Section 2.3.1) the betatron
function evolves according to the envelope equation:

2ββ′′ − (β′)2 + 4β2k − 4 = 0, (2.4)

where k(z) = q(dBy(z)/dx)/pz is the focusing strength [37]. The solution to the equation

of motion is x(z) =
√

Aβ(z) cos (φ(z) − φ0), where A is the amplitude, a constant of the
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motion for a particle following the phase flow. This ‘betatron oscillation’ describes a particle
moving around a trace ellipse of constant amplitude. The orientation of the ellipse evolves
according to the solution to the envelope equation, with α = −β′/2 [37].

Identical equations exist in the vertical plane, where each muon has an independent ampli-
tude and oscillation phase. The vertical and horizontal betatron functions are different, but
related as ky(z) = −kx(z), such that a focus in the horizontal plane is typically accompanied
by the beam being defocused in the vertical plane. In the ionization cooling channel of both
the neutrino factory and the muon collider the muon beam is transported using supercon-
ducting solenoidal focusing coils rather than quadrupoles because the beam can be focused
in both the horizontal and vertical plane simultaneously, and because the focusing strength
can be bigger, leading to a stronger cooling effect. In solenoidal beam transport particles
undergo uncoupled betatron oscillations in the Larmor frame [37]:

xL =
√

A1β⊥ cos (Φ − Φ1) (2.5)

yL =
√

A2β⊥ cos (Φ − Φ2), (2.6)

where (xL, yL) = R(ϕ) · (x, y), with the Larmor angle advancing at a rate dϕ/dz = κ(z)
given by the focusing strength κ(z) = 1

2qBz(z)/pz. By introducing solenoidal focusing coils
one may alter the axial magnetic field Bz(z) and vary the focusing strength κ(z), thereby
determining the evolution of β⊥ according to the solution of the solenoidal envelope equation1

[39]:
2β⊥β

′′
⊥ − (β′

⊥)2 + 4β2
⊥κ

2 − 4 = 0, (2.7)

where the prime again denotes differentiation with respect to distance along the design orbit.
β⊥ defines the envelope σx = σy =

√

ǫNβ⊥m0c/pz within which particles oscillate. A typical
coil with an axial field of 4 T has a focusing strength κ = 3 m−1 for a pz = 200 MeV/c beam.
By comparison a typical iron core quadrupole with gradient of 1 T/m has focusing strength√
k = 1.5 m−1 at the same momentum.

2.1.3 Phase space and normalized transverse emittance

In order to broaden the discussion to include the consideration of the coupled horizon-
tal and vertical phase space2 of solenoidal cooling channels as well as quadrupole focusing
channels, consider the covariance matrix Σ⊥ in the four-dimensional transverse phase space
(x, px, y, py):

Σ⊥ =









σxx σxpx
σxy σxpy

σpxpx
σpxy σpxpy

σyy σypy

σpypy









.

1 Note that the solenoidal envelope equation contains a term in κ2, but that Equation 2.4 contains a term
in k. Conventions on the definition of focusing strength vary. Wiedemann’s definition of the quadrupole
focusing strength k is used so as to be consistent with his excellent treatment of wide aperture quadrupoles
[38], which inspired the treatment of fringe fields in Chapter 5. Penn’s definition of the solenoidal focusing
strength κ is used as his work is a valuable reference for Chapter 7 [39].

2 As the energy loss in ionization cooling is sufficient to stop a muon several times pz oscillates through
cooling channels, as the beam passes through material and RF cavities successively. When p′z 6= 0 the phase
flow does not conserve volume in trace space, and one should consider phase space instead.
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As before, Twiss parameters are defined using the covariance matrix [39]:

Σ⊥ =









ǫNβ⊥mµc/pz −mµcǫNα⊥ 0 −mµcǫN(β⊥κ− L)
mµcpzǫNγ⊥ mµcǫN(β⊥κ− L) 0

ǫNβ⊥mµc/pz mµcǫNα⊥

mµcpzǫNγ⊥









, (2.8)

where γ⊥ ≡ (1 + α2
⊥ + (β⊥κ − L)2), and the mean canonical angular momentum enters as

L = 〈Lcan〉 /(2mµcǫN). The conserved phase space volume is the normalized emittance:

ǫN =
4
√

det Σ⊥

mµc
.

An elegant proof of the conservation of emittance for linear transformations of the phase
space vector which does not make any assumptions about the probability distribution func-
tion of the beam may be found in the paper by Dragt, Neri and Ragarajan [40].

In Equations 2.5 and 2.6 A1 and A2 are constants of the motion and may be combined to
give the transverse amplitude A = A1 + A2. The mean amplitude yields the normalized
beam emittance:

ǫN = (pz/mc) 〈A〉 /4. (2.9)

The definition of amplitude is particularly useful when defining the acceptance of a beam
line, defined to be the highest amplitude for which a particle will not be lost from the beam
by hitting a magnet or cavity aperture. Such a particle is said to have been ‘scraped’.

The emittance of a raw tertiary muon beam is ∼ 30 mm. Feasibility Study II of a neutrino
factory requires the cooling channel to reduce the normalized emittance of the beam from
ǫN = 12 mm to 2 mm, the acceptance of the acceleration section being either 9 mm or
15 mm depending on the details of the design [30]. The International Scoping Study [27]
subsequently modified the design to replace recirculating linacs with fixed field alternating
gradient acceleration (FFAGs), as suggested by Feasibility Study II-a [41]. FFAGs have a
greater acceptance ∼ 30 mm, and therefore the International Scoping Study design only
requires the cooling channel to reduce the normalized emittance of the beam from ǫN =
12 mm to 7 mm. Machida et al. have just submitted a paper to Nature Physics describing
the successful operation of EMMA, the first model FFAG with dynamics similar to a muon
FFAG.

A muon collider requires a significantly lower emittance to get a sufficiently high luminosity.
Recent designs with 4 TeV muon beams call for a normalized emittance of 25 µm [42].
Nevertheless the emittances of beams in electron colliders and proton colliders are smaller
still. The emittance of the 100 GeV e± beams in LEP was 120 nm in the horizontal plane
and 3.5 nm in the vertical plane, and the 7 TeV proton beams in the LHC will have an
emittance of 0.5 nm. The 250 GeV e± beams in the ILC design require a further reduction
to 0.02 nm and 8 × 10−5 nm respectively [8].
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Absorber
Z

ǫ∞N Normalized
material (mm) (ǫ∞N )−2

Liquid H 1 1.76 1.000
‘Real’ H 2.36 ∼ 0.6

Liquid He 2 2.43 0.524
LiH 3.01 0.374
Li 3 3.40 0.268
Be 4 4.27 0.170
C 6 5.85 0.091
Al 13 11.46 0.024

Table 2.1: The minimum emittances ǫ∞N which may be achieved by a Feasibility Study II cooling
lattice using absorbers made of various low-Z materials. (ǫ∞N )−2 is proportional to the central
particle density in a muon beam, and is a common figure of merit when designing muon
colliders. Material properties are from the Review of Particle Physics [8].

2.1.4 Choice of absorber material

The intended effect of ionization cooling is to reduce the amplitudes of a high flux of muons
to be smaller than the acceptance of the acceleration lattice. The decrease in the mean am-
plitude of the beam can be quantified by the change in the normalized emittance, expressed
by the differential equation:

dǫN
dz

= − ǫN
β2E

〈

dE

dz

〉

+
(13.6 MeV)2β⊥

2β3EmµX0

, (2.10)

where 〈dE/dz〉 is the Bethe-Bloch rate of energy loss in matter, X0 is the radiation length
and β is the speed of the muons, not to be confused with the transverse betatron function
β⊥ [43]. The first term causes an exponential decrease in the emittance as a result of the
muons losing transverse momentum by ionization; the second term, the effect of multiple
scattering, leads to an ‘equilibrium emittance’ ǫ∞N below which the emittance cannot be
reduced:

ǫ∞N =
(13.6 MeV)2β⊥

2βmµX0 〈dE/dz〉
. (2.11)

As predicted, the phase space compression has the potential to be strongest for a tightly
focused beam.

The equilibrium emittance varies for different absorber materials, and is tabulated in Ta-
ble 2.1. Although a high absorber atomic number Z increases the rate of energy loss, it also
increases (by a larger factor) the effect of multiple scattering, leading to a higher equilibrium
emittance, which does not give a useful gain for a neutrino factory beam. The ideal mate-
rial is liquid hydrogen, however a direct calculation using Equation 2.11 is misleading as it
must be contained in a vessel with a higher Z. This effect has been taken into account in
a direct integration of Equation 2.10 by Cobb using the geometry of the MICE experiment
(see Section 2.2.1), and a more realistic value is recorded in Table 2.1 under ‘Real H’ [44].
Lithium hydride (LiH) is also included as it was proposed in Feasibility Study II-a [41] as a
practical solid alternative to liquid hydrogen for the more moderate cooling required to fit
the beam into the acceptance of FFAGs, despite being toxic, reacting with water, and being
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Figure 2.3: The instrumentated MICE cooling channel lattice cell in its final experimental
configuration. The spectrometers measure the emittance before and after a beam passes
though the experiment.

difficult to obtain as a result of restrictions arising from its capacity to moderate neutrons
in nuclear weapons. As it has a mean Z of only 2 the equilibrium emittance is below the
7 mm target required for the International Scoping Study. The values were calculated at
pz = 200 MeV/c, not too far below the minimum of ionization energy loss and in line with
Feasibility Study II. Although 〈dE/dz〉 is greater at lower energies, and would at first glance
appear to lead to a lower equilibrium emittance, the negative slope ∂ 〈dE/dz〉 /∂E < 0 in
this region would lead to longitudinal instability, and muons being lost from the RF buckets.

2.2 The Muon Ionization Cooling Experiment

The Muon Ionization Cooling Experiment (MICE) is designed to demonstrate the ionization
cooling of a muon beam for the first time. Besides refining models of energy loss and
scattering, the physical principles are based on electromagnetism and atomic physics and
are not in doubt: the experiment is primarily intended to demonstrate the practicality of
engineering and operating a single repeatable module of a neutrino factory cooling channel.
The design of the lattice is based on Feasibility Study II, which was conducted at Brookhaven
in 2001, and proposed a reduction of the transverse emittance from ǫN = 12 mm to 2 mm
using liquid hydrogen absorbers in a cooling channel with a design momentum of 200 MeV/c
[30].

2.2.1 Design of the cooling channel lattice cell

The final configuration of the MICE experiment is illustrated in Figure 2.3. The MICE
absorbers are 35 cm long and 30 cm in diameter and hold 21 litres of liquid hydrogen within
two sets of 0.18 mm thick aluminium windows separated by vacuum. The distance between
absorber centres is 2.75 m. Two sets of four 41 cm long RF cavities replace the 11 MeV lost
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in each absorber. The cavities operate at 8 MV/m and 201.25 MHz, and are cooled by water
pipes and closed by 0.16 mm thick pre-curved beryllium windows. The full width aperture
of the channel varies between 30 cm in the absorbers and 42 cm in the RF cavities.

An element of the lattice design which the cooling channel has in common with the buncher
and bunch rotation sections of the neutrino factory (see Figure 1.2) is the solenoidal focusing
lattice. The magnetic lattice is designed to transport a high emittance beam with minimal
losses, and focus the beam tightly in the absorbers, so as to maximize |dǫN/dz|. The focus
is achieved by placing a pair of focus coils with opposing currents around each absorber [45].
As Bz = 0 midway between adjacent focus coils, boundary conditions exist such that the
beam is focused with β′

⊥ = 0 and β′′
⊥ > 0. MICE design currents aim for β⊥ = 42 cm in line

with Feasibility Study II. The two matching coils are designed to manipulate the betatron
function in the upstream spectrometer such that these boundary conditions are met when
the beam enters the cooling channel.

Coupling coils provide the magnetic field to transport the beam between the focus coils. In
the base line optical configuration the field in consecutive absorber-focus coil modules is set
such that the axial magnetic field in consecutive RF cavities has the opposite sign3. For this
reason, two absorbers and two sets of four RF cavities is the smallest repeatable element.
The lattice cell is therefore 5.5 m long, spanning the distance between the centres of the first
and third MICE absorbers.

An important goal of the experiment is to demonstrate that the cooling channel can be built
safely. The magnets must be able to withstand forces of ∼ 90 tonnes between the coils, and
magnetic materials must be bolted down or they may be accelerated to speeds approaching
that of a bullet [46]. The stored magnetic energy in the coils is of the order of a few mega-
joules presenting a danger that the currents induced by a magnet quench could dump this
energy into the liquid hydrogen and cause it to boil explosively. Finally, it should also be
noted that as there are three absorbers but only two sets of RF cavities, the MICE cooling
lattice is one absorber longer than a single lattice cell. It is necessary to begin and end
the cooling channel with an absorber so that thermally excited electrons which have been
accelerated and ejected from the RF cavities cannot damage the spectrometers.

2.2.2 Instrumentation of the channel

The test of the MICE cooling channel lattice cell will be that it achieves the emittance
reduction predicted by Equation 2.10. As the cooling effect of a single lattice cell is only in
the region of 10% an emittance measurement with a precision of ∼ 1% is required directly
before and after the cooling channel [47]. Therefore independent emittance measurements
will be made by the upstream and downstream spectrometers, as illustrated in Figure 2.3.
In this manner a fully engineered cooling channel lattice cell will be treated as a ‘black box’.
Calculations predict that about 105 muons will be needed to make a 1% measurement of the
fractional emittance reduction of a base line ǫN = 6 mm and pz = 200 MeV/c beam passing

3 The purpose of alternating the polarity of the magnetic field in successive coupling coils is to avoid the
growth of the mean canonical angular momentum L [30]. If the field did not alternate then Bz 6= 0 would
lead to nonzero kinetic angular momentum L 6= 0 in the absorbers. L would then be reduced in magnitude
by ionization energy losses and L would grow incrementally in each successive lattice cell, ultimately leading
to a growth in the beam emittance (cf. Equation 2.8).
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through the final experimental configuration of MICE [48].

The MICE spectrometers are designed to measure emittance by reconstructing the transverse
phase space vectors of individual muons and calculating the covariance matrix in Equation 2.8
element by element. Both spectrometers measure phase space vectors using a scintillating
fibre tracker placed in a uniform solenoidal field. The trackers are composed of five planes of
scintillating fibres. Each plane will measure transverse position with a resolution of 0.4 mm.
The helical trajectory of the muons will then be reconstructed, yielding their transverse
momentum with resolution ∼ 1 MeV/c [49].

The base line MICE experimental configuration calls for an axial momentum of 200 MeV/c,
a uniform spectrometer field of 4 T and constant β⊥ = 33 cm in the tracker. The field is
generated by a long solenoid and trimmed by short coils on either side (the centre coil and
end coils in Figure 2.3). As noted in the previous section the two matching coils will then
manipulate the betatron function so it is matched at a focus with β⊥ = 42 cm in the first
absorber. The matching conditions for this and other beams are discussed in greater detail
in Section 2.3.2.

2.2.3 The muon beam

The phase space distributions of the MICE beams should reproduce some of the features
which would develop naturally in neutrino factory lattices. This places requirements on
the distribution of the muons in transverse and longitudinal phase space; however creating
a beam with the appropriate luminosity would entail building an entire neutrino factory
front-end and collective effects have to be modelled separately. MICE was conceived as a
‘single particle experiment’ [50], where a muon passes though the entire lattice before the
next enters.

Neutrino factory beams can be expected to have σpz
of the order of 10 or 20 MeV/c. This

figure varies depending on the preceding lattice design, partly because the beam develops an
amplitude-momentum correlation which extends the region of longitudinal stability. Values
for various permutations of Feasibility Study II are given in Section 5.2.1 of the report [30].
The effect arises because of the longitudinal-transverse coupling of the equations of motion
in solenoidal fields. While the trajectory of a particle on the design orbit is unaffected by
a solenoidal focusing coil, a particle with nonzero amplitude gains a transverse momentum
kick as it passes through focusing coils4. Entering a coil increases the transverse momentum
and hence the amplitude, and also the time to traverse a lattice cell, due to the decrease in
pz. In order to remain in the region of longitudinal stability and be accelerated repeatedly,
high amplitude particles must therefore have a greater pz.

As the experiment is a single lattice cell with only two sets of RF cavities the region of
longitudinal stability relevant to studies of neutrino factory cooling will not naturally be
selected, but must be selected artificially through measurements of the RF phase experi-
enced by each particle in each cavity. As the spectrometers are not capable of precise time
measurements two timing detectors (TOF1 and TOF2) will be placed immediately upstream
and downstream of the experimental configuration pictured in Figure 2.3.

4 This effect may be illustrated with reference to the simpler example of a particle passing through the
fringe field of a solenoid of field B0. Busch’s theorem dictates that a paraxial particle with charge q and an
initial transverse displacement ρ0 receives momentum kick pφ = −qρ0B0/2 [37].
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Figure 2.4: The schedule for the installation and testing of the components of the MICE exper-
iment [51]. Step II and Step III have been skipped due to delays in the installation of the
spectrometer solenoid.

The beams used to test the performance of MICE will be generated by the MICE beam
line, described in Section 2.3.1. The muon component is selected by particle identification
detectors upstream and downstream of the channel. The process of particle identification in
Step I is described in Chapter 3.

2.2.4 Status of the experiment

As the MICE experiment is primarily an engineering demonstration the elements are being
installed incrementally. The schedule is illustrated in Figure 2.4. The dates for Step VI (the
final experimental configuration) have not yet been set [51]. Step V, which tests the effect
of half a lattice cell, is planned for 2014.

Step I has recently been completed. It was designed to test whether the muon beams
which will be used by MICE occupy the required parameter space, and adequately mimic
the correlations which would be observed in a neutrino factory. Step I is described in the
following section; its analysis is the subject of this thesis.

As a result of delays in the construction of the spectrometer solenoids, the collaboration has
decided to proceed directly to Step IV in 2012, with a single absorber and the upstream and
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downstream spectrometers. A liquid hydrogen absorber (Feasibility Study II), a lithium hy-
dride absorber block (Feasibility Study II-a) and a lithium hydride absorber wedge (schemes
for six-dimensional cooling for a muon collider) will be all tested.

2.3 Step I of the MICE experiment

A neutrino factory would contain ten to twenty of the lattice cells of the type being con-
structed for the MICE experiment. The intended effect of such a cooling channel is to reduce
the transverse normalized emittance from ǫN = 12 mm to 2 mm [30]. In order to demonstrate
the efficiency of ionization cooling throughout the whole cooling channel the MICE collabo-
ration has decided to measure the effect of the lattice cell on beams with initial ǫN = 3 mm,
6 mm and 10 mm [52].

This range of emittances will be generated by increasing σpx
and σpy

using multiple scattering
in various thicknesses of a high-Z material. Initial designs assumed a ǫN = 3 mm beam
passing through lead plates ranging from a thickness of zero to 15.2 mm [53]. The design
has evolved for engineering reasons since Step I finished, to feature irises made of tungsten
petals [54]. In light of the variable nature of the design parameters of the neutrino factory,
the initial beams will also have a range of design momenta of 140 MeV/c, 200 MeV/c and
240 MeV/c, generated by tuning the currents in dipoles in the muon beam line [52].

These nine combinations of initial beam parameters are referred to as the emittance-momentum

matrix. In Step I the MICE collaboration attempted to create a µ− beam and a µ+ beam
for every element of the matrix. The subject of this thesis is to characterize these beams to
test whether they have the required properties.

2.3.1 The design of the muon beam line

The MICE experiment is being installed at a new muon beam line at the ISIS proton syn-
chrotron at the Rutherford Appleton Laboratory in the United Kingdom. The layout of
magnets and detectors during Step I is illustrated in Figure 2.5.

The beam line begins with a titanium target which is inserted into the beam of the ISIS
proton synchrotron at the end of the cycle, when the protons have an energy of 800 MeV
[56, 57]. The resulting beam of scattered protons and pions created in strong interactions
with the target is transported into a dipole (dipole 1) by a quadrupole triplet (Q1-Q2-Q3).
The current in dipole 1 is chosen to transport pions with a design momentum of order
450 MeV/c, eliminating neutral particles and most protons. Dipole 1 deflects the design
pion trajectory by 60 degrees, steering the beam through a vacuum pipe and into the 5 cm
radius bore of the decay solenoid.

The muon beams which will be cooled by MICE originate from pion decays in the decay
solenoid. The 5 T field helps to capture the emitted muons, and transport them into the
acceptance of dipole 2. The momentum spectrum of pions and muons at dipole 2 is illustrated
in Figure 2.6. The current in dipole 2 is chosen to transport the design momentum of
muons which have been emitted backwards in the frame of the decaying pion in the decay
solenoid. These muons have the maximum separation from the peak of pion momenta,
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Figure 2.5: A diagram of the MICE muon beam line during Step I. The cooling channel lattice
cell and its spectrometers will be incrementally be inserted between TOF1 and TOF2. Figure
adapted from MICE note 242 [55].
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Figure 2.6: The momentum spectra of pions and muons at dipole 2. The current in dipole 2 is
chosen to transport the shaded band of backwards decaying muons to maximize the muon
flux while minimizing the pion contamination [52].
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thereby minimizing the pion contamination in the subsequent beam [52]. The two dipoles
can be tuned to transmit backwards decaying muons at any momenta. The particle rate
generated by the beam line has been studied by Dobbs [58,59].

Rather than directly inserting the muon dominated beam from dipole 2 into the MICE
cooling channel, the beam first passes through two quadrupole triplets (Q4-Q5-Q6 and Q7-
Q8-Q9), three timing detectors (TOF0, TOF1 and TOF2), a Cherenkov detector (Ckov) and
a beam profile monitor (BPM). TOF0, TOF1 and the Cherenkov are designed to identify
the species of particles before they enter the cooling channel. The Cherenkov has not yet
been calibrated, but will eventually help to distinguish muons from pions. TOF0 and TOF1
were calibrated and are described in detail in Chapter 3. TOF2, which will eventually be
positioned after the cooling channel, was present in Step I, but not calibrated5. The BPM
was an ad hoc addition to the Step I beam line which was useful for observing the beam in
the control room, but is not read out by the DAQ.

In future steps the upstream spectrometer will be installed in its final position directly
downstream of TOF1. Each of the beams in the emittance-momentum matrix should have
their nominal emittance in the spectrometer, however the beams at the end of the Step I
beam line are expected to have approximately the same emittance regardless of the choice
of magnet currents, as they originate from the same source. The emittance will be inflated
by multiple scattering in the diffuser. The diffuser is a device which will insert a variable
thickness of material directly in the path of the beam, in the magnetic field of the first
spectrometer solenoid, immediately upstream of the tracker.

For each element of the emittance-momentum matrix the required diffuser thickness t is
dictated by the emittance increase to the nominal value. Given t one may calculate the
energy loss in the diffuser plate and hence the momentum which the dipoles must be tuned
to transmit to get the nominal momentum in the cooling channel. The final question is how
to set the currents in the quadrupoles. By setting the current in quadrupoles four to nine
one has six handles with which to manipulate the phase space distribution of the tertiary
muon beam. In order to understand how to make this choice it is necessary to investigate
the matching conditions required in the upstream spectrometer.

2.3.2 Matching conditions in the upstream spectrometer

As the upstream spectrometer will provide the measurement of emittance before the cooling
channel ‘black box’, each of the beams in the emittance-momentum matrix should have their
nominal ǫN and pz (plus the energy loss in half an absorber6) in the uniform field region of
the tracker. In addition, the beams must obey certain matching conditions.

For design simplicity and optimal transmission all the beams should obey the matching
conditions β′

⊥ = 0 and β′′
⊥ = 0 in the uniform field region of the spectrometer. The envelope

equation (Equation 2.7) shows that this is only possible at β⊥ = 1/κ. In the base line

5 The purpose of TOF2, and the secondary purpose of TOF1, is to allow the phases at which individual
muons were accelerated to be reconstructed when RF cavities are installed in Step IV.

6 The MICE cooling channel lattice cell will be installed between timing detectors TOF1 and TOF2 in
the following steps of the experiment. Technically the nominal momentum is defined in the centre of the
absorbers, and the required momentum in the upstream spectrometer is the nominal value plus the mean
momentum loss in half an absorber.
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pz = 200 MeV/c cases Bz = 4 T and β⊥ = 33 cm. Currents in the match coils may then be
tuned such that the beam is focused with β⊥ = 42 cm in the centre of the first absorber, as
specified in Feasibility Study II [60].

For ease of comparison it is desirable7 that the 140 MeV/c beams evolve in the cooling channel
according to the same betatron function. The envelope equation shows that as the betatron
function only depends on initial conditions and the focusing strength κ(z) = 1

2qBz(z)/pz.
If a beam with β⊥ = 33 cm is injected into in the uniform field region of the upstream
spectrometer the 140 MeV/c beam will evolve with the same betatron function if Bz is
reduced in equal proportion to pz as this yields the same focusing strength. To a good
approximation8 this can be accomplished by scaling the currents in the end, centre, matching,
focus and coupling coils (cf. Figure 2.3) by a factor 140/200.

Unfortunately the spectrometer solenoids are not capable of generating a large enough field
to achieve β⊥ = 33 cm for the 240 MeV/c beams. The spectrometer field for these beams will
remain atBz = 4 T, yielding a matched betatron function β⊥ = (240/200)×33 cm = 39.6 cm.
By contrast the currents in the focus coils and coupling coils will be scaled, necessitating
a separate optimization of the matching coil currents to obtain a focus β⊥ = 42 cm in the
absorbers.

In practice it is necessary to distinguish between the design and measured betatron func-
tions. The design betatron function is the solution to the envelope equation with desirable
properties given a particular focusing strength profile and specific boundary conditions. By
contrast the measured betatron function is deduced from the covariance matrix. The purpose
of the beam line is to insert beams with matched boundary conditions into the upstream
spectrometer. The remainder of this chapter is devoted to describing how optical configura-
tions of magnet currents were designed to accomplish this. These design Twiss parameters
are compared with measurements in Chapter 6.

2.3.3 Emittance inflation in the MICE diffuser

Simulations predicted that the emittance of the muon beam which emerges from the decay
solenoid should be ǫN ≈ 3 mm. As emittance is conserved in dipoles, quadrupoles and drifts,
it has been assumed that no emittance inflation is required to generate the ǫN = 3 mm
matrix elements. The ǫN = 6 mm and 10 mm elements will be generated using increasing
thicknesses of a high-Z material.

The principle of emittance inflation in the MICE diffuser is illustrated in Figure 2.7. As the
beam passes through the fringe field of the spectrometer solenoid β⊥ decreases to a fixed
value in the uniform field region. For diffuser thickness t > 0 Liouville’s theorem is violated
by multiple scattering and the emittance increases sharply [53]. As the diffuser plates are
thin the beam size σx =

√

ǫNβ⊥mµc/pz remains approximately constant and therefore the
betatron function decreases in reciprocal proportion.

7 This has been disputed.
8 This is an approximation as 〈pz〉 deviates from the nominal values of 200 MeV/c and 140 MeV/c due

to energy loss in the absorbers and re-acceleration. Furthermore even in a channel devoid of absorbers
and RF, only a zero amplitude muon would maintain the nominal momentum, as particles gain transverse
momentum and lose longitudinal momentum as they enter a solenoidal fringe fields. Both effects mean that
strictly correct scaling factor will vary slightly from 140/200 in each coil.
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Figure 2.7: A sketch of the principle of emittance inflation in the diffuser showing the interface
between a region of quadrupole focusing and a region of solenoidal focusing. Step I was
devoted to testing whether the MICE beams will be matched in the spectrometer; in the
absence of the spectrometer it was necessary to characterize the beams at TOF1 instead.
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3 mm

t 0 mm 0 mm 0 mm
pz 151 MeV/c 207 MeV/c 245 MeV/c
α⊥ 0.2 0.1 0.1
β⊥ 56 cm 36 cm 42 cm

6 mm

t 5.0 mm 7.5 mm 7.5 mm
pz 148 MeV/c 215 MeV/c 256 MeV/c
α⊥ 0.3 0.2 0.2
β⊥ 113 cm 78 cm 80 cm

10 mm

t 10.0 mm 15.5 mm 15.5 mm
pz 164 MeV/c 229 MeV/c 267 MeV/c
α⊥ 0.6 0.4 0.3
β⊥ 198 cm 131 cm 129 cm

Table 2.2: The lead diffuser thickness t and the momentum pz and transverse Twiss parameters
α⊥ and β⊥ which are required immediately upstream of the diffuser to generate the emittance
and momentum corresponding to each beam, while fulfilling the matching requirements in
Section 2.3.2 [53].
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The problem of determining the required boundary conditions before the diffuser has been
addressed by Apollonio [52,53]. Table 2.2 shows the diffuser thicknesses, momenta and Twiss
parameters on the upstream face of the diffuser to generate the elements of the emittance-
momentum matrix, while fulfilling the matching conditions described in Section 2.3.2. These
values corresponds to an optimization of the old lead diffuser design. A new tungsten diffuser
has been designed to replace this for reasons of engineering practicality, necessitating a re-
optimization for the new design if it is adopted. Unfortunately neither the diffuser nor the
spectrometer was present in the Step I beam line as the spectrometer solenoid was being
repaired. It is therefore necessary to test whether the beam is matched at TOF1, rather
than in the uniform region of the spectrometers where the matching conditions are defined.

2.3.4 Optical configurations of the MICE beam line

Previously in Section 2.3 the method of generating a 3 × 3 emittance-momentum matrix of
muon dominated beams has been discussed. The remaining question is: how does one set
the currents in the beam line magnets to satisfy the matching conditions in the upstream
spectrometer?

Three collections of optical configurations have been designed so far. They are described
below, with corresponding currents to be found in Table 2.3.

The base line optical configuration

The first attempt to match a beam was made by Tilley using the TURTLE beam line
simulation software to match the base line (6 mm, 200 MeV/c) µ− matrix element. The
quadrupole currents were varied until the matching conditions described in Section 2.3.2
were met [61].

The currents in dipole 1 and dipole 2 were optimized to transmit backwards decaying muons
at the required momentum via an optimization using Geant4 by Roberts [62]. Each of the
three quadrupole triplets were arranged to focus-defocus-focus in the horizontal plane. The
currents are simply reversed for the base line µ+ optical configuration.

The re-scaled TURTLE ‘emittance-momentum matrix’ of beams

Apollonio used the principle of magnet re-scaling to obtain optical configurations for the
other elements of the emittance-momentum matrix [61]. These new optical configurations
are based on Tilley and Roberts’ base line optical configuration. They are designed to
transport muons to the cooling channel with the nominal emittance and momentum but are
not optimized to obey the matching conditions.

Magnet re-scaling is a simple technique designed to generate identical betatron functions βx

and βy for beams at different momenta. The principle is to scale the current in the beam line
magnets to the momentum of the new beam so that the focusing strength profile is the same
as for the base line beam9. In the Step I beam line βx and βy evolve according to the envelope

9 The approach is the same as that described in Section 2.3.2 for the cooling lattice, but applied to the
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equation (Equation 2.4) as a function of the focusing strength k(z) = q(dBy(z)/dx)/pz.
Working back from the spectrometer, Apollonio calculated pz at the centre of the each
magnet such that energy loss yields the required momentum upstream of the diffuser (cf.
Table 2.2) and scaled the currents by the ratio with the momentum at the same position in
Tilley’s base line configuration.

As noted above, the re-scaling technique simply yield the nominal emittances and momenta
and pays no attention to the specific matching requirements on β⊥ and α⊥ in Table 2.2.
Nevertheless an advantage of re-scaling is that the beams should be approximately matched,
up to corrections for the effect of the thickness of the diffuser on the Twiss parameters.

The genetic algorithm ‘emittance-momentum matrix’ of beams

A disadvantage of the base line optical configuration, and therefore also the re-scaled TUR-
TLE optical configurations, is that stochastic effects in the interaction of particles with
matter and magnet acceptances were not modelled in detail. Both effects are important
as the MICE beams pass through detectors, and simulations predict (cf. Chapter 4) that
∼ 60% of muons are scraped in quadrupole 7. Furthermore, surveys of the geometry of the
beam line reveal discrepancies with that assumed by Tilley and Roberts [63].

Apollonio addressed both points by attempting to individually match a beam for each of the
emittance-momentum matrix elements using the Geant4 based beam line simulation code
G4Beamline, which incorporates a realistic model of interactions in matter [62]. Care was
taken to incorporate recent survey results and detailed models of the material of the magnet
apertures. A genetic algorithm allowed the current in quadrupoles 4-9 to evolve from the
re-scaled TURTLE beam optical configurations according to random mutations. Changes
which improved the matching in the uniform field region of the spectrometer were kept, and
the evolutionary process resumed with the modified configuration.

With hindsight the configuration space is problematically large for this approach and the
algorithm struggled to converge, failing entirely for the ǫN = 3 mm elements of the emittance-
momentum matrix. This optical design is not studied in this thesis.

evolution of βx and βy in a beam line of quadrupoles rather than β⊥ in a solenoidal focusing lattice.



2
.3

S
te

p
I

o
f
th

e
M

IC
E

e
x
p
e
r
im

e
n
t

29

Optical
Polarity

ǫN pz Magnet current (Amps)
design (mm) (MeV/c) Q1 Q2 Q3 D1 DS D2 Q4 Q5 Q6 Q7 Q8 Q9

R
e-

sc
al

ed
T

U
R
T

L
E

µ−

3
140 80.3 100.3 69.8 243.1 524.2 73.9 122.5 164.3 108.8 101.3 153.1 130.6
200 97.7 122.0 84.9 305.0 637.9 91.5 153.4 205.7 136.4 133.9 202.5 172.9
240 113.7 142.1 98.9 370.1 743.0 104.4 76.2 236.3 156.7 157.0 237.6 203.0

6
140 81.9 102.3 71.2 248.4 534.6 75.5 125.2 167.9 111.2 104.2 157.6 134.4
200 102.4 127.9 89.0 323.2 668.6 94.2 158.1 212.0 140.6 138.7 209.8 179.2

240 118.3 147.8 102.8 390.2 773.0 108.5 183.6 246.2 163.3 164.4 248.8 212.6

10
140 84.7 105.7 73.6 257.8 552.5 77.8 129.2 173.3 114.8 108.6 164.2 140.1
200 107.6 134.4 93.5 344.2 703.0 99.1 166.8 223.7 148.3 147.5 223.3 190.7
240 121.9 152.3 106.0 406.9 797.0 112.0 189.6 254.3 168.7 170.4 258.0 220.4

µ+

3
140 80.3 100.3 69.8 243.1 524.0 73.9 122.5 164.3 108.8 101.3 153.1 130.6
200 97.7 122.0 84.9 305.0 637.9 91.5 153.4 205.7 136.4 133.9 202.5 172.9
240 113.7 142.1 98.9 370.1 743.0 104.4 176.2 236.3 156.7 157.0 237.6 203.0

6
140 81.9 102.3 71.2 248.4 534.6 75.5 125.2 167.9 111.2 104.2 157.6 134.4
200 102.4 127.9 89.0 323.2 668.6 94.2 158.1 212.0 140.6 138.7 209.8 179.2

240 118.3 147.8 102.8 390.2 772.7 108.6 183.6 246.2 163.3 164.4 248.8 212.6

10
140 84.7 105.7 73.6 257.8 552.5 77.8 129.2 173.3 114.8 108.6 164.2 140.1
200 107.6 134.4 93.5 344.2 702.8 99.1 166.8 223.7 148.3 147.5 223.3 190.7
240 121.9 152.3 106.0 406.9 797.0 112.0 189.6 254.3 168.7 170.4 258.0 220.4

G
en

et
ic

al
go

ri
th

m µ−

6
140 81.9 102.3 71.2 248.4 535.0 75.5 129.2 199.9 105.0 77.8 149.6 117.6
200 81.9 102.3 71.2 248.4 535.0 75.5 197.3 264.2 159.7 126.4 222.8 185.1
240 118.3 147.8 102.8 390.2 773.0 108.5 213.9 313.1 198.4 152.7 264.2 224.5

10
140 84.7 105.7 73.6 257.8 553.0 77.8 111.8 199.6 126.8 80.8 130.1 101.3
200 107.6 134.4 93.5 344.2 702.8 99.1 168.0 265.4 124.5 109.5 211.7 180.5

µ+

6
200 102.4 127.9 89.0 323.2 668.6 94.2 197.3 264.2 159.7 126.4 222.8 185.1
240 118.3 147.8 102.8 390.2 772.7 108.6 213.9 313.1 198.4 152.7 264.2 224.5

10
140 84.7 105.7 73.6 257.8 552.5 77.8 111.8 199.5 126.8 80.8 130.1 101.3
200 107.6 134.4 93.5 344.2 702.8 99.1 168.0 265.4 124.5 109.5 211.7 180.5
240 121.9 152.3 106.0 406.9 797.0 112.0 138.8 290.5 198.1 155.5 281.3 219.5

Table 2.3: Magnet currents for the re-scaled TURTLE and genetic algorithm optical designs. Tilley and Roberts’ (6 mm, 200 MeV/c) base line
optical configuration is italicized. The polarity of the currents depends on the charge of the particles the beam line is designed to transport.
In all cases each quadrupole triplet is arranged to focus–defocus–focus in the horizontal plane.
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2.3.5 The Step I data taking campaign

The Step I data taking campaign took place between November 2009 and August 2010.
TOF0 and TOF1 were calibrated in February 2010 and August 2010. Quadrupole 2 was
broken before the February calibration. All the beam line magnets were operable in the
time between the calibrations. This is the period investigated in this thesis.

Data from TOF0 and TOF1 was taken for base line µ− and µ+, and indeed all of the re-
scaled TURTLE optical configurations with both polarities. These beams are analysed in
Chapter 4, Chapter 5 and Chapter 6.

According to the design principles described in the previous section, the polarities of the
currents in the dipole and quadrupole magnets was reversed when the polarity of the beam
line (set by the polarity of the current in dipole 1) was switched, with the sole exception of
the decay solenoid as this was not possible. The only other asymmetry between µ− and µ+

beams was the presence of a few centimetres of polyethylene (the proton absorber) inserted
directly after the decay solenoid in positive polarity optical configurations to reduce the
proton contamination in the beam.

Genetic algorithm data was taken for the selection of matrix elements for which magnet
currents are recorded in Table 2.3. These beams are useful components of larger data sets
used for the purpose of calibration in Chapter 3 and Chapter 4, but are not characterized in
this thesis.

Appendix A lists the experimental runs in the collated data sets of the matrix elements in
the re-scaled TURTLE and genetic algorithm optical designs and a number of magnet scans
around them.

2.4 Conclusion

The MICE experiment has been devised to demonstrate ionization cooling for the first time,
to make building a neutrino factory a realistic short term option. As MICE is primarily an
engineering demonstration of a number of sophisticated and potentially hazardous technolo-
gies it is being assembled and tested incrementally.

In Step I the collaboration tested an emittance-momentum matrix of µ− and µ+ beams
designed to be matched with ǫN = 3 mm, 6 mm and 10 mm in the upstream spectrometer,
and pz = 140 MeV/c, 200 MeV/c and 240 MeV/c in the absorber centres. This selection of
beams will allow MICE to demonstrate ionization cooling over the entire design space of a
neutrino factory cooling channel in future steps.

The Step I beams were originally to be characterized by the upstream spectrometer, in its
final position immediately downstream of TOF1. In the event neither the diffuser or the
spectrometer were present in Step I due to a fault in the spectrometer solenoid. In the
absence of the spectrometer the beam properties have instead been characterized at TOF1
using the upstream time of flight system. This thesis describes that analysis.



Chapter 3

Measuring time and position with the

time of flight detectors

MICE time of flight detectors TOF0 and TOF1 were calibrated to measure time at
the University of Sofia. This chapter describes how the calibration has been extended
to allow measurements of transverse position by comparing the arrival times of light
signals in the photo-multiplier tubes on either side of a detector. The resolution of
the detectors is measured to be 51.0 ps and 59.5 ps, and 0.98 cm and 1.14 cm.

The measurement of transverse position is of primary interest to MICE in Step I. It is useful
both as a directly measured quantity for comparison with simulation, and as the basis for
measurements of transverse momentum, as will be described in Chapter 5.

It was originally intended that the upstream spectrometer would be the final element of the
Step I beam line, and measure the transverse phase space vector (x, px, y, py) of every muon
[49]. The measured optical parameters would then have been compared with predictions,
and a direct test made as to whether the beam was matched. As a result of a fault with the
spectrometer solenoid, the upstream tracker was not available during Step I.

The time of flight detectors TOF0 and TOF1 were used to characterize the transverse phase
of the beams instead [64]. They were not designed for this purpose. This chapter describes
how a measurement technique was designed and optimized. The detectors are described in
the next section.

3.1 The time of flight detectors TOF0 and TOF1

TOF0 and TOF1 are designed to measure the time at which particles pass through them with
a resolution of 50 ps [65]. The detectors are both composed of two planes of orthogonally
oriented scintillator slabs. TOF0 is made up of two planes of ten scintillator slabs of width
4 cm, length 40 cm and thickness 2.5 cm. The active area of the detector is therefore a
square of dimensions 40 cm × 40 cm, with a thickness of 5 cm. TOF1 has two planes of
seven scintillator slabs of width 6 cm, length 42 cm and thickness 2.5 cm. The active area
of the detector is therefore a square of dimensions 42 cm× 42 cm, with a thickness of 5 cm.

TOF1 is illustrated in Figure 3.1. The slabs in both detectors are individually wrapped in
aluminized mylar to reflect scintillation light originating within the slabs, and black PVC
to prevent light being transmitted between adjacent slabs [66]. The wrapping is thin and

31
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Figure 3.1: The TOF1 detector (illustrated) is composed of two planes of seven 6 cm× 42 cm×
2.5 cm scintillator slabs. TOF0 has a similar design, but is composed of two planes of ten
4 cm × 40 cm × 2.5 cm scintillator slabs.

the slabs were assembled with a tolerance of 1 mm1. Each slab has a light-guide and photo-
multiplier tube (PMT) at either end. TDC and ADC counts are recorded in the DAQ when
scintillation light causes a signal in a PMT which triggers its discriminator. The data is then
analysed offline by G4MICE [67], the MICE analysis and simulation software package2. The
measurement technique is described in detail in Section 3.2

A simple position measurement may be made by noting which slab was illuminated in each
plane. One may thereby deduce that the muon passed within a square on the face of the
detector with the dimensions of the width of a slab. If the position of the muon is estimated
to be the centre of this square the measurement will be biased if centre of the beam is on
one side.

A complementary position measurement may be made by comparing the time of arrival of
light signals in the PMTs at either end of a slab. This measurement is unbiased, and though
it has a similar resolution, produces a measurement which is easier to analyse as it is not
quantized by slab number. This new position measurement technique is the main subject of
this chapter.

Confusingly, the vertically oriented TOF slabs are numbered in the direction of increasing x

1 The probability of a particle passing through the gap between slabs is negligible, and in the event that
a particle does not register a hit in one plane, the reconstruction can nevertheless proceed with information
from only the orthogonal slab intersected by the particle’s trajectory.

2 G4MICE is a software package which has been developed by the MICE collaboration for the similation
and analysis of the MICE experiment. The code is designed to analyse data and Monte Carlo simulated
‘fake data’ in the same way. By contrast to traditional beam transport simulations, Geant4 [68] has been
used to model the transit of particles, in order to model energy loss and scattering in matter accurately.
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in a left-handed coordinate system3. As a result, a bug in G4MICE version 2.4 returns xLH.
This is inconsistent with the right-handed coordinate system which is standard in software
based on Geant4. This chapter also describes how to reconstruct xLH using the new timing
technique. In later chapters, the transformation xRH = −xLH to the right-handed coordinate
system of the rest of G4MICE has been made.

The analysis described here shows how the existing TOF timing calibration has been ex-
tended for use in characterizing the beam in Step I. The following section describes the time
calibration applied automatically in G4MICE by reconstruction software developed at the
University of Sofia. The timing resolution of each pixel of TOF0 and TOF1 is also mea-
sured. The method for extending the calibration for position measurements (motivated by
the unavailability of the spectrometer in Step I) is described in Section 3.3.

If TOF position measurements are required in future steps it would be beneficial to avoid the
two phase calibration described in this chapter by fully constraining all degrees of freedom
in the initial calibration, and using the measurement of effective propogation speed of light
signals recorded in Section 3.3. Appendix B sketches out a possible scheme for such a
calibration.

3.2 Timing resolution revisited

The methods by which time and position may be measured using PMT timing measure-
ments are closely related. Timing measurements used in Section 3.2 are obtained using the
calibration developed at the University of Sofia. It is necessary to describe the method to
understand the technique for extending it described in Section 3.3. In order to put the
position measurement in context, the principle behind the time measurement is described
here. In addition, as the resolutions of the two measurements are proportional, this sec-
tion also complements previous treatments by computing the resolution of the TOFs during
Step I [69,70].

3.2.1 Reconstructing the time of a particle

Consider the passage of a particle through a horizontally orientated TOF scintillator slab, as
illustrated in Figure 3.2. The particle passes through the slab at time tx at a displacement
x from the mid-plane of the slab. Light signals propagate to both ends of the slab at an
effective propagation speed ceff. The arrival times of the signals in the x < 0 and x > 0
PMTs are given by:

t− = tx +
l + x

ceff
(3.1)

t+ = tx +
l − x

ceff
. (3.2)

3 In both left-handed and right-handed MICE coordinate systems, ẑ is directed along the design axis,
and ŷ is directed upwards from the floor of the hall. Therefore x̂LH points towards the outside of the curve
of the particles in the dipole magnets.
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Figure 3.2: A diagram illustrating the passage of a charged particle through a horizontally
oriented TOF scintillator slab of length 2l. The particle passes through the slab at time tx,
at a displacement x from the mid-plane of the slab. The light signal arrives in the x < 0
PMT at t−, and arrives in the x > 0 PMT at t+.

x

TDC

TDC
cables

t

Figure 3.3: A sketch illustrating the readout of the TOF detectors. Cables reading out PMTs
on opposite sides of a slab are connected to different TDCs, and the cable lengths may vary.

The t± are obtained using the TOF calibration applied automatically by the G4MICE soft-
ware [69]. This calibration is adequate for measuring time with the TOF detectors. It is
applied to raw TDC and ADC counts in two steps:

1. The first step in the calibration removes a bias and reduces σPMT. A particle deposit-
ing more energy than average in a scintillator slab will tend to trigger the channel’s
discriminator earlier relative to tx than a particle which deposits less energy. This
effect is cancelled by a time walk calibration based on a measurement of the total ADC
count in the channel during the passage of the particle.

2. The second step removes the bias on the measurement of t± caused by the variation
in the lengths of the cables connecting the PMTs to the data acquisition (DAQ) elec-
tronics. The problem is illustrated in Figure 3.3. The cable length calibration will be
discussed further in Section 3.3.

Two calibrations were performed during the Step I data campaign, in February and August
2010. As the time walk calibration requires a large dataset, it was not possible to calculate a
calibration for all the PMTs. Therefore it is not possible to measure the time and position of
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Figure 3.4: The pixel coverages of the calibrations of TOF0 and TOF1 performed in February and
August 2010. Insufficient data were available for a time walk calibration in the uncalibrated
pixels [69].

particles which traverse some pixels4 which have very low occupancy. The pixel coverages of
the two calibrations are shown in Figure 3.4. The February calibration is used throughout,
as it allows for the measurement of more Step I muons.

The time in the horizontal plane of the detector tx may be reconstructed by cancelling x via
the summation of Equation 3.1 and Equation 3.2:

tx =
t+ + t−

2
− l

ceff
. (3.3)

The resolution of tx is σslab = σPMT/
√

2, where σPMT is the RMS deviation of the times t− and
t+ from the true arrival times of the signals in the PMTs. The propagation speed ceff is not
known precisely, but as Section 3.3 demonstrates, it may be assumed to be approximately
constant in all slabs. The offset −l/ceff in Equation 3.3 may be neglected, as the DAQ
does not make a precise measurement of the times in TOF0 relative to those TOF1, and the
relative lengths of the cables transmitting signals from the PMTs of each detector to the DAQ
are not known. Such precision on absolute time of flight is not required for the design purpose
of particle identification, but is important when using the detectors to measure momentum.
A time of flight calibration based on Monte Carlo simulations which will eliminate this offset
is described in Chapter 5.

Both planes of scintillator slabs make independent measurements of the time the particle
passes through the detector t. The best measurement may be made by combining the times
in the horizontally and vertically oriented planes:

t =
tx + ty

2
.

4A pixel is the square region on a TOF detector defined by the intersection of two slabs in orthogonally
oriented planes.
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Figure 3.5: The time of flight distribution between TOF0 and TOF1 for every particle recorded
during the experimental runs from when quadrupole 3 was fixed until the end of the Step I
data taking campaign in December 2010 [72,73]. Despite variation in the magnet currents in
the many experimental runs contributing to this data set, it is nevertheless possible to apply
an efficient cut on electrons and positrons, as illustrated. 5.1 million particles pass the cut
and have been used for the calculations in this note.

The resolution of the time reconstructed by a TOF detector is therefore:

σt = σslab/
√

2 = σPMT/2. (3.4)

The detectors have been designed to achieve σt = 50 ps, in order to measure the time of
flight between TOF0 and TOF1 with a resolution of 70 ps, and the RF phase at which
muons traverse the cavities with a resolution approaching 10 degrees [71]. If the calibration
has been performed correctly, t is an unbiased measurement of the true time of passage.

3.2.2 Timing resolution per pixel during Step I

σPMT will undoubtedly vary from pixel to pixel. Therefore σPMT in Equation 3.4 should be
taken to be the mean variance of the four PMT timing measurements. The unique resolution
of each pixel may be estimated by measuring the RMS of the difference of the measurements
made by two slabs σ(ty − tx) = σPMT =

√
2σslab = 2σt.

The timing resolution of every calibrated pixel has been measured using this method. Every
muon and pion recorded during the Step I data campaign is included in the calculation.
Electrons and positrons are not included as their pattern of energy deposition is different,
and we are interested in the performance of the time-walk calibration on the heavier particles
which need to be distinguished from their time of flight peaks. The selection cut is illustrated
in Figure 3.5. An example of the calculation is shown in Figure 3.6. Note that the distribution
of ty − tx is approximately Gaussian.

The time resolution σt per pixel in TOF0 and TOF1 is shown in Table 3.1 and Table 3.2. In
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Figure 3.6: The difference in the calibrated times recorded in the two planes of TOF0 for
the Figure 3.5 particles which pass through the intersection between slab five in the plane
of horizontally oriented slabs and slab five in the plane of vertically oriented slabs. (By
convention TOF slab numbering begins at zero and increments in the direction of increasing
x and y in the left-handed coordinate system described in the introduction to this chapter
[74, 75].) The red curve is a Gaussian fit to the data.

σt Vertical slab
(ps) 1 2 3 4 5 6 7 8

H
or

iz
on

ta
l
sl

ab 2 49.0 47.8 59.7 50.8 50.7 50.8 62.1 51.0
3 48.3 48.0 56.9 47.8 49.0 48.6 57.3 52.7
4 46.7 47.9 56.3 46.5 47.6 45.9 54.7 49.1
5 49.6 47.6 57.1 49.0 51.6 50.2 59.3 50.7
6 47.4 45.6 56.2 48.0 50.0 50.2 59.3 48.1
7 49.9 48.4 54.8 50.0 50.4 50.3 58.6 51.1

Table 3.1: The resolution σt for muons and pions passing through each pixel on TOF0 during
Step I, calculated using the data in Figure 3.5.

each case σPMT was estimated using a Gaussian fit to ty − tx in order to eliminate the effect
of binning and statistical variation. Typically the error on the estimate of σt in the pixel
is of the order of 0.5 ps. Values marked with an asterisk are approximate, as fewer than
200 muons and pions hit that pixel during Step I, and there is insufficient data to fit the
distribution. In these cases the RMS is recorded instead, with errors of the order of 10 ps.

The performance of the detectors may be summarized by considering the mean and standard
deviation of the pixel resolutions. The resolutions of TOF0 and TOF1 are thereby 51.0 ps
and 59.5 ps respectively. The pixel resolutions vary with a standard deviation of 4.1 ps in
TOF0, and 2.6 ps in TOF1. These calculations have been weighted by the number of muons
or pions illuminating each pixel during Step I, and exclude the low occupancy pixels marked
with asterisks in Table 3.2.
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σt Vertical slab
(ps) 1 2 3 4 5 6

H
or

iz
on

ta
l
sl

ab

0 62.0 65.1 62.1 63.0 108∗ 106∗

1 57.5 60.4 60.4 61.3 56.1 112∗

2 63.0 62.5 60.7 61.0 60.2 59.1
3 58.7 60.5 56.9 56.2 58.9 59.2
4 58.4 61.8 58.5 60.1 60.5 57.6
5 55.1 58.8 58.9 60.0 58.0 57.7
6 116∗ 67.9 64.9 67.3 67.4 60.1

Table 3.2: The resolution σt for muons and pions passing through each pixel on TOF1 dur-
ing Step I, calculated using the data in Figure 3.5. Values marked with an asterisk are
approximate, and correspond to pixels illuminated by fewer than 200 muons or pions.

3.3 Measuring transverse position

Two independent measurements of the position (x, y) at which a particle passed through a
TOF detector can be made. The simpler method takes the position of the pixel traversed
by the particle. If a muon passed through horizontal slab i and vertical slab j,

xpix =

(

j − N − 1

2

)

a, and ypix =

(

i− N − 1

2

)

a,

where a is the slab width, and i and j are numbered in the range 0 to N − 1, where N is the
number of slabs in each plane of the detector [74,75]. The resolution of this measurement is
approximately a/

√
12. As such TOF0 and TOF1 have resolutions of 1.15 cm and 1.73 cm,

given that a = 4 cm and 6 cm respectively. This technique is already in use in G4MICE [67].

A new method, which it is the subject of this chapter to describe, uses the times recorded
by the PMTs. Consider the difference between Equations 3.1 and 3.2:

x =
ceff(t− − t+)

2
. (3.5)

The resolution of this measurement is ceffσPMT/
√

2 ∼ 1 cm.

Both measurement techniques are illustrated in Figure 3.7, where vertical slab three of TOF1
has been used as an example. The old and new methods are shown by the black and blue
histograms respectively. Although the resolutions of both techniques are comparable, the
new measurement is not quantized, is unbiased, and has a Gaussian error distribution. These
are considerable advantages if one wishes to remove resolution bias from estimates of beam
parameters.

3.3.1 Calibrating the measurement

The difficulty with the measurement of Equation 3.5 is that the effective propagation speed
ceff is not well known. Signals might be expected to travel down the slabs at a speed in
the range between c/n2, the speed of a ray being reflected at the critical angle of total
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Figure 3.7: A comparison of the two methods of measuring position, using vertical slab three of
TOF1 as an example. The ypix distribution (black) may be compared with the measurement
of Equation 3.6 (blue, bin weight = 25, optimal ceff and ∆). The green distribution illustrates
the fraction of measurements which contribute to the numerator of Equation 3.7. f = 80.3%.

internal reflection, and c/n, the speed of a parallel ray. The scintillators used in TOF0
and TOF1 are Bicron BC-420 and BC-404 respectively [66]. Both materials are based on
polyvinyltoluene and have a refractive index n = 1.58 [8, 76, 77]. The expected range is
therefore 12 cm/ns < ceff < 19 cm/ns.

The situation is complicated further because the calibration was designed to obtain only
the sum, and not the difference, of t− and t+. Consider the effect of applying equal and
opposite offsets t− → t− + ∆/2 and t+ → t+ − ∆/2 to the times recorded by the PMTs.
While the measurement of tx in Equation 3.3 remains unchanged, the measurement of x in
Equation 3.5 is now biased:

x =
ceff(t− − t+ + ∆)

2
. (3.6)

Such offsets have been discovered to remain after the existing calibration has been performed,
and vary from slab to slab. While the existing calibration corrects for the combined length
of each slab’s x < 0 and the x > 0 cables, the ∆ constrain their relative lengths. Naturally,
before using Equation 3.6, it is necessary to measure ceff, and to resolve the ∆ degree of
freedom.

In Figure 3.7, y has been plotted using optimal values for ceff and ∆. These have been
derived by varying the parameters and maximizing the variable

f(ceff,∆) =
Number of times when −a/2 < x(t− − t+; ceff,∆) − xpix ≤ a/2

Total number of muons and pions hitting the slab
. (3.7)

While varying ∆ translates the distribution along x(t−−t+; ∆, ceff)−xpix, varying ceff squeezes
and stretches it. f is the proportion of muons and pions for which the Equation 3.6 mea-
surement reconstructs the particle in the range delimited by the slab which was illuminated
in the other plane of the detector.
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Figure 3.8: f(∆, ceff) for the horizontal slabs of TOF0. The colour scale indicates the fraction of
Step I muons and pions whose position measured using Equation 3.6 is consistent with the
region delimited by the slab which was illuminated in the orthogonal plane of the detector.
All the plots in Figures 3.8, 3.9, 3.10, and 3.11 have the same colour scale ranging from 65%
(indigo) to 86% (red). The best fit, and the global best fit (with ceff = 13.52 cm/ns) are
marked.
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Figure 3.9: f(∆, ceff) for the vertical slabs of TOF0. The colour scale indicates the fraction of
Step I muons and pions whose position measured using Equation 3.6 is consistent with the
region delimited by the slab which was illuminated in the orthogonal plane of the detector.
All the plots in Figures 3.8, 3.9, 3.10, and 3.11 have the same colour scale ranging from 65%
(indigo) to 86% (red). The best fit, and the global best fit (with ceff = 13.52 cm/ns) are
marked.
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Figure 3.10: f(∆, ceff) for the horizontal slabs of TOF1. The colour scale indicates the fraction
of Step I muons and pions whose position measured using Equation 3.6 is consistent with the
region delimited by the slab which was illuminated in the orthogonal plane of the detector.
All the plots in Figures 3.8, 3.9, 3.10, and 3.11 have the same colour scale ranging from 65%
(indigo) to 86% (red). The best fit, and the global best fit (with ceff = 13.52 cm/ns) are
marked.
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Figure 3.11: f(∆, ceff) for the vertical slabs of TOF1. The colour scale indicates the fraction of
Step I muons and pions whose position measured using Equation 3.6 is consistent with the
region delimited by the slab which was illuminated in the orthogonal plane of the detector.
All the plots in Figures 3.8, 3.9, 3.10, and 3.11 have the same colour scale ranging from 65%
(indigo) to 86% (red). The best fit, and the global best fit (with ceff = 13.52 cm/ns) are
marked.
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Figure 3.12: The favoured effective propagation speed ceff and cable length correction ∆ for each
slab of TOF0 and TOF1. The 5.1 million muons and pions in Step I do not provide strong
evidence for variation in ceff between TOF0 and TOF1.

Figures 3.8–3.11 show f(∆, ceff) maximized for all the horizontal and vertical slabs of TOF0
and T0F1 with calibrated PMTs. The colour scale is the same in all the plots; the summits
are marked with a box, and plotted in Figure 3.12. ceff could plausibly vary between TOF0
and TOF1 because the slabs have different dimensions, but there is no evidence for that in
these broad peaks. By contrast, the ∆ – merely unconstrained degrees of freedom – show
significant variation. Neglecting to calculate individual ∆ would decrease the agreement
between the measurements by a few percent, and bias the measurement by approximately
ceff×0.2 ns /2 ∼ 1.5 cm. Note that the correlation between the planes of TOF1 is an artefact
of the existing calibration, the result of subtleties in the trigger electronics [69].

The total illumination per slab N , and the quality of the fit fmax, are plotted in Figure 3.13.
A globally favoured value for the effective propagation speed has been calculated from the
mean in the individual slabs, weighted by N :

ceff = 13.52 ± 0.30 cm/ns.

The error has been estimated from the variance of the measurements of ceff, weighted in the
same manner.

Final measurements of ∆ have been made by maximizing f given this globally favoured
effective propagation speed. These values are marked with a cross in Figures 3.8-3.11, and
are tabulated in Table 3.3 and Table 3.4. They are suitable for analysing data with the
February 2010 calibration, but need to be recalculated for subsequent calibrations. Software
which may be used for this purpose is described in Appendix A. Appendix B outlines a
possible technique for performing a fully constrained cable length calibation in one pass.

The tables also show the corresponding globally favoured fraction of consistent measure-
ments, and how much this has decreased relative to the values of ceff and ∆ individually
favoured for that slab. The decision to use a global effective propagation speed is justified
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Figure 3.13: The total number of muons and pions illuminating TOF0 and TOF1 slabs during
Step I, and the fraction of Equation 3.6 measurements based on the optimal fit in Figure 3.12
which fall in the region delimited by the slab illuminated in the orthogonal plane of the
detector.

Horizontal slabs Vertical slabs
Slab ∆ (ps) f (%) δf (%) ∆ (ps) f (%) δf (%)

1 194.3 77.4 −0.02
2 234.1 76.0 −0.02 202.7 80.8 −0.02
3 294.2 80.4 −0.00 238.1 74.9 −0.46
4 351.9 81.8 −0.12 268.8 80.1 −0.08
5 321.0 78.0 −0.05 232.7 79.4 −0.03
6 357.5 78.4 −0.01 232.1 79.6 −0.00
7 219.7 76.9 −0.06 221.6 73.5 −0.33
8 330.9 80.3 −0.03

Table 3.3: Additional cable length corrections for TOF0 slabs in the February calibration. The
global fit, assuming ceff = 13.52 cm/ns. The probability of this global fit, and the reduction
from the slab specific best fit is also quoted.

Horizontal slabs Vertical slabs
Slab ∆ (ps) f (%) δf (%) ∆ (ps) f (%) δf (%)

0 −42.2 83.4 −0.22
1 6.2 85.1 −0.03 −3.4 83.2 −0.05
2 −1.0 80.8 −0.24 −39.8 82.0 −0.01
3 35.0 81.8 −0.22 34.6 83.5 −0.02
4 33.8 81.8 −0.13 35.8 82.8 −0.06
5 29.4 83.2 −0.18 9.8 80.3 −0.00
6 32.6 83.2 −0.42 4.2 81.7 −0.00

Table 3.4: Additional cable length corrections for TOF1 slabs in the February calibration. The
global fit, assuming ceff = 13.52 cm/ns. The probability of this global fit, and the reduction
from the slab specific best fit is also quoted.
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Predicted f (centered) Predicted f (1
3
a offset)

TOF0 96.0% (|Z| < 2.05) 74.3% (−3.42 < Z < 0.68)
TOF1 99.2% (|Z| < 2.64) 77.3% (−3.74 < Z < 0.75)

Table 3.5: The area of the normalized error distribution of x(t− − t+; ceff, ∆) within a region
of width a for a centered and offset distribution. The error distribution is modelled as a
Gaussian, and the corresponding Z-values are noted.
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Figure 3.14: An example of a position measurement using real data. These histograms show
the position of muons at TOF1 in the baseline (6 mm, 200 MeV/c) µ+ matrix element
dataset [72]. Both the old and new methods are shown.

by the fact that this is a fraction on a percent for all slabs. Nevertheless, at first glance,
the values of f appear small. Assuming a Gaussian error distribution, as suggested by Fig-
ure 3.6, noting that σPMT = 2σt, and using the timing resolutions calculated in Section 3.2,
f may be predicted given the slab widths of the two detectors. As Table 3.5 shows, the
calculations summarized in Table 3.3 and Table 3.4 are not consistent with centered distri-
butions, however we can understand the values if we consider that the distribution of hits on
through the slabs will typically be biased towards the side nearest the beam centre. f tends
to be greater in TOF1 than TOF0 because the ratio of slab width to resolution is higher,
and a greater proportion of the error distribution fits within the region delimited by the slab
which was illuminated in the other plane of the detector.

3.3.2 Resolution and beam size

Figure 3.14 shows the distributions at TOF1 which are obtained when the two measurement
techniques are applied to the (6 mm, 200 MeV/c) µ+ matrix element data set5 [72]. This is
the largest ensemble of muons which was recorded during Step I. While both methods lead
to measurements of the position of the beam centre which agree within 0.2 mm, the beam
sizes are found to differ. The standard deviation is greater when the old method is used.

5 The method for obtaining this data set is described in Chapter 4.
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Figure 3.15: A toy Monte Carlo of the effect of the old and new measurement techniques on
position measurents. A slightly off-centre beam with and RMS beam size of 10 cm is shown
in gray. The old measurement is plotted with a dashed line, and the new measurement is
plotted with a solid black line. The residual distributions of δ = m − x are plotted for both
methods, for those particles which pass through slab number one.

In the horizontal plane, 6.23 cm is recorded for the old method and 5.77 mm for the new.
Along the vertical axis the difference is smaller, with values of 6.12 cm and 5.91 cm.

The difference in measured beam size is due to the different effects of resolution bias of the
two methods. Consider that a particle at true position x is measured to be at a position m:

m = x+ δ. (3.8)

The deviation δ is sampled from the error distribution of the measurement technique. The
error disributions of the two methods are illustrated in the case of TOF1 using a model
Monte Carlo in Figure 3.15.

The Step I MICE analysis is concerned with the beam size, emittance, and Twiss parameters
at TOF1. When calculated using raw measurements of the phase space variables, each of
these statistical parameters will be biased by the effect of measurement resolution. In the
case of beam size, the first step towards understanding this effect is to take the variance of
Equation 3.8, and rearrange for the square of the true beam size:

σxx = σmm − σδδ − 2σxδ. (3.9)

σmm is the variance of the raw measurements, σδδ is the square of the resolution of the mea-
surement, and σxδ is the covariance between the true distribution and the error distribution.

In Section 3.3.1, the resolution of the old method was estimated to be a/
√

12, using the
approximation that the width of the slab is uniformly populated. Figure 3.15 shows that
this is not the case. The distribution is in fact different for each slab. Interestingly, the
previous approximation is nevertheless rather good, as a trapezoidal model of the probability
density of hits along the range delimited by the slab which was hit in the orthogonal plane
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σt σx (old method) σx (new method) σx (combined)
TOF0 51.0 ps 1.15 cm 0.98 cm 0.75 cm
TOF1 59.5 ps 1.73 cm 1.14 cm 1.04 cm

Table 3.6: The time and position resolutions achieved by TOF0 and TOF1 during Step I.

– which appears to be very good approximation in all slabs except the central slab – results
in the same expression for the resolution, as the linear term cancels in the integration. The
covariance σxδ also varies in an unpredictable fashion, and can be as large as 5 (mm)2.
Except when measuring highly asymmetric distributions this term can be neglected.

An advantage of the new method is that the error distribution is the same at all points, and
entirely uncorrelated with the measurement. The resolution of the new method has already
been calculated to be ceffσPMT/

√
2. As Table 3.6 shows, this compares favourably with that

of the old method.

In the light of Equation 3.9, and with reference to Table 3.6, it may be shown that the
standard deviations of the raw measurements plotted in Figure 3.14 differ by an explicable
amount when calculated using the two measurement techniques. It should be noted that
due to the statistical deviation of measurements of σδδ and σxδ on finite samples of muons,
these corrections are only approximate.

3.3.3 Combining the measurements

The optimal technique for measuring position with the TOF detectors depends on the pur-
pose of the measurement. When measuring statistical parameters such as beam size, the new
method may be best, because the procedure for removing resolution bias is transparent, and
amounts to subtracting the resolution, which is a constant. As the results are not quantized,
it is also useful for visualizing distributions.

If one wishes to know the positions of individual particles, for example in order to track
them in simulations of the subsequent steps of the experiment, a combination of the new
and old techniques is best. A simple approach would to use a linear combination of the two
measurements, weighted according to their errors. This, however, retains the bias of a few
centimeters which is typical of the old method.

In certain circumstances, a good compromise may be to employ the new method, except when
it reconstructs the particle outside the region delimited by the slab which was illuminated
in the orthogonal plane of the detector. In the latter cases, the particle can be recorded as
being at the edge of the orthogonal slab.

The new method is used alone for the analyses in this thesis. As the measurement is not
quantized and has an unbiased and approximately Gaussian error distribution, this choice
simplifies the analysis of reconstructed trace space distributions in Chapter 6 considerably.
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3.4 Conclusion

TOF0 and TOF1 are designed to measure time with a resolution of 50 ps at both stations.
This chapter describes a method for measuring transverse position using TDC counts in
the PMTs. The effective propagation speed of light signals in the scintillator was measured
to be 13.52 ± 0.30 cm/ns, with a sample of 5.1 million muons and pions. During Step I
the calibration achieved figures of 51.0 ps and 59.5 ps respectively, allowing timing based
position measurements to be made with resolutions of 0.98 cm and 1.14 cm respectively.

While this measurement will be useful in the future, the extra corrections for each slab will
need to be recalculated for every new calibration. The software used to make the calculations
in this note is available as the G4MICE application XCalibration. It would be possible to
avoid the extra calibration procedure described in this chapter by extending the TOF cable
calibration to constrain every degree of freedom. A simplified sketch of how such a calibration
might proceed is outlined in Appendix B.



Chapter 4

Time of flight and transverse position

in data and simulation
Time of flight distributions are used to perform particle identification and define
muon data sets for the Step I emittance-momentum matrix beams, and the stability
of the calibration is evaluated using the e± peak. Finally, a set of Monte Carlo simu-
lations which are used for comparison with data throughout the thesis are described,
and their distributions of time of flight and transverse position are compared with
those in the corresponding data sets.

Timing detectors TOF0 and TOF1 are the only calibrated detectors which were operational
in Step I. Positioned at the end of the Step I beam line, they have been used to characterize
the MICE beams for the analysis in this thesis. In Section 4.1 and Section 4.2 time of flight
distributions are used to perform particle identification and to study the stability of the
calibration.

In the previous chapter the timing resolution of TOF0 and TOF1 was measured and the
calibration was extended to allow the measurement of position. In Section 4.3 the mea-
surements are applied to the Step I data and compared with simulations. The phase space
distributions of the muon beams in the simulations and data sets defined in this chapter are
then studied in the remainder of the thesis.

4.1 Particle identification for the Step I data sets

The main purpose of the time of flight detectors is to distinguish muons from electrons,
pions and protons. TOF0 and TOF1 are separated by L = 7.71 m and positioned at the
end of the Step I beam line, directly upstream of the future position of the cooling channel.
It is possible to examine the particle content of the beam using time of flight peaks because
the distributions of each species have approximately the same mean momentum p selected
by dipole 2. The mean time of flight of each species varies as t = (L/c)

√

1 +m2/p2. Each
detector is designed to measure the time of passage of a particle with a resolution of 50 ps [71].
As calculated in Chapter 3, timing resolutions of 51.0 ps and 59.5 ps were achieved in TOF0
and TOF1 during Step 1.

Figure 4.1 shows a typical time of flight distribution with positron, muon and pion peaks
labelled. Although not designed to be matched into the cooling channel, the design mo-
mentum is near that required to reach the nominal base line momentum of 200 MeV/c

50
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Figure 4.1: The figure shows the time of flight measured by the TOF0 and TOF1 detectors.
The lines show the expected positions t = (L/c)

√

1 + m2/p2 of the positron, muon and pion
peaks, given a momentum of 217 MeV/c. Any proton peak would be trivially distinguishable
at > 100 ns. The data is from experimental runs 2730, 2731, 2732 and 2768.

in the absorber centres. It is not possible to distinguish between muons and pions for
about 20% of these particles using this method. The time of flight distributions overlap
because of the wide momentum acceptance of dipole 2 rather than because of the time of
flight resolution σt =

√

(51.0 ps)2 + (59.5 ps)2 = 78.4 ps, which is of the order of two bin
widths. Particle identification is more difficult for high momentum beams, particularly the
(10 mm, 240 MeV/c) matrix element which must achieve 240 MeV/c in the absorber centres
after energy loss in the maximum thickness diffuser plate (cf. Table 2.2).

The shapes of the time of flight distributions of the emittance-momentum matrix beams are
slightly different, due to the specific criteria to select the component of the muon decay spec-
trum which is created from pions decaying backwards in the decay solenoid. Tuning dipole 2
to accept the momentum of backward decaying muons minimizes the pion contamination as
these muons are in the tails of the pion distribution, illustrated in Figure 2.6.

The muon peaks are particularly broad in these time of flight distributions, as shown in the
data from the base line (6 mm, 200 MeV/c) µ+ element of the emittance-momentum matrix
in Figure 4.2. There is no evidence of a pion peak. If one exists at the predicted time of
flight of 31 ns it is invisible under the declining tails of the broad muon distribution. It is
not possible to tell from from the data alone what proportion of the distribution between
30 ns and 32 ns is pions and what is low energy muons. A muon at the time of flight of the
predicted pion peak would have pz ≈ 165 MeV/c.

Similar distributions are observed for all of the matrix elements except the (3 mm, 140 MeV/c)
µ− beam. The distributions are drawn in Figure 4.3, with logarithmic axes to highlight noise
if it exists in the data and to aid the eye in searching for pion peaks and setting cuts. In each
case the e± peak is fixed and the broad muon peak is narrower and faster for the higher mo-
mentum matrix elements. The tails of the µ+ distributions are a little longer than the tails of
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Figure 4.2: The time of flight between TOF0 and TOF1 for the (6 mm, 200 MeV/c) µ+ matrix
element. Dipole 2 is set here to accept a design momentum of 237 MeV/c. After energy
loss in various detectors, the mean momentum between TOF0 and TOF1 is expected to be
211 MeV/c [61]. The lines illustrate the expected position of positron, muon and pion peaks,
if they exist. The experimental runs which make up this data set are listed in Appendix A.

PID cuts telow tehigh tµπ
low tµπ

high

140 MeV/c 25.0 ns 27.0 ns 27.0 ns 43.0 ns
200 MeV/c 25.0 ns 26.5 ns 26.5 ns 40.0 ns
240 MeV/c 25.3 ns 26.5 ns 26.5 ns 36.0 ns

Table 4.1: Time of flight particle identification cuts based on the distributions in Figure 4.3.
Muons and pions are grouped together as it is not possible to separate them in beams tuned
to accept muons emitted backwards in the centre of mass frame of the decaying pions.

the µ− distributions, and there in a suggestion that low emittance nominal pz = 200 MeV/c
beams have broader peaks. The most noticeable feature is the very narrow muon peak of
the (3 mm, 140 MeV/c) µ+ beam. One would expect it to have a similar distribution to
its µ− counterpart in the emittance-momentum matrix and it is believed to be anomalous.
This beam will be re-tested in the next data taking period.

In all cases a positron peak is trivially distinguishable, and it is not possible to distinguish
muons and pions. Time of flight cuts have been assigned to create e± and µ/π data sets,
as recorded in Table 4.1. For simplicity the cuts are identical for both polarities and each
emittance, and vary depending only on the momentum of the beam. The boundary between
the e± peak and the µ/π peak was taken simply to be the minimum of the distributions
between the two prominent neighbouring peaks. The low e± edge and the high µ/π edge
have been selected to be the points at which the distributions rise above the noise. The low
level noise is attributed to coincidental but independent light signals in the two detectors.
The contamination of the data is < 0.1%.

The sizes of the Step I data sets which follow from these cuts are shown in Table 4.2. The
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Figure 4.3: Time of flight distributions for the eighteen emittance-momentum matrix beams (cf.
Section 2.3). Logarithmic axes have been used to aid the eye in differentiating signal from
noise when deciding particle identification cuts.
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µ− beams µ+ beams
Nµπ pz (MeV/c) pz (MeV/c)

(Ne/Nµπ) 140 200 240 140 200 240

ǫ N
(m

m
)

3
13,215 26,282 22,580 1,771 101,025 77,967
(7.2%) (2.2%) (1.2%) (1.7%) (1.4%) (0.8%)

6
19,502 87,917 14,868 55,942 531,283 128,823
(6.0%) (1.9%) (1.1%) (2.5%) (0.9%) (0.7%)

10
19,707 11,017 18,870 53,148 80,887 121,296
(5.1%) (1.4%) (1.0%) (2.0%) (0.7%) (0.6%)

Table 4.2: The number of particles which pass the µ/π cut in Table 4.1 for each element of the
emittance-momentum matrix, and the number passing the e± cut as a percentage of the µ/π
peak.

largest data sets are the base line (6 mm, 200 MeV/c) µ− and µ+ elements. The table also
shows that the e± peak is bigger for low momentum and negative polarity beams.

4.2 Stability of the electron peak

The stability of the e± peak is illustrated by Figure 4.4. Its mean and RMS time of flight
in each experimental run throughout the whole Step I data taking campaign is plotted. As
electrons and positrons are highly relativistic at momenta of the order of hundreds of MeV/c
their distribution should be peaked at ∼ L/c with width given by the time of flight resolution
σt = 78.4 ps.

The figure has three surprising features which a discussed in this section. Firstly the February
and August calibrations return different mean flight times for the e±. Section 4.2.1 analyses
a recent survey to predict the correct time of flight and Section 4.2.2 explains the (prosaic)
cause of the difference and the method used in this thesis to calibrate the absolute value of
the time of flight t1 − t0.

Secondly there is some evidence of a systematic difference between the positions of the
positron and electron peaks, Thirdly the RMS value of the peak is unexpectedly large.
These effects are investigated in Section 4.2.3.

4.2.1 Geometry of the TOF0 and TOF1 detectors

In order to calibrate t1 − t0 it is necessary to know the distance between the detectors.
A survey of the experimental hall was conducted at the end of the Step I data taking
campaign [63]. The surveyors recorded the positions of the corners of TOF0 and TOF1
relative to the centre of dipole 2, with ẑ along the design orbit.

L can be determined from the intersection of the detector centre planes n̂ · (~r−~r0) = 0 with
ẑ. Let the corners of the downstream face of TOF0 be labelled A, B, C and D, proceeding
around the edge in either sense. The normal vector n̂ is obtained from ~AC × ~BD and
the centre of the detector ~r0 is deduced from ~AC + ~BD. The measurements are recorded in
Table 4.3. TOF0 and TOF1 therefore intersect the design orbit at z = n̂·~r0/n̂·ẑ = 5293.7 mm
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Figure 4.4: The stability of the February and August TOF0 and TOF1 detector calibrations.
The mean time of flight t1 − t0 of the e± peak is plotted as a function of the number of the
experimental run. The runs span the period from quadrupole 3 being fixed to the end of the
Step I data taking campaign: all the runs listed in Appendix A with more than five e± are
included. The error on the points ranges from 5 ps to 50 ps.

Detector Detector centre ~r0/mm Normal vector 100 × n̂
TOF0 (1.8, 2.6, 5293.8) (−0.467,−0.509, 99.998)
TOF1 (30.2,−17.6, 12999.0) (−0.927,−1.423, 99.986)

Table 4.3: Positions and rotations of TOF0 and TOF1 inferred from the survey [63].
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〈t1 − t0〉 of the e± peak µ− beams µ+ beams
(6 mm, 140 MeV/c) 25.366 ns ± 3 ps 25.303 ns ± 3 ps
(6 mm, 200 MeV/c) 25.369 ns ± 3 ps 25.298 ns ± 2 ps
(6 mm, 240 MeV/c) 25.370 ns ± 9 ps 25.289 ns ± 4 ps

Table 4.4: The mean e± time of flight for the ǫN = 6 mm matrix element µ± data sets illustrated
in Figure 4.5. The values are derived from the raw output of G4MICE using the February
2010 calibration.

and 12999.0 mm respectively and L = z1 − z0 = 7.7053 m.

The tilt in the detectors is given by the dihedral angle cos−1(n̂ · ẑ) = 0.396° and 0.974° in the
two detectors respectively. Therefore a muon hitting the edge of TOF1 ∼ 20 cm from the
design axis will travel an extra 3.5 mm. The time of flight will be different by about 10 ps
or 0.3%.

4.2.2 Calibration of the absolute time of flight

Although the February 2010 calibration is used in this thesis, the August 2010 calibration
is also plotted in Figure 4.4 to illustrate the consistency of the calibration procedure. The
mean peak position of the two calibrations follow each other for each experimental run,
illustrating that the scatter of the points is not a reflection of instability or noise in the
calibration procedure. The distribution of means varies in the same pattern, offset by about
80 ps.

The mean peak positions are different because the calibrations are based on different surveys,
with different measurements of L. This effect also accounts for the small offset between the
positron peaks in Figure 4.1 and Figure 4.2 and their predicted time of flight. The analysis
software of the collaboration (G4MICE [67]) calibrates TOF1 relative to TOF0 using the
position of e± peaks in data and the assumption 〈t1 − t0〉 = L/c. A dedicated run was
performed to perform this calibration and the scatter and correlations in Figure 4.4 were
not taken into account. The analysis in this thesis is based on the newer and more complete
survey which was described in the previous section.

A second problem is that G4MICE returns times which are too large by a factor 1024/1000
due to a mis-understanding of the precise width of the TDC bins. The supplementary
position calibration described in Chapter 3 was performed before this feature was discovered.
Therefore this calibration should be applied to TDC hits obtained using the February 2010
calibration without this correction, with no adverse effect on the results as they were cross-
calibrated to the physical size of the slabs. The appropriate correction factor has been
applied to all other timing measurements in this thesis.

4.2.3 The anomalous electron-positron asymmetry

In both the February and August calibrations a shift of ∼ 70 ps is visible between µ+ and µ−

data sets. The most compelling case is made by the oscillations at the polarity switches near
run 2000 and run 2500. One disadvantage of Figure 4.4 is that the runs have a plethora or
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Figure 4.5: Position of the e± peaks of the ǫN = 6 mm matrix element µ± beams in data.
The values are the raw output of G4MICE using the February 2010 calibration. The mean
positions of the peaks are recorded in Table 4.4.

〈s− L〉 of the e± peak µ− beams µ+ beams
(6 mm, 140 MeV/c) 13.9 ± 0.2 mm 10.9 ± 0.3 mm
(6 mm, 200 MeV/c) 13.8 ± 0.1 mm 11.0 ± 0.1 mm
(6 mm, 240 MeV/c) 14.6 ± 0.2 mm 12.7 ± 0.7 mm

Table 4.5: The mean e± excess path length s−L for Monte Carlo simulations of the ǫN = 6 mm
matrix element µ± data sets illustrated in Figure 4.6. The values are derived from simulations
of the re-scaled TURTLE optical designs described in Section /refsec:Simulations.

different optical configurations, however the effect is also visible in the large ǫN = 6 mm re-
scaled TURTLE emittance-momentum matrix element data sets, as illustrated in Figure 4.5.
The mean time of flight of these peaks is recorded in Table 4.4. There is no evidence for a
dependence on emittance or momentum.

A number of hypotheses have been proposed to explain the shift. Thermal expansion of
the cables or the hall itself does not appear to be large enough effect. 70 ps corresponds to
∼ 2 mm and a fractional expansion over L of 0.25%. Given thermal expansion coefficients
are of the order of 10−5 K−1 plausible temperature variations are far too small to cause such
an expansion.

A second theory is that the offset is a variation in path length due to the earth’s magnetic
field. At the surface of the earth the field is ∼ 50 µT. 250 MeV/c electrons and positrons
travelling perpendicular to this field have a radius of curvature of 17 km, and a relative
deflection over L ≈ 8 m of L2/17 km ≈ 4 mm = 13 ps× c. This effect is therefore too small
to account for the offset. The deflection is also in the transverse rather than longitudinal
direction and complicated by the quadrupole magnets, and therefore cannot clearly account
for the observed electron-positron time of flight discrepancy.

Another potential cause for the offset is a difference of 70 ps× c = 21 mm in the mean path
length of the electrons and positrons. As most particles travel along a curved trajectory their
integrated path length s > L. As the currents in the subsequent dipole 2 and quadrupoles 4-
9 were reversed when the beam polarity was switched there should be no difference in the
way in which the trace space distributions of e− and e+ are transported from the decay
solenoid into the upstream time of flight system. However, an asymmetry could arise if the
initial distributions are different. There are two possible causes of this. Firstly, the current
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Figure 4.6: The integrated path length s greater than the axial distance L traversed by e−

in µ− beams and e+ in µ+ beams between TOF0 and TOF1 in simulations of the ǫN =
6 mm elements of the emittance-momentum matrix. 〈s − L〉 for these beams is recorded in
Table 4.5.

in the decay solenoid was not switched; and secondly, the polyethylene proton absorber was
only present for the positive polarity beams. Both effects will alter the distribution of e±

emerging from the decay solenoid which have the required momentum to be transported
through dipole 2, as the beam will not be symmetric in the decay solenoid, as the pion beam
inserted into it is not symmetric.

This hypothesis has been tested using simulations of the beam line which are described in
the following section. Simulated s − L for the six ǫN = 6 mm matrix elements are plotted
in Figure 4.6 and the mean values are recorded in Table 4.5. The simulations do show an
effect in the required direction, but the difference in the peaks is less than 5 mm.

Non-negligible e± excess path length distributions are also the most probable solution to the
question of why the e± peaks are wider than σt. The simulations in Figure 4.6 have an RMS
path length RMS of the order of 10 mm = 33 ps × c. Assuming this spread is independent
of the timing resolution in the detectors, this effect increases the predicted e± peak width
from 78.4 ps to 85 ps, still significantly less than 120 ps observed in the figure.

Both of these effects could be the result of an inadequacies in the simulation of electrons
and positrons. s−L distributions with a width of order cσt would account for the observed
e± peak width and provide scope for a difference which could account for the asymmetry in
mean time of flight. As the spectrometers will eventually make an independent measurement
of the phase space distributions of the beams there is no call to improve the simulations to
the required degree of precision to resolve this question.

The final hypothesis is that the e± peak asymmetry could be due to an instrumental effect
caused by fact that the particle rate is higher at TOF0 for positive polarity beams than
negative polarity beams [59]. Cobb has suggested that a high rate could lower the photo-
multiplier tube voltages and thereby increase the transit time in PMTs in the detector
[78]. This would cause TOF0 to trigger the discriminator later, resulting in an shorter
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Detector x0 (mm) y0 (mm) z0 (mm) ∆z (mm) ∆x (mm)
TOF0 1.8 2.6 −3852.7 50.0 400.0
Cherenkov 0.0 0.0 −3450.0 693.0 450.0
BPM 0.0 −25.0 −354.0 1.6 442.2
Quadrupole 7 0.0 0.0 353.0 658.0 700.0
Quadrupole 8 0.0 0.0 1513.0 658.0 700.0
Quadrupole 9 0.0 0.0 2673.0 658.0 700.0
TOF1 30.2 −17.6 3852.7 50.0 420.0

Table 4.6: The table shows the relative longitudinal positions of the intersections of the detector
and magnet centre planes with the design trajectory. The numbers are based on a survey of
the MICE hall performed on the 11th and 12th September 2010 [63]. Small changes in the
positions of the TOFs may be noted from the previous survey in December 2008, as reported
by Rayner and Cobb [79].

measurement of the time of flight. This could also explain the slight decrease in positron
time of flight as Step I continued and the target was dipped increasingly deep into the ISIS
proton beams [73].

4.3 Simulation of the upstream time of flight system

Before studying the distributions of the MICE beams in trace space this section summarizes
the distributions of the data sets defined in Section 4.1 in variables which are directly mea-
sured by TOF0 and TOF1. Section 4.3.1 begins by describing how simulations of the beams
corresponding to these data sets were produced. Sections 4.3.2 and 4.3.3 compare the data
and simulated distributions of time of flight and position respectively.

4.3.1 The G4Beamline-G4MICE simulations of the Step I beams

The evolution of Step I beams in the MICE beam line was first studied using the TURTLE
simulation software [71]. Tilley used TURTLE to design the base line (6 mm, 200 MeV/c)
optical configuration. This simulation is inadequate for comparison with Step I data from
TOF0 and TOF1 as it is based on a prediction of the Step I beam line geometry which is
different from the final arrangement of magnets and detectors.

Apollonio made a better model of the beam line based on an up to date survey using the
Monte Carlo simulation program G4Beamline [62]. This software has the advantage of
detailed magnet field maps and a thorough model of particle interactions in matter provided
by Geant4 [68]. This model was developed for the genetic algorithm optical design, but was
also used to simulate the re-scaled TURTLE beams [52] (cf. Section 2.3.4).

A more detailed model of the upstream time of flight system has been developed for the
analysis in this thesis. Apollonio’s G4Beamline simulations have been used as input beams
for a simulation of the beam line between TOF0 and TOF1 using G4MICE. G4MICE is
also based on Geant4, and benefits from more detailed magnet and detector geometries and
material budgets.
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Figure 4.7: The profile of the normalized gradient g(z) = dBy(z)/dx/g0 of quadrupoles 7, 8 and
9 at three axial displacements. The field map was generated using Opera-3d [81]. All three
curves have an integral equal to half the effective length of 32.9 cm. Therefore the effective
length of the quadrupoles is leff = 65.8 cm.

The geometry of the simulation is based on the survey of the MICE beam line conducted
in September 2010. The location of the TOF detectors was described in Section 4.2.1.
The best available information of the components of beam line between these detectors is
summarized in Table 4.6. The magnets and detectors were placed at these positions in
a Geant4 ‘world volume’ filled with air. Apollonio provided data sets of the phase space
vectors of electrons, muons and pions in the G4Beamline simulations of the ǫN = 6 mm
re-scaled TURTLE optical configurations immediately upstream of TOF0. These ensembles
were then simulated in G4MICE from the upstream face of TOF0 to the downstream face
of TOF1. The 3 mm and 10 mm elements have not been simulated as there should only be
minor differences between the various design emittances in beams with the same nominal
momentum, as the Step I re-scaled TURTLE optical configurations have only been adjusted
for momentum after the diffuser (cf. Chapter 2 and Appendix A).

The TOF detectors are modelled with the geometry and materials described in Chapter 3.
The Cherenkov counter is made of two vessels each of which is modelled with glass, PVC and
polyoxymethylene (delrin) windows, a polycarbonate mirror and 23 mm of aerogel [67, 71].
Most energy loss and scattering takes place in the 2 mm of glass and 3.2 mm of PVC in
each vessel. The model was adapted (with an improved material budget) from a geometry
submitted by detector experts [67]. The beam profile monitor (BPM) is made of two planes of
polystyrene fibres with poly(methyl methacrylate) (PMMA) cladding of diameter 1 mm [80].
These have been approximated in the simulation by two polystyrene sheets1. The key element
of the BPM geometry is a 9.5 mm thick aluminium frame with a displaced square aperture
with the width and centre position reported in Table 4.6. The displacement of the frame
was not intentional and has a marginal effect on beam transport.

The field map of quadrupoles 7, 8 and 9 was generated using Opera-3d2. Their normalized

1 The radius of pure polystyrene with the same ρdE/dX was calculated and multiplied by π/4 to give
the average thickness traversed per fibre plane. A Rohacell detector covering leads to negligible energy loss.

2 Opera-3d is a finite element analysis program capable of calculating electromagnetic fields in media [81].
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Matrix element Ne Nµ Nπ Nπ/(Nµ +Nπ)
(6 mm, 140 MeV/c) µ− 3,368 35,238 274 0.77%
(6 mm, 200 MeV/c) µ− 12,516 293,703 2,704 0.91%
(6 mm, 240 MeV/c) µ− 4,492 310,196 3,274 1.04%
(6 mm, 140 MeV/c) µ+ 595 11,147 349 3.04%
(6 mm, 200 MeV/c) µ+ 3,788 87,006 4,231 4.64%
(6 mm, 240 MeV/c) µ+ 280 12,844 704 5.20%

Table 4.7: The relative numbers of e, µ and π in simulations of the ǫN = 6 mm matrix elements.

field gradient profile is shown in Figure 4.7. The central gradient was set according to the
conversions in Table A.1 given the currents in Table 2.3. The body of the magnet is made of
steel, with a pole tip radius of 35 cm. The pole tip geometry was implemented by Rogers [67].
Scraping in the quadrupole magnets is important as simulations show that ∼ 60% of the
beam is lost at the aperture of quadrupole 7.

4.3.2 Time of flight in data and simulation

Time of flight distributions for the nominal ǫN = 6 mm µ− and µ+ beams in data and
simulation are shown in Figure 4.8. The February 2010 calibration has been used to produce
the data histograms (as throughout this thesis) with the addition of the TDC bin width
correction described in Section 4.2.2. The data distributions have then been shifted so that
the e± peaks are roughly aligned with those in simulation to aid the eye in comparing the
shape of the distributions3. The simulated distributions have been smeared by a Gaussian
distribution with mean zero and RMS σt = 78.4 ps in order to simulate the effect of time
of flight resolution. This has the advantage of matching the shapes of the distributions for
comparison and widening the narrow e± peak so that their size may be compared. The
simulated distributions have been normalized so that the area of the muon peaks match.
The relative numbers of e, µ and π in the simulations are given in Table 4.7.

The agreement is reasonably good at the fast edge of the muon distribution although there
is visible disagreement for the slow muons where the tail is longer in data. It is likely
that the disagreement arises from the difficulty in modelling high amplitude particles in
the simulations. Despite a particular effort having been made to model the material in
the quadrupole apertures accurately, the significant scraping at quadrupole 7 makes the
transmitted distribution sensitive to its acceptance. As will be demonstrated in Chapter 6
this affects the slow edge most noticeably as most high amplitude particles are found at this
side of the distribution as the focusing strength for them is stronger and they were less likely
to have been scraped previously.

The pion distributions are of particular interest because, as discussed in Section 4.1, it is not
possible to deduce the pion contamination in the broad muon peaks from time of flight data
alone. The simulations show that the contamination is only of the order of 1% in µ− beams
and 5% in µ+ beams. It is not appropriate to make a cut on them as they are distributed
throughout the muon peak.

3 This calibration is treated more carefully when time of flight is used to measure pz (cf. Section 5.2.3).
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Figure 4.8: A comparison between time of flight distributions in data and simulation for the
ǫN = 6 mm emittance-momentum matrix beams. The simulation has been normalized so
that the sum of the µ and π peaks has the same area as the µ/π peak in data.
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Matrix element Reconstructed data Reconstructed simulation
(cm) 〈x〉 〈y〉 σx σy 〈x〉 〈y〉 σx σy

(6 mm, 140 MeV/c) µ− 0.64 −1.03 6.04 6.51 −0.49 0.19 6.39 6.87
(6 mm, 200 MeV/c) µ− 1.24 −0.90 5.56 6.02 −0.19 0.04 6.18 6.50
(6 mm, 240 MeV/c) µ− 1.30 −0.88 5.40 5.62 0.14 0.05 6.04 6.25
(6 mm, 140 MeV/c) µ+ −0.21 −0.39 6.12 6.48 −1.04 0.00 5.82 6.92
(6 mm, 200 MeV/c) µ+ −0.29 −0.17 5.78 5.88 −1.28 0.12 5.19 6.80
(6 mm, 240 MeV/c) µ+ −0.28 −0.18 5.70 5.62 −1.30 0.04 4.90 6.52

Table 4.8: Comparison between measurements of x just before TOF1 in data and resolution
smeared Monte Carlo truth. The error on the mean and RMS are of the same order, and
never greater than 1 mm.

4.3.3 Transverse position in data and simulation

Distributions of transverse position in the horizontal and vertical plane at TOF1 in data
and simulation are plotted in Figure 4.9 and Figure 4.10. The simulated distributions are
smeared by the position resolution of TOF1 and the data is corrected for the detector offsets
measured in the most recent survey and recorded in Table 4.6. The origin of the position
distributions is the intersection of TOF1 with the design axis, defined as in the survey to
be the line through the centre of quadrupoles 7-9. The simulated distributions have been
normalized to the integrated area of the data distributions and the means and standard
deviations of the distributions are recorded in Table 4.8.

The shapes of the distributions are remarkably similar irrespective of the nominal momen-
tum or polarity of the beam (as might be expected for re-scaled optical configurations), with
vertical distributions being slightly more peaked but having comparable RMS widths to hor-
izontal distributions. None of the means or RMS widths are consistent within measurement
error but all are centred within 1.5 cm. A systematic horizontal offset between data and
simulation may indicate an error in the correction for the offset of the detector with the
design axis. This may be due to the importune removal and replacement of TOF1 from its
frame in the days between the end of the data taking campaign and the survey. Nevertheless
care has been taken to apply the survey results faithfully.

One may observe a displacement in 〈x〉 between the µ− and µ+ beams which increases with
nominal momentum in a fashion mirrored by the simulations. This is likely to reflect the
effect of dispersion in dipole 2 of initial phase space distributions which vary slightly as the
current in the decay solenoid was not switched when the polarity of the other beam line
magnets was switched.

The rough agreement in the magnitude of beam size in data and resolution smeared Monte
Carlo is encouraging as a first indication that the transverse phase space of the beams does
not differ markedly from expectations. Naturally however, the emittance of the beams is of
primary importance, as the design of the diffuser depends on its value, assumed naively to
be ǫN ≈ 3 mm. A full phase space comparison is made in Chapter 6 using the momentum
reconstruction technique described in the next chapter.
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Figure 4.9: A comparison between measurements of x at TOF1 in data and Monte Carlo for the
ǫN = 6 mm elements of the emittance-momentum matrix for both µ− and µ+ beams. The
simulated distributions are weighted to the data.
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Figure 4.10: A comparison between measurements of y at TOF1 in data and Monte Carlo for
the ǫN = 6 mm elements of the emittance-momentum matrix for both µ− and µ+ beams.
The simulated distributions are weighted to the data.
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4.4 Conclusion

In this chapter the time and position measurements described in Chapter 3 have been applied
to the Step I data. Data sets have been defined for the emittance-momentum matrix of re-
scaled TURTLE muon beams and compared with Monte Carlo simulations. The size of the
Step I data sets is shown in Table 4.2; the size of the Monte Carlo simulations is shown in
Table 4.7. These data sets and simulations are analysed further in the following chapters.

The muon beams have been selected using the time of flight cuts in Table 4.1. Electrons
and protons may trivially be removed using timing cuts. A pion cut is not necessary as no
pion peak is present at the end of the beam line. Some pions do survive, and cannot be
removed as they have a broad momentum spectrum, however Monte Carlo simulations show
that the contamination of the muon peak is about 1% for µ− beams and 5% for µ+ beams.
A discrepancy of order 70 ps in the mean time of flight of the electron and positron peaks
has not yet been understood.

The comparison between data and simulation in Section 4.3 is encouraging but inconclusive
as the simple comparisons of direct measurements of time and position do not provide in-
formation about the longitudinal and transverse momenta of the muons: it is not possible
to predict the subsequent behaviour of the beams without further analysis. Nevertheless
these measurements provide the basis for the reconstruction of particle trajectories in the
following chapters. The comparisons here are designed to be a useful reference.



Chapter 5

Measurement of muon momenta
An iterative reconstruction algorithm has been developed to remove a bias of order
5 MeV/c from ∼ 3 MeV/c resolution measurements of pz by the MICE time of
flight detectors. The momentum spectra of the Step I beams have been measured
and found to be consistent with Monte Carlo simulations. The method also recon-
structs the transverse angles x′ and y′ and encouraging agreement is observed with
simulations.

Step I of the MICE experiment was devoted to creating and characterizing each of the
beams in the emittance-momentum matrix. In the absence of the upstream spectrometer it
was necessary to improvize the measurement using the time of flight system illustrated in
Figure 5.1.

This chapter focuses on the reconstruction of individual muon momenta at TOF1, with
particular attention to making an unbiased measurement of the longitudinal momentum.
The following chapter uses these measurements to characterize the distributions of the beams
in transverse phase space. First however, Section 5.1 explains the general principles behind
the reconstruction of transverse and longitudinal phase space distributions used in this thesis,
and why the traditional method is not appropriate for the MICE beam line.

TOF0 TOF1

Quadrupole 7 Quadrupole 8 Quadrupole 9

Cherenkov

z7 z8 z9 z1z0

L

z

u v

BPM

zBPM

Figure 5.1: The MICE time of flight system [65]. A Cherenkov detector (Ckov), beam profile
monitor (BPM), and quadrupole triplet (Q7-Q8-Q9) lie between two high precision timing
detectors, TOF0 and TOF1.
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5.1 Phase space reconstruction at the MICE beam line

Emittance is traditionally estimated using measurements of a beam’s RMS size in three or
more profile monitors [38]. The technique relies upon knowledge of the transfer matrices
which transport trace space vectors between the detectors. Suppose two of the detectors are
TOF0 and TOF1. As demonstrated in Chapter 3 TOF0 and TOF1 are capable of measuring
position with resolution ∼ 1 cm: consider either the horizontal or vertical plane, and let the
measurement of the displacement in that plane be u in TOF0 and v in TOF1, as indicated
in Figure 5.1. In the approximation of linear beam transport, a particle’s trace space vector
(u, u′) is then transformed as

(

v
v′

)

=

(

M11 M12

M21 M22

)(

u
u′

)

(5.1)

where the conjugate variable is the angle of the velocity of the particle with respect to
the design axis u′ = du/dz. Similarly it may be shown that the beam’s covariance matrix
transforms as:

(

σvv σvv′

σvv′ σv′v′

)

=

(

M11 M12

M21 M22

)(

σuu σuu′

σuu′ σu′u′

)(

M11 M12

M21 M22

)T

. (5.2)

In Step I we wish to measure the emittance at TOF1 ǫ =
√

σvvσv′v′ − (σvv′)2. The transfer
matrix can be calculated given knowledge of the magnetic fields in the quadrupoles, and
TOF0 and TOF1 provide measurements of σuu and σvv, however another measurement is
required to fully constrain Equation 5.2 and measure both σv′v′ and σvv′ . This could poten-
tially have been provided by a measurement of the beam size in a third detector such as the
beam profile monitor or TOF2. Neither was calibrated and added to the data acquisition
in Step I because this traditional method of emittance measurement is not possible in the
MICE neam line as the transfer matrices vary significantly over the momentum spectrum of
the beams.

A novel method of phase space reconstruction was developed instead which uses the high
resolution time of flight measurement made by TOF0 and TOF1. Before this technique is
introduced however, it is necessary to discuss beam transport in the time of flight system in
more detail.

5.1.1 Beam transport in the MICE time of flight system

The quadrupole gradient of the baseline (6 mm, 200 MeV/c) optical configuration as a
function of z in the upstream time of flight system is illustrated in Figure 5.2. The MICE
quadrupoles are alternately focusing, defocusing, and focusing in the horizontal plane. As
the MICE quadrupoles have relatively wide apertures a thin lens model is inadequate as
particles make a significant detour in x and y in the quadrupole fringe fields.
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Figure 5.2: The axial quadrupole gradient g0 = dBy/dx between TOF0 and TOF1. Quadrupole
triplet Q7-Q8-Q9 is focus-defocus-focus in the horizontal plane in all Step I optical config-
urations. The ‘top hat’ parameterization of the gradient profile which has been used to
estimate the path length through the quadrupoles is also illustrated. The width of the top
hat functions is the effective length of the quadrupoles leff = 65.8 cm (cf. Section 4.3.1).

The ‘top hat’ model of transport through quadrupoles

The quadrupole gradient is often modelled as a top hat of width leff and height g0 =
dBy(x, 0, zquad)/dx, as illustrated in the figure. The transfer matrices across the distance
leff in the focusing and defocusing planes are:

F =

(

cos Ω k
− 1

2

0 sin Ω

−k
1

2

0 sin Ω cos Ω

)

, D =

(

cosh Ω k
− 1

2

0 sinh Ω

k
1

2

0 sinh Ω cosh Ω

)

,

where the central focusing strength is defined as k0 = qg0/p and the phase advance Ω =
√

|k0|leff [38]. The zero gradient regions may be traversed by the drift matrix:

O =

(

1 l
0 1

)

.

where l is the drift length1. The transfer matrix between TOF0 and TOF1 is therefore given
in the horizontal plane by:

Mx = O(z1 − z9 − 1
2 leff)F(g9)O(z9 − z8 − leff)D(g8)O(z8 − z7 − leff)F(g7)O(z7 − 1

2 leff − z0),

and in the vertical plane by:

My = O(z1 − z9 − 1
2 leff)D(g9)O(z9 − z8 − leff)F(g8)O(z8 − z7 − leff)D(g7)O(z7 − 1

2 leff − z0).

1 As noted in Chapter 2 the drift transfer matrix is a function of pz in phase space but not in trace
space. This simplifies the transport of wide pz spectrum beams in trace space and makes it an attractive
parameterization for use in Chapter 5 and Chapter 6.
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The slice matrix method

While the top hat transfer matrix method delivers the correct impulse to each particle
it neglects the effect of the fringe fields. Alternatively the beam line may be divided into
sections of a centimetre or so along ẑ with the wide aperture quadrupole fringe fields modelled
as ∼ 100 adjacent top hat quadrupoles with g0 given by the magnitude of the fringe field at
that point. To this end the gradient profile of the OPERA model in Figure 4.7 was fitted at
x = 7 cm using a pair of hyperbolic tangent functions:

gtanh(z)

g0

=
tanh[(a− z)/b] + tanh[(a+ z)/b]

2
, (5.3)

where a = 33.09 ± 0.05 cm and b = 12.53 ± 0.08 cm. This functional form2 was used in
preference to the more widely used Enge parameterization as it was found to be impercep-
tibly different from the OPERA map and requires fewer parameters. One may integrate it
analytically to calculate the effective length:

leff =

∫ ∞

−∞

gtanh(z)

g0

dz = 2a.

The parameter b does not affect the effective length but alters the shape of the field. In
contrast to a = leff/2 it’s value may be seen in Figure 4.7 to vary slowly as a function of x.
This effect is neglected in the analysis in this chapter.

For each optical configuration the central gradient g0 of quadrupoles 7, 8 and 9 are calculated
from the current using the conversion in Appendix A. Three double hyperbolic tangent
gradient profiles are scaled by the resulting central gradients and summed with displacements
given by their respective positions in the beam line to create profiles like that illustrated for
the base line case in Figure 5.2. This procedure has the advantage of correctly modelling
the regions where the fringe fields of adjacent magnets overlap. It has been used to create
a gradient profile for each of the re-scaled TURTLE optical configurations. The profiles are
turned into finely grained step functions by slicing the longitudinal position into 1 cm regions
of constant gradient which are modelled as top hat quadrupoles. The total transfer matrix
is then calculated in the same was as in the previous section, but with many more matrices.

As the polarity of the magnet currents is switched when the polarity of the beam changes,
the quadrupole triplet is always arranged to focus-defocus-focus in the horizontal plane and
vice versa in the vertical plane. The transfer matrices are therefore the same for µ− and µ+

beams with the same nominal emittance and momentum.

The pz dependence of beam transport in the MICE beam line

It is important to note that the transfer matrices are a function of momentum. The depen-
dency arises both in the focusing strength and the phase advance in the quadrupoles, reflect-
ing the fact that high momentum particles are focused less as they pass through the magnets.
This is an important effect as the MICE beam line is designed to have a particularly high pz

acceptance to mimic the front end of a neutrino factory. The momentum distribution just

2 The double hyperbolic tangent was inspired by Dragt’s parameterization of solenoidal fringe fields in
his fascinating Lie algebraic treatment of transfer maps through solenoids [82,83].
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Figure 5.3: The distribution of longitudinal momenta of muons just upstream of TOF1 in a
simulated base line (6 mm, 200 MeV/c) µ− beam. The asymmetrical sharp low momentum
edge of the distribution is an artefact of setting dipole 2 to transmit the momentum of muons
from pions which decayed backwards in the pion reference frame in the decay solenoid.

upstream of TOF1 in a simulation (cf. Section 4.3) of the base line (6 mm, 200 MeV/c) µ−

beam is shown in Figure 5.3 and the corresponding horizontal and vertical transfer matrices
(obtained using the slice matrix method) are shown in Figure 5.4.

The elements of Mx and My vary quickly at low momenta: at higher momenta relativistic
effects mean that the transit speed decreases more slowly as a function of pz and the oscilla-
tions in the transfer map stabilize. As pz → ∞ the magnets have a negligible effect and the
transfer matrices tend to a drift matrix O(L) in both planes, with M12 → L = 7.71 m. This
element in particular increases by 100% between 200 MeV/c and 300 MeV/c where most
particles are located. As a result of the magnet re-scaling process underpinning the design of
the re-scaled TURTLE optical configurations the situation is similar for the other elements of
the emittance-momentum matrix. The traditional emittance measurement method therefore
cannot be used in the MICE beam line as it requires the transfer matrix to be approximately
the same for all particles.

5.1.2 Measuring longitudinal momentum

To characterize the MICE beams it is first necessary to measure their momentum spectra. If
a particle’s time of flight t and path length s between two planes are known, its momentum
p may be calculated via p/E = s/t, assuming p to be constant. The average momentum in
the air between the TOFs is given by:

p(s, t) =
ms/t

√

1 − s2/(ct)2
,
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Figure 5.4: The horizontal and vertical trace space transfer matrices between TOF0 and TOF1 as
a function of longitudinal momentum for the base line (6 mm, 200 MeV/c) matrix element.
Mx and My have been calculated using the slice matrix technique and include the effect of
fringe fields.
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with resolution given by:
σp

p
=
E2

m2

√

(σt

t

)2

+
(σs

s

)2

. (5.4)

The time of flight resolution was shown in Chapter 2 to be σt = 78.4 ps; the path length
resolution σs depends on the method of measurement.

Consider first the approximation that the path length is the geometrical distance L = 7.71 m
between the TOFs. The TOFs will measure the time of flight of a muon with p = 230 MeV/c
to be t = 28.3 ns with a fractional error of σt/t = 0.28%. The momentum will be measured
with σp = 3.7 MeV/c. The error increases with momentum and is smaller for pions than
muons. The momentum of electrons and positrons cannot be measured as they are all highly
relativistic at this momentum and have no detectable distribution in time of flight.

The approximation s = L leads to an underestimate of p. The measurement bias is given
by:

∆p

p
=
E2

m2

(

∆s

s
− ∆t

t

)

. (5.5)

Therefore, if a 230 MeV/c muon’s path length is underestimated by 10 mm the momentum
will be underestimated by 1.7 MeV/c. Similarly, if the time of flight is miscalibrated by
30 ps, the momentum measurement will by wrong by 1.4 MeV/c.

Systematic error due to miscalibration of t because of incorrect geometry information and
the e± peak anomaly reported in the previous chapter are discussed in Section 5.2.3. To
correct path length bias one must track the muon between the detectors and integrate its
path s. To track the muon one requires the initial transverse and longitudinal momentum
at TOF0.

5.1.3 Reconstructing transverse momentum

Taking into account that detM = 1 for emittance conserving linear transformations Equa-
tion 5.1 may be rearranged so that one may deduce the transverse angles at both detectors
from the measured positions:

(

u′

v′

)

=
1

M12

(

−M11 1
−1 M22

)(

u
v

)

(5.6)

Measurements of u′ in both planes allow the particle to be tracked to TOF1 to make an
unbiased measurement of pz. In addition, and of particular interest in this thesis, this
measurement of v′ allows the distribution of the muon beams to be reconstructed at TOF1
particle by particle. Using this method one may make a measurement of emittance which
is superior to the traditional method as one may directly observe the shape of the beam
distribution.

The method is only possible because of the 2% resolution measurement of pz of individual
muons made by the time of flight detectors. Let us define angle reconstruction coefficients
such that v′ = A(p)u+B(p)v. These are plotted in Figure 5.5.

The reconstruction procedure is complicated by the presence of asymptotes in A(p) and
B(p) in the low momentum region of the beams. In these parts of the momentum spectrum
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Figure 5.5: The coefficients A(p) = −1/M12 and B(p) = M22/M12 for the (6 mm, 200 MeV/c)
matrix element. Figure 5.3 shows that the region of interest is approximately 200 MeV/c <
pz < 300 MeV/c.

reconstruction of transverse momentum is not always possible, as the coefficients can vary
substantially over the error on the pz measurement. Although the figure is the transfer matrix
for the base line (6 mm, 200 MeV/c) beams, the re-scaling design principle of the Step I
emittance-momentum matrix data sets ensures that all the beams have similar properties in
this at the sharp low momentum edge of their momentum distribution.

Section 5.3 demonstrates that the error on v′ is dominated by the position resolution of
the detectors and depends on the momentum of the particle: the effect of these errors on
emittance measurements is the subject of the next chapter. The reconstruction technique is
described in detail in the next section.

5.2 Iterative reconstruction algorithm

In Step I TOF0 and TOF1 have been used to measure the momentum of muons via the
solution of the simple equation p/E = s/t. In order to make an unbiased measurement of
longitudinal momentum it is necessary to estimate the excess path length δ = s−L travelled
by muons between TOF0 and TOF1. Equation 5.6 is used to deduce the initial transverse
angles x′ and y′ at TOF0 so that the particle can be tracked to TOF1 and the path length
integrated. As pz is itself required to solve this equation an iterative tracking algorithm
has been designed to eliminate systematic path length bias on pz. The algorithm is part
of the G4MICE reconstruction software and widely accessible as the Step1Reconstruction

application, written by the author [67].

The algorithm starts with s = L. The initial momentum estimate therefore is the solution
to the equation p/E = L/t. The method then iteratively makes increasingly good estimates
of upstream momentum based on increasingly good estimates of path length.
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Figure 5.6: The path length of a paraxial particle through a top hat quadrupole s = leff+δF+δD.

5.2.1 Iterative path length correction

As transfer matrices are linear in the components of the trace space vector the matrices
depend only on pz and are calculated in high precision once at the beginning of the execution
of the software application as a function of pz using the slice matrix method described in
Section 5.1.1 so as to model the effect of the fringe fields. The transfer matrix maps are
interpolated at the current best estimate of pz in each iteration in the analysis of each muon
trajectory; the values are used to solve Equation 5.6 to obtain x′ and y′ at TOF0 given x
and y in the two detectors. The new transverse position measurement technique described in
Chapter 3 is very useful here as the previous slab number based method would have yielded
highly quantized results with inferior resolution.

The particle is then propagated in trace space from TOF0 to z = z7 − 1
2 leff, just before

quadrupole 7, and its path length in this region is estimated using Pythagoras’ theorem:

D(z0, z) ≡
√

(z − z0)
2 + (x(z) − x(z0))

2 + (y(z) − y(z0))
2,

where x(z) and y(z) are calculated by transporting the trace space vector reconstructed at
TOF0 using the drift transfer matrix O(z− z0). An error is inevitably made at this stage as
it is not possible to predict the effect of multiple scattering in the Cherenkov detector, air
and beam profile monitor.

By contrast to the calculation of the transfer map, estimating the path length of muons
in the quadrupoles depends on initial x, x′, y, y′ and pz and must there for be calculated
uniquely during every iteration. Using a smooth fringe field model is therefore prohibitively
slow as the application is designed to be used online in the control room during future data
taking campaigns as well as during the offline Step I analysis presented in this thesis. The
top hat model illustrated in Figure 5.2 is used instead.

To obtain the length of the curved path through the quadrupoles s′ ≡ ds/dz is first expanded
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in a Taylor series in the small angles x′ and y′:

s′ =
√

1 + x′ 2 + y′ 2 ≈ 1 + 1
2x

′ 2 + 1
2y

′ 2.

The path length s = L + δ may then be integrated from initial (xin, x
′
in, yin, y

′
in; zin) at

the beginning of the quadrupole field over the entire phase advance 0 < ϕ(z) < Ω. The
integration is simple as the focusing strength is uniform in this model. Defining ϕ(z) =
√

|k0|(z − zin), the excess path length is estimated to be:

δest = 1
2

∫ +Ω

0

k
− 1

2

0 dϕ

(

(

−k
1

2

0 xin sinϕ+ x′in cosϕ
)2

+
(

k
1

2

0 yin sinhϕ+ y′in coshϕ
)2
)

≡ δF(xin, x
′
in) + δD(yin, y

′
in),

where the components due to the focusing and defocusing planes are given by:

δF(xin, x
′
in) = 1

4

(

k
1

2

0 x
2
in

(

Ω − 1
2 sin 2Ω

)

− 2xinx
′
in sin2 Ω + k

− 1

2

0 x′ 2in
(

Ω + 1
2 sin 2Ω

)

)

δD(yin, y
′
in) = 1

4

(

k
1

2

0 y
2
in

(

1
2 sinh 2Ω − Ω

)

+ 2yiny
′
in sinh2 Ω + k

− 1

2

0 y′ 2in
(

1
2 sinh 2Ω + Ω

)

)

.

At this stage leff + δest is added to the straight line distance calculated between TOF0 and
the entrance of quadrupole 7, and a slice matrix interpolation is used to transport the trace
space vector of the particle with maximum precision to z = z7+ 1

2 leff. The process is repeated
in quadrupoles 8 and 9 (and the drifts interspersing them) to estimate the total path length
of the muon between TOF0 and TOF1:

L+ δrec = D(z0, z7 − 1
2 leff) + (leff + δest

7 ) +D(z7 + 1
2 leff, z8 − 1

2 leff) + (leff + δest
8 )

+D(z8 + 1
2 leff, z9 − 1

2 leff) + (leff + δest
9 ) +D(z9 + 1

2 leff, z1). (5.7)

Histograms of the reconstructed path lengths and their residuals are presented in the next
section.

5.2.2 Monte Carlo study of the reconstruction algorithm

A Monte Carlo study has been performed to discover the main sources of uncertainty in the
reconstruction algorithm: timing resolution, position resolution and multiple scattering. The
simulation presented here is a slightly out of date version of the base line (6 mm, 200 MeV/c)
µ− beam Monte Carlo described in Section 4.3. The input ensemble at TOF1 was created
with a previous version of G4Beamline and the G4MICE model has its geometry derived
from a previous survey and does not contain the beam profile monitor. As this simulation
is not compared with data these details do not detract from it illustrating the performance
of the reconstruction algorithm.

The study is designed to investigate the performance of the reconstruction algorithm and
isolate the effects of timing resolution, position resolution and multiple scattering. Two simu-
lations with multiple scattering on and off were performed using the same initial G4Beamline
base line nominal (6 mm, 200 MeV/c) µ− beam. Five separate reconstructions were subse-
quently performed on the subset of muons which passed through TOF0 and TOF1 in both
simulations in the manner illustrated in Table 5.1. By isolating each effect in this way one
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Simulation Scattering Time of flight (x, y) at TOF0 (x, y) at TOF1
‘no effects’ off

t
u v‘only M.S.’ on

‘only t res.’
off

t+ N(0, σt)
‘only x res.’ t

u+ N(0, σu) v + N(0, σv)‘all effects’ on t+ N(0, σt)

Table 5.1: The values of time of flight and transverse position which the reconstruction algorithm
was provided with in the Monte Carlo study described in Section 5.2.2. t is the true time
of flight and u and v represent the true transverse position in TOF0 and TOF1 in both the
horizontal and vertical planes. N(µ, σ) denotes a random sample from a Gaussian distribution
with mean µ and standard deviation σ. The detector resolutions are those measured in
Chapter 3: σt = 78.4 ps, σu = 0.98 cm and σv = 1.14 cm.

s (mm) no effects only t res. only x res. only M.S. all effects
Mean bias 1.36 1.38 1.63 1.65 1.69
RMS error 2.31 2.46 2.80 3.28 3.59

Table 5.2: A table showing the bias and RMS error of each of the reconstructions of path length
s shown in Figure 5.7.

can evaluate their relative importance. The reconstructed distributions are the result of ten
iterations of the algorithm.

The path lengths reconstructed by this procedure are compared with the true values in
Figure 5.7. The ‘no effect’, ‘only t res.’ and ‘only x res.’ reconstructions should be compared
to the true distribution of the simulation with multiple scattering deactivated; the ‘only
M.S.’ and ‘all effects’ reconstructions should be compared with the true distribution of the
full simulation. As expected multiple scattering increases the mean excess path length of the
muon beam from 5.3 mm to 7.5 mm. Both distributions have tails which extend to 25 mm
and are narrower than observed for electrons and positrons in Figure 4.6. The distribution of
residuals is peaked almost precisely at zero suggesting the algorithm behaves in a consistent
manner.

The measurement bias and path length resolution in each case is recorded in Table 5.2. The
numbers demonstrate that the resolution is dominated by reconstruction errors due to the
stochastic effect of multiple scattering in the Cherenkov detector and in the air between
TOF0 and TOF1. Nonlinearities result in the distributions being biased by a millimetre or
two: this effect has not been corrected as it is particular to this beam. The zero mode of
the residual distribution suggests that the algorithm is designed in a sensible way.

Taking into account all effects, the procedure can remove a bias of order 10 mm to ±3.6 mm.

5.2.3 Eliminating systematic bias on pz

Particular care has been taken to eliminate systematic error in the calculation of pz. The
measurement of the excess path length δ in the previous section allows pz to be estimated
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Figure 5.7: A comparison of the reconstructed and true path lengths between TOF0 and TOF1
in the simulations described in Table 5.1. The corresponding measurement biases and resolu-
tions are recorded in Table 5.2. With multiple scattering off, 〈s〉 = 5.32 mm, with an RMS of
3.34 mm. In the full simulation, this increases to, 〈s〉 = 7.51 mm, with an RMS of 4.64 mm.

from the solution of the equation:

pzc

E
=

L+ δ

(L+ 〈δsim
e 〉) + kc (t− 〈tdata

e 〉) . (5.8)

The equation has been derived by subtracting the mean measured e± time of flight in data
〈

tdata
e

〉

= (L +
〈

δsim
e

〉

)/c from the time of flight measured for each muon t = (L + δ)/(βc),
where β = pc/E and δ is reconstructed by the algorithm.

The advantage of this approach is that it minimizes the systematic error on pz due to the
absolute calibration of the time of flight in data t. As discussed in Section 4.2, the absolute
t1 − t0 calibration of the February 2010 calibration is incorrect as an up to date survey was
not available at the time it was performed. Equation 5.8 explicitly discards the absolute
calibration provided by G4MICE by initially subtracting the mean e± time of flight

〈

tdata
e

〉

from the time of flight returned by G4MICE for each muon trajectory t. The measurement
therefore only relies of the time taken by muons in excess of the relativistic e± component.

In this section the various components of the correction are discussed and a systematic error
is assigned to each of them. The total systematic error on pz is calculated by differen-
tiating Equation 5.8 with respect to the variables and summing the resulting errors [78].
Each individual component and the total systematic error is plotted as a function of pz in
Figure 5.8.

Absolute t calibration using the e± peak

As with the particle identification cuts, the properties of the re-scaled TURTLE optical
design allow the same value for

〈

tdata
e

〉

to be used for all nominal emittances at a particu-
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Figure 5.8: Contributions to the systematic error on the longitudinal momentum pz as a function
of pz. All the components are summed to give the total systematic error except the k =
1024/1000 curve which illustrates the error incurred in measurements prior to the discovery
that the width of the TDC bins was incorrectly accounted for in G4MICE [84].

lar nominal momentum in the emittance-momentum matrix. In the reconstruction in this
thesis the values in Table 4.4 have been used. In the absence of evidence for a kinematic
origin for the effect in the Monte Carlo distinct values separated by ∼ 70 ps are therefore
employed for µ− and µ+ beams on the hypothesis that the asymmetry arises from an as
yet unknown feature of the calibration. A systematic error of 35 ps is therefore assigned to
〈

tdata
e

〉

: its contribution to the systematic error on pz varies as a function of pz and is plotted
in Figure 5.8.

The width of the TDC bins

The factor k accounts for a possible miscalibration of the width of the TDC bins. A sys-
tematic error of 10−5 is assigned based on information provided by the manufacturers of the
TDC electronics [65]. Figure 5.8 shows that this makes a negligible contribution to the total
error. As reported in Chapter 4 a factor k = 1024/1000 was used prior to July 2010 due to
the width of the TDC bins being incorrectly included in G4MICE [84]. This error caused
confusion in comparisons between data and Monte Carlo before this date: it is plotted in
the figure for reference.

Excess e± path length s− L

The denominator of the right hand side of Equation 5.8 is completed by the best estimate
of the true e± time of flight (L +

〈

δsim
e

〉

)/c. This is derived from the sum of the axial
separation of TOF0 and TOF1 in the latest survey and the mean Monte Carlo excess e±
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Figure 5.9: The evolution of the mean path length and momentum residuals
〈

sRecon − sTrue
〉

and
〈

pRecon
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z

〉

as a function of iteration number. The six beams are the six full µ±

beams (with pion contamination) simulated using G4Beamline and G4MICE as described in
Section 4.3. The damping factor is f = 0.5.

path length. The value L = 7.7053 m is derived in Section 4.2.1. Although the precision of
the survey is better than a millimetre, L is assigned a systematic error of 3 mm as TOF1
was removed from its frame and replaced in the days between the end of the Step I data
taking campaign and the survey. The excess e± path length

〈

δsim
e

〉

is estimated using the
Monte Carlo study illustrated in Figure 4.6 using the numbers in Table 4.5 in the same way
as with the correction for

〈

tdata
e

〉

. A systematic error of 0.5 mm is assigned to reflect the
reported error on the measurements of mean path length in the simulation. It is possible
that the errors assigned to both L and

〈

δsim
e

〉

are underestimates: nevertheless Figure 5.8
shows that both contribute less than an MeV/c to the total systematic error and will in any
conceivable case be dwarfed by the error due to the anomalous electron-positron asymmetry.

Reconstructed muon path length

The final element of Equation 5.8 to be explained is the path length estimate δ. When
the estimate in Equation 5.7 is used in the next iteration the resulting estimates of pz are
found to oscillate in an unpredictable fashion in some low momentum domains. The effect
is caused by the fast variation of the elements of the transfer matrices and the presence of
asymptotes in the solution to Equation 5.6 in the vicinity of the fast low momentum edge
of the momentum spectra. Path length corrections are therefore damped to be a factor f of
the difference between the reconstructed value and the value used in the previous iteration
δi−1:

δi = δi−1 + f (δrec − δi−1) .

With a damping factor f = 0.5 the estimates of s and pz converge smoothly to constant
values after five to ten iterations.

The evolution of estimates of s and pz towards their correct values as a function of iteration
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number is illustrated in Figure 5.9. Without damping (f = 1) the curves oscillate from
positive to negative mean error on each iteration: the damping ensures a smooth progression
to stability. Strikingly, the algorithm is seen to generate a stable mean error of a 2 - 4 mm
and 0.5 - 1.5 MeV/c in all six cases. This is caused by the asymmetric error distribution
observed in Figure 5.7 which was justified by the sharply peaked zero mode of the distribution
of path length residuals. It is reproduced in all six cases as each beam is related through the
re-scaling of the magnet currents to create the Step I optical configurations. The correlation
between error and nominal momentum arises from the dependence of measurement bias on
E2p/m2 given in Equation 5.5.

Energy loss correction

The final step in the reconstruction of pz is a small Bethe Bloch correction to account
for energy loss in the Cherenkov detector, the beam profile monitor and the ∼ 7.5 m of air
between TOF0 and TOF1. The reconstruction algorithm described in this section is designed
to measure pz immediately before TOF1, as this is the point at the end of the Step I beam
line where all Monte Carlo comparisons and measurements are reported in this thesis.

The momentum just before TOF0, at the end of the drift in air where the majority of t
elapses, is given approximately by subtracting half the momentum loss in the air ∆p =
LE(dE/dz)/p, where dE/dz

The rate of energy loss is given by the Bethe Bloch equation:

dE

dz
= K

Z

A

[

1

β2
ln

(

2mec
2β2γ2

I

)

− 1

]

,

where K = 0.31 MeV g−1 cm2 [8]. It is sufficient to model the rate of energy loss as
constant in the air and instantaneous in the beam profile monitor. As energy loss affects
the momentum measurement by the effect it has on the time of flight energy loss in the
Cherenkov may be neglected as it takes place immediately after TOF0 and a negligible
fraction of the total time of flight takes place at the higher momentum. The correction
therefore gives the momentum immediately upstream of TOF1 to be pz = prec − ∆p where
prec is the momentum given by the reconstruction algorithm and the correction is:

prec∆p

Erec

= 1
2Lρair

dE

dz

∣

∣

∣

∣

air

+
(zBPM − z0)

L
tBPMρBPM

dE

dz

∣

∣

∣

∣

BPM

.

In line with the model described in Section 4.3.1 thickness of the beam profile monitor is
tBPM = 1.6 mm and the densities are taken to be ρair = 1.205 × 10−3 g cm−3 and ρBPM =
1.06 g cm−3, with 〈Z/A〉air = 0.49919 and 〈Z/A〉BPM = 0.53768, and Iair = 85.7 eV and
IBPM = 67.8 eV [8].

5.2.4 Momentum resolution and the efficiency of the algorithm

The resolution on pz can be evaluated using the Monte Carlo study introduced in Sec-
tion 5.2.2. The result of applying the full reconstruction procedure with ten iterations is
shown in Figure 5.10. The corresponding bias and error is recorded in Table 5.3. The error
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Figure 5.10: A comparison of the reconstructed and true momenta before TOF1 in the simu-
lations described in Table 5.1. The corresponding measurement biases and resolutions are
recorded in Table 5.3. With multiple scattering off, 〈pz〉 = 232.52 MeV/c, with an RMS of
20.28 MeV/c. In the full simulation, 〈pz〉 = 231.97 MeV/c, with an RMS of 20.49 MeV/c.

pz (MeV/c) no effects only t res. only x res. only M.S. all effects
Mean bias 0.24 0.24 0.30 0.44 0.48

RMS error
0.44 3.11 0.53 0.74 3.12

(0.2%) (1.3%) (0.2%) (0.3%) (1.3%)

Table 5.3: A table showing the bias and RMS error of each of the reconstructions of longitudinal
momentum pz shown in Figure 5.10.
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Figure 5.11: Failure of the reconstruction algorithm as a function of pz.

is dominated by the time of flight resolution. The bias is better than in Figure 5.9 because
this simulation was designed to optimize the reconstruction of muons and does not contain
any pion contamination. As the pion contamination (between 1% and 5% depending on
the element of the emittance-momentum matrix cf. Table 4.7) falls within the muon peak
particle identification cuts it is mistaken for muons. These particles are reconstructed with
the wrong mass, leading to an extra bias of the order of 0.5 MeV/c on the mean momentum
error.

Figure 5.11 shows the efficiency of the algorithm as a function of true pz. The algorithm
has only been found to fail in the low momentum tail of the distribution where about 50%
of particles are reconstructed. This region is always observed to be a region of very poor
transmission at the base of a sharp edge of the distribution. As the base line case in the
figure illustrates this tail is depleted by two orders of magnitude with respect to the adjacent
peak. Overall the efficiency is better than 99.5%.

5.2.5 Momentum spectra in data and simulation

The reconstructed pz spectra of the ǫN = 6 mm re-scaled TURTLE Step I beams are com-
pared with the spectra predicted by the Monte Carlo simulations described in Section 4.3
in Figure 5.12. Both unsmeared simulation truth and reconstructed resolution smeared are
plotted.

The low-pz edges of the distributions differ between simulation truth and reconstructed
simulation because of the difficulty in reconstructing pz in the fast changing region of the
transfer matrices. Large coefficients in Equation 5.6 lead to larger errors on pz and instability
in the reconstruction algorithm, as shown in Figure 5.11.

Data should therefore be compared with reconstructed simulation, as these effects are re-
produced in both cases. Good agreement is observed in the low edge apart from in the case
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Figure 5.12: A comparison between measurements of pz just before TOF1 in data and Monte
Carlo for the ǫN = 6 mm elements of the ǫN ⊗ pz matrix for both µ− and µ+ beams. pz is
plotted for Monte Carlo truth, resolution smeared Monte Carlo, and reconstructed data. For
statistics and the resolution of each histogram see Table 5.4.
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(MeV/c)
Mean pz pz resolution

Data Monte Carlo Data Monte Carlo
(6 mm, 140 MeV/c) µ− 174.8 ± 1.0 173.2 ± 0.0 2.0 2.0
(6 mm, 200 MeV/c) µ− 230.9 ± 2.0 229.0 ± 0.0 4.1 4.0
(6 mm, 240 MeV/c) µ− 270.7 ± 3.0 270.8 ± 0.0 6.3 6.3
(6 mm, 140 MeV/c) µ+ 173.9 ± 1.0 177.3 ± 0.0 2.0 2.1
(6 mm, 200 MeV/c) µ+ 227.0 ± 1.9 232.0 ± 0.0 3.9 4.1
(6 mm, 240 MeV/c) µ+ 267.9 ± 2.9 271.3 ± 0.0 6.1 6.3

Table 5.4: Comparison between measurements of pz just before TOF1 in data and resolution
smeared Monte Carlo truth. The statistical error is negligible in all cases. The systematic
error is only applicable to data as the Monte Carlo simulation was smeared with detector
resolutions and reconstructed in the same manner as the data. The resolution is also given
for use in comparing the distributions in Figure 5.12.

of the (6 mm, 240 MeV/c) µ− beam. Comparisons should be informed by the resolution on
pz, tabulated in Table 5.4. The depleted regions at the base of the low-pz edges are caused
by asymptotes in Equation 5.6, illustrated in Figure 5.5.

The means of the distributions are given in Table 5.4. Statistical errors are negligible for
data sets of this size (cf. Chapter 4) and systematic errors on data are as derived previously
in the chapter. The means are all consistent, with some evidence for a systematic offset
in the µ+ beams. This is presumably the result of an error in the G4Beamline simulations
which were used as input for these Monte Carlo studies..

Plots for all the Step I measurements of elements of the emittance-momentum matrix are
shown in Figure 5.13. The cause of the anomalous momentum spectrum of the (3 mm, 140 MeV/c)
µ+ beam is unknown. This optical configuration will be re-tested in the next data taking
period and is omitted from study in Chapter 6.

5.3 Measurement of the transverse angles x′ and y′

When an unbiased measurement of pz has been calculated using the iterative algorithm
described in the previous section, the final transverse angles x′ and y′ are calculated at
the upstream face of TOF1 using Equation 5.6. These angles can be used to study the
distribution of the beam in transverse trace space: this is the subject of Chapter 6. This
chapter concludes by studying the contributions of time resolution, position resolution and
multiple scattering to the error on the angles, and comparing their distributions in data and
Monte Carlo.

5.3.1 The effect of resolution, scattering and nonlinearities

The results of the Monte Carlo study described in Section 5.2.2 are shown for x′ and y′ at
TOF1 in Figure 5.14 and Figure 5.15. The measurement bias and error due to each effect is
recorded in Table 5.5.

The first study (illustrated in the figures by the dark blue histograms labelled ‘no effects’)
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Figure 5.13: Momentum spectra for all the Step I re-scaled TURTLE beams.
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Figure 5.14: Reconstructed and true x′
1 in the simulations described in Table 5.1. The cor-

responding measurement biases and resolutions are recorded in Table 5.5. With multiple
scattering off, 〈x′〉 = 10.16 mrad, with an RMS of 29.77 mrad. In the full simulation,
〈x′〉 = 7.98 mrad, with an increased RMS of 40.73 mrad.
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Figure 5.15: Reconstructed and true y′1 in the simulations described in Table 5.1. The cor-
responding measurement biases and resolutions are recorded in Table 5.5. With multiple
scattering off, 〈y′〉 = −0.12 mrad, with an RMS of 12.38 mrad. In the full simulation,
〈y′〉 = −0.27 mrad, with an increased RMS of 15.21 mrad.
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x′ and y′ (mrad) no effects only t res. only x res. only M.S. all effects
Mean bias on x′ -0.15 -0.12 -0.14 -0.45 -0.40
RMS error on x′ 3.66 4.25 14.70 12.19 18.12
Mean bias on y′ 0.01 0.01 0.01 0.02 0.02
RMS error on y′ 1.65 2.02 3.00 4.26 5.05

Table 5.5: A table showing the bias and RMS error of each of the reconstructions of x′ and y′

shown in Figure 5.14 and Figure 5.15.

True x’ (mrad)
-100-80 -60 -40 -20 0 20 40 60 80 100

R
ec

on
st

ru
ct

ed
 x

’ (
m

ra
d)

-100

-80

-60

-40

-20

0

20

40

60

80

100

0

200

400

600

800

1000

1200

True y’ (mrad)
-40 -30 -20 -10 0 10 20 30 40

R
ec

on
st

ru
ct

ed
 y

’ (
m

ra
d)

-40

-30

-20

-10

0

10

20

30

40

0

200

400

600

800

1000

1200

Figure 5.16: A scatter plot showing the correlation between true and reconstructed x′ and y′ at
TOF1. Multiple scattering is off and the detectors are perfect.

models TOF0 and TOF1 as having perfect time and position resolution and reconstructs
muon trajectories in a simulation with multiple scattering deactivated. Given the symmetry
of the beam x′ and y′ are unsurprisingly reconstructed with negligible bias. The intrinsic
resolution of the algorithm – illustrated by the width of the dark blue distribution in Fig-
ures 5.14 and 5.15 – is 12% and 14% of the RMS of the distributions in the two planes (the
shaded distributions) for this particular optical configuration.

The correlation between the true and reconstructed angles is shown in Figure 5.16. Agree-
ment is good in both planes however there is a suggestion that the distributions are not
precisely aligned with the dashed lines indicating perfect correlation and |y′| in particular is
visibly reconstructed with a slightly small value.

Figure 5.17 illustrates that this effect is caused by nonlinearities in the beam transport
which cannot be modelled using transfer matrices. The blue profile is the error profile of
reconstructed angle from a separate Monte Carlo where the OPERA quadrupole field map
has been replaced with a perfect top hat gradient profile: the reconstruction algorithm was
therefore simplified to also use the top hat model transfer matrices in Section 5.1.1. These
errors are significantly smaller than those corresponding to the double hyperbolic tangent
model of the simulation with realistic fringe fields. Nonlinear effects are most pronounced in
the sparsely populated high amplitude regions of trace space where the fringe fields diverge
from the central gradient profile and the paraxial approximation is less valid.
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Figure 5.17: The error profile of x′ and y′ in the ‘no effects’ reconstruction of the Monte Carlo
study described in Section 5.2.2. The standard reconstruction is the curve labelled ‘Tanh
(fast)’, a reference to the use of the double hyperbolic tangent used to model the quadrupole
fringe fields in the calculation of Mx and My, sped up by the use of a top hat model in
the estimation of path length. The lower magnitude error profiles which would result from
quadrupoles with a perfect top hat gradient profile are also plotted to illustrate that nonlinear
effects in the standard reconstruction are dominated by the effect of the fringe fields.
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Figure 5.18: A scatter plot showing the correlation between true and reconstructed x′ and y′

at TOF1. Multiple scattering is on and the detectors measure t, x, and y with realistic
resolutions.
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By contrast to the reconstruction of pz, Table 5.5 shows that the total error on x′ and y′ is
dominated by position resolution and the stochastic effect of multiple scattering. Figure 5.18
shows the correlation between the true and reconstructed angles for the full simulation. The
spread is now quite broad and the effect of the nonlinearities is clearly visible in the variation
in the gradient of the correlation as amplitude increases. Nevertheless, the reconstruction
provides a useful measurement of transverse momentum at TOF1, particularly considering
that the detectors were not intended for this purpose.

5.3.2 Comparison between data and simulation

The effects discussed in the previous section may be disregarded in the comparison of data
and Monte Carlo by comparing reconstructed resolution smeared Monte Carlo simulations
with reconstructed data in Figure 5.20 and Figure 5.19. The similarity in the shape and
widths of the distributions is very encouraging.

An offset is quite visible in the mean of reconstructed x′ in data and simulation. This
matches a similar effect in mean x at TOF1 in Figure 4.9. This may be the result of the
TOF being displaced between the data taking period and the calibration or an error in the
placement of the detectors or magnets in the Monte Carlo.

The striking feature that some y′ distributions are reconstructed with a narrower RMS width
than simulation truth is a result of the nonlinearities illustrated in Figure 5.17.

5.4 Conclusion

Underestimating path length via the approximation s ≈ L biases TOF momentum mea-
surements by ∼ 5 MeV/c. This chapter demonstrates a practical method which reduces
measurement bias to a fraction of a MeV/c. An iterative reconstruction algorithm has been
developed to eliminate the systematic bias by tracking the muon through the quadrupole
fields between the detectors. It is applied to particles individually, and does not depend on
tuning by Monte Carlo simulations. The resolution is of order 3 MeV/c and dominated by
the 70 ps time of flight resolution of the detectors. The algorithm has been applied to the
Step I re-scaled TURTLE data sets and good agreement with Monte Carlo is observed.

The measurement may also in future complement that made by the upstream spectrometer.
Although for p⊥ > 70 MeV/c the trackers measure longitudinal momentum with σpz

<
2 MeV/c, below transverse momenta of 5 MeV/c near where the distribution will be peaked,
the tracker measurement error on longitudinal momentum increases to 6 MeV/c [49].

The algorithm also allows a measurement of the transverse angles x′ and y′ at TOF1. En-
couraging agreement between data and reconstructed resolution smeared Monte Carlo simu-
lations is observed. These measurements are used to characterize the transverse phase space
of the beams in Chapter 6.
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Figure 5.19: Comparison between measurements of x′ in data and simulation.
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Figure 5.20: Comparison between measurements of y′ in data and Monte Carlo.



Chapter 6

Distributions in transverse trace

space at TOF1

The iterative reconstruction algorithm developed in Chapter 5 is used to characterize
the Step I re-scaled TURTLE beams in horizontal and vertical trace space at TOF1.
After taking into account the effect of detector resolution, good agreement is found
with Monte Carlo.

The iterative reconstruction algorithm described in Chapter 5 corrects a path length bias
on pz by reconstructing the trace space vector (u, u′) of each muon at TOF0 and tracking
it through quadrupole triplet Q7-Q8-Q9 to (v, v′) at TOF1. In each plane u is measured
directly by TOF0 in the manner described in Chapter 3 and u′ is deduced from v using
Equation 5.6. Once pz has been measured the process is reversed to obtain v′ from u. In this
way the direct mapping of points in trace space at TOF0 to points in trace space at TOF1
is used to reconstruct individual muon trajectories at the end of the Step I beam line.

The horizontal and vertical trace space distributions of the simulated base line µ− beam1 are
plotted in Figure 6.1. The beam fills the detector in both planes but its angular distribution
is approximately three times wider in horizontal trace space than in vertical trace space.

As these distributions are numerous it is useful to parameterize them. In Chapter 2 the
emittance and Twiss parameters were introduced in both two-dimensional trace space and
four-dimension phase space as complementary ways of parameterizing beam distributions.
The latter parameterization is a particularly concise way to summarize the properties of
beams in solenoidal focusing channels. It is inappropriate here however, as it assumes that
the probability distribution functions of the beams are cylindrically symmetric. In this
chapter the beams are characterized in horizontal and vertical trace space at TOF1.

As discussed in Section 2.1.1, the orientation of a distribution in horizontal or vertical trace
space is parameterized by the Twiss parameters α, β and γ:

α = −σvv′

ǫ
, β =

σvv

ǫ
, γ =

σv′v′

ǫ
(6.1)

1 The base line beam is designed to have a nominal normalized emittance ǫN = 6 mm upstream of the
first absorber and a nominal mean momentum pz = 200 MeV/c in the centre of each absorber. Chapter 2
explains the design and measurement of optical configurations of an emittance-momentum matrix of beams.
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Figure 6.1: Unsmeared simulated transverse trace space distributions of the base line
(6 mm, 200 MeV/c) µ− beam at TOF1.

where γ = (1 + α2)/β and ǫ is the emittance:

ǫ =
√

σvvσv′v′ − (σvv′)2. (6.2)

The emittance describes the area occupied by the beam in trace space.

Calculated separately in the horizontal and vertical plane, α, β and ǫ are a useful way to
characterize the beam distribution. The disadvantage of this parameterization is that it
does not take account of dispersion,which can be significant in wide-pz spectrum beams
such as those used by MICE. The dispersion in the base line beam simulation is shown in
Figure 6.2. Although the total conserved volume in phase space has not increased by the
separation of components of different pz, dispersion does register an increased emittance in
the trace emittance ǫ defined here2. Nevertheless, it is not obvious how to model the nonlinear
dispersion in Figure 6.2 in a covariance matrix and the trace space parameterization has the
virtue of simplicity.

As the matching conditions in MICE are expressed in terms of the normalized emittance
and transverse betatron function it is worth relating them to trace space variables here.
For a cylindrically symmetric beam let ǫ = ǫx = ǫy and β = βx = βy. In the phase
space parameterization described in Section 2.1.3 the normalized emittance is therefore ǫN =
(pz/mµ)ǫ and the transverse betatron function is simply β⊥ = β. It is useful therefore to plot
βx and βy to gauge the extent to which the MICE beams are not cylindrically symmetric.
Chapter 7 investigates whether an asymmetry βx 6= βy will be a problem for MICE; until
then it may be useful to bear in mind the monochromatic approximations:

ǫN =
pz

mµ

√
ǫxǫy

2 It is contentious whether this increase will be reflected in the normalized emittance in the upstream
spectrometer solenoid.



6.1 Resolution bias on optical parameters 95

 slice at TOF1 (MeV/c)
z

longitudinal momentum of the p
180 200 220 240 260 280 300

 s
lic

e 
(m

m
)

z
m

ea
n 

po
si

tio
no

f t
he

 p

-40

-30

-20

-10

0

10

20

30

40
x1:pz1

<x> at TOF1
<y> at TOF1

Figure 6.2: Dispersion in a simulation of the base line µ− beam.

and:

β⊥ = 1
2

(
√

ǫx
ǫy
βx +

√

ǫy
ǫx
βy

)

.

6.1 Resolution bias on optical parameters

The (x, x′) and (y, y′) distributions of the base line beam in the Step I data are plotted
in Figure 6.3. They have been reconstructed using the iterative algorithm described in
Chapter 5. While the areas occupied in trace space in simulation and data are similar to
those in the corresponding Monte Carlo truth distribution in Figure 6.1, it is difficult to
make a comparison as the data distribution is convoluted with the resolution function of the
reconstruction algorithm.

The transverse angle is reconstructed using Equation 5.6, parameterized as:

v′ = A(pz)u+B(pz)v, (6.3)

where u and v are the transverse positions measured by TOF0 and TOF1 in either the
horizontal or the vertical plane. A and B vary with pz as they are a function of elements of
the transfer matrix between TOF0 and TOF1. The coefficients A and B for the base line
optical configuration are illustrated in Figure 5.5.

The previous chapter showed that the error on the v′ caused by the timing resolution of the
detectors is negligible compared to that caused by their position resolution. This is true
because, although A(pz) and B(pz) vary significantly over the momentum spectrum of the
beams, they are approximately constant over the momentum resolution of the reconstruction
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Figure 6.3: The transverse trace space of the base line (6 mm, 200 MeV/c) µ− beam at TOF1.
The trace space vectors have been reconstructed from TDC and ADC hits in the Step I
TOF0 and TOF1 data using the algorithm described in Chapter 5. 1σ error ellipses have
been superimposed and labelled by their corresponding pz. They are displaced for clarity;
the size and orientation of the error ellipse are invariant in trace space.

algorithm. It follows that the resolution (or error) matrix R is given by:

R(pz) =

(

rvv rvv′

rv′v′

)

=

(

rvv Brvv

A2ruu +B2rvv

)

, (6.4)

where ruu and rvv are the squares of the position resolutions of TOF0 and TOF13. The
error is correlated for B 6= 0 and varies as a function of pz. Note the value of pursuing
the timing-based position measurement in Chapter 3 despite the small improvement in res-
olution: the unpredictable and asymmetric error distributions of the quantized slab based
method (illustrated in Figure 3.15) would lead to a highly convoluted measurement of the
trace space distributions.

By contrast the Gaussian error originating from jitter in the signal from the photo-multipliers
may be visualized by picturing an error ellipse (v, v′)TR−1(v, v′) = ∆χ2 around the position
of every muon in trace space. When ∆χ2 = χ2 − χ2

min = 2.30 (the 1σ ellipse) there is a
68.28% probability [8] that a particle with that true trace space vector will be reconstructed
by the algorithm within this region.

The simulated momentum spectrum of the base line beam was illustrated in Figure 5.3. 1σ
error ellipses for R have been been drawn to scale in Figure 6.3 for a selection of momenta in
this range and displaced for clarity: as a result of the approximate linearity of beam transport
between TOF0 and TOF1 the ellipses are invariant throughout trace space. Although the
resolution in v remains constant the increased focusing strength leads to larger errors on v′

at low momenta and the variation of the total phase advance alters the correlation of the
error distribution. Qualitatively one can see how these errors could plausibly be convoluted

3 r is used rather than the more conventional σ to distinguish the resolution of a variable from its
covariance in trace space.
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with the simulated distributions to give the observed data distributions.

Similar distributions exist for all the Step I beams and are too numerous to include here. In
the following sections their properties are summarized through measurements of emittance
and the Twiss parameters. The following section focuses on the effect of detector resolution
on measurements of these statistical parameters.

6.1.1 The effect of detector resolution on emittance measurements

Let the relationship between a measurement of a particle’s position in trace space (m,m′),
its true position (v, v′) and the error on the sampled trace space vector of a particular muon
(δ, δ′) be simply:

(m,m′) = (v, v′) + (δ, δ′),

where (δ, δ′) is sampled from a bivariate Gaussian distribution with covariance matrix R(pz).
It follows from the definition of covariance that:

σmimj
= σvivj

+ σδiδj
+ σviδj

+ σδivj
,

where i and j label the element of the two-dimensional trace space vector. This may be
rewritten in matrix form as:

M = Σ + R + C + CT (6.5)

where R(pz) is the familiar resolution matrix and C accounts for the effect of errors being
correlated to trace space parameters as in Figure 5.17. If R and C are known one may
estimate the true emittance and Twiss parameters from the measured covariance matrix M

by solving Equation 6.5 for Σ. While R has the effect of inflating the emittance, the effect
of C is difficult to predict reliably and is typically calculated using a Monte Carlo study.

To study the effect of resolution bias a simulation of the base line beam was performed in
which the model of multiple scattering was deactivated. As R varies with pz the beam was
divided into 20 equally populated momentum bites. The horizontal and vertical emittance√

det Σ of each slice is plotted in Figure 6.4. Statistical errors are also drawn: they are
derived in Appendix C.

The estimate obtained from the covariance matrix of the raw measurements
√

det M and
the corrected estimate

√

det (M − R(p0)) are also plotted for each slice, where p0 is the
mean momentum of the muons in the slice. The correction is largest at low momenta where
the focusing is strongest. Figure 6.3 suggests that the low-pz bias is larger in horizontal trace
space because the error on v′ is a larger fraction of its RMS spread. The agreement between
the corrected estimate and the true emittance shows that C is negligible.

6.1.2 The effect of multiple scattering

The reconstruction of trajectory angles at TOF0 and TOF1 relies on the mapping (v, v′) =
M(pz) · (u, u′): Equation 5.6 demonstrates that the relationship can be rearranged to map
the measured positions (u, v) to unique values of the transverse angles (u′, v′).

This principle is undermined by the stochastic effect of multiple scattering between TOF0
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Figure 6.4: The true, measured and corrected 2D RMS trace emittance of equally populated
momentum-slices of a simulation of the base line (6 mm, 200 MeV/c) µ− beam. The analysis
was carried out independently in horizontal and vertical trace space at TOF1. The multiple
scattering model was deactivated in the Monte Carlo (cf. Section 5.2.2) in order to investigate
the effect of detector resolution on the measurement.
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and TOF1. If one knows (u, u′) and pz one can only estimate the most likely vector (v, v′)
within some probability distribution in trace space. More pertinently to the reconstruction
algorithm, the value of u which maps to the true v′ in the absence of stochastic processes
will in general be different to the true u of the muon at TOF0. Therefore multiple scattering
effectively contributes to the error on u.

The uncertainty on u can be estimated by summing the variances in u caused by multi-
ple scattering in each longitudinal slice δz between the detectors. The angular variance
introduced by multiple scattering in a thickness δz of material is approximately δθ2 =
(13.6 MeV)2/(βcp)2δz/X0 [8]. Consider the propagation of a pencil beam impinging from
positive z on the slice. Equation 5.2 may be rearranged such that the covariance of the
pencil beam at TOF0 is given by:

Σ0 = M−1Σslice

(

M−1
)T
,

where M(z) is the transfer matrix from TOF0 to z. A short calculation yields:

Σ0 =

(

M22 −M12

−M21 M11

)(

0 0
0 δθ2

)(

M22 −M21

−M12 M11

)

=

(

M2
12δθ

2 −M11M12δθ
2

−M11M12δθ
2 M2

11δθ
2

)

.

Therefore the uncertainty on u due to multiple scattering in δz is given by the square root
of the variance δσscat

uu = M2
12δθ

2. The total uncertainty due to multiple scattering can be
estimated by integrating the variance:

σscat
uu =

∫ z1

z0

M2
11(z)dθ

2 =

∫ z1

z0

(

13.6 MeV

βcp

)2

M2
11(z)

dz

X0

.

Figure 6.5 illustrates the performance of the bias correction in a full simulation of the base
line beam including multiple scattering. Note that multiple scattering in the channel is a
significant effect: the simulated beams have approximately twice the emittance compared
to Figure 6.4. The resolution bias on the horizontal emittance has increased in proportion,
again increasing the emittance of the low-pz slices by almost a factor two. Nevertheless a
raw reconstruction of the measured covariance is again a reasonably unbiased estimate of
the true vertical emittance.

The magnitude of the increase in emittance suggests that applying the correction for instru-
mental resolution alone will be insufficient: the figure shows that this correction indeed only
accounts for half the bias. Therefore σM.S.

uu has been calculated for the base line beam and
added to the instrumental position resolution variance σuu in Equation 6.4. The resulting
correction is also illustrated in the figure. The new corrected ǫx is not perfect it is but of the
right order of magnitude; however the correction degrades the estimate of ǫy by a factor of up
to a half for pz < 260 MeV/c. This is due the effect of correlations and nonlinearities which
have not been modelled. Indeed in Figure 5.17 the raw estimate is smaller than the true
emittance in the low-pz slices as they have a greater proportion of high amplitude particles.
The effect is not noticeable in horizontal trace space because it is cancelled out by resolution
bias.
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Figure 6.5: The true, measured and corrected 2D RMS trace emittance of equally populated
momentum-slices of a full simulation of the base line (6 mm, 200 MeV/c) µ− beam (cf.
Section 5.2.2). The analysis was carried out independently in horizontal and vertical trace
space at TOF1. The corrections for bias due to detector resolution alone and due to detector
resolution and multiple scattering are both plotted.
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Figure 6.6: The betatron function and RMS trace emittance for the Monte Carlo simulations of
the ǫN = 6 mm beams described in Section 4.3. True (ǫx, βx) and (ǫy, βy) at TOF1 and values
from covariance matrices of trace space vectors of reconstructed resolution smeared simulation
truth times are plotted with statistical error ellipses. The arrows point from the true to
reconstruction values. The beams are labelled with design values of their 4D normalized
emittance after the diffuser, and the momentum in the absorber centres (ǫn/mm, pz/MeV/c).

6.1.3 Resolution bias in (β, ǫ)-space

The previous two sections demonstrated that resolution bias on emittance measurements is a
significant feature in horizontal but not vertical trace space and that it is caused by position
resolution and multiple scattering in approximately equal measure. Furthermore it is not
possible to derive a simple and transparent correction. Therefore no correction is made in
this thesis.

In this section reconstructed resolution smeared simulations are used to quantify the bias
and the discussion is broadened to include measurements of the betatron function as well as
the emittance. The betatron function is an interesting quantity as it is the quantity which
must be matched to boundary conditions in the upstream spectrometer (cf. Section 2.3.2).

The effect of resolution bias on measurements of the emittance and betatron function is
illustrated in Figure 6.6. (βx, ǫx) and (βy, ǫy) are plotted for each of the full simulations
of the ǫN = 6 mm beams described in Section 4.3: arrows point from the true emittance√

det Σ to the value reconstructed from resolution smeared times and positions
√

det M,
illustrating the bias arising from position resolution and multiple scattering. Statistical error
ellipses are drawn for each point according to the calculations in Appendix C.

Despite emerging from the decay solenoid with a cylindrically symmetric distribution, the
horizontal and vertical trace space of the beams occupy different regions in (β, ǫ)-space. This
is potentially problematic for MICE as simulations of muon cooling channels - and indeed the
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transverse trace space parameterization of phase space itself - assume cylindrical symmetry.
Care is therefore required when interpreting the Step I results.

The horizontal emittance is larger than the vertical emittance because of the dispersion
introduced in the beam at dipole 2: different momentum slices in the wide pz-spectrum of the
MICE beam emerge from the dipole at different angles to the design orbit. This effect can be
cancelled by subsequent magnets and is therefore typically removed in standard accelerator
calculations by modifying the simple formula ǫx =

√

σxxσx′x′ − σ2
xx′ [37]. Such a correction is

not applied here because there are no subsequent magnets before the upstream spectrometer
solenoid in which horizontal and vertical trace space will be mixed. The spread in phase
space caused by dipole 2 is therefore preserved in MICE and reflected in the normalized
emittance in the cooling channel.

Consider finally the resolution bias vectors in Figure 6.6. The effect is consistent with Fig-
ure 6.5 in approximately conserving ǫy, while revealing a hidden increase in βy. Interestingly
the bias moves parallel to the contours of constant RMS beam size

√
βǫ, but in opposite

directions. As σv′v′ = (1 + α2)ǫ/β, α = 0 contours with constant σv′v′ could be drawn on
the plot as straight lines ǫ = σv′v′β. The approximate constancy of the beam size reflects
the fact that position is measured directly: larger errors are expected in the measurement
of beam parameters relating to angles.

The trend is therefore that the resolution bias increases the apparent angular divergence in
horizontal trace space and decreases it in vertical trace space. This is reflected by Figure 5.19
and Figure 5.20. This effect is believed to be the result of a balance between resolution bias
and nonlinearities in the beam transport which are not modelled in the reconstruction (cf.
Figure 5.17). The former dominates in horizontal trace space and the latter dominates in
vertical trace space.

6.2 Comparison between data and simulation

The Step I MICE beams are designed to reach the upstream spectrometer with a matrix of
emittances and momenta while fulfilling the matching conditions specified in Section 2.3.2.
Neither the diffuser nor the upstream spectrometer was present during Step I; In the spec-
trometer it would have been simple to measure ǫN, 〈pz〉, β⊥ and α⊥ and directly test whether
the design criteria had been met.

The beams have therefore been characterized at TOF1 instead of the spectrometer. Simu-
lating the passage of the measured muon trajectories from TOF1 to the spectrometer is the
subject of Chapter 7. This section follows the simpler approach of directly comparing the
reconstructed optical parameters at TOF1 with Monte Carlo simulations.

The previous section showed that detector resolution and multiple scattering cause a signif-
icant bias on measurements of the emittance and Twiss parameters which it is not trivial to
correct. Therefore in this section reconstructed data are compared with reconstructed reso-
lution smeared simulations. The simulations described in Section 4.3 were designed for this
purpose. The error distributions measured in Chapter 3 were applied to the positions and
times that electrons, muons and pions hit the mid-planes of TOF0 and TOF1 and the itera-
tive reconstruction algorithm described in Chapter 5 was used to produce the reconstructed
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Figure 6.7: A comparison between the measured and simulated horizontal and vertical beam
parameters of the ǫN = 6 mm re-scaled TURTLE beams. To ensure a fair comparison
the effect of detector resolution was modelled and the parameters obtained using the same
reconstruction software. The arrows point from reconstructed resolution smeared simulation
to reconstructed data. The error ellipses represent the statistical error on the measurements.

resolution smeared data sets used in this chapter. Precisely the same software routines were
used in the analysis of data and of these Monte Carlo simulations.

The emittance and Twiss parameters in horizontal and vertical trace space have been cal-
culated from the covariance matrices of the raw measurements in both the measured and
simulated data sets and are plotted in Figure 6.7. The differences between (βx, ǫx) and
(βy, ǫy) in data and reconstructed resolution smeared simulation are illustrated by arrows.

The comparison cannot be said to be good as the (β, ǫ) deviation vectors are often longer than
the distance separating beam measurements and are longer than the width of the statistical
error distributions. Note that in both planes there is a systematic trend for reconstructed
data to have a greater angular divergence σv′v′ than the reconstructed simulation (cf. Sec-
tion 6.1.3). Note also that the disagreement between data and simulation is worse for the
µ+ beams than for the µ− beams. These effects are investigated in the following sections.

6.2.1 The trace space distribution of the base line beam

Reconstructed trace space distributions of the Step I base line (6 mm, 200 MeV/c) µ− beam
have already been shown in Figure 6.3. They are plotted again next to distributions of
their corresponding reconstructed resolution smeared Monte Carlo simulation in Figure 6.8.
The qualitative agreement is significantly better than with the distribution of true simulated
trace space vectors in Figure 6.1.
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Figure 6.8: Horizontal and vertical trace space distributions of the base line (6 mm, 200 MeV/c)
µ− beam in reconstructed data and reconstructed resolution smeared simulation. The χ2 = 6
(95% confidence in the Gaussian approximation) ellipse has been calculated from the raw
covariance matrix of the distribution and drawn as a solid ellipse: it is treated as a cut in the
analysis. The dashed ellipse is the χ2 = 6 contour after the cut.
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Figure 6.9: χ2 distributions for the (6 mm, 200 MeV/c) µ+ beam in data and simulation. The
core of the beam is Gaussian to a good approximation up to χ2 = 6 (95%).

Both the measured and simulated beams have striking high amplitude features which do not
appear to be found in the core distributions, such as the resemblance of the outlying regions
of the vertical trace space distributions to butterfly wings. Whilst it is encouraging that the
Monte Carlo reproduces these features they have a significant impact on the measured optical
parameters as the emittance is proportional to the mean amplitude. High amplitude features
can also be problematic when comparing data and Monte Carlo as they can be difficult to
model and are most likely to be affected by nonlinear effects. These regions of phase space
are also the least likely to be transported into the acceptance of the cooling channel and are
likely to contain the greatest fraction of misidentified pions and coincidences.

Inspection of Equation 2.2 shows that the relationship between amplitude and χ2 ≡ (x, x′)TΣ−1(x, x′)
is A = 1

2χ
2. Therefore in order to compare these high amplitude features histograms of χ2

in data and simulation are plotted in Figure 6.9.

In a Gaussian beam the amplitude follows a χ2 distribution with two degrees of freedom.
This distribution has been normalized to the size of the measured and simulated data sets
and drawn on the figure. Long tails cause both distributions to deviate from this. An
exponential function with free parameters has also been fitted to each of the four distributions
independently. The distributions rise above this fit at χ2 ≈ 6.

The χ2 = 6 contour is drawn on each of the trace space distributions in Figure 6.8 for
reference. It appears by eye to roughly delineate the region with strong high amplitude
features not found in the core of the distributions. For a Gaussian beam it encloses 95%
of the distribution. Assuming the horizontal and vertical distributions are independent the
fraction of particles with χ2 < 6 in both planes is ∼ 90%.

Visually, and from the gradient of the free fit, we see that the tails in the χ2 distributions in
Figure 6.9 are longer in data than in simulation. The difference could be due to deficiencies
in the Monte Carlo simulation’s treatment of high amplitude particles or noise in the data.
As these effects are not understood a χ2 = 6 cut has been applied (blindly) to the other data
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sets.

Before examining the results it is important to note that particular care is required when
applying a χ2 cut in a measurement of emittance. A cut on χ2 is a direct cut on amplitude
Acut = 1

2 〈A〉χ2
cut and reduces the mean amplitude to:

〈A〉cut =

∫ Acut

0
Ae−A/〈A〉dA

∫ Acut

0
e−A/〈A〉dA

.

As ǫ = 〈A〉 /2 the estimated emittance of a Gaussian beam is therefore reduced by a factor:

〈A〉cut

〈A〉 =

∫ χ2
cut

0
(χ2/2)e−χ2/2dχ2

∫ χ2
cut

0
e−χ2/2dχ2

= 1 − χ2
cut/2

eχ2
cut

/2 − 1
.

For χ2
cut = 6 the estimated emittance will therefore be reduced by a factor ǫcut/ǫ = 〈A〉cut / 〈A〉 =

0.84. The estimate of the betatron function will only change if there is an internal correlation
between amplitude and the Twiss parameters. Such a correlation cannot be represented by
this parameterization.

This correction is not applied to the results as the distributions are clearly not Gaussian. It
is provided to quantify extent of the bias being introduced on the measured emittance. As
the real beams have longer tails than a Gaussian distribution, the bias will in fact be larger.

6.2.2 The effect of a χ2 cut on simulated beam measurements

The effect of the cut on the reconstructed emittance and betatron functions of the resolution
smeared Monte Carlo simulations is illustrated in Figure 6.10, which should be compared
with Figure 6.6 (without the cuts). The emittance reduction is greater than the Gaussian
estimate as expected. The change is more noticeable in horizontal trace space because it is
fractional and ǫx > ǫy. No change is visible in the betatron functions.

The effect of the χ2 cut on the comparison between reconstructed data and reconstructed
resolution smeared simulation is shown in Figure 6.11. Much better agreement between data
and Monte Carlo is observed now that outliers have been removed. In the horizontal plane
the discrepancy vectors are shorter and point in different directions. In the vertical plane
the scatter in the direction of the discrepancy vectors has been resolved into a systematic
difference which requires further investigation. The agreement is reasonably good between
reconstructed simulation and data.

αx and αy are also plotted now, as otherwise the correlation of the distribution is uncon-
strained. Both α and β govern the subsequent evolution of the betratron function and
decide whether the beam will be matched in MICE. Reasonably good agreement between
reconstructed simulation and data is observed here too.
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Figure 6.10: The effect of resolution and reconstruction of measurements of (βx, ǫx) and (βy, ǫy)
for the ǫN = 6 mm beam simulations after a cut at χ2 = 6. Figure 6.6 shows the same
analysis with no cut. The arrows point from simulation truth to reconstructed resolution
smeared simulation.

6.3 Measurement of the emittance of the Step I beams

Figure 6.12 shows results for all beams but with no simulations. The amplitude cut has
been applied. The curious arrangement of the points (βy, αy) and the correlation of nominal
emittance with betatron function is not understood.

The trace space parameterization used in this chapter is valuable for it’s simplicity, however
it does not reflect correlations with momentum. Figure D.2 and Figure D.3 in Appendix D
provide greater detail on the dependence of ǫ, β and α on pz of the re-scaled TURTLE
beams.

6.4 Summary

Measurement errors are moderately significant in the reconstruction of trace space optical
parameters with TOF0 and TOF1. Outliers are not well described in the simulation, but
there is reasonably good agreement between reconstructed simulation and data for the inner
90% of the beam (after a χ2 < 6 cut in both planes). In the light of this agreement the next
chapter proceeds to study the performance of the base line beam in a simulation of the final
experimental configuration of MICE, and test whether it is suitable for cooling.
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Figure 6.11: (β, ǫ) and (β, α) of reconstructed data and the reconstructed resolution smeared
ǫN = 6 mm beam simulations calculated after a cut at χ2 = 6. The arrows point from
reconstructed simulation to data.
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Figure 6.12: (β, ǫ) and (β, α) of the re-scaled TURTLE emittance-momentum matrix beams
measured in Step I of the MICE experiment. A χ2 = 6 cut (95% in the Gaussian approxi-
mation) has been applied to remove the effect of high amplitude outliers as they are difficult
to model and have a disproportionate effect on estimated statistical parameters.



Chapter 7

Simulation of a measured beam in the

MICE cooling channel

The trajectories of muons measured in the Step I base line beam are passed through
a simulation of the final MICE configuration. The beam is found to be suitable
for demonstrating muon cooling, although some fine tuning of the cooling channel
optics will eventually be required.

A direct way to test whether the Step I beams are suitable for an ionization cooling demon-
stration is to simulate a sample of muons passing from TOF1 through the MICE cooling
channel. In this chapter real muons with phase space vectors measured in the base line (nom-
inal) ǫN = 6 mm and pz = 200 MeV/c µ+ beam are injected into a G4MICE simulation of
Step VI, starting just before TOF1 [67]. For simplicity eleven monochromatic slices of width
1 MeV/c were selected at intervals of 10 MeV/c between pz = 200 MeV/c and 300 MeV/c.
The cooling channel is as described in Section 2.2.

The mean energy and momentum profiles and the betatron function of the simulated monochro-
matic beams are plotted for the momentum slices pz = 210 MeV/c, 220 MeV/c, 230 MeV/c,
240 MeV/c and 250 MeV/c in Figure 7.1. These slices have been chosen as they are well
populated (cf. the pz distribution in Figure 5.13) and they are clustered around the nominal
momentum of 200 MeV/c in the absorber. In the figures the orange lines denote the centres
of the three absorbers. The pz-slice which best fits this criterion is therefore seen to have pz

between 230 MeV/c and 240 MeV/c before TOF1.

The dashed blue lines denote the centres of the eight RF cavities. Energy loss in the cavity
windows is just visible. The reference particle in each case is defined to be a zero amplitude
muon with the pz of the slice in question. This particle is used to phase each of the eight
cavities such that a zero amplitude muon will experience the maximum accelerating voltage
as it passes through the centre of each cavity. Muons with nonzero amplitude are focused
by the solenoidal fields and arrive in the cavities fractionally off the peak phase. Note that
while the design muon (dashed in the energy-momentum profiles) is fully re-accelerated after
energy loss in the absorbers, the mean energy and momentum are not fully re-accelerated
after the absorbers. An increasing spread in time is inevitable in channels which rely on
peak acceleration1.

The magnet currents and positions are the same as in the note by Apollonio and Witte [60].
The axial field profile is shown in Figure 7.2. The design betatron function is conventionally

1Due to power and cost limitations MICE will run ‘on crest’.
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Figure 7.1: From top to bottom: the mean enegy and momentum profile and the measured
betatron function of monochromatic slices of the base line µ+ beam with pz = 210, 220, 230,
240 and 250 MeV/c immediately upstream of TOF1. They are defined by their initial 〈pz〉
upstream of TOF1 at z = −6.5 m in the figure. The diffuser is at z = −6.2 m. The yellow
dashed lines indicate the positions of the absorber centres and the dashed blue lines indicate
the centre of the RF cavities. The red curve is the design betatron function.
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Figure 7.2: The longitudinal magnetic field in Step VI. The constant field region at z = ±5 m
is inside the upstream and downstream spectrometer solenoids. A matched beam will have a
constant betatron function in this region.

taken to be the solution to the envelope equation (Equation 2.7) with the focusing strength
κ(z) calculated using this field profile and a constant pz = 200 MeV/c. This is plotted as
a red line in each of the betatron function profiles in Figure 7.1. The boundary conditions
are the matching conditions specified in Section 2.3.2; Apollonio and Witte’s optimization
of the matching coil currents ensures that these are equivalent to the requirement for a focus
in the absorbers at β⊥ = 42 cm.

A potential difficulty emerges when one comes to measure the betatron function. The def-
initions in the covariance matrix (Equation 2.8) and the envelope equation both assume
cylindrical symmetry, but Chapter 6 has demonstrated that there is a marked asymme-
try between the horizontal and vertical trace spaces of the MICE beams. However, to be
compatible with Penn’s definition [39], in Figure 7.1 the betatron function is taken to be:

β⊥ ≡ pz

mµcǫN

(

σxx + σyy

2

)

where the emittance has the standard definition ǫN = 4
√

Σ⊥/mµ.

The simulated betatron functions of these slices behave encouragingly well, most importantly
having minima at approximately the right β⊥ in each absorber. The only unsatisfactory
curve in the figure is the 250 MeV/c case where β⊥ rises high in the RF cavities, leading to
scraping. The situation deteriorates further for higher pz slices, but this is to be anticipated
as the neutrino factory channel itself has a limited pz acceptance.

The test for this beam, however, is whether it obeys the matching criteria in the constant
field region of the upstream tracker. Unlike the other elements of the re-scaled TURTLE
optical configuration, the base line (6 mm, 200 MeV/c) beam is specifically designed to be
matched with β⊥ = 333 mm and β′

⊥ = 0 in the uniform field region of the upstream tracker
at z = −5 m. While the 210 MeV/c and 220 MeV/c slices obey the matching conditions
quite well, the beams nearer to achieving the nominal absorber pz arrive in the spectrometer
with β⊥ > 333 mm and α⊥ > 0. To match these slices one must tune the initial beam to
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Figure 7.3: Simulated evolution of 1 MeV/c wide pz slices of the measured beams.

change the initial conditions, and possibly increase the thickness of the diffuser (z = −6.2 m)
so it causes a greater reduction in β⊥.

In reality of course, all the slices will contribute to the same beam. Eventually the task of
tuning magnet currents and the diffuser to create matched beams will need to be undertaken.
This thesis provides tools and measurements to begin that process.

The final, and most important parameter to investigate, is the emittance, shown in Fig-
ure 7.3. Each of the well matched beams is cooled by about 16% in the absorbers as ex-
pected and, though the mis-match in the 250 MeV/c slice hinders cooling, it does not cause
nonlinear emittance growth: the base line beam therefore appears to perform remarkably
well for a first attempt at matching a beam into MICE. It is hoped that within the next two
to three years MICE will have demonstrated ionization cooling.



Appendix A

The Step I data sets

Step 1 of the MICE experiment was devoted to testing the newly installed muon beam line
at the ISIS proton synchrotron, and demonstrating that it can generate beams with a range
of emittances and momenta, which will be matched in the upstream spectrometer. This
appendix defines data sets for matched beams with certain optical parameters, and sets of
runs where magnet currents are tuned around those of the base line designs.

In order to demonstrate cooling over a range of emittances and momenta, the beam line
must generate several matched beams with different optical parameters. The beam line is
designed to create nine base line beams. These are the combinations of transverse normalized
emittance ǫN = (3 mm, 6 mm, 10 mm) upstream of the first liquid hydrogen absorber,
and mean momentum 〈pz〉 = (140 MeV/c, 200 MeV/c, 240 MeV/c) in the centre of each
absorber [52]. This is achieved by varying the dipole currents, and inflating the emittance
in various thicknesses of material in a diffuser inside the upstream spectrometer. The beam
is matched into the cooling channel lattice by varying the quadrupole currents.

In this appendix, experimental runs with the same magnet currents are collated so that
the largest possible data sets may be analysed in a consistent way [73]. Every run from
the 2010 Step 1 data taking campaign after quadrupole 3 was fixed is considered. Magnet
currents were required to be consistent to better than 1%, and must not have been labelled
as unsuitable for analysis. The appendix should be read with reference to Chapter 2 and
in particular Table 2.3 which shows the currents in each of the magnets corresponding to
the data sets defined here. Table A.1 shows current to field conversions used by Tilley and
Apollonio when designing these optical configurations.

Magnet Conversion Limits
Quadrupoles 1–3 I [A] = 96 g [T/m] gmax

0 = 2.086 T/m

Dipoles 1 and 2
I [A] = 39.59 (By [T])3 D1: Bmax

y = 1.65 T
−55.998 (By [T])2 + 256.914By [T] D2: Bmax

y = 0.84 T

Decay solenoid I [A] = 174.0Bz [T] Bmax
z = 5 T

Quadrupoles 4–9 I [A] = 174.09 g [T/m] gmax
0 is 2.30 T/m

Table A.1: Conversions between current and field for the beam line magnets.
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Diffuser ǫN Absorber pz Experimental runs
140 MeV/c 2263–2264, 2300

3 mm 200 MeV/c 2266–2268, 2299
240 MeV/c 2259, 2260–2262, 2290–2293, 2296–2298, 2306, 2325
140 MeV/c 2271, 2302, 2526

6 mm 200 MeV/c
2175–2176, 2187, 2190, 2199–2200, 2204–2211, 2238–
2239, 2241, 2243–2245, 2253–2256, 2272–2276, 2286–
2287, 2289, 2303, 2323, 2498–2502, 2514, 2525

240 MeV/c 2269–2270, 2531–2532
140 MeV/c 2246–2247, 2278–2279

10 mm 200 MeV/c 2257–2258, 2283–2285
240 MeV/c 2250–2251, 2280–2282, 2305, 2324, 2339

Table A.2: µ− base line emittance-momentum matrix element data sets with magnet currents
from the re-scaled TURTLE optical designs.

Diffuser ǫN Absorber pz Experimental runs
140 MeV/c 2461

3 mm 200 MeV/c 2401–2403
240 MeV/c 2384, 2386, 2463
140 MeV/c 2453, 2455–2457, 2459–2460

6 mm 200 MeV/c

2396, 2398, 2423, 2444, 2446, 2462, 2466, 2482, 2534,
2538–2539, 2553–2558, 2561–2562, 2616, 2702, 2714–
2715, 2726, 2734–2741, 2743, 2767, 2803, 2846, 2873–
2884, 2887–2891, 2893–2895

240 MeV/c 2387–2388, 2464
140 MeV/c 2447–2448

10 mm 200 MeV/c 2424
240 MeV/c 2389–2390, 2392, 2535

Table A.3: µ+ base line emittance-momentum matrix element data sets with magnet currents
from the re-scaled TURTLE optical designs.

A.1 The re-scaled TURTLE data sets

The re-scaled TURTLE optical configurations are based on a (6 mm, 200 MeV/c) design
created by Kevin Tilley. The magnet currents have been re-scaled by pz/pz0 to generate
the other elements, as the focusing strength in quadrupoles scales as 1/pz, and the radius of
curvature in dipoles scales as pz. Base line data sets with µ− and µ+ are shown in Table A.2
and Table A.3.

On a number of occasions, the currents in certain beam line magnets were varied around the
nominal values of the optical design of a re-scaled TURTLE emittance-momentum matrix
element. Table A.4 shows data sets related to scanning the currents in the quadrupoles 7, 8,
and 9 individually, and as a triplet around the base line currents for the (6 mm, 200 MeV/c)
matrix element’s optical design with positively charged particles. Table A.5 shows data sets
for scans of each of the quadrupole triplets and the decay solenoid around the base line
currents for the (6 mm, 200 MeV/c) with negatively charged particles. Table A.6 shows
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∆f (%) Q7 Q8 Q9 Q789
−40 2441
−30 2439
−20 2438
−15 2497 2491 2481 2472
−10 2496 2489 2476 2437, 2470
−5 2492 2484 2474 2443, 2468

0 2482 2482 2482 2444, 2466
+5 2493 2486 2473 2442, 2467

+10 2494 2487–2488 2475 2433, 2469
+15 2495 2490 2483 2471
+20 2434
+30 2435
+40 2436

Table A.4: Data sets for scans of the current in quadrupoles 7, 8, and 9, individually and
collectively, around the base line design for the (6 mm, 200 MeV/c) re-scaled TURTLE µ+

matrix element. In each case the base line current I0 is transformed as I = (1 + ∆f)I0.

data sets for scans of each of the quadrupole triplets around the base line currents for
the (3 mm, 240 MeV/c) with negatively charged particles. Although not a scan around a
matrix element, Table A.7 shows data sets for a scan of the current in dipole 1 with a beam
predominantly composed of pions.

A.2 The genetic algorithm data sets

Genetic algorithm optical configurations were subsequently created by Marco Apollonio using
a genetic algorithm which employed G4Beamline simulations. Not all matrix elements have
yet been designed using this method. Base line emittance-momentum matrix data sets with
µ− and µ+ are shown in Table A.8 and Table A.9.
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∆f (%) Q123 Decay Solenoid Q456 Q789
−50 2222 2229
−40 2221 2230
−30 2215 2231
−20 2216–2217 2232
−15 2181–2182 2198
−10 2177 2192 2218 2233
−5 2186

0
2175–2176,

2197
2204–2211, 2223, 2223,

2187, 2190 2238–2239 2238–2239
+5 2185

+10 2178–2179 2199–2200 2214 2228
+15 2180 2196 2235
+20 2183 2191 2213 2227
+25 2184 2195
+30 2193 2212 2226
+40 2220 2225
+50 2219
+75 2237 2234

Table A.5: Data sets for scans of the current in the three quadrupole triplets collectively, and the
decay solenoid, around the base line design for the (6 mm, 200 MeV/c) re-scaled TURTLE
µ− matrix element. In each case the base line current I0 is transformed as I = (1 + ∆f)I0.

∆f (%) Q123 Q456 Q789
−20 2309, 2329 2333 2337
−10 2310–2312, 2328 2315–2317, 2332 2336

0 2306, 2325 2306, 2325 2306, 2325
+10 2308, 2327 2314, 2331 2335
+20 2326, 2338 2313, 2330 2334

Table A.6: Data sets for scans of the current in the three quadrupole triplets collectively, around
the base line design for the (3 mm, 240 MeV/c) re-scaled TURTLE µ− matrix element. In
each case the base line current I0 is transformed as I = (1 + ∆f)I0.
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∆f (%) Dipole 1
−20 2751
−10 2750
−5 2755

0 2745, 2756
+5 2752–2753

+10 2746
+15 2747
+20 2748
+30 2749

Table A.7: Data sets for a scan of the current in dipole 1, for an optical design which predomi-
nantly transports π+. During this scan there was no current in quadrupoles 7, 8, and 9. In
each case the base line current I0 is transformed as I = (1 + ∆f)I0.

Diffuser ǫN Absorber pz
Numbers of experimental
runs with the correct optics

140 MeV/c
3 mm 200 MeV/c

240 MeV/c
140 MeV/c 2519–2520

6 mm 200 MeV/c 2503, 2505, 2522–2523
240 MeV/c 2510–2512, 2528–2529
140 MeV/c 2515–2518

10 mm 200 MeV/c 2507, 2524
240 MeV/c

Table A.8: µ− base line emittance-momentum matrix element data sets with magnet currents
from the genetic algorithm optical designs.

Diffuser ǫN Absorber pz
Numbers of experimental
runs with the correct optics

140 MeV/c
3 mm 200 MeV/c

240 MeV/c
140 MeV/c

6 mm 200 MeV/c 2399, 2432, 2546, 2564, 2601
240 MeV/c 2477–2478
140 MeV/c 2449, 2451–2452

10 mm 200 MeV/c 2431
240 MeV/c 2393–2395, 2537

Table A.9: µ+ base line emittance-momentum matrix element data sets with magnet currents
from the genetic algorithm optical designs.



Appendix B

Sketch of a fully constrained

calibration

Experts at the University of Sofia calibrated TOF0 and TOF1 to measure the time of passage
of muons with resolution approaching 50 ps. This chapter describes how the calibration has
been extended for postion measurements of resolution ∼ 1 cm. If the TOFs are required to
measure position in the future it may be beneficial to fully constrain the calibration at the
first pass.

This appendix is devoted to sketching a possible method for calculating the relative lengths
Ti, Bi, Li, and Ri of the cables connecting the top, bottom, left and right PMTs of slab i of
a TOF station to the DAQ. Cable lengths are calculated in terms of the time delay incurred
on measurements. As described in Section 3.2, the TOF calibration in G4MICE version 2.4
only constrains the 2n constants Ti + Bi and Li + Ri, allowing measurements of t [67]. If
known, the remaining 2n degrees of freedom allow an unbiased measurement of x and y. n
is the number of slabs per plane of a detector.

As illustrated in Figure 3.3, the calibration is complicated because the PMTs of each detector
are connected to two TDC boards with clocks which are not synchronized. The trigger time
could have been recorded by either board. In each TOF, however, the left and top (and right
and bottom) PMTs are connected to the same TDC board. The situation is illustrated in
more detail in Figure B.1.

When a particle passes through the intersection between horizontal slab i and vertical slab
j, the times in the DAQ from the left and top PMTs are:

tLi = t+ Li +
l + x

ceff
(B.1)

tTj = t+ Tj +
l − y

ceff
(B.2)

These equations are simple, because on the same TDC board the clock is the same. The sub-
tracting is meaningful because unlike the alternative combination, both times are measured
on synchronized clocks.

A measurement mij of the difference Li−Tj may be made by subtracting Equation B.1 from
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Figure B.1: Diagram of the TOF cable calibration constants.

Equation B.2:

mij = tLi − tTj −
x+ y

ceff

Nij particles passing through pixel (i, j) allow mij to estimate Li − Tj with resolution

σm =

√

2σ2
PMT + 2

(

a/
√

12ceff

)2

.

The two terms are due to the effect of electronic jitter, and the physical size of the pixel
respectively. The mean 〈mij〉 threfore measures Li − Tj with resolution σij = σm/

√

Nij.

We wish to make estimates of the 2n cable delays ~L ≡ (L1, . . . , Ln), and ~T ≡ (T1, . . . , Tn),
using the n2 m̂ij. Therefore construct and maximize 2n χ2:

χ2
Li

=
∑

j

[mij − (Li − Tj)]
2

σ2
ij

;
∂χ2

Li

∂Li

≡ 0 ⇔
∑

j

mij − (Li − Tj)

σ2
ij

= 0

χ2
Tj

=
∑

i

[mij − (Li − Tj)]
2

σ2
ij

;
∂χ2

Tj

∂Tj

≡ 0 ⇔
∑

i

mij − (Li − Tj)

σ2
ij

= 0.

Defining the weights matrix wij ≡ 1/Nij and the diagonal matrix Dij =
∑

k wikδij, after
some cancellation we may write

(

D w

wT DT

)(

~L

−~T

)

=

( ∑

k wikmik
∑

k wkjmkj

)
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Or in a shorter notation
W~∆ = ~M . (B.3)

We are now close to solving for the cable delay corrections ~∆ , but Equation B.3 is over-
constrained: det W = 0, and inversion is not possible. The solution is to define a zero
correction for a reference PMT and invert a reduced (2n − 1) × (2n − 1) matrix Wred in
order to solve the remaining 2n− 1 simultaneous equations:

L1 = 0
~∆ red = W−1

red
~M red.

In this manner, the length of 2n cables may be constrained relative to each other. By applying
the method to the bottom and right PMTs, the remaining 2n can also be constrained. All
that remains is to calibrate the two sets of corrections relative to each other using the
reference slabs, and the cable length calibration is fully constrained for measuring both time
and position.



Appendix C

Statistical error on Twiss parameters

The likelihood function of a Gaussian beam of N particles in two-dimensional trace space is:

L =
N
∏

i

f(vi, v
′
i|ǫ, α, β)

=
1

2πǫ
exp

[

N
∑

i

−(vi, v
′
i)

TΣ−1(vi, v
′
i)

2

]

where f(v, v′|ǫ, α, β) is the probability distribution function of the beam and ǫ, α and β are
the emittance and Twiss parameters defined in Section 2.1.1. The log-likelihood L = − lnL
may be written:

L = N ln 2π +N ln ǫ+
γ
∑N

i v
2
i + 2α

∑N
i viv

′
i + β

∑N
i (v′i)

2

2ǫ
.

The well known definitions of the parameters ~ζ = (ǫ, α, β) are obtained by solving the
equations ∂L/∂ζi = 0; the statistical error matrix E of the parameters is given by:

E−1
ij = − ∂2L

∂ζi∂ζj
.

After some calculation [48] the error on ǫ is found to be independent of α and β:

σǫ =
ǫ√
N
.

The two-dimensional error matrix of α and β is given by:

Eαβ =

(

(1 + α2)/N αβ/N
αβ/N β2/N

)

.
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Appendix D

Measurements of the Step I data sets

It is important to note that the trace space parameterization neglects the pz correlations
observed in Figure 6.4 and Figure 6.5. The effect is illustrated for momentum slices of the
µ− and µ+ re-scaled TURTLE beams in Figure D.2 and Figure D.3 respectively. The legend
for the plots is Figure D.1.

The optical parameters graphed in Figure 6.12 are recorded in Table D.1.

The analyses may be reproduced using the G4MICE Step1Ensemble, Step1Reconstruction
and Step1Optics applications [67]. These applications use the key reconstruction classes
Step1BeamLine, Step1Tracking and Step1Iteration.

 (3 mm, 140 MeV/c)
 (6 mm, 140 MeV/c)

(10 mm, 140 MeV/c)
 (3 mm, 200 MeV/c)

 (6 mm, 200 MeV/c)
(10 mm, 200 MeV/c)
 (3 mm, 240 MeV/c)

 (6 mm, 240 MeV/c)
(10 mm, 240 MeV/c)

Figure D.1: Legend for the emittance-momentum matrix beam plots in Figure D.2 and Fig-
ure D.3.
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ǫn pz 〈pz〉 σpz ǫx βx αx Dx ǫy βy αy

(mm) (MeV/c) (MeV/c) (MeV/c) (mm) (m) (cm) (mm) (m)
µ
−

b
ea

m
s

140 170.8 24.5 4.39 0.84 0.56 14.9 1.64 2.54 -0.13
3 200 223.1 25.2 3.58 0.87 0.57 16.8 1.26 2.76 -0.12

240 261.9 26.5 3.15 0.90 0.60 16.7 1.15 2.81 -0.06
140 174.8 24.7 3.80 0.95 0.58 13.8 1.47 2.85 -0.22

6 200 230.9 25.6 2.78 1.09 0.64 13.7 1.07 3.33 -0.29
240 270.8 28.3 2.60 1.11 0.59 17.1 0.95 3.19 -0.23
140 181.2 24.9 3.01 1.17 0.61 12.7 1.18 3.47 -0.39

10 200 245.0 27.0 1.98 1.50 0.64 15.1 0.78 4.38 -0.63
240 281.9 31.0 2.42 1.34 0.65 14.0 0.76 3.62 -0.35

µ
+

b
ea

m
s

3
200 222.0 28.6 4.08 0.82 0.52 18.1 1.54 2.26 -0.08
240 260.0 30.4 3.75 0.85 0.53 18.9 1.40 2.26 -0.05
140 173.9 26.3 4.24 0.87 0.54 15.4 1.62 2.54 -0.16

6 200 227.1 28.0 3.52 0.93 0.53 18.8 1.23 2.73 -0.17
240 268.0 31.0 3.29 0.97 0.50 20.0 1.13 2.67 -0.13
140 179.7 26.2 3.37 1.07 0.57 14.9 1.29 3.10 -0.30

10 200 239.6 30.0 2.61 1.23 0.52 18.5 0.94 3.40 -0.38
240 274.2 31.7 2.91 1.09 0.48 20.2 0.95 3.05 -0.22

Table D.1: Measured beam properties of the Step I re-scaled TURTLE beams. The reconstruction algorithm is described in Chapter 5. The
data sets are defined in Appendix A.
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Figure D.2: ǫ, β and α (deduced from the measured covariance matrix) as a function of pz for
the Step I re-scaled TURTLE µ− beams. Figure D.1 is the legend.



D Measurements of the Step I data sets 126

 (MeV/c)
z

p
160 180 200 220 240 260 280 300 320 340

 (
m

m
)

x∈

0

1

2

3

4

5

6

7

8

 (MeV/c)
z

p
160 180 200 220 240 260 280 300 320 340

 (
m

m
)

y∈

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 (MeV/c)
z

p
160 180 200 220 240 260 280 300 320 340

 (
m

)
xβ

0

0.5

1

1.5

2

2.5

 (MeV/c)
z

p
160 180 200 220 240 260 280 300 320 340

 (
m

)
yβ

4

6

8

10

12

14

16

18

20

 (MeV/c)
z

p
160 180 200 220 240 260 280 300 320 340

xα

0

0.2

0.4

0.6

0.8

1

1.2

 (MeV/c)
z

p
160 180 200 220 240 260 280 300 320 340

yα

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

Figure D.3: ǫ, β and α (deduced from the measured covariance matrix) as a function of pz for
the Step I re-scaled TURTLE µ+ beams. Figure D.1 is the legend.



Bibliography

[1] B. Aharmim et al. Independent measurement of the total active 8B solar neutrino flux

using an array of 3He proportional counters at the Sudbury Neutrino Observatory. Phys.

Rev. Lett., 101(11):111301, September 2008.

[2] J. Hosaka et al. Three flavor neutrino oscillation analysis of atmospheric neutrinos in

super-kamiokande. Phys. Rev. D, 74(3):032002, August 2006.

[3] M. Apollonio et al. Search for neutrino oscillations on a long base-line at the CHOOZ

nuclear power station. The European Physical Journal C - Particles and Fields, 27:331–

374, 2003.

[4] K. Abe et al. Indication of electron neutrino appearance from an accelerator-produced

off-axis muon neutrino beam. Preprint submitted to Physical Review Letters, 2011.

[5] P. Adamson et al. Improved search for muon-neutrino to electron-neutrino oscillations

in MINOS. Preprint submitted to Physical Review Letters, 2011.

[6] A. D. Sakharov. Violation of CP invariance, C asymmetry, and baryon asymmetry of

the universe. JETP Lett., 5:24, 1967.

[7] W Buchmüller, R. D. Peccei, and T. Yanagida. Leptogenesis as the origin of matter.

Annu. Rev. Nucl. Part. Sci., 55:311–355, 2005.

[8] K. Nakamura et al. The review of particle physics. J. Phys. G., G37, 2010.

[9] D. N. Spergel et al. Wilkinson Microwave Anisotropy Probe (WMAP) three year results:

implications for cosmology. Astrophys. J. Supp., 170:377, 2007.

[10] The Super-Kamiokande Collaboration. Evidence for oscillation of atmospheric neutri-

nos. Phys. Rev. Lett., 81:1562–1567, 1998.

[11] B. Pontecorvo. Mesonium and anti-mesonium. Sov. Phys. JETP 6, 6:429, 1957.

[12] Z. Maki, M. Nakagawa, and S. Sakata. Remarks on the unified model of elementary

particles. Prog. Theor. Phys., 28:870, 1962.

[13] P. Adamson et al. Measurement of Neutrino Oscillations with the MINOS detectors in

the NuMI beam. Phys. Rev. Lett., 101(13):131802, 2008.

[14] D. H. Perkins. Introduction to High Energy Physics. Cambridge University Press, April

2000.

127



Bibliography 128

[15] L. Wolfenstein. Neutrino oscillations in matter. Phys. Rev. D, 17:2369–2374, May 1978.

[16] S. Mikheyev and A. Smirnov. Resonant amplification of neutrino oscillations in matter

and solar-neutrino spectroscopy. Il Nuovo Cimento C, 9:17–26, 1986.

[17] S. Abe et al. Precision measurement of neutrino oscillation parameters with KamLAND.

Phys. Rev. Lett., 100(22):221803, 2008.

[18] S. Antusch, J. Kersten, M. Lindner, and M. Ratz. Running neutrino masses, mixings

and CP phases: analytical results and phenomenological consequences. Nuclear Physics

B, 674(1-2):401 – 433, 2003.

[19] E. D. Church, K. Eitel, G. B. Mills, and M. Steidl. Statistical analysis of different

ν̄µ → ν̄e searches. Phys. Rev. D, 66(1):013001, June 2002.

[20] P. Adamson et al. First direct observation of muon antineutrino disappearance. Phys.

Rev. Lett., 107(2):021801, July 2011.

[21] P. Novella et al. Double Chooz: Searching for θ13 with reactor neutrinos.

arXiv:1105.6079v1 [hep-ex], May 2011.

[22] W. Wang et al. The hunt for θ13 at the Daya Bay nuclear power plant. arXiv:0910.4605v1

[hep-ex], October 2009.

[23] W. Wang et al. RENO: An experiment for neutrino oscillation parameter θ13 using

reactor neutrinos at Yonggwang. arXiv:1003.1391v1 [hep-ex], March 2010.

[24] N. Agafonova et al. Observation of a first candidate event in the opera experiment in

the cngs beam. Physics Letters B, 691(3):138 – 145, 2010.

[25] T. Adam et al. Measurement of the neutrino velocity with the OPERA detector in the

CNGS beam. arXiv:1109.4897, 2011.

[26] R. D’Inverno. Introducing Einstein’s relativity. Clarendon Press, 1992.

[27] A. Bandyopadhyay et al. Physics at a future neutrino factory and super-beam facility.

Reports on Progress in Physics, 72(10):106201, 2009.

[28] T. Kobayashi. Indication of electron neutrino appearance in the T2K experiment and

its long-term implications, 2011. CERN colloquium.

[29] P. Huber and W. Winter. Neutrino factories and the “magic” baseline. Phys. Rev. D,

68:037301, Aug 2003.

[30] S. Ozaki, R. Palmer, M. Zisman, and J. Gallardo. Feasibility Study-II of a muon-based

neutrino source. Technical Report 52623, BNL, 2001.

[31] G. K. O’Neill. Storage-ring synchrotron: Device for high-energy physics research. Phys.

Rev., 102:1418–1419, 1956.

[32] G. I. Budker. Accelerators and colliding beams (in Russian). In 7th International

Conference on High-Energy Accelerators, Yerevan, USSR, 1969.



Bibliography 129

[33] S. Wojcicki et al. Project X and the science of the intensity frontier. A white paper

based on the Project X Physics Workshop, Fermilab, November 2009.

[34] Muon Accelerator Program. R&D proposal for the National Muon Accelerator Program.

Technical Report FERMILAB-TM-2459-APC, Fermilab, 2010.

[35] V. I. Arnold. Mathematical Methods of Classical Mechanics. Springer-Verlag, 1978.

[36] E. T. Jaynes. Probability Theory : The Logic of Science. Cambridge University Press,

April 2003.

[37] J. B. Rosenzweig. Fundamentals of beam physics. Oxford University Press, 2003.

[38] H. Wiedemann. Particle Accelerator Physics. Springer-Verlag, 1993.

[39] G. Penn. Beam envelope equations in a solenoidal field, 2000. Muon Collider note 71.

[40] A. J. Dragt, F. Neri, and G. Ragarajan. General moment invariants for linear Hamil-

tonian systems. Phys. Rev. A, 45(4):2572–2585, 1992.

[41] J. S. Berg, S. A. Bogacz, S. Caspi, J. Cobb, R. C. Fernow, J. C. Gallardo, S. Kahn,

H. Kirk, D. Neuffer, R. Palmer, K. Paul, H. Witte, and M. Zisman. Cost-effective design

for a Neutrino Factory. Phys. Rev. ST Accel. Beams, 9(1):011001, January 2006.

[42] R. B. Palmer. Muon colliders, 2008. HEPAP P5, Brookhaven National Laboratory.

[43] C. M. Ankenbrandt et al. Status of muon collider research and development and future

plans. Phys. Rev. ST Accel. Beams, 2(8):081001, August 1999.

[44] J. H. Cobb. ‘Initial’ cooling - muon cooling for a Neutrino Factory, October 2007.

Topical workshop on The Neutrino Factory and Muon Collider, the physics and the

R&D programmes, The Cosener’s House, Abingdon, UK.

[45] S. Q. Yang, W. Lau, R. S. Senanayake, H. Witte, M. A. Green, and Y. Ivanyushenkov.

Progress on the focus coil for the MICE channel. http://mice.iit.edu, 2005. MICE

note 125.

[46] J. H. Cobb. Ferromagnetic projectiles in MICE and the possible desirability of bullet

proofing the solenoid apertures. http://mice.iit.edu, 2008. MICE note 213.

[47] C. Rogers and M. Ellis. High precision measurement of muon emittance reduction in

MICE. http://mice.iit.edu/. MICE note 122.

[48] J. H. Cobb. Statistical errors on emittance measurements. http://mice.iit.edu/.

MICE note 268.

[49] A. Khan et al. MICE scintillating fibre tracker prototype. http://mice.iit.edu/.

MICE note 90.

[50] A. Blondel. An International Muon Ionization Cooling Experiment: Goals and prelim-

inary design. Historical document on goals and preliminary design, August 2001.

http://mice.iit.edu
http://mice.iit.edu
http://mice.iit.edu/
http://mice.iit.edu/
http://mice.iit.edu/


Bibliography 130

[51] The MICE Collaboration. The MICE schedule. http://mice.iit.edu/

MICE-schedule-July-2011.pdf, July 2011.

[52] M. Apollonio and M. A. Rayner. The MICE muon beam line optimization and emittance

generation. In Proceedings of the International Particle Accelerator Conference. Kyoto,

April 2010.

[53] M. Apollonio and J. H. Cobb. Optimal size for the MICE diffuser. http://mice.iit.

edu/. MICE note 176.

[54] V. Blackmore, J. H. Cobb, M. Dawson, J. Tacon, and M. Tacon. Particle tracking and

beam matching through the new variable thickness MICE diffuser. In Proceedings of

PAC11, New York, United States of America, 2011.

[55] M. Hills and A. Nichols. MICE essential beamline geometry. http://mice.iit.edu,

2009. MICE note 242.

[56] C. Booth, P. Hodgson, and P. J. Smith. MICE target operation and monitoring. In

Proceedings of IPAC10, Kyoto, Japan, 2010.

[57] C. Booth, P. Hodgson, P. J. Smith, and J. Tarrant. MICE target hardware. In Proceed-

ings of IPAC10, Kyoto, Japan, 2010.

[58] A. Dobbs et al. The mice muon beam: Status and progress. In Proceedings of the

International Particle Accelerator Conference. Kyoto, April 2010.

[59] A. Dobbs. Particle Rate and Host Accelerator Beam Loss on the MICE Experiment.

PhD thesis, Imperial College London, 2011.

[60] M. Apollonio and H. Witte. Optimizing the MICE matching coil currents for the

production spectrometer solenoids. http://mice.iit.edu, 2006. MICE note 153.

[61] M. Apollonio. Pion-muon beam line magic table. http://mice.iit.edu/bl/.

[62] T. Roberts. A Swiss army knife for Geant4, optimized for simulating beam lines.

http://www.muonsinc.com/tiki-index.php.

[63] W. Spensley and J. S. Graulich. Survey inspection report of the Step 1 MICE beam

line. Private communication. The survey was performed out on the 11th and 12th

September 2010.

[64] M. A. Rayner. The performance of the MICE muon beam line. In Proceedings of the

12th International Workshop on Neutrino Factories, Superbeams, and Beta Beams. Tata

Institute for Fundamental Research, Mumbai, October 2010.

[65] R. Bertoni, A. Blondel, M. Bonesini, G. Cecchet, A. de Bari, J. S. Graulich,

Y. Karadzhov, M. A. Rayner, I. Rusinov, R. Tsenov, S. Terzo, and V. Verguilov. The

design and commissioning of the MICE upstream time-of-flight system. Nuclear Instru-

ments and Methods in Physics Research, A615, 2010.

http://mice.iit.edu/MICE-schedule-July-2011.pdf
http://mice.iit.edu/MICE-schedule-July-2011.pdf
http://mice.iit.edu/
http://mice.iit.edu/
http://mice.iit.edu
http://mice.iit.edu
http://mice.iit.edu/bl/
http://www.muonsinc.com/tiki-index.php


Bibliography 131

[66] M. Bonesini. The construction and laboratory tests for the MICE TOF0/1 detectors.

http://mice.iit.edu/. MICE note 241.

[67] The MICE Collaboration. G4MICE. http://mice.iit.edu/software/software.

html. The MICE project’s tracking, detector reconstruction and accelerator physics

analysis framework.

[68] S. Agostinell et al. Geant4: a simulation toolkit. Nucl. Inst. Meth. A, 506(3):250 – 303,

2003.

[69] Y. Karadzhov, M. Bonesini, J. S. Graulich, and R. Tsenov. TOF detectors time cali-

bration. http://mice.iit.edu/. MICE note 251.

[70] R. Bertoni, M. Bogomilov, M. Bonesini, A. de Bari, G. Cecchet, Y. Karadzhov,

D. Orestano, F. Pastore, L. Tortora, and R. Tsenov. Analysis of PID detectors (TOF

and KL) performances in the MICE 2010 run. http://mice.iit.edu/. MICE note

337.

[71] The MICE Collaboration. The MICE Technical Reference Document.

[72] M. A. Rayner. Step 1 emittance-momentum matrix data sets. http://mice.iit.edu/.

MICE note 325.

[73] The MICE Collaboration. Run conditions summary spreadsheet. http://mice.iit.

edu/mico/, August 2010.

[74] V. Palladino et al. Practical information to operate MICE TOF0. http://mice.iit.

edu/mico/manuals/, 2008.

[75] V. Palladino et al. Practical information to operate MICE TOF1. http://mice.iit.

edu/mico/manuals/, 2008.

[76] Saint Gobain Crystals. BC-418, BC-420, BC-422 premium plastic scintillator data sheet.

http://www.detectors.saint-gobain.com/.

[77] Saint Gobain Crystals. BC-400, BC-404, BC-408, BC-412, BC-416 premium plastic

scintillator data sheet. http://www.detectors.saint-gobain.com/.

[78] J. H. Cobb. Private communication.

[79] M. A. Rayner and J. H. Cobb. Momentum measurement by the upstream Time of

Flight detectors. http://mice.iit.edu/. MICE note 317.

[80] A. Bross. Private communication.

[81] Vector Fields Limited, 24 Bankside, Kidlington, Oxford, OX5 1JE, UK. Opera-3d

reference manual.

[82] A. J. Dragt. Numerical third-order transfer map for solenoid. Nucl. Inst. Meth. A,

298:441–459, 1990.

http://mice.iit.edu/
http://mice.iit.edu/software/software.html
http://mice.iit.edu/software/software.html
http://mice.iit.edu/
http://mice.iit.edu/
http://mice.iit.edu/
http://mice.iit.edu/mico/
http://mice.iit.edu/mico/
http://mice.iit.edu/mico/manuals/
http://mice.iit.edu/mico/manuals/
http://mice.iit.edu/mico/manuals/
http://mice.iit.edu/mico/manuals/
http://www.detectors.saint-gobain.com/
http://www.detectors.saint-gobain.com/
http://mice.iit.edu/


Bibliography 132

[83] A. J. Dragt et al. Lie algebraic treatment of linear and nonlinear beam dynamics. Annu.

Rev. Nucl. Part. Sci., 38:455–496, 1988.

[84] M. A. Rayner. Presentation of latest results. http://mice.iit.edu/. Presentation at

the 30th collaboration meeting of the MICE experiment, July 2011, Oxford.

http://mice.iit.edu/

	Introduction
	The key to precision in neutrino physics and at the energy frontier
	A brief historical introduction to neutrinos
	Neutrino oscillations
	Atmospheric neutrino oscillations
	Solar neutrino oscillations
	Current experimental searches

	The advantages of a neutrino factory
	Ionization cooling and the muon collider
	Conclusion

	The design and status of the MICE ionization cooling demonstration
	Ionization cooling
	Trace space, emittance and the Twiss parameters
	Beam correlations for optimal cooling
	Phase space and normalized transverse emittance
	Choice of absorber material

	The Muon Ionization Cooling Experiment
	Design of the cooling channel lattice cell
	Instrumentation of the channel
	The muon beam
	Status of the experiment

	Step I of the MICE experiment
	The design of the muon beam line
	Matching conditions in the upstream spectrometer
	Emittance inflation in the MICE diffuser
	Optical configurations of the MICE beam line
	The Step I data taking campaign

	Conclusion

	Measuring time and position with the time of flight detectors
	The time of flight detectors TOF0 and TOF1
	Timing resolution revisited
	Reconstructing the time of a particle
	Timing resolution per pixel during Step I

	Measuring transverse position
	Calibrating the measurement
	Resolution and beam size
	Combining the measurements

	Conclusion

	Time of flight and transverse position in data and simulation
	Particle identification for the Step I data sets
	Stability of the electron peak
	Geometry of the TOF0 and TOF1 detectors
	Calibration of the absolute time of flight
	The anomalous electron-positron asymmetry

	Simulation of the upstream time of flight system
	The G4Beamline-G4MICE simulations of the Step I beams
	Time of flight in data and simulation
	Transverse position in data and simulation

	Conclusion

	Measurement of muon momenta
	Phase space reconstruction at the MICE beam line
	Beam transport in the MICE time of flight system
	Measuring longitudinal momentum
	Reconstructing transverse momentum

	Iterative reconstruction algorithm
	Iterative path length correction
	Monte Carlo study of the reconstruction algorithm
	Eliminating systematic bias on pz
	Momentum resolution and the efficiency of the algorithm
	Momentum spectra in data and simulation

	Measurement of the transverse angles x and y
	The effect of resolution, scattering and nonlinearities
	Comparison between data and simulation

	Conclusion

	Distributions in transverse trace space at TOF1
	Resolution bias on optical parameters
	The effect of detector resolution on emittance measurements
	The effect of multiple scattering
	Resolution bias in (,)-space

	Comparison between data and simulation
	The trace space distribution of the base line beam
	The effect of a 2 cut on simulated beam measurements

	Measurement of the emittance of the Step I beams
	Summary

	Simulation of a measured beam in the MICE cooling channel
	The Step I data sets
	The re-scaled TURTLE data sets
	The genetic algorithm data sets

	Sketch of a fully constrained calibration
	Statistical error on Twiss parameters
	Measurements of the Step I data sets
	Bibliography

