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ABSTRACT 

We have searched for evidence of w ..... rr+F- in a sample 

- + -
of 9696 rr p --+ rr rr n events taken at a beam momentum of 1245 

MeV/c. We have measured the branching ratio, B = N 2 I w-+ rr 

N 3 for a series of assumptions of p-w coherence and w-+ rr 

relative phase angle, ¢· The results set upper limits at 

the 90% confidence level of B < 2.9% for incoherence, 

B < 17.9% for coherence and destructive interference 

rr 
(¢ = + 2), B < 0.51% for constructive interference (¢ = 

rr - 2), and B < 3.0% for¢= rr. We have also measured the 

Dalitz plot asymmetry of an accompanying sample of about 

7600 w + - 0 - + - 0 ..... rr rr rr events in rr p --+ rr rr rr n to be A = -0.014 ± 

0.028. The non-resonant background was subtracted from these 

data in 28 independent Dalitz plot regions. The Dalitz plot 

distribution of the w events agrees very well with the simplest 

matrix element for a JP = 1- particle and shows no evidence 

of any rho dominance effects. 
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I. INTRODUCTION 

The possibility that omega decays to two pions was 

suggested first by Glashow in 1961 1 shortly after the 

vector meson was first observed by Maglic et al.
2 

Omega 

was observed to decay heavily to 3rr through the strong 

interactions and so its G parity
3 

was known to be negative 

at a very early stage. A decay to 2rr would violate G parity 

and isotopic spin and would be forbidden under the strong 

interactions. But it was quickly noticed by Glashow1 and 

Nambu and Sakurai4 and Feinberg,
5 

and others that the mass 

of the w (m = 783.4 MeV, r = 12.2 MeV) was very close to w w 

the mass of another new vector meson, the p (m = 765 MeV, 
p 

r o p 
125 MeV). In fact, p is so wide that the narrow w 

would sit right on top of the p if it decayed to 2rr. These 

theorists suggested that sirice the only essential quantum 

number difference between p and w is G parity or I spin, the 

electromagnetic interaction cannot distinguish between the 

two particles and electromagnetic transitions between p and 

w are allowed and likely. They suggested that this would 

raise the likelihood of w ~ 2 rr significantly. 

Many searches for evidence of w in the 2rr mass spectrum 

were made. The first significant statistical sample was 
II 

obtained when Lutjens and Steinberger compiled all the early 

6 results. These authors were aware of the p-w interference 

problem (to be discussed shortly), and of the fact that when 

they cited upper limits on the branching ratio 
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based on the compilations, these upper limits depended on 

the assumptions made about coherence of p and w production. 

Their result, assuming complete incoherence, was B < 0.008 

with 90% confidence. 

In 1966, Flatte et al reported evidence of a possible 

w - 2rr effect in a new high statistics sample observed in 

the single reaction
7 

K p - Aw . 
8 Their recently revised conclusion is that B > 0.002 but 

that no upper limit may be set without assumptions about 

coherence. 

In this experiment, we search for evidence of w - 2rr in 

+ -
rr p - rr rr n. Before describing this experiment and citing 

other recent results on the subject, we will prepare a 

thLoretical framework for the experimental analysis of later 

sections. The various historical approaches to the problem 

of w - 2rr can be shown to be essentially equivalent.
9 

We 

will follow here the w-p mass mixing scheme which shows the 

equivalence of this problem with the K1K2 system. This 

approach was first used (for the w-p problem) by Bernstein 

and Feinberg in 1962.lO,ll 

A. Theory of w-p Mixing 

When dealing with the K1-K2 problem, one is interested 

in the time development of a given combination of K and K . 
0 0 

For this reason, the mixing is dealt with by starting with a 
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set of coupled Schroedinger equations that connect the two 

states of interest, amplitudes aK and aK , and all other 

available states. The problem may be treated in a way similar 

t th t db . d . k . 11 'f o a use y Wigner an Weiss opf for atomic states i 

one first assumes an exponential time dependence for aK and 

')It aK , e , and then, in sums over the energy of connecting states, 

neglects the widths of the states compared with their energies. 

The problem is thus reduced to a two dimensional eigenvalue 

equation, 

( 1) 

:J 
The elements of M, which we will call the mass matrix, are --
related to the elements of the Hamiltonian which connect the 

states 1 and 2 to the continuum of states. The eigenvalue 

equation may be solved to obtain the time dependence in the 

problem. In this experiment, however, we are dealing with 

particles of such short lifetime that we have no experimental 

interest in the actual time dependence. Rather we wish to know 

the form of the energy spectrum of the two pions which contains 

all the experimentally available information on the problem. 

Following Bernstein and Feinberg10 , we could obtain the energy 

dependence as the Fourier transform of the time dependence. 

Another approach is to start with a propagator equation for 
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the 2rr production amplitude. The propagator is just the 

Fourier transform of the Green's function of the relativistic 

Schroedinger equation (P 2 1 - M2 )~ = 0, where the four momentum - -~ 

operator P = Prr+ + Prr_ and 1_ is the unit matrix. In this way, -
we may include in the 2rr production amplitude the p and w 

production amplitudes, 

= ( <pn\H\rr-p>) 

<wn\H\rr-p> 

and the transition probabilities of p and w to 2rr, 

T = ( Tp 

- T w 
) 

= ( <2rr\ H' \ p> ) . 

<2rr\ H' \ w> 

The prime on H' indicates that T includes all possible tran-

sitions except those that involve transitiorys connecting w 

and p which will be included in the mass matrix. 

We consider IP> and \w > to be eigenstates of G parity 

with eigenvalues G 
p 

= 1 and G 
w = -1. Then <2rr!H8 T\w > = O, so 

comes from <2 rr \H '\w>, where 
'Y 

that the only non-zero part of T w 

H ' represents isospin violating transitions (presumably second 
'Y 

order electromagnetic) that do not involve p. If present 

theoretical understanding of such terms is correct, they will 

be so small that within the available experimental sensitivity 

it is reasonable to assume T is negligible. w 
Then the possibility 

of w - 2rr comes from the small electromagnetic mixing term, o, 

of the w-p mass matrix 

~ 
2 

m -i w 
:w) ( 2) 
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(The fact that 6 = 6 = 6 is a consequence of CPT invariance. 9 ) 
wp pw 

One must note that there are no absolute grounds for assuming 

T = 0. w 
12 As Gourdin, Stodolsky and Renard suggest, it may 

turn out to be necessary to set T f 0 in order to understand w 

experimental results. 

will assume T f 0. w 

For this reason, in what follows we 

A and T are functions of phase space variables like - -
momentum transfer and decay angle in the rest frame, as well 

as of spin variables. In the subsequent analysis, we will 

assume A and T to be averaged over the spin states and the - ..._ 

small region of phase space accepted by the experiment. This 

will introduce some degree of incoherence into the results 

and reduce the size of any w-p interference effect. For the 

time being, however, we will ignore this problem. 

In terms of A, T, and M, we may write the propagator 
""'- ............. '::::::::. . 

- + -
equation for the amplitude, ~' of the reaction ~ p ~ ~ ~ n 

proceeding through p 
9 

or w as 

'f T 
l A = 2 2 

(ml) -M -..... - -- -
where m is the 2~ invariant mass. 

After inverting the propagator matrix and carrying out 

the multiplication, we find for the amplitude squared 

I'±' 1
2 = + 

where 

( 3) 

( 4) 
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a '='- A w w 

(m +m ) 
~ P2 [o(l+~A /A )+~(m -m +i 

(m -M ) p w w p 
p 

with ~ = T /T . The details of the algebra that lead up to 
w p 

Eqs. (4) and (5) may be found in Appendix r. With obvious 

J·ustification, it is assumed here that o 2 << M 2 or M 2 and p w I 

that the widths may be neglected in (M + M ). Note that aw 
w p 

(the amplitude of the w - 2rr effect) is a slowly varying 

function of m, and that the numerator of a in Eq. 
w 

(4a) has 

( 4a) 

been evaluated at m = m . In Eq. (4), the squared denominators 
w 

are just the Breit-Wigner quadratic denominators. For example, 

\m2-M 2 12 = (m2-m 2)2 + m 2r 2 
p p p p 

Using Eq. (4) we may obtain the experimental distribution 

of 2rr events, N2rr(m), by integrating 1~1 2 
over the 2rrn phase 

13 space. After integrating over the neutron variables we have 

2 2 . 2 
N 2rr (m) dm = nJ I~ I E: 2rr (m, e) ¢ (m) iro2-rr dcose dm ( 5) 

Here e 2rr(m,8) is the experimental efficiency function of m 

and the 2-rr center of mass angle 8, n is a normalization constant, 

and q is the momentum of either pion in the 2-rr rest frame. 

¢(m) is the phase space function of m that results from the 

integration over the neutron variables. Carrying out the 

integral in Eq. (5), we write N27r(m) in a general form useful 

for fitting: 
2 

N ( ) [ I A l 2 
BW 

2 
+ l a ( m 

2 
-M 

2
) I · BW 

2 1 F I 2 
2-rr m = p p w p p w 

+ 2 \ A *a ( m 2 -M 2 ) l c ~ s¢ BW 2Re F + 2 I A *a ( m 2 -M 
2

) \ 
p w p p w p w p 

sin¢ BWP
2

ImFw+ Background]e 27r(m)¢(m) (6) 

Here 
(7 a) 



2 2 is the relative phase of the p ~ 2rr amplitude and a (m -M ) . w p 

The function e 2rr (m) is the efficiency averaged over cos 8 . 

In this equation, we use Jackson's form of the p Breit-Wigner 

amplitude squared. 13 
We have 

BW 
2 1 T 1

2 
q m 1 

= 
nJl 2 212 

2rrdcos 8 = n p 4m 2 2 2 2 2 m -M (m -m ) +m r P p p p 

( 7b) 

since 

1 
J\TPl

2 q 3 
r (m) = 2rrdcos 8 = 1 (_g_) m 

p 2m 4m po q m p 0 p 

where q = q when m = m . F is the Breit-Wigner amplitude 
0 p w 

function for w in the 2rr spectrum: 

1 

( 2 2) 2+ 2 2 I m -m m T' w w w 

and 
ImF =-IF 1

2
(m r) w w w w 

The w production amplitude, Aw' may be determined in 

+ - 0 
this experiment from a large sample of w ~ 3rr in rr rr rr n final 

state events. Corresponding to Eq. (6) for 2rr,we have for 

the distribution of events in the 3rr mass spectrum 

N3 (m) = [ \A \
2

Bw 
2

+ Background] e 3 (m) ¢ (m) rr w w rr 

where e 3rr (m) f 8 2rr (m) is the efficiency function for the 3rr 

events. Here a 3rrn phase space has been integrated to get 

Eq. (8), and e 3rr (m) is averaged over the Dalitz plot. 

BW 2 has w of Eq. (6): 

= mwr w_, 3rr 
n 

( 2 2)2+ 2 2 m -m m r w w w 

(8) 

(8a) 
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with the partial width assumed to be rw- 3rr = 0.9 rw' (see Ref. 30) 

and the s ame normalization constant as in Eq. (7b) . 

Integrating over the various terms of Eqs. (6) and (8) 

allows us to relate the p and w amplitudes to the number of 

p and w experimentally observed in the 2rr and 3rr spectra. 

These integrations were carried out with Monte Carlo techniques 

that included the experimental efficiencies. The details of 

the calculations are discussed in Appendix I. We find 

jAw~2 = 2.193 Nw-3 rr ( 9a) 

IA 1
2 = 1.775 N 

p p-2rr (9b) 

In a later section we shall see that in this experiment, 

N /N 
3 

::::::; 0. 38. 
p W-> rr Thus, IA I/IA I ::::::; 0.56. This combined with 

p w 

an estimate of the upper limit of (3 justifies dropping the (3A / 
p 

A term of Eq. (4a) for a . To see this we relate (3 to the w w 
branching ratio B r Ir I remembering that the direct W->2 7/' W->3 rr 

w ..... 2rr transition (T ) contributes only a small part of the w 

w ..... 2rr rate: 

If we assume B < 10% with considerable justification then 

(3A /A ~ 0.56. Thus with an error that must be considerably 
p w 

less than 6%, 

A w 

,,,,. A 
w 

we may drop this term leaving 

(m +m ) ( o+(3 (m -m ) +i rp /2) 
w p w p 

(m +m ) 6 ' w p 

( 4a I ) 

r 
where 6 ' = 6 + (m -m + _e..) (3 . Given the possibility that 6 is 

w p 2 

very small, which has not been ruled out experimentally, 
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there is no justification for neglecting ~ at this stage. 

And o' not 6 is the physical parameter measured by experiments 

studying w -+ 2Tr. 

Just as we did for A and A, we can relate la 1
2 

to w p w 
NW-+ 2Tr, which is the experimental number of events corresponding 

to the second term of Eq. (6). N is the number of w _. 2Tr W-+2Tr 

events not including the interference effects. Knowing the 

magnitude of a from the number of w events in the 2Tr spectrum w . 

and the magnitude of Aw from the number of w in the 3Tr spectrum, 

we can determine the magnitude of 6' in the experiment by 

solving Eq. 

Io' I = 

(4a'): 

E: 3 (m ) 
20. 2 ( Tr w 

E: 2 (m ) Tr w 

N 1/2 
W-+ 2Tr) = 20. 2 B1/ 2 MeV. 

N w--3Tr 

Here B is the branching ratio, B = r 2 /r 3 , and as W-+ Tr W-+ Tr 

discussed later the ratio of experimental efficiencies is 

determined using a Monte Carlo calculation. 

(9c) 

As is evident from Eq. (7c), Im fw is experimentally 

indistinguishable from IF 1
2 , so that in practice we are forced w 

to combine the fourth and second terms of Eq. (6). Thus the 
2 . 2 

coefficient of BW IF I in Eq. (6) is 
p w 

la (m
2

-M 
2

) 12
-2m r IA *a (m

2
-M 

2
) I sin¢ . 

W p WW p W p 

Since the second term of this coefficient may clearly be 

(10) 

either positive or negative, the fact that experimentally the 

whole coefficient turns out to be zero does not necessarily 

imply that aw = O. This was pointed out as long ago as 1964 

by L~tjens and Steinberger,
6 

and has been the source of much 

difficulty in efforts to understand what really is going on 
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with respect to w - 2rr. The problem is compounded by the fact 

that we have no way of really knowing how valid is the complete 

coherence of w and p in the 2rr mass spectrum that is implied 

by Eq. ( 4 ) or ( 6) . The complete coherence of these equations 

is clearly valid for that impossible situation where all events 

come from the same point in phase space. But for real experiments 

in which events come from a finite range of momentum transfer, 

for example, some degree of incoherence will creep in, and 

the size of the interference terms will be reduced. This will 

happen since the relative phase, ¢, may vary over the phase 

space accepted by the experiment. Then cos¢ and sin¢ in the 

third and fourth terms of Eq. (6) must be averaged over the 

range of phase space variables. This can only reduce the 

magnitudes of these terms. 

The degree of coherence may be parameterized by multiplying 

the two interference terms of Eq. (6) by the variable c. For 

complete coherence c=l, and for total incoherence c=O. 

Taking this into account the experimentally measurable distri-

bution (Eq. (6)), b~comes in practice: 

where 
al = 

a2 = 

a3 = 

IA 1
2 

p 

ja (m
2

-M 
2

) \
2

-2cm r \A *a (m
2

-M 2 ) \sin¢ 
(JJ p (JJ (JJ p (JJ p 

2c\A *a (m 2-M 2 ) I cos¢ . 
p (JJ p 

Theoretical efforts to predict the rate of w-2rr12 • 14 •B 

are aimed in two directions: the magnitude and phase of 6 , 

( 11) 

(lla) 
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and the relative production amplitude phase, ¢ · With knowledge 

of these quantities, the magnitude and shape of the w - 2 Ti 

effect may be predicted. 

By limiting the region of momentum transfer in their 

experiment, G. Goldhaber et al were able to observe a negative 

interference dip at thew mass, 16 clear evidence that their 

rr data was at least partially coherent and that a 2 < 0 and ¢ ~ 2· 

That experiment studied the 2 Ti spectrum in the reaction 

+ + - ++ 
Ti p - Ti Ti ~ (12) 

and the theorists, A. Goldhaber et al, have predicted that if 

negative interference is observed in reaction (12) with ¢ ~ ; 

then positive interference should be observed in our reaction, 

+ -
Ti p - Ti Ti n 

with ¢ Ti 
~ - 2 

14 
Their calculations assume a momentum transfer 

considerably smaller than that of this experiment. However, 

as we will see later, if this phase is assumed for our data, 

it provides a very strong restriction on the result. 

Recently, evidence for a positive p-w interference peak, 

¢ ~ - Ti/2, was reported by a French group for the clashing 

b 
. 17 earn reaction 

+ - + -
e e - Ti Ti • 

A. Goldhaber et al predict ¢~ rr for this reaction, 14 which 

has been studied independently by Gourdin, Stodolsky and 

Renard12 who also find the clashing beam results 17 in 

contradiction with their expectations that ¢ ~ Ti . 

The subject definitely is not closed, and in the 
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following sections, we describe still another experiment 

studying the ephemeral decay of omega to 2rr. 

II. EXPERIMENTAL APPARATUS AND RUNNING PROCEDURE 

In this experiment, omegas were detected in the reaction 

rr p ... wn. The three pion decay mode was studied in 

+ - 0 
rrp-rrrrrrn 

and the search for effects of w in the two pion spectrum was 

made in the reaction 

+ -rr p rr rr n • 

The experiment was run at the Brookhaven AGS in 1967 using 

equipment designed for a study of the charged decays of the 

n· The apparatus and running procedure for that experiment 

are described in detail in the Ph.D. dissertation of Stephen 

Stein.
18 

Essentially no changes were made to the apparatus 

. 19 
for the w experimeLt. 

A beam of negative pions at a momentum of 1245 MeV/c ± 

(13) 

( 14) 

3/4% was produced by circulating protons inside the AGS incident 

on a 0.050 in. Be wire and defined by a beam transport system 

that included two electrostatic separators (Fig. 1). A beam 

spot of about 1 in. diameter was focused on the end of a 

2 in. diameter by 1 ft cylindrical liquid hydrogen target. 

An incident pion on target was defined electronically by 

the coincidence of signals from four small scintillation 

counters (T1T2T3T4 ) that formed a telescope at the end of the 

beam line after the last bending magnet. T4 was placed 

directly in front of the target and was 1.25 in. in diameter. 

A fifth counter T5 was placed immediately behind the target, 
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and the anti-coincidence of T5 with a coincidence in the 

telescope provided a signal (called pi-disappearance) that 

indicated a pion interaction inside the hydrogen target. 

The target was suspended in the well of a U-shaped 

array of nine spark chambers, three in each of three quadrants 

(left side, right side, and bottom). This array of chambers 

was itself suspended inside a large magnet as shown in Fig. 2. 

During this experiment, the magnitude of the B-field within 

the magnet was about 6.9 kG. The direction of the field was 

the same as that of the beam so that the beam was not affected 

by the field. However, the charged pions of Reactions 13 and 

14 corning out in general transverse to the beam did have their 

trajectories curved by the field. This curvature, and thus 

the momenta of the pions, was measured by the spark chambers. 

But before a commitment was made to fire the spark chambers 

and invest about 20 rnsec of deadtirne, it was necessary to know 

whether two charged pions had actually passed through two 

different spark chamber quadrants. This information was 

determined very rapidly from signals from three pairs of 

overlapping counters directly behind the outermost spark 

chamber in each quadrant. If two (and only two) of these 

so-called "logic counters" signalled in different quadrants 

and no signals came from a variety of anti-counters placed 

at other points surrounding the magnet, the decay pion require­

ments were assumed to be satisfied. 

The charged pions in the beam that did not interact in 

the target were swept to one side by a wide gap bending magnet 
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immediately following the analyzing magnet. This beam, after 

passing through a large helium bag (in order to reduce scattering 

that might confuse the neutron detection), was dumped in a 

wall of concrete. The neutrons resulting from reaction 13 or 

14 in the target were detected by a bank of nine neutron 

detectors about thirty feet away from target. These nine 

detectors, each a 2 ft cube of liquid scintillator, were 

arranged in three rows of three. An overall view of the 

experiment is shown in Figs. 3 and 4. Directly in front of 

each liquid counter was a charged particle counter which was 

used in anti-coincidence with the liquid counters to indicate 

the presence of a neutral particle. The spark chamber trigger 

requirement from the neutron counters was the presence of one 

and only one neutral particle arriving in a specified time gate. 

The clock for this time was ·started when a beam particle. went 

through T3 and was stopped at a pulse from the neutron counters. 

If there was a "pi-disappearance" signal, this clock measured 

the time of flight (TOF) of the neutron from the target to 

the neutron counters. The time of flight gate was adjusted 

so that it included the unique time of flight of a neutron 

scattering off an w in the reaction rr p - wn. The gate 

opened about 4 nsec before this w TOF and remained open about 

. + - 0 . 1 10 nsec. A very clear peak can be seen in the rr rr rr n fina 

state events at the w TOF. After corrections (which will be 

discussed in detail later) were made for the location of the 

interaction vertex and for the delay in the detectors correlated 

with pulse height, a Gaussian fit to the w peak in the TOF 
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spectrum gave a width of 0.839 ± 0.016 nsec. Part of this 

width is due to the intrinsic w width. If this is removed, 

one finds that the timing resolution is 0.78 ± 0.02 nsec. 

This excellent resolution enables one to use the neutron TOF 

information in studying the two pion mass spectrum in Reaction 

14 as we shall see later. The mass resolution in this spectrum 

was determined, using a Monte Carlo technique, to have a half 

width of about 13 MeV. 

Summarized below are the requirements that had to be 

satisfied before the fast logic fired the spark chambers: 

pi disappearance -- (T1 T2T3T4 )T5 

logic counters -- 2 logic counters in 2 different 

quadrants and no antis 

neutron counters -- 1 neutron counter and no anti 

neutron time of flight ~- within 10 nsec gate surrounding 

w TQF. 

If all these requirements were satisfied, a high voltage pulse 

was applied to the spark chambers. During the w experiment, 

the chambers were fired about five times per AGS beam spill. 

The spills lasted about 400 msec and were repeated every 

2.4 sec. 

In order to handle the large amount of data, it was 

necessary to use some kind of automated spark chamber system. 

Sonic techniques which work reliably inside a magnetic field 

were used in the experiment. Within each chamber a set of 

four microphones, one at each corner, sensed the sound wave 

produced by a spark. The time when the sound of the spark 
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reached each microphone was digitized and transmitted to an 

IBM 360/30 computer on line. The computer also received the 

neutron time of flight and information indicating which logic 

and neutron counters were hit. All this information was writte1. 

on magnetic tape from which the data were later reconstructed 

and analyzed on the Nevis 360/44. The on-line computer 

reconstructed spark positions, calculated spark chamber 

constraint quantities, maintained tables of chamber and 

counter triggers, and displayed this information on a type-

writer at the request of experimenters. The displays enabled 

the experimenters to monitor equipment performance and correct 

malfunctions at a very early time. The computer also did a 

preliminary momentum reconstruction on-line and displayed 

histograms of kinematic quantities and the neutron time of 

flight on an oscilloscope. 'These histograms provided 

information on the rate of production of w in Reaction 13 

and on the kinematic cleanliness of the data being taken. 

An alarm system independent of the computer sounded when the 

spark chamber pulser fired without a trigger from the fast 

logic. This provided early warning of pulser failure. 

The quality of the beam was monitored without help from 

the computer by routine checks of the ratio of certain rates 

in the beam telescope. For example, the ratio of (T1 T2T3T4 )/ 

(T
1

T2T3) indicated how well the beam was focused on the target. 

If these checks indicated a problem in the beam, the beam 

tuning was touched up in the beam trailer or the AGS control 

was requested to replace the Be target. 
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Reversing the magnetic field in the analyzing magnet has 

the effect of cancelling out asymmetrical biases in the geometry. 

Reversing the spark chamber electric field reverses th-e 

direction of drift of ions between the chamber plates and 

reverses the direction of the E x B drift that can bias the 

momentum measurement. Removing the magnetic field entirely 

allows a later study of straight line tracks to determine 

the relative position of the spark chambers. Taking all these 

factors into consideration, the running procedure called for 

the following schedule: Every two hours the magnetic field 

in both the analyzing and sweeping magnets was reversed; 

every four hours the electric field was reversed'; and every 

ten hours the magnetic field was turned off for a two hour run. 

III. RECONSTRUCTION AND EVENT DEFINITION 

A. Sonic Determination of Spark Position 

The sonic spark chambers used in this experiment each 

consisted of a pair of 1 mil aluminum foil plates separated 

by a gap of 1/4 in. with four ceramic cylindrical microphones 

near the corners. A test spark device made of two needles 

with a small gap was accurately positioned near one edge 

of the chamber. A schematic layout of a typical chamber is 

shown in Fig. 5. The nine spark chambers were contained in 

a large air tight vacuum box through which a gas mixture of 

90% neon 10% helium was slowly circulated so that the gas 

temperature was nearly the same in different chambers. 



-18-

The propagation of sound in the close vicinity of such 

cataclysmic events as sparks in spark chambers and atomi~ 

bomb explosions is known to be non-linear because of the 

initial shock wave. The effects of this non-linearity can 

be accounted for in the linear region away from the spark 

by a constant shift in the time scale, f . In terms of t 
p p 

and the velocity of sound in the gas V, the distance d from 

the spark at a measured time t is m 

d = V(t + t ) = Vt 
m p 

where t = t + t . m p 
Referring to Fig. 5, it is easy to 

compute the spark coordinates u and z in terms of the sonic 

times t. measured at each microphone (including the t factor) : 
l p 

v2 
( t 3 

2 -t 2+t 2_t 2) u = 
Ba l 4 2 

v2 
(t2 

2 -t 2+t 2_t 2) z = 
Sb l 4 3 

It remains to determine V and t for each chamber. If 
p 

d. represents the distance from the test spark to microohone 
l 

( 15) 

i, then the velocity may be determined from test spark events. 

Using microphones l and 3 for example, we have 

dl-d3 
v = 

tl-t3 

Note that this result is independent of the shock wave factor 

t . 
p The test spark in each chamber was fired five times every 

256 AGS pulses. The velocity calculated from these test 

spark firings (typically V ~ 0.047 cm/µsec) was averaged 

for each data taking run of one to two hours. Run to run 

changes in V due to temperature changes were taken into account 

/ 
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in the reconstruction using these numbers. However, the test 

spark velocities in different chambers differed from each 

other and from an optical calibration by a small constant 

amount. A better understanding of V and a determination of 

t can be made on an event by event basis using the extra 
p 

information available from the four microphones in each 

chamber which over-determines the spark coordinates. Details 

of this method and its relation to the test spark velocities 

along with a discussion of corrections for sparks occurring 

near a microphone have been described by Stephen Stein in 

Ref. 18. Using these techniques, the parameter t was 
p 

determined for each event and the coordinates u and z calculated 

according to Eq. (15). Also computed was the constraint 

quantity 

DT = t 
2
-t 

2
-t 2+t 

2 
1 2 3 4 

which may be used to eliminate double spark events and 

chamber malfunctions. Note that DT is proportional to the 

difference in the coordinate u or z as determined by adjacent 

pairs of microphones. Normally DT should be zero. 

B. Magnetic Field Map 

The pion momentum reconstruction technique which will 

be described in the next section requires a point by point 

knowledge of the magnetic field in the analyzing magnet. 

A mapping of the field was carried out at irregular spacing 

of about 3 in. in the x an~ y directions and -2 in. in the z 
•. 20 

directions using a Hall probe. (The coordinate directions 

are shown in Fig. 2.) Measurements were made of the three 
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field components. The data was corrected for the fact that 

the probe axis of sensitivity was not actually in the precise 

direction it was supposed to be. The axis was determined by 

enclosing the probe in a carefully machined 4 in. cube and 

taking measurements at the same place in the field but with 

the cube in a series of different orientations. With the axis 

known, one can effectively rotate the data so that one gets 

the three components wanted. 

Using a three dimensional quadratic interpolation technique, 

the measured data points were converted into a new set of points, 

at a more convenient regular 2 in. spacing in all directions. 

Small measuring errors in the data points are enormously 

magnified when one takes differences of nearby points in 

order to calculate the first and second derivatives that are 

needed by the reconstruction program. It is therefore 

necessary to smooth the data in some manner. The method 

chosen was to fit the interpolated data to a hypothetical 

field function B that satisfies Maxwell's equation: -
where 

B.(r) = :L Aa H~ .(r,8,¢) 
i- tm "'m ,{jm1 

Htmi = 
0 

or. 
l 

i = 1,2,3. 

The derivatives of the harmonic polynomials, H~ ., are 
.{lml 

solutions of Maxwell's equations since the harmonic polynomials 

1 . 2 0 d d th t t' are so utions of V ¢ = an B = V¢, an ese wo equa ions -
are equivalent to the magnetic field Maxwell's equations in a 

region of no magnetic sources or changing electric field. 



The hypothesis therefore constrains the data to the 

requirements of Maxwell's equations. 

The estimated measurement errors for the three different 

field components used in the fit were a = 50 G, a = 40 G, x y 

and a~= 15 G. Since the major component of .!2,_is in the z 

direction, a slight rotation of the probe when measuring the 

other two components will cause a large error. This is why 

a and a are larger than a . As a result of a circular x y z 

hole in both pole pieces, through which the beam passed, 

the magnitude of the field, scanned across the x or y 

direction, had a dip in the center as well as the two sides. 

It was thus necessary to use terms up to sixth order in the 

fit. Using all 63 polynomials up to sixth order, we were 

able to get a good fit with a x2 = 5343 for 3988 degrees of 

freedom. The original plan was to select a subset of the 

63 polynomials that would provide an adequate fit and allow 

rapid access to the magnetic field at any point in the 

reconstruction program. It turned out to be possible to pick 

25 out of the 63 polynomials of sixth order or less and fit 

to them without significantly increasing the x2 (For 4026 

degrees of freedom, x2 = 5879 for the 25 polynomial fit.) 

However, it turned out that this method of accessing the 

field data would be very time consuming since the reconstruction 

program requires a variety of derivatives of the field. These 

derivatives are obtained automatically during interpolation. 

So the method of storing and accessing the field that we 

used was first to set up a table of smoothed field points 
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at 2 in. spacing using the best fit of Maxwell polynomials 

to the field. Then within the reconstruction program, a three 

dimensional quadratic interpolation technique was used to get 

the field at a desired point. A one-dimensional quadratic 

interpolation to determine B at point S when we have a table 

. . . by21 of B. at points S. is given 
l l 

where h 2 is the spacing of points the table. One may 

extend this to three dimensions by using the 27 points in the 

~able c l osest to the needed location (x,y,z) as follows: First, 

interpolate across the 9 rows in the x direction to the value 

x; using these 9 values, interpolate down the three y columns 

to t h e points at y; finally interpolate these 3 values in the 

z direction to the point z. In the process, first and 

second derivatives of the field are automatically determined 

from the various differences. 

During the w run at Brookhaven, the field inside the 

magnet was kept constant at about 6.9 kG by monitoring a Hall 

probe attached near the upstream pole piece. By extrapolating 

the mapped field to this location and taking into account the 

calibration of the Brookhaven Hall probe, it was possible to 

normalize the field map to the actual field strength used 

during the experiment. This normalization agreed with the 

magnet excitation curves measured with still another Hall probe. 
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c. Pion Momentum Reconstruction 

The variation in the magnetic field in different parts 

of the magnet was at the most about ±7% according to the field 

map described in the previous section. The reconstruction 

program took this variation into account in determining the 

momenta of the pions. This was done by starting with an 

estimate of the momentum determined assuming a flat field 

of 6.9 kG in the z direction. An imaginary particle with this 

momentum was then traced through the actual field by the 

program. The momentum was then corrected to compensate for 

the deviations of the traced track chamber intersections from 

the actual sparks. After one or at most two iterations of 

this sort, the program was able to find a momentum which had 

a trajectory that intersected the three sparks within very 

good tolerance. In order to · illustrate in detail how this 

technique works, we will consider an event in quadrant 1 with 

the coordinate system as defined in Fig. 2. 

In a flat magnetic field pointing in the z direction, 

the trajectory of a charged particle is a helix spiralling 

around the field lines. Five parameters completely define 

this helix: x , y and r which define the center and radius 
0 0 

of the circle projected in the x-y plane by the helix, and 

a and z which define the pitch and orientation of the helix. 
0 

We are interested in the intersection of this helix with the 

three chamber planes, i = 1,2,3. Writing the nine equations 

of intersection in terms of an angle e which is a measure of 

the time along the trajectory we have 
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x . = x + r cose . 
l 0 l 

Y· = Yo + r sine. 
l l 

z, = z + ae . 
l 0 l 

These nine equations determine the eight unknowns (the five 

helix parameters plus the three e.) and allow one further 
l 

c ons traint on the data. By not using the z equation for the 

outer chamber (i=3), we may calculate a projected value of z 

in the outer chamber z . using the values of a and e
3 proJ 

dete r mined in the other equations. The difference of the 

measured z coordinate in the outer chamber from z . 
proJ 

DZ = Z - Z . 3 proJ 

s h ou l d di f f er from zero only because of measurement error. 

However, events with serious scattering in the plates of the 

middl e chamber will show a gross deviation from DZ = 0. DZ 

may thus be used to get rid of events with bad scattering. 

This will be discussed further in a later section. With a 

knowledge of the five helix parameters and the magnitude of 

the field: it is a simple matter to find the momentum of 

the particle at any point on the trajectory r = (x,y,z): ,..,_ 

P = ::r eB (y-yo) 
x c 

P = eB a 
z c 

( 16) 

(17) 

(18) 

where eB = 0.3 B MeV/cm for Bin kG. 
c 

The sign of the particle 

charge is known from the curvature of the track and the 

direction of the magnetic field. 
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Before outlining the iteration procedure, we define a 

number of simple quantities: 

gFLAT(.E,i) i = 1,2,3 is the momentum vector at the inner 

chamber (point..z
1

) obtained assuming a flat magnetic field 

of magnitude 6.9 kG in the z direction. ,.EFLAT~i) is 

a function of three spark coordinate measurements, r., 
-1 

which are close to but not necessarily equal the real 

spark position measurements. ,£FLAT ls determined from 

the three points r. by the standard flat field method 
-1 

described above using Eqs. (16) and (18). 

R. (P, r t t) is the set of three points obtained by 
,,,.1 - -s ar 

tracing through the mapped field a particle that starts 

at r t t with momentum P. The tracing technique will 
-s ar -

be described later. r.spark are the true measured 
-1 

spark positions. 

With these definitions, the program follows the following 

iterative procedure letting r. = r.spark and rt t = r spark 
-1 -1 -s ar -1 

for the first iteration: 

1. Calculate ~Flat \;:_i). 

2. Trace through the field and get the 3 chamber inter-

sections R. = R. (PFl t(r.),r t t). 
-1 -1 - a -1 -s ar 

3. Minimize 

2 x 
3 

= 2= 
i=l 

R. -r. spark 2 
(-1 -1 ) 

a. 
l 

allowing R. ~ R.+~, and determine R.= R.+~ at the minimum. 
-1 -1- -1 -1 -

This minimization insures that by starting the trace 

at the inner chamber, we do not force the track through 

that spark in blind preference to the other two 



sparks. 

-26-

The errors a. used in this procedure will 
1 

be discussed later. 

_ . spark 
4. With the new values of R., calculate D. - R.-r. . 

-1 -1 -1 -i 

Let r. = r. - D. , and r = r + ~. Continue 
.... 1 -1 -1 -start -start -

the iteration by returning to Step 1 with the new 

values of r. and r t t , until x2 changes by less 
-1 -s ar 

than 0.1 from one iteration to the next. The 

iterative procedure is said to have failed if this 

criterion is not reached after 8 interations. 

Since this is a fitting method, one must consider the 

question of what errors to attribute to the various chamber 

meas u reme n ts. However, it is worth noting first that the 

momentum obtained from this method is extremely insensitive 

to the relative errors of the three chambers. In tests, the 

relat ive chamber error was allowed to vary over a large range 

and there was no significant change in the momentum. (The 

vertex cal c ulation to be discussed below was affected an 

obser vable amount by large variations in errors.) The 

errors that were used were 

cr 2 - a 2 + s.2 
i - RES i 

Here aRES ~ 0.3 mm is a resolution error identical for all 

t ree chambers and s is the error introduced by multiple 
l 

s a ttering in the chamber foils. S. is computed for each 
1 

b f . 1 1 . th t . t 2 2 even t y 1rst ca cu at1ng e quan 1 y 

2 2Ze 2 1/3 <e > = 4rrN(~)~n(210 z- )t. 

(19) 

(20) 
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With Z = 13, this is the mean squared angle of scattering 

projected on a plane for a singly charged particle of momentum 

P and velocity ~ going through t mils of aluminum with N 

atoms/cm
3

. The multiple scattering width for the middle 

chamber s 2 is determined by multiplying <8 2> by the distance 

traveled by the particle between the inner and middle chambers, 

a quantity easily obtained in the trace procedure. For the 

outer chamber scattering in the middle chamber is also 

included in quadrature. 

In order to trace the trajectory of a particle of given 

momentum through a known varying magnetic field, the following 

procedure which is based on a Taylor expansion of the 

trajectory was used: 

1. Starting 

energy E 

at point r = r t t with momentum P and 
- -s ar ......-

• cP 
' . ~ 

calculate the velocity ..E.. = E · 

2. Fetch the field and derivatives at the point r. (If -
this is the first iteration for this track, get the 

field using the three dimensional quadratic inter-

polation described earlier. Store the relevant 

numbers so that they may be fetched more rapidly on 

subsequent iterations of the track.) 

3. Calculate 

e . 
r = - (r x B) 

me .......... 
e (r . (r 'i1) B) r = x B + r x . - me - - - - --e ,r-· x 2r: (r . (r \J) 2B) r = - B + x . \J) B + r x . - me ..... - - -- - - ,...... 

using the values of B and the derivatives obtained in ,.._ 
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step 2. Note that m = m 'Y 
0 

= E is the relativistic 

mass of the pion. 

4. Calculate the coordinate position of the track after 

the next step: 
2 3 4 h .. h . .. h .... 

..Enew = r + h£_ + 2 !. + 6 .£.. + 24 .£.. 

where h, the step size in seconds, is determined for 
4 h .... 

each step by making the last term 24 ; = 0.01 cm. 

If the track did not cross the next chamber calculate 

the new velocity 

h
2 3 

+ h + r + -h ·r··· r = r r -
2 -new - - 6 -

and go back to 2 to take another step. 

5. If the new track x position, xtr' did cross the next 

chamber, carry out the following iteration procedure 

to determine the step size h necessary to get from 

the old x position, xold' to within 0.005 cm of the 

chamber xch: 

a. Let h = h 

b. Calculate 

c. If \xtr-xchl is still greater than 0.005 cm go 

back to a and try again. 

This simple technique normally converges after one 

iteration. When the iteration is successful, calculate 

the other coordinates (y,z) where the track intersects 

the chamber plane. If this is the last chamber, the 

trace procedure is complete. If not, calculate the 

new r and go back to 2 to take another step. 
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Similar tracing methods may be used to follow the two 

pions back from the inner chambers to the point of closest 

approach of the tracks. This point is assumed to be the 

interaction vertex which should be somewhere within the 

hydrogen target volume. The distance of separation at the 

vertex of the reconstructed tracks is a measure of multiple 

scattering errors in the first chambers and the hydrogen. Cuts 

on this quantity perform a similar function as cuts on DZ 

discussed earlier. 

After the iteration procedure for both tracks is completed 

as described above and the momenta at the two inner chambers 

known, the program traces back, one track then the other, 

searching for the point of closest approach. On the first 

step back, the time of intersection with the hydrogen target 

is determined in an iterative procedure identical to that used 

in getting the intersection ~th a chamber. This time is 

stored and later subtracted from the total time from inner 

chamber to vertex to get the time spent by the pion in the 

hydrogen. This time is then multiplied by 

dE 
dt 

dE E2 2 
= c~ dx = 0.307 c~p[~ tn(~.81 P )-l]MeV/sec 

p 

where~ is the Bethe-Bloch expression, 23 to determine the 

amount of energy lost by the pion in passing through the liquid 

hydrogen (density p = 0.0586 gm/cm 3). The pion energy is then 

corrected by this amount. All other contributions to energy 

loss are negligible compared to the loss in the hydrogen whi©h 

typically amounted to 5 MeV. 
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The size of the first step back is determined by using 

as an estimate the time from vertex to inner chamber using the 

flat field technique ~o get the helix angle and multiplying 

by radius/~~ to get time. After this first large step, a 

minimization procedure is used to get the appropriate step 

size for each track in order to converge on a solution for 

the point of closest approach: Let s 2 be the separation squared 

of the two tracks at times t 1 and t 2 and at positions .El and 

,.£2 respectively on the two tracks. Then use the derivatives 

OS 2 . 
= 2.!1 

. 
~l - r ) ot1 -2 

OS 2 . 
~l - r ) ot 2 

-2r . 
_2 -2 

etc. 

os
2 

os
2 

= 0 to search for the point where ~ = ot This is called 
1. 2 

the point of closest approach. (The method does not work if 

one searches for the point where s = 0 since there is in 

general no such point for two arbitrary helices.) The new 

step sizes tit
1 

and tit 2 are found by solving the equations 

2 2 
~ t .£__§____ 

2 ot 2 
2 

The necessary derivatives are found easily in the trace 

program. The method typically converges sati~factorily in one 

iteration. This vertex technique gives results as good or 
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better than flat field techniques
18 

when judged from distri-

butions of vertex separation. It is obviously sensitive to 

the direction of the reconstructed momentum at the inner 

chamber and so is somewhat sensitive to the choice of cr. in 
l 

the momenta iteration-trace procedure. The method worked 

best when the errors corresponding to multiple scattering 

were used (Eq. 19). 

As the last step in the reconstruction of the two tracks, 

the momentum at the point of closest approach was determined 

using Eq. (18). 

D. TOF Calibration and Neutron Reconstruction 

As has already been mentioned, a clear peak in the time 

of flight spectrum can be seen at the neutron time of flight 

corresponding to w production. The peak is even more sharply 

enhanced if kinematic cuts (of a type to be discussed in 

detail later) are used to isolate events with three pions in 

the final state. This peak was used to calibrate the time 

of flight measurement. It was expected from previous experience 

that the location of the w peak would show a correlation with 

the neutron counter pulse height. This results from the slight 

dependence on pulse height of the propagation time down the 

coaxial cable connecting the neutron counters with the dis-

criminators. The data were separated into several pulse 

height ranges, and for each of the nine neutron counters the 

time of flight spectrum was fit to a gaussian plus a polynomial 
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background. The fitted centers of the l..ll peaks showed a linear 

dependence on pulse height. For each neutron counter, a 

straight line was fitted to the w peak channels, and a parameter 

relating time of flight delay to pulse height was determined. 

Using this information the data were corrected for the pulse 

height effect and refitted to a gaussian peak plus a polynomial 

background. The center of the gaussian l..ll peak so determined 

and the pulse height correction factor were used in the initial 

neutron reconstruction. (In fact, after the final 3rr kinematic 

definitions were made (see Sec. III.G), the TOF spectrum for 

each neutron counter was refit and w peak centers determined 

from this final fit were used in the 2rr mass spectrum analysis. 

This second fit made a very small correction of about 0.1 nsec 

which compares to the fit error in the gaussian center of 

about 0.04 nsec in each neutron counter.) The time of flight 

spectrum for all neutron counters combined and corrected for 

the pulse height effect is shown in Fig. 6. 

The calibration of the time of flight analyzer elec-

tronics was performed using a pulse generator and calibrated 

delay lines. It was determined in this manner that one analyzer 

channel corresponded to 0.2125 nsec. In reconstructing the 

neutron momentum for a given event, we first determined the 

TOF channel relative to the l..ll channel as determined for an 

average l..ll ~ 3rr event in the calibration procedure described 

above. The mean vertex position in the z direction, V = 6, z 

for such events is not equal to zero because the geometrical 
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efficiency of the spark chambers favors upstream vertices. 

In fact, 6 = -3.60 cm. Also correcting for pulse height, 

we calculate TOF for each event to be 

TOF = (measured channel)-(w channel)-(pulse height factor) 

x (pulse height - 250) 

TOF represents the time of flight of the given event relative 

to the time of a neutron in the center of the w peak coming 

from the mean vertex position, 6. It is now necessary to 

remove the vertex dependence from TOF and correct for the 

time of flight of the beam pion that is still included in TOF. 

The corrected time of flight CTOF is 

CTOF = TOF - (V -6) /~ c z Tr 

where c is measured in cm/channels. CTOF is the time it took 

the neutron to travel from the vertex to the neutron counter 

relative to an w neutron coming from the mean vertex position. 

From simple kinematics, we may calculate the time T for an w 
0 

neutron to travel from the mean vertex position to the center 

of the given neutron counter (a distance D ) . 
0 

Then the velocity 

of the neutron is simply 

~n 
I rl -

CTOF+T 
0 

where.::;_, as shown in Fig. 7, is the distance vector connecting 

the actual vertex and a point (x ,y ) near the center of the n n 

neutron counter. The point (x ,y ) is the average neutron n n 

intersection with the particular neutron counter. This 

+ -
point is determined from the four constraint Tr Tr n data by 
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projecting the missing neutron momentum vector as determined 

from the pion momenta and averaging for each neutron counter. 

At this stage, it is easy to finish the reconstruction of the 

ne~tron momentum 

For display purposes and the time of flight resolution 

measurement, we have further corrected CTOF so that all events 

appear to come from the same point eliminating a false 

widening of the CTOF w peak due to the variation in vertex 

position: 
D -Ir\ 

0 -CTOF = CTOF + 
~ c n 

This is the variable that is histogrammed in Fig. 6. 

E. Event Selection 

In this section, we will describe the selection criteria 

that were applied to the data to provide a clean sample of 

events for analysis. In making these cuts, care was taken 

to study correlations between parameters being cut and other 

factors in order to avoid biasing the data. Each cut was 

determined by studying histograms of the variable of interest 

after the data had been cleaned up with a preliminary set of 

cuts for the other variables. 

During the data taking runs considered in this experiment, 

the spark chambers were fired 144,763 times. At a very 

early stage, events were eliminated in which at least one 

of the six chambers did not fire in the quadrants where a 

logic counter detected a particle. Also removed were events 
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in which more than one neutron counter signaled and those in 

which sparks reconstructed outside the chamber foils. After 

these preliminary cuts, 88941 events remained. 

A class of events that would anyway have failed later 

cuts like DZ and vertex separation failed during reconstruction 

and were removed leaving 67544 events. For example, these 

included situations for which the reconstruction iteration 

could not converge. 

Serious failures in the sonic spark chambers such as 

double sparks or falsely triggering microphones are detected 

by looking at the variables DT and TP defined earlier. Neither 

the width nor the center of the TP distributions showed a 

dependence on such other factors as track momentum or spark 

position in the chamber. On the other hand, the width of DT 

in two chambers showed a significant dependence on the distance 

r from the chamber center. This effect resulted from occasional 

misfirings of certain microphones in these chambers. The DT 

cuts for these two chambers took this r dependence into account. 

The DT and TP cuts for all nine chambers are listed in Table I. 

Plots of the DT and TP distributions in a typical chamber are 

shown in Fig. 8. After these two cuts, 56907 events remained. 

The constraint quantity DZ is designed to eliminate effects 

of serious scattering. The dependence of the width of DZ 

distributions on the mul'tiple scattering factor l/p ~ is 

evident even at the high values of pion momentum seen in this 

experiment. The multiple scattering width also depends on the 
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angle e the track makes in the x-z plane with the perpendicular 

to the chambers (e is shown in the inset to Fig. 9). By 

including such effects as the extra path lengths between 

chambers and in the chamber foils as e increases, a depen­

dence of sec 5l 2e can be accounted for easily. In fact, the 

width of DZ distributions in the data shows an even stronger 

dependence on e. It was found by dividing the data into 70 

bins of different momentum and angle and performing a simple 

fit, that a good 3o cut on DZ at all angles and momenta is 

Plots of the distribution and this cut for various angles and 

values of p~ are shown in Fig. 9. After this cut, 52734 events 

remained. 

The separation s of the . two helices at the point of closest -
approach provides another important means for eliminating false 

events. A variation in the angle of intersection e affects 

the resolution widths of s. As a result, the s and s x y 

distributions for events with pions that went into quadrants 

1 and 3 (Q 13) are different from those that had a pion in the 

bottom quadrant 2 (Ql2 and Q23). Furthermore, these distributions 

have a non-gaussian appearance with wider tails than a gaussian. 

In order not to remove good events in the tails, these distri-

butions were cut somewhat more loosely than normal. 

on sx and sy were: 

Ql3: < s < 
x 

< 0.40 

0.11 cm 

cm 

The cuts 
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\s I < 0.35 cm x 

-0.47 < s < 0.54 . y 

Distribution of s and s are shown along with the cuts in x y 

Fig. 10. Though the multiple scattering factor l/p~ 

apparently does not significantly affect the x and y components 

of s, s does depend on momentum. 
- z 

This is most easily handled 

+ - + - 0 by separating the data kinematically into rr rr n and rr rr rr n 

final state events in a manner to be described in the next 

section. The momentum spectrum of 3rr events is lower than that 

of 2rr events, and for these events multiple scattering effects 

mask the resolution sensitivity to the opening angle e. In the 

2rr data, with higher momentum events, a dependence on cose 

in the width of s becomes evident, and this dependence is z 

taken into account in making the cut. The cuts on s
2 

are: 

3rr : Is I s 0. 46 cm z 

2rr : \s I ~ (0.353 - 0 . 561 (l+cose )) z 

These cuts and typical distributions of s are also shown z 

in Fig. 10. At this point, all events that did not satisfy 

the 2rr or 3rr kinematic criteria described in Sec. III.F were 

removed and there remained 16735 3rr events and 15799 2rr 

events. Then 369 events with two tracks of the same apparent 

electric charge were eliminated. 

In making cuts on the vertex location V, the objective -
is to insure first that events came from interactions in the 

liquid hydrogen and second to eliminate events that clearly 

passed through metal supporting pieces near the target. By 
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studying distributions of the x and y locations of the vertex 

at different regions of z along the target, it was possible 

to determine that the center axis of the target was essentially 

parallel to the z axis but shifted slightly from zero in one 

direction. Thus, the basic vertex cuts are: 

- 15.8 < V < 15.0 cm z 
I , -' 

V = [(V -0.29) 2 + (V -0.06) 2 ] 1/ 2 < 2.45 r x y cm . 

A schematic drawing of the target with the V cuts indicated z 

is shown in Fig. 11. Visible in the drawing are three metal 

supports running the length of the target at the top and sides. 

Essentially no events that passed through these supports could 

also make it into the chamber geometry and so no data cut was 

needed. The drawing shows a small metal contraption (through 

which the target was filled ~ith hydrogen) near the upstream 

end. All events that intersected this piece of metal at any 

point were eliminated. There were about 1000 such events. 

Consideration was given to removing a small sample of 

events that went through another set of minor obstructions. 

These were chamber support posts, narrow aluminum dowels near 

the extreme end of the middle chambers. It was concluded that 

any event that was so significantly affected by a post to 

warrant cutting would have a false reconstructed track which 

would not pass through the post anyway. Those with tracks 

that reconstructed correctly through the post need not be 

removed. Therefore, no post cut was included. 

In the next section, we describe the kinematic selection 

of 27Tn and 3~n events that we have already mentioned. 

-
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F. Kinematic Event Definition 

When searching for e v idence of w in the 21r n final state 

events of reaction (14) 
- + -

(rr p - rr rr n), it is important to have 

a sample of data that is free of reaction (13) (rr-p - rr+rr- rr0 n). 

In order to divide the data into these two classes of events, 

2 2 we studied distributions of two missing masses, M and M , y x 

and took advantage of energy conservation for the 4 constraint 

2rr n events. M 2 is the mass squared of y in 
y 

- + -rr p - rr rr y 

and M 
2 is the squared of in mass x 

x 
- + -rr p - rr rr xn . 

Ignoring the effects of resolution, for reaction (14) 

M 2 
y 

= M 
n 

2 

and for Reaction (13) 

My2 > (mrro + mn)2 = l. 308 m 
n 

2 

M 
2 2 

x = Mrro · 

2 
A distribution of M for all quadrant l and 3 events at this 

y 

stage is shown in Fig. 13. Two clearly defined peaks corre-

sponding to the two reaction channels of interest are visible. 

The 
2 M cuts 

y 

Ql3: 

that were used to isolate these peaks were 

2rr 0.73 m 
2 < M 

2 < 1.23 m 
2 

3rr 

n y n 

M 
2 

> 1.27 
y 

m 
n 

2 
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Ql2 and Q23: 

27r 0.70 2 M 2 < 1. 22 
2 

m < m n y n 

37r M 2 1.30 m 
2 

> . 
y n 

The quadrant 1 and 3 cuts are shown on Fig. 12. Different 

cuts are used for the different quadrant combination because 

the resolution widths are not quite the same. It should be 

noted that the geometry of the experiment accepts virtually 

no 2rrn events in other than quadrant 1 and 3. 

The M 2 distributions of the preliminary samples of 2rr x 

and 3rr events as defined above are shown in Fig. 13. The 

striking difference in the widths of the two peaks is at 

first surprising. This may be understood by writing out to 

2 first order the equation relating the width of M to the 
x 

various momentum resolutions. This is most profitably done by 

first writing M 2 in terms of the 27rn energy and momentum 
x 

conservation variables 6E and 6P: -
where 

6E = E + E beam target 

and 

6P = P + P - P - P - P . -. -. beam -target -n -rr+ -rr-

Then we have for the resolution width of M 2 
x 

(oM 2 ) = (26E) 2 (oE 2+ ... )+(26P ) 2 (oP 2+ ... )+ ... x rr- x rr-

Each term of this expression includes as a factor one of the 

energy or momentum conservation variables, 6E or 6P, which 

are all zero for the 27rn events. To first order, then, 
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oM 2 = 0 for reaction (14) data. 6E and 6P are decidedly 
x 

non-zero for reaction ( 13) 2 
events and so oM > 0 for these 

x 

events. This explains why the 2rr peak is so much narrower 

than the 3rr peak in the distributions of M 2 in Fig. 13. 
x 

The narrowness of the 2rr peak suggests that a cut on M 2 
x 

will be a good way to remove remaining' 3rr events from the 2rr 

data. The following cuts ( .shown on Fig. 13) were made: 

Ql3: -0.65 2 < M 2 < 0.20 2 
mrro m rro x 

Ql2 
2 1T 

2 2 2 
and Q23}: -0.65 m < M < 0 .35 m rro x rro 

0 the other hand, no 21Tn events would be removed f r orn t hs 

3rr dat a by cutting o n M 
2 a t t h i s stage. Instead we look at 

x 

t he 6E distribution (Fig. 1 4 ) in which the 3rr events are 

be tter separated and make the following cuts. 

Ql3: 

Ql2 and 
023

} : 

70 MeV < 6E < 350 MeV 

25 MeV < 6E < 582 MeV . 

3rr 

Finally to remove any last vestiges of contaminating events 

from the two samples of data, we use up the available information 

in these last two cuts: 

-130 < 6 E < 150 21T 

Ql3 -0.9 2 < M 2 < 3.25 2 3rr mrro x mrro 

and Ql2 -1. l 2 2 < 3.2 2 
Q2 3}: mrro < M mrro x 

Defined in this way, we have a sample of 15801 reaction 

(13) ( 3rr) events and 15281 reaction (14) ( 2rr) events. From a 

Monte Carlo calculation, we estimate that there are less than 
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five w ~ 3rr events contaminating the reaction (14) sample. 

G. Final Input Parameter Calibration 

Errors in the assumed values of such parameters as the 

field normalization, the beam momentum Pb , and the distance earn 

of the neutron'counters from the center of the hydrogen target 

shift the means of the 6P, 6E, M ? ~nd M 2 distributions ...., x y 

from their correct values. However, these correct values may 

be shifted somewhat from the expected values stated earlier 

by the kinematic definition cuts. Using a Monte Carlo program 

which includes resolution effects (see Sec. IV.B), we were 

able to simulate the effect of the kinematic selection and 

determine the correct centers of the various distributions 

for comparison with the 2rrn data. If the field normalization 

is assumed to be correct, then in principle, any error in P beam 

or d may be determined from· the shifts of the 6P and 6E 
0 z 

distributions. It was found that for the initially assumed 

values, Pb = 1245 MeV/c and d = 31 ft, the centers of these earn o 

distributions agreed with, the Monte Carlo predictions within 

a few MeV. The field normalization assumed here has been 

checked as discussed in the section on the field map and in 

Sec. rv.e. 

IV. ANALYSIS OF THE DATA 

A. Outline of the Analysis 

The focus of this analysis is on the 2rr mass spectrum 

of reaction (14). In a spark chamber experiment of this nature, 

an understanding of the geometric efficiency of the apparatus 
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in different regions of phase space is essential. This 

information can best be determined with Monte Carlo techniques. 

Those used in this analysis are discussed in Sec. IV.B. In 

the following section, the w - 3rr events are studied. 

Information on the dynamics of the w - 3rr Dalitz plot is also 

obtained and the number of w - 3rr events that were detected in 

the experiment is determined. The efficiency of the experiment 

at the w mass in the 2rr spectrum depends on possible correla­

tions of the pion momenta due to alignment or polarization of 

the spin of their "parent" particle. In the event the parent 

particles are truly omegas, it is possible for us to determine 

their degree of alignment by studying the copious sample of 

w - 3rr that is available in the data. The polarization theory 

that enables us to relate w - 2rr pion correlations to w - 3rr 

is discussed in Sec. IV.D arid the degree of w alignment found 

from the 3rr data. Finally in the last group of sections, the 

2rr data are studied first with an eye to understanding the 

various components in the data and then to estimates of the 

possible size of any w - 2rr effects. 

B. Monte Carlo Programs 

Monte Carlo programs were used in this analysis to 

simulate as accurately as possible the experimental apparatus 

and learn the efficiency and resolution of the equipment in 

different areas of the phase space of reactions (13) and {14). 

The efficiency programs can all be divided into three basic 

sections: An initial section generates events for the reaction 

being considered; A geometry section which never changes 



-44-

determines if a given event will be accepted by the apparatus; 

and finally an analysis section provides histograms of 

appropriate quantities as the result. 

Once an event has been accepted by the neutron counter 

geometry and time of flight restrictions, it has a 3-5% chance 
I 

of passing acceptably through the spark chambers. The geometric 

efficiency of the neutron counters depends on the mass of the 

pion system but is always about 2%. As a result, a naively 

conceived program that generates events with the same weight 

in all parts of phase space will take an incredible amount of 

computer running time. It is possible, however, to study the 

dependence of the efficiency on various phase space variables. 

When this dependence is very strong, it is profitable to weigh 

the generation of events so that more are generated in the 

regions of high efficiency. As will be explained later, it 

is a simple matter to remove this weighting in the analysis 

section. Situations in which this technique may be applied 

are often very obvious. For example, because the neutron 

counters subtend a small angle in the forward direction, no 

events are accepted which are generated beyond a certain 

center of mass neutron angle e. This · cutoff angle comes at 

about cose = 0.85 for a pion system mass near 780 MeV and 
c 

decreases at higher mass. Thus, one may cut off the neutron 

angle during generation at a number of different angles for 

different pion system masses and increase the Monte Carlo program 

efficiency from about a tenth of a percent to 10% or better. 

The relative weights W of events at different masses m may 

be de ter mi ne d from 
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= J~(m}f(cos 8 )dcose 

J1 f (cos 8 )dcose 
-1 

Here c(m) is the cutoff cosine at mass m, and f(cose) is the 

(21) 

shape of the cos e distribution after generation including any 

reaction dynamics. If the generation is pure phase space and 

no dynamics are assumed, then f (cos e ) = 1 and the calculation 

of W(m) is trivial. 

This cutoff and weighting method has been applied wherever 

it seemed worthwhile in the Monte Carlo programs of thi s experi-

ment and it has always reduced computing time. In the case of 

2~n events, there are so many correlations that it was 

possible to increase the speed of the program from about 

330 0 to 50,000 events/hour on the Nevis 360/44 computer. 

As will be seen in l ater sec t i ons, it was o ft en necessary 

to include a large variety of production and decay dynamics 

in the Monte Carlo. This may be done, of course, during the 

generation phase of the Monte Carlo. Then one must rerun the 

whole program, geometry and a ll , each time a new dynamics is 

c al led for. However, as a glance at f (cos e ) in Eq. (21) will 

show, the dynamic functions are just weighting functions that 

may be treated in the analysis section like the other weights. 

This made it possible to carry out three pure phase space 

high statistics Monte Carlo runs through the generating and 

geometry stages writing only successful events on tape. The 

tape was then read as often as necessary by the high speed 

analysis section of the Monte Carlo program which included 

var ious dynamic weightings and histogrammed relevant quantities. 
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In the few situations when it was necessary to analyze events 

with different dynamics at the generation stage (without geometry) 

it was simple and quick to regenerate the data. 

·In order to understand how the desired weighting and 

unweighting is handled at the analysis stage, it is useful to 

be somewhat mathematical. Let 

dnP = W(a) IT da. 
- l l 

be the n-dimensional differential probability for an event 

to be generated in a volume of phase space defined by the n 

element vector a. - The n elements of a correspond to any - ·-

complete set of phase space coordinates. The weight of the 

various regions of phase space at generation time is w~. 

If we want to know dnP after the events are subjected to the 

geometry selection, we include a function 

( 22) 

G (a) = [ 0 if events wi tll. phase space variables Ja_ fail geometry 
-- l · if these events are accepted by the geometry. 

Then after geometry, we have simply 

dnP = G(a)W(a)ITda .. 
.......... l 

l 

When we histogram one of the phase space variables, say a., 
l 

( 23) 

in the Monte Carlo analysis, we are just integrating over all 

of the elements of a except a .. Normalized to one, the 
- l 

histogram distribution (in the limit of high statistics) will 

be just 

N(a.)da . = JG(a)w(a) IT da. 
J J - "'- ilj l 

(If we histogram a quantity that is not one of the a., we 
l 

transform to a new set of a. and include the Jacobean of the 
l 

(24) 



transformation in the integral.) It is clear that if we wish 

to change the weight at generation time from W(~ to, say 

W (a), we just multiply the right side of Eq. (22) or (23) 
a-

by w (a)/W(a). 
a- -

To see the effect of such a change of weight 

on the histogram distribution N(a.), this factor is included 
l 

inside the integral of Eq. (24). But in practice, this just 

means that at the analysis stage, we add W (a)/W(a) instead of 
a ""'- ....... 

l to the histogram bin corresponding to a given event. In this 

way, we will have changed weights just as effectively as if we 

regenerated the events. This is the technique that was used 

to remove the generation stage weights described earlier and 

to vary the dynamics at will while events were histogrammed. 

In order to calculate the statistical errors of such 

weighted histograms, a second unweighted histogram was carried 

along. ' -1/2 The percentage error ni , for n. the number of 
l 

events, was computed for each bin of the unweighted histogram 

and multiplied by the number in that bin of the weighted 

histogram to get the error of the main histogram. 

Special techniques were used in the analysis section to 

reproduce the experimental resolution. Each event that was 

on the tape (and had already passed geometry) was passed 

through a program similar to the geometry program. This 

program redetermined the spark positions of the events and 

then moved them randomly with a gaussian width that included 

the chamber position resolution and multiple scattering combined 

in quadrature as was done during reconstruction in Eqs. (19) 
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and (20). The tracks were then reconstructed and new values 

of momentum and other quantities determined. To get the 

resolution of the neutron the time of flight of the neutron 

was calculated and then moved randomly with a gaussian width 

corresponding to the time resolution. The neutron momentum 

was then recalculated assuming the neutron hit the same point 

near the center of the neutron counter as was assumed in the 

reconstruction of actual events. The new values of the various 

quantities were written on a tape which then would be passed 

through the analysis program exactly as the no-resolution 

tape. The whole procedure depends on only two variables, 

crch and crTOF' the chamber and time of flight measurement 

resolutions. Histogram distributions of various quantities 

(like 6E and Mx
2

) for resolution Monte Carlo events and real 

data can be compared for different values of crch and crToF· 

It was possible to obtain very good agreement between the 

two if crTOF was set at the value determined from the w peak 

width (as described in Sec. II), crTOF = 0.78 nsec, and the 

chamber resolution set at crCH = 0.037 cm and these were the 

values finally used. Examples of the good agreement for these 

values in DZ, 6E and 6m 2 distributions are shown in Fig. 15. 

The perfect agreement in the DZ distribution shows that crCH 

has been well set and that the spark chamber part of the 

Monte Carlo program is very accurate. The 6E distribution 

also shows a good agreement except in the positive side tail 

which extends further in the data than the Monte Carlo. This 
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is because neutron scattering and complications in the beam 

momentum profile, two effects difficult to include, are not 

in the Monte Carlo. Later, we will need estimates from the 

Monte Carlo of the mass resolution in the 2rr mass spectrum, 

2 
and the Lm distribution is a direct test of the mass resolution 

predictions. The quantity Lm
2 

will be,. explained in Sec. IV. e. 

In this distribution, also, there ~s very good agreement 

between data and Monte Carlo except for the neutron scattering 

effect which shows up in the negative side, tail. 

- + - 0 c. Analysis of rr p - rr rr rr n Data 

The 15801 events which correspond to Reaction (13) 

according to the criterion described in Sec. III.F contain 

a large sample of omegas decaying to three pions. In order 

to determine exactly how many omega events there were, the 

omega Dalitz plot was divided up into 28 regions. These 

regions (shown on Fig. 16) each contain about the same number 

of events. They are bounded by contours in the Dalitz plot 

on which the quantity 

2 . 2 
q = 1!+ x~_I 

is constant and by orthogonal lines where 

e = tan- 1 (~) 
y 

±rr 
= (±2 

±0 

The variables 

and 

x = f 3 (T - T ) 
Q 7r+ rr-

y = 
3T 0 7f 

Q 
- 1 

( 25) 

(25a) 
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are the Dalitz plot coordinates in terms of the kinetic 

energies of the three pions T + T and T 
0

, and Q - Tr Tr- Tr 

m - m + - m - m o· w Tr Tr- Tr The time of flight spectrum of the 

data in each region was fit to a Gaussian plus a cubic 

polynomial background. The number of events in the Gaussian 

peak represents the number of omega events in the region. 

A fit to the complete sample of data from all regions gave 

a = 0.836 ± 0.015 nsec as the width of the Gaussian peak. 

The width and center of the Gaussian were set to the values 

determined in this overall fit in making the fits for each 

region. (The . fit by regions was also done allowing the 

individual widths and centers to vary, and the results were 

essentially unchanged.) This technique is necessary because 

the fraction of background events varies over different regions 

of the Dalitz plot as may be seen from the representative 

time of flight spectra shown in Fig. 17. In Table II for each 

Dalitz plot region are listed the number of omega events and 

the fraction these are of the total. The error in the number 

of omegas in each region is calculated assuming the number of 

background events (NBG) is statistically independent of the total 

number of events (N) in the region. Then the error in the 

number of omegas is the error in N-NBG. By adding up all the 

regions, we find the total number of w - 3Tr events in our 

data: 

N3Tr = 7582 ± 217 . 

Here the error is just the statisti2al error of all the regions 

combined in quadrature. There is to be considered in addition 
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the systematic error resulting from the error in the width of 

the Gaussian which was held fixed in the fits. To determine 

the effect of the error in this width, we have also carried 

out the time of flight fits for each region assuming the width 

to be 0.855 nsec which is one standard deviation wider than 

the best value. These results are also listed in Table II, 

and the total number of w ~ 3rr events computed with this 

width is 

N3rr = 7698 ± 209 . 

Including both the statistical error and the error due to the 

width, we have 

N3rr = 7582 ± 325 . 

In order to determine the asynunetry parameter, A, which is a 

test of C invariance, we sum the number of events on the left 

and right side of the Dalitz plot. Then 

NLEFT - NRIGHT 
A = = -0.014 ± 0.028 . 

N 3rr 

The systematic error of the Gaussian width is included here 

just as for N3rr ' but it does not increase the error of A. 

This result for the asymmetry is clearly consistent with zero 

and no c violation. 

It is also interesting to use this information to study 

the matrix element dependence in the w Dalitz plot. Here we 

must make use of an w ~ 3rr Monte Carlo run to learn the 

efficiency of the experiment in different parts of the Dalitz 

plot. From the considerations to be discussed in Sec. IV.D, 

we would expect the simplest form of the matrix element 

p -
squared for a J = 1 particle to be 
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where the P. are the momenta of the pions in the w rest frame. 
""""l 

2 The background corrected data as a function of q was compared 

with the expected form of this distribution as determined by 

the Monte Carlo for a simple q
2 

dependence and a x2 computed 

using only the statistical error to test how good the agreement 

is between the data and Monte Carlo for this assumed matrix 

element. 2 For 6 degrees of freedom, x = 5.1. The data divided 

by the results of a pure phase space Monte Carlo run is shown 

in 2 Fig. 18 and has the expected linear dependence on q . As 

Zemach has shown, the basic form of the Dalitz plot dependence 

24 recurs for every other spin value. We would therefore expect 

a distribution peaking at the center and falling off at the 

edges, as it does in the data, if the spin of the omega were 

l or 3 . Flatte et al have pointed out that it is very hard 

to rule out 3 absolutely on the basis of the Dalitz plot 

distribution, because it is always possible that the form 

factors conspire in such a manner that the Dalitz plot distri-

bution of a 3 omega reproduce the available data. Angular 

momentum barrier would tend to make the decay rate of a 3 

particle smaller than that of a l particle. The relatively 

large 12.4 MeV width therefore supports the choice of l 
7 for w. 

The possibility of p dominance showing up in the matrix 

element was also investigated. A matrix element of this type 

would have the form 25 

m 2r 2 
\M\ 2 

ex: 2 2 2 2 2 \.~l x ,.!:2 \ 2+cyclic permutations. 
( ) + ~ -m -mp mp i P 
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Here m = 760 MeV, r = 125 MeV and m .. is the mass of the rrirrj 
p p 1.J 

system. We have looked for the possible effects of this matrix 

element in the data in two ways. First, we have prepared a 

Monte Carlo distribution of q
2 

assuming p dominance. This 

curve is shown on Fig. 18 for comparison with the simple q 2 

matrix element and the data. To see ' how well these matrix 

2 elements fit the data, we have computed x for each of the two 

hypotheses. Only the normalization of the Monte Carlo curves 

was allowed to vary in making the fits. For 6 degrees of 

freedom, 2 16.4 for dominance and, stated earlier, x = p as we 

2 5.1 for the simple 2 matrix element. have also x = q We 

the dynamics of the w Dalitz plot by looking directly at 

distributions of the 2rr mass, m .. , for each of the three 
1. J 

studied 

combinations of two pions. Because of conservation of energy 

and momentum, the mass of one pair of pions depends only on 

the kine~ic energy of the third pion. Thus, each of the three 

mass distributions is essentially just a projection of the 

Dalitz Plot density o~ one of the three pion kinetic energy 

axes. Studying these three mass distributions is therefore 

a test of the two matrix element hypotheses in different regions 

of the Dalitz plot. The distributions of data as a function 

of m .. were prepared by subtracting the background in each 
1. J 

bin using the same technique described earlier for the background 

2 subtraction as a function of q and e in the Dalitz plot. 

The distributions were then divided by a Monte Carlo determined 

distribution assuming the simple q 2 dependence and including 
I 

the experimental efficiency. The resulting plots are shown 
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in Figs. 19a,b,c. If the matrix element is of the simplest 

IMl 2 ex: q2 f . 1 1 form, and free o p dominance, we wou d expect 

the data in these plots to fit a straight line. The best fit 

to this hypothesis is shown on each of the plots. Also shown 

is the best fit to a curve produced by the Monte Carlo assuming 

p dominance. Note that not only does this curve rise at the 

high end of the mass scale (which is about 100 MeV below the 

p pole) but it also rises slowly at the low end. This is a 

result of the fact that the three mass combinations are related 

through the energy and momentum conservation laws, so that if 

one mass combination tends to be high for a given event, the 

2 2 others will be low. The x for the two hypotheses for the q 

plot and the three mass plots are summarized below: 

plot degrees of 2 2 x no p x 
freedom dominance p dominance 

---
2 6 5.1 16.4 Fig. 18 q 

m+O 9 8.4 12.4 Fig. 19a 

m -0 9 6.5 13.3 Fig. 19b 

m+- 9 18.4 36.2 Fig. 19c 

The effect of the p dominance matrix element is a tendency to 

pull events into the three outside corners of the Dalitz plot. 

The outside of the Dalitz plot, however, is heavily depleted 

2 p -by the required q dependence of J = 1 . This makes it 

difficult for any experiment to search for p dominance in w 

decay with any precision. In spite of this, the results 

listed above are clearly more likely if the matrix element 

does not include p dominance than if it does. 
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D. Measurement of the Polarization Parameters and 

the Relative Experimental Efficiency 

We now wish to use the distribution of events in the large 

sample of w ~ 3rr to predict the pion angular correlations for 

a Monte Carlo study of w ~ 2rr. To understand the theory behind 

the technique we shall use, we need first to write the most 

general form of do for the two reactions 

and in doing this we will follow the approach of c. Zemach 

aimed at three pion decays of unstable particles. 24 In 

Zemach's scheme, we work in thew-rest frame. We must find 

for both the w production and decay states all distinguishable 

combinations of physical variables that, after including the 

intrinsic properties of ±he relevant particles, transform in 
I 

the same way as an object with the intrinsic properties of the 

p -
w, J = 1 . The most general combinations of variables of 

the production and decay states are then coupled to form a 

rotational invariant and get the general angular dependence 

of the matrix element. 

The key to the value of this approach is that the only 

difference between w ~ 2rr and w ~ 3rr appears in the decay 

state. There we find that for w ~ 3rr the only combination 

which transforms as a vector when the intrinsic 0 character 

of three pions is included is 

(3rr) q = P+ x P 
...... - = p x p = p x p 

-- -o -o ...... + 
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Here~+'.£_, _£
0 

are the rest frame momenta of + 
Tr ' Tr and 

0 
Tr • (The last two equalities follow from conservation of 

momentum, P+ + P + P = O.) - -- ..-() 

For w ~ 2rr, there is also 

only one vector available: 

( 27T) q = p = - p 
...._. ,....+ --

The neutron of the final state is thought of as going 

backward in time to join the Tr- and proton and form the two 

nucleon and one pion production state. This state has 

negative intrinsic parity so it must transform as a pseudo-

vector. There are six pseudovectors that may be made out of 

~(the beam momentum),~T (the target nucleon momentum), and 

a (the spin vector of the nucleon). - They are 

1. Q = P x PT - - -
2. a ,_ 

3. (a . P)P - --
4. (£_ . P)Q x p - (a . P)R -- --
s. (a . R)P - --
6. (a . R)R - .._ -

All these production and decay vectors are shown in Fig. 20. 

We are now in a position to write the angular dependence 

of do for an unpolarized beam: 

i L: J. I <±~ l cf 1£+ f 2 £.+ f 3 (.£. • f) R_+ f 4 (~ · !} ~ f s (_2.: ~ ~+ f 6 (.£.· ~ ~ 
±~' ±~ ' ( 26) 

. q I±~>\ 2n da. 
- i l 

Here the bra and ket vectors indicate the nucleon spin 

state before and after the event, the f. are form factors 
l 
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2 
independent of angle that may depend on any scalar like P , 

and the a. represent a set of phase space variables just as 
]._ ·-

in Sec. IV.B. If we carry out the sums and square, we end 

up with four different types Qf terms. For A and B any two 

general real vectors, these four types of terms are 

(I) 

z::\<±la·A\±>12 -- = l<+la A 1+>1
2
+1<-la A 1->1

2 
z z z z 

+ l<+l~cr+A_I->\ 2+\<-l~o_A+\+>\ 2 

(II) 

* * Z::2Re (fa fb <± L£ -~I±><± 12, • !_\ ±> ) = * (2Re[f fb (~A B ~A B a z z z z 
i * i B *)] +4A+B+ +tA 

* = Re(f fb )A·B a ,,,_ ........ (III) 

* Z::2Re(<±\A·Bl±><±\cr·B\±>) = 2Re(A·B(~B -~B )) = 0. 
-- _....._ _.,._2 z2 z 

(IV) 

We are now able to compute all terms of Eq. (26) using these 

results. We collect terms and make use of the fact that 

P·R = 0 and that --
since P, Q, and R are perpendicular . 

..... - -
Finally, we have 

n A,._2 """2 A;'\ A.;\ 
d a = [F1 +F 2 (P·q) +F 3 (R·q) +F

4 
(P·Q) (R·q)] n da. 

.-..,..._, -- ------ ]._ ]._ 

The F. are a new set of form factors that include all but 
]._ 

the purely angular dependence. In the limit of forward 

production of the neutron 

( 27) 
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Q = p x p 0 
.,.... -T 

and R = 0 so 

do = 
du 

2 2 (F1+F 2u )P(u)du = n[(l-a)+au ]du 

I\ ;'\ 

where u P•q and P(u) contains the phase space dependence 

that remains after integrating Eq. (27) over every variable 

but u. In the alternate parameterization given in Eq. (28) 

n is a normalization factor and a measures the amount of 

alignment ranging from 0 to 1. 

Since neutrons in our experiment were produced so 

predominately forward, it became apparent very early in our 

analysis that very little information could be learned from 

the data regarding F 3 and F4 • Accordingly, we concentrated 

on Eq. (28) in analyzing the spin alignment of the omegas. 

It is, of course, possible to calculate u for each w ~ 3rr 

event and fit Eq. (28) to a histogram distribution of u. 

However, u is an w rest frame quantity and its determination 

involves a Lorentz transformation that requires a good 

knowledge of .the neutron momentum. In order to avoid the 

complications introduced by the resolution functions of the 

neutron counters, the alignment was studied in terms of the 

quantity 

lab 
qz = i!'+ x _,E_) 

z 

(28) 

which is evaluated in the lab. A background corrected histogram 

of qzlab is shown in Fig. 21. The background subtraction was 

d f h bl·n of lab d "b d · th 1 t performe or eac qz as escri e in e as 

section. The data distribution was fit to a linear sum of 
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normalized curves corresponding to Monte Carlo calculations 

d lab d" 'b . f of the expecte q istri utions or complete and no . z 

alignment, a = 1 and a = 0 respectively. The best fit shown 

on Fig. 21 
+0.16 2 

gave a = 0.004 _ 0 _004 and x = 26 for 19 degrees 

of freedom. (When only central neutron counter events were 

2 
included, the results for a remained the same but x reduced 

to 14.) We conclude from this that the omegas are essential l y 

u naligned. 

This information may now be used in conjunction with 

two Monte Carlo runs to determine the relative efficiency 

of the experiment to the decays w ~ 3rr and w ~ 2rr. With 

q as defined earlier for two and three pions, a Monte Carlo 

run determined the efficiency for each of the reactions for 

ten different values of a. The results are shown in Table III. 

Taking into account the error in the fit value of a, we 

determine the ratio of efficiencies to be 

0.6474 +O.Ol4 
-0.004 

E. The 2rr Mass Spectrum and Its Calibration 

The mass of the two pions, m, for events classified in 

+ -the reaction rr p ~ rr rr n, may be computed in two different 

ways in this experiment since all final state momenta (including 

that of the neutron) have been measured. The mass may be 

computed directly from the two pion momenta 
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or it may be computed from the missing mass of z in 

71 p ..... zn 

m - ((E + m E )2 (p p )2)1/2 z - beam p - n - _beam - _ n ' 

which essentially depends on the time of flight measurement. 

Monte Carlo studies indicate that the mass resolutions of 

m2 and m are virtually identical at the w mass. 
71 z It is 

thus profitable to use m ~ ~(m 2 +m) and improve the 
71 z 

resolution of m by a factor of /2. This is the definition 

of the two pion mass that will be used in analyzing the 271 

mass spectrum. 

The techniques used in the Monte Carlo generation of the 

experimental resolution were discussed in Sec. rv.B. A 

histogram of the quantity 

2 2 6(m) = m
271 

- m z 
2 

in the data and the curve predicted by the Monte Carlo are 

shown in Fig. 15. The good agreement is the best test of 

the accuracy of the Monte Carlo resolution program in the 271 

mass spectrum it'self since the shape and width of 6m are 

obviously closely related to the resolution functions of 

m
271 

and m
2

• 

The quantity 6m is very useful in checking the final cali-

bration of the absolute mass scale. This is so since m z 

which depends only on the neutron measurement has been precisely 

calibrated at the w mass (±~ 1.0 MeV by the fit to the w peak 

in the time of flight spectrum of the 371 data. Then by checking 
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to see if llm == 0 at the peak of the [lm distribution for the 2rr 

data, we may force m 2~ to be calibrated correctly (± ~ 3 MeV) 

at the w mass. This checks the accuracy of the assumed normali-

zation of the magnetic field in the pion spectrometer. It also 

allows us to be confident that the absolute value of m at 

the central w mass is correct to±~ 1.6 MeV. 

In Fig. 22 a his tog rammed distribution of m for events 

- + - . classified as belonging to the reaction ~ p ~ ~ ~ n is 

compared with the phase space predicted by a Monte Carlo 

program assuming n~ matrix element dynamics. Events below 

a mass of 670 have been eliminated to avoid problems with 

the neutron time of flight gate electronics which begins to 

cut in at this point. There are 9696 events left in the 

distribution. The dynamical aspects of this spectrum become 

most obvious if we divide the data by the Monte Carlo distribu-

tions. This removes all phase space and efficiency dependence. 

The resulting distribution, which we shall be studying from 

here on, is shown in Fig. 23. 

A first glance at this distribution shows that not only 

is there no striking effect at the w mass, but that the p is 

not as prominent as one might expect. However, a moments 

thought explains why: p production governed, as it is, by 

one pion exchange tends to produce p that go forward and 

neutrons that go backward in the center of mass, or, equivalently, 

the p production cross section is largest for momentum transfer 

2 t ~ 0.3 (BeV/c) . Since the neutron counters are very much 

forward in the lab, and because of the time of flight gate, 
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no neutrons that go backward in the CM are accepted by the 

experiment. As a result, the momentum transfer distribution 

looks as it does in Fig. 24 with 0.55 ~ t ~ 1.2, and p production 

~ is not as heavy as would otherwise be the case. p still is 

produced in the experiment, and as we shall see, p production 

corresponds to about a third of all event.J . The p production 

becomes much more evident in the 2H mass spectrum if we remove 

some of the background. As will be discussed in the next 

*-section, this background is dominated by the N resonance. 

Therefore, cuts of MH_n > 1300 MeV and MH_n > 1360 selectively 

*-remove a large fraction of the N background. 2H mass spectrum 

plots of the data with these cuts are shown in Fig. 29. In 

these figures the p is more prominent than in Fig. 23. It i s 

clear from these figures that a large background sloping down 

as m increases must accompany the p to account for the shape 

of the data in Fig. 23. In the nex t section, we will discuss 

thi s background. Limits on the minimum number of p in the data 

will be d i scussed i n the section on systematic error. 

F. Background in the 2H Mass Spectrum 

+ Histograms of the H-n and H n spectra are shown in Fig. 25. 

* In the H-n plot there is a heavy enhancement due to N near the 

low end of the spectrum near ~-n= 1236 MeV. A curve corresponding 

to pure phase space as predicted by the Monte Carlo is shown 

on these figures. Also shown on each histogram is a curve 

*­corresponding to 40% pure phase space arid 60% an N resonance 

in the H-n spectrum at 1236 MeV with width 120 MeV. Fits to 



- the 2rr mass spectrum that will be discussed later show that 

the background corresponds to about 2/3 of the data. The 

* * heavy N enhancement in these histograms indicates that N 

accounts for a large fraction of this. Therefore, as an order 

*-of magnitude, the N resonance accounts for something like 

60% of the data. This order of magnitude has been used in 

preparing the curves for Fig. 25 which are only meant to 

*-demonstrate the presence of data due to the N resonance. 

Because of the shape of the kinematic boundary of the M -
2 

rr n 
2 

vs M
71

+n phase space, a resonance near the low end of the 

M
71

_n scale shows up as an enhancement near the high end of 

*-M + . The N resonance therefore is reflected into a rise rr n 

at the high end of the rr+n spectrum in the data. There is 

+ no evidence for a rr n resonance near 1236 MeV. However, the 

* t wo histograms of Fig. 
1

25 clearly do show evidence of an N 

resonance of the rr- and the neutron. 

*- *+ The large amount of N and lack of evidence for N 

in this reaction is in agreement with a number of earlier 

- + - 26 experiments that have studied Tr p -.rr rr n near 1-2 BeV/c. 

*-The fraction of data corresponding to the N resonance is 

also in rough qualitative agreement with these experiments. 26 

The experiment of Banner et al 27 run at an incident momentum 

of 1000 MeV/c measured the center of mass production angle 

distribution of the rr-n system for this reaction. The distri-

bution in the center of mass, corrected for efficiency, of 
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* in our experiment for events in the N region (M ~ 1300 MeV) rr-n 

is shown in Fig. 26. In making the efficiency correction, 

*-the Breit Wigner resonance form of the N was assumed for the 

Monte Carlo calculation. In the region of sensitivity of 

this experiment the results agree well with a Legendre polynomial 

fit made by Banner et al to their data. 27 Their fit for events 

in the region 1200 MeV ~ M - ~ 1300 MeV is shown on Fig. 26. 
7f n 

We noted in the last section that underneath the p in the 2rr 

mass plot of Fig. 23 the background apparently slopes down 

towards small values at the upper limit of m. According to 

* a Monte Carlo prediction, an N Breit Wigner in the rr-n 

spectrum combined with the production angle distribution of 

Banner et al appears as a relatively flat curve in the 2rr mass 

plot. Thus, it is not possible to explain the background 

shape in the 2rr spectrum with the facts we have already 

* mentioned about the N data. It is conceivable that momentum 

dependence at the vertices of the various possible diagrams 

* for N could explain some part of the shape of this background. 

It is also possible that the efficiency of the neutron counters 

was dependent on the neutron momentum and therefore on the 2rr 

mass. Since we know very little about this dependence, it 

was not included in the Monte Carlo calculations and therefore 

not corrected for. An explanation which is quite likely and 

at any rate easier to discuss is the possibility of correlations 

in e , the neutron decay angle in the rr-.n rest frame. 
n 

This 
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angle is very closely related to the 2~ mass m, since in the 

center of mass 

2 
m = (Einc 

= E . 2 + 
inc 

E )2 _ p 2 
n -n 

2 m - 2E . E n inc n 

The 2~ mass m, thus, depends on the center of mass neutron 

energy, E , which in turn depends on · -the decay angle, e , in n n 
-the ~ n rest frame. Therefore, any decay angle correlation in 

the rest frame of a ~-n resonance will show up directly in a 

distribution of the 2~ mass m. We choose to define e as the 
n 

-angle the neutron makes in the ~ n rest frame with the z axis. 

(z is the direction of the incident pion in the lab or CM). 

It is shown in Appendix II that with this choice of axis the 

most general form of the distribution in e for a spin 3/2 ~-n 
n 

resonance in this experiment is 

F( e ) = 1 + a cos 2 e + b cos e sine 
n n n n 

(29) 

providing the target is unpolarized and we average over the 

azimuthal decay angle. The Monte Carlo predicted effects of 

a flat distribution, of a cos 2e distribution, and of a cos 8 
n n 

sine on the 2~ mass spectrum 
n 

evident from this figure that 

are shown in Fig. 27. It is 

both the cos 2e and cose sine 
n n n 

distributions have slopes in the · same direction as the background 

of the data. 

* F~om the analysis in Appendix II, we see that if the N 

is produced as a pure partial wave, F( e ) will be a character­
n 

istic non-uniform distribution. For example, if the production 

is S-wave, then 
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* (This is also the characteristic decay distribution of N in 

two body final states, 28 as well as of N* produced forward in 

three body final states like that of this experiment.) It is 

well known that quite a number of partial waves contribute 

* - + - 29 significantly to the production of N in rr p ~ rr rr n. In 

principle, it is possible to predict the form of F(B .) if the 
n 

relative weights of the various partial waves are known. The 

present knowledge of these ~eights, however, allows virtually 

any distribution consistent with Eq. (29). Most likely the 

parameter a ~ 0 since it would pequire a very fortuitous 

combination of partial waves for F(B ) to turn out to be 
n 

uniform. 

In concluding this discussion of the background, we note 

* that it is very difficult to separate the N and p data in 

this experiment since there is a large overlap in the M - 2 x m2 
rr n 

Dalitz plot. This Dalitz plot (corrected for efficiency) is 

* shown in Fig. 28. We have attemoted to remove some of the N 

when studying the 2rr mass m by cutting at 1300 MeV and 1360 MeV 

* (corresponding to about one and two half widths of the N 

above 1236) as shown in Fig. 29. The p is clearly more 

prominent after these cuts are made than in Fig. 23. However, 

the loss of statistics will reduce the sensitivity of the 

measurement of w ~ 2rr which is the main object of this experiment. 
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G. Fitting the 2rr Mass Spectrum 

When fitting the 2rr mass distribution to measure the size 

of the w - 2rr effect, we make the following assumptions: 

a. The distribution of events takes the form of Eq. (11) 

derived in Sec. l with
30 

m 
w 

= 765 MeV 

125 MeV 

= 7.83. 4 MeV 

= 12.2 MeV . 

*-b. The background is all N (1236 MeV) produced according 

to the angular distribution of Banner et al,27 and 

decaying in the general form of Eq. (29), discussed 

in the last section, with b = 0, 

F ( e ) l 2 (29) = + acos en n 

We set b = 0 in making the fit to the 2rr mass spectrum 

because the 
2 cos e and cose sine distributions have n n n 

similar shapes in the 2rr mass spectrum (see Fig. 27), 

and in practice the fitting procedure cannot distinguish 

them. 

*-c. There is no interference between the N background 

and the p and w. This assumption may be justified 

by the completely different production mechanisms 

involved for nucleon and pion resonances in our reaction. 

The possible systematic errors introduced into the results by 

these assumptions are discussed in the next section. 
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The fit was made to the sum of a set of Monte Carlo 

generated distributions. Each distribution was prepared by 

reading the rrrrn Monte Carlo tape that included the experiment's 

resolution (as described in Sec. IV.B) and making a histogram 

of the resolution shifted mass weighted by an appropriate 

function (of non-resolution shifted qu~6tities) that defined 

the particular dynamical character of the distribution. Each 

distribution was then divided by the purely phase space Monte 

Carlo spectrum just as the data was for Fig. 23. These 

distributions automatically contain the Monte Carlo determined 

mass resolution function. They correspond to each of the 

three terms and background of Eq. (11) in Sec. 1. The 

background of Eq. (11) is here assumed to consist of two 

distributions each weighted by one of the first two terms of 

* Eq. (29) for the decay distribution of N . 

*-

These two terms 

which each include the N Breit Wigner and production angular 

distribution will be referred to as BGflat and BGcos2· All 

the distributions are shown in Fig. 27 and their weight 

functions defined in Table IV. 

Since we have no way of knowing the degree of coherence 

of the w-p interference, we analyze the data for a series of 

assumptions of relative w-p phase and degree of coherence. 

We consider first the cases of complete coherenc'e with constructive 

or destructive interference (¢ = ± rr) as well as the case of 
2 

total incoherence, deferring until later such possibilities 

as ¢ = 0 or rr. A fit was therefore made to the hypothesis 

N2rr(m) = alBWP2 + a2BWP 21Fwj2 +bl BGflat + b2 BGcos2 (30) 
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( 11) with a
3 

= o. The fit 2 
which corresponds to Eq. gave x =29. 6 

for 18 degrees of freedom and the best values listed below: 

al = ( 5. 15 ± 0. 76) x 10 3 

a2 = (1. 05 ± 1. 39) x 1011 

bl = (3.84 ± 1. 46) x 10- 2 

b2 = (7. 43 ± 0. 32) x 10-l 

(All errors cited in this section are purely statistical. 

Systematic errors will be considered in the next section.) 

The best fit to Eq. (30) is shown on Fig. 23. From the 

results of this fit, we find that the number of p and background 

events in the data are: 

Np = a 1 I RHO= 2887 ± 424 

N = b I + b I = 6657 ± 380 
BG 1 BGflat 2 BGcos2 

The number of events corresponding to the experimental size 

of the w - 2rr effect including the enhancement or suppressive 

effects of any p-w interference is 

Nexp = a2 IOMEGA = 75 ± 100 . 

As we already noted in the theoretical introduction, the 

imaginary part of the Breit Wigner amplitude is indistinguishable 

in practice from the Breit Wigner amplitude squared. For this 

reason, we were forced to combine the second and fourth terms 

of Eq. (6) into the second term of Eq. (11) and Eq. (30) for 

the actual fit. Thus the experimental number, N , includes exp 

both N 2 (which would be the number of w-2rr in the absence w- rr 

of p) and an interference term. It is possible to separate 
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N 2 from N if we make assumptions about the relative w- IT e xp 

phase, ¢, and the degree of coherence, c, since we know the 

size 0f the p amplitude from the first term of the fit. To 

do this, we recall two of the relations of Eq. (lla): 

al = 

a 2 = 

= 

IA 12 p 

la (m
2

-M 
2

) 1
2

-2cm r IA *a (m
2

-M 2 ) I sin¢ 
W p WW p W p 

la 1
2 

- 2cm r IA *a \sin¢ . w w w p w 
We are interested in using these equations to solve for 

the number we are looking for. 

For the cases of destructive and constructive interference, 

7f (/) = ± 2 , we 

la 1
2 

-w 

have the following quadratic equation for \~ \: 
w 

Using the fit value of a 1 and defining 

k = m r \A *1 = (6.86 ± 0.50) x 10 5 
I w w p 

the solution of the quadratic equation is 

\aw I = (±ck) + ~· (ck) 2+a2 

(lla) 

(31) 

We have chosen the + sign in the quadratic formula of Eq. (31) 

/ 

so that \aw\ >0 since ck> 0. The case of destructive interference 

(¢ =+ ;) corresponds to Eq. 

that, if there is coherence 

(31) with the + sign before ck so 

(c~l), la \ 2 may be very large w 

even if the experiment observes no w __., 2rr effect. But for 

constructive interference (¢ = -;), a very small intrinsic w_.,2 rr 

effect will result in a significantly large experimental effect, 

a ,, 
L 

for the relative size of a 1 and a 2 in our data. 

(32) 
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By squaring Eq. (31) and multiplying by IOMEGA' we can 

determine N 2 from the fit to Eq. w- 7r 
7r (30) for ¢ = ± 2 and 

any degree of coherence, c. Using earlier results for the 

value of 
l € 37r 

NW ...... 37r € 27r 

we may determine the branching ratio 

B 
NW ..... 27r €3 7r 

NW ..... 37r € 27r 

N w-27r 
11700 

Also it will be recalled from the theoretical section that 
r 

the mixing parameter o ' = o+(m -m +i .::__2_2 )T 2 IT is related - w p w ...... Tr' p 

to the branching ratio according to o ' = 20.6 B112 Mev. The 

values of these quantities derived from the fit to Eq. (30) 

are listed below: 

N = 75 ± 100 
w-2 7r 

B = (0.64 ± 0.86) x 10- 2 

o '= 1.65 +0
1

· 87
5 

MeV . 
- • 6 

NW ..... 27r = 1499 ± 186 

B = (12.8 ± 1.6) x 10- 2 

o '= 7.36 ~g::~ MeV 

= 3.8 ± 9 . 9 N 2 w- 7r 

B = (0.032 ± 0.084) x 10-2 

+0.33 o '= 0.37 _0 _
37 

Mev. 

incoherence 

coherence 

destructive interference 

7r ¢ = + -
2 

constructive interference 

7r ¢ = - -2 

In order to consider the situation where ¢ = 0 or 7r , we 

have also made a fit to 

2 2\ 12 2 N2 (m) = a 1 BW +a 2BW F +a3Bw ReF +b1 BGfl t+b2BG 2· 7r p p w p w a cos 

For 
- 2 

17 degrees of freedom, x = 22.0, and 

( 3 3) 



T'ne 

we 

= 2 . 90 ± 1.11) 
1 

a') 
'"' 

- (l.98 ± 1. 43) 

a,3 :;;::: (-5.25 ± 1.90) 

b - (9.0 ± 2.4) x 
l 

b2 -- ( 6. 7 2 ± 0.41) 

best f. +. 1. .... to Eq. (33) 

find 

N = 1630 ± 620 
p 

N == 7650 ± 520 ,_BS 

·- 7 2-

x 10 3 

x 1011 

x 107 

10- 2 

x 10-l 

is shown on Fig. 23. For this fit, 

and the n~mber of events corresponding to the w - 2rr effect is 

Nex = a2IOMEGA+ a31 REOM = 360 ± l 4 0 

The results of this fit are consistent with a small w - 2rr 

effect with ¢ = rr and complete coherence. This is so since 

if we assume that ¢ equals either 0 or rr and allow the 

degree of coherence, c, to vary, we find that ¢=rr (not O) 

because a
3 

is negative. We also have from Eqs. (lla), for 

¢=rr I 

c = 

which is consistent with complete coherence. For this 

assumption (from Eqs. (lla) again), 

\aw I 2 = a2 

since o'.4 = 0 for ¢ = rr . Thus we have for the branching ratio 

and mixing parameter 

B = (1.22 ± 0.88) x 10- 2 

+0.71 o '= 2.27_
1

_08 Mev. 
¢ = rr 

16 
The Berkeley group observed a change at the w mass in 

the angul a r distribution of the pions in the 2rr rest frame . 
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We have studied the distribution of 
A I\ 

~os B =!Tr+ · Lbeam 

for a succession of 20 MeV mass regions and can observe no 

change near the w mass. A selection of these distribution~, 

corrected by dividing out the Monte Carlo determined efficiency, 

is shown in Fig. 30. It should be noted that this experiment 

is completely insensitive near cos 8 = ±1 because of the 

spark chamber geometry, and this i~ the region in which a 

change near the w mass might be expected. 

It was suggested earlier that the w-p interference phase, 

¢, depends on production and decay variables like momentum 

transfer, t, and decay angle, e. As a result, the fact that 

the experiment covers a finite range of such variables means 

that the w-p interference will be reduced by some unknown 

amount. As a chec~ to see if we might have missed some sharp 

effect at the w mass by ,studying all the data at once, we 

have prepared 2Tr mass spectrum plots for several regions of 

cose. These are shown in Fig. 31 where it can be seen that 

there are no clear effects at the w mass in any region of 

cos 8 . This is no surprise since the only dependence of ¢ on 

decay variables like cos8 is through the direct w~2Tr transition 

amplitude T which is presumed to be very small (see Eqs. (4a) w 

and (7 a) • It is not possible to divide the data into different 

regions of momentum transfer, t, to study the mass distribution 

since the 2Tr mass, m, and t are very strongly correlated by 

the kinematics of the experiment. The data as a function of 
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m and t is s h own in Fig. 32. The fact that the w mass appears 

on l y for t he limited range 0.6 ~ t ~ 0.9 GeV/c 2 is further 

' p or f o r h e possibility that w and p are coherently 

p duced i n th ' s experiment. 

H. Systematic Errors 

The results of the last section depend on the accuracy 

of t h e f ol owing: 

a. The assumptions concerning the p mass and width. 

b. The calibration of the 2~ mass scale. 

c. The Monte Carlo prediction of the resolution 

function which was implicit in each of the distri-

butions used in the fits. 

d. The assumed form of the background. 

Each of these factors may contribute s9me error to the results. 

We will consider the magnitude of these systematic errors in 

this section. 

The Particle Data Group has cited the following values 

of the mass and width of the p in their January 1969 listings:
30 

m = 765 ± 10 MeV 
p 

rp - 125 ± 20 MeV 

In their words, these values " ... are not average values from 

variou s exoeriments, but rather are intended to give the range 

where \ e bel i eve the actual values are most likely to fall." 

In t h is spirit, we assume that the p mass and width may fall 

wi t h equal probability anywher'e in1 their ranges. In order 

to determine the effect of these uncertainties on our results, 

we have carried out the fits and calculations of the preceding 
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section for nine combinations of m and r corresponding to 
p p 

the two ends and center of the ranges of these two parameters 

in all combinations. The results are listed in Table v. The 

maximum and minimum values of the branching ratio and mixing 

parameter in Table V indicate- the error caused by the lack of 

knowledge of the p parameters. 

As discussed in Sec. IV.E, the mass scale calibration is 

accurate to± ~1.6 MeV. This error is considerably less than 

the error in the p mass. Since the essential effect of a 

shift in the mass calibration is to shift the p peak, it is 

clear that the errors in the results due to the small uncer-

tainty in scale calibration may be neglected compared with 

those due to the p mass. 

The error in the width of the resolution function depends 

on the uncertainty in two quantities discussed in Sec. IV.B, 

the time of flight resolution width, dTOF = 0.78 ± 0.02 nsec, 

and the chamber resolution width, aCH = 0.037 ± 0.002 cm. 

The error in aTOF is known from the fit to the 3rr time of 

flight spectrum (Sec. rv.c) and results in an error in our 

knowledge of the resolution width of m (the 27f mass determined z 

from the neutron momentum) of about 2 1/2%. The error in 

1s known from comparisons of Monte Carlo distributions of DZ 

with the data (see Fig. 15a) for different values of acH· 

The error in our knowledge of the pion momenta is due both 

to crCH and to multiple scattering. These two sources contribute 

in about equal proportions, so that it is fair to say that the 

error in our knowledge of the pion momentum resolution is 3% 
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or 1 ess. This i s a.lso the order of magnitude of the error in 

the resolu ·an width of m2rr (the 2rr mass determined from the 

two pion momenta ). All this is simply meant to justify the 

s t a t eme n tha t the error in our knowledge of the resolution 

width f m = (m
2 

+ m2rr)/2 is clearly considerably less than 

%- This unc e rtainty shows up in our results only in the 

ome ga terms in the fits. However, since the statistical 

errors alone are always much larger than 5% of the values of 

the omega parameters, it is safe to ignore this possible 

source of error. 

The assumed form of the background may contain errors 

from a number of sources. These include the errors in the 

27 
production distribution of Banner et al. that were assumed, 

the neglect of the cos9 sin9 term (which is in practice n n 
2 

indistinguishable from the cos e term), and the possibility 
i n 

of some sharp momentum dependence at one of the production 

vertices. The true shape may also be affected by as much as 

*-10% of the data which is neither N nor p or w, and it is 

very possible that the efficiency of the neutron counters varies 

with the 2rr mass. The primary effect of the uncertainty in 

the background on our results is on the number of p that are 

found in the fits. For example, if the background were more 

concave an we think it is, the parameter~1 , which indicates 

the number of p, would be larger than indicated by the fits. 

This uncertainty in the number of p affects our calculations 

of p-w i~terference in the determination of the branching 

ratio at full coherence with ¢ = ± ~ The branching ratio 
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for incoherence and for ¢ = rr are unaffected. As we have 

already noted, by cutting the data at Mrr-n = 1300 MeV, it 

* is possible to remove a much larger fraction of the N 

events than of the p events. The 2rr mass spectrum for data 

with Mrr_n > 1300 MeV (Fig. 29a) shows a much clearer peak at 

the p mass than the plot of all the data (Fig. 23). Cutting 

at 1360 MeV (Fig. 29b) reduces the background even more 

leaving a large p peak. Fitting the data cut at 1300 MeV to 

Eq. (30), we find the number of p events to be 

(for 

N = 2106 ± 387 
p 

m 
p 

= 765, ! p = 125 MeV). Since the background constitutes 

a smaller fraction of the data for this fit, any error in the 

assumed form of the background should have less of an effect, 

and this value for the number of p is a good check of N for 
p 

the fit to all the data. According to the Monte Carlo, cutting 

at 1300 MeV will reduce the number of p events by a factor of 

0.785 because of the smaller phase space. Correcting for this, 

we would expect N = 2684 for all the data. This agrees well 
p 

with the actual value of N = 2887 ± 424 determined from the 
p 

fit to all the data. As a further check on the number of p 

we have fit the 2rr mass distribution for three ranges of Mrr_n. 

These we re fits to Eq. (30) with the w parameter, a
2

, s et to 

zero. In this way, the fit errors in the number of p were 

reduced over those determined from four parameter fits in 

which correlations between the errors in N and N increase 

the uncertainty in N . 
p 

p w 

The results were as follows: 
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gion N Fraction of Total p Events in Region 

M7f_n5: l300 MeV 710±250 20% 

13 O<M _ :;;; 1 360 1205±190 37°/o rr n 

M - <1360 
TT n 1310±170 43% 

sum o f t hree 3225±357 r e gions 

all events 3060±356 32% 

The increas e in the fraction of p as one moves away from 

* the N - reg o n is further evidence that the clear peaking at 

the p mass in the M <1360 MeV 2 TT mass plot is not s _purious. TT-n -

Because of the clear peak , in this region one is assured that 

the fitted determination of N = 1310 is not far off because 
p 

of a systematic misinterpretation of the background. The 

above results show that the p events extend into the regions 

* closer to N . 

As an upper limit, it is hard to believe that the value 

of N used in the w-p interference calculations is more than 
p 

750 events off in either direction. Less than 2100 p events 

would be inconsistent with the number of p found in the fits 

* to t he mas s plot in the two regions away from N and with the 

clear peaks seen at the p mass in the plots of data with M _ 
Tr n 

c ts at 1 300 and 1360. More than 3650 p events would make it 

hard t o explain the large number of events involved in the 

*-N peak o f Fig. 25. To see how an error of 750 events in 

N would affect the results, we have computed the branching 
p 

ratios f or complete coherence and ¢ = ± ; just as we did in 
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the last section with only a 1 changed to correspond to 750 

more and less p events. Changes of this magnitude in a 1 

resulted in changes in the branching ratio of± 3.0 x 10- 2 

v d +0 . 010 v for ¢ = + 2 an _0 _006 for ¢ = - 2 · These limits on the 

systematic error due to the background shape are in some sense 

arbitrary since we do not know all the mechanisms involved in 

the background. However, they do give a good idea of the 

range of error from this source that seems to be consistent 

with the data. The only number that is significantly affected 

v by this error is the branching ratio for ¢ = + 2 alone. 

v. RESULTS AND CONCLUSIONS 

Since there is no way of knowing the degree of coherence 

between p and w in the data and since there is no clear 

w - 2 v effect, the best way of reporting the branching ratio, 

Nw~2v 8 3v 

Nw~3v 8 2v 
B 

and mixing parameter, 6 ', is to make a series of assumptions 

of coherence and relative w-p phase angle. The results of 

this experiment's measurements of Band 6 ' are listed below. 

For each number the best value is listed first with the 

statistical error. This is followed in square brackets by 

the lower and upper limits of the systematic errors ciscussed 

in the last section. 
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B = 0.64±0 .86% [-1.16±1. 0 3% 

6'= l 62+0. 85 MeV [0.98~0
1 ·_ 09

4

8 MeV . -1. 62 

B = 12 . 8± . 6% [9.8±1.6% 

1.91±0.79% ] incoherence 

3.16+0. 60 MeV] 
-0.74 

15.8±1. 6% J coherence: 

o'= 7 24+0.45 MeV [5.98+0.42 MeV 8 72+0.51 J destructive 
'· -0.47 -0.45 · -0.54 MeV interference 

B = 0.032±0.084% [0.0002±0.0062% 

I O· 36+0.33 [O +0.26 6 = . _0 _36 MeV .15_0 _15 MeV 

B = 1.22±0.88% [ 0. 26±1.11% 

¢=+rr/2 

0.25±0.20%] constructive 
+0. 38 interference 

1.14_0 _60 MeV] ¢=-7r/2 

2.00±0.79%] 
¢ = 7f 

3.23+0. 59 MeV] 
-0.72 

Because events near the w mass in this experiment are 

limited to a very narrow range of momentum transfer, which is, 

furthermore, a region in which the p and w production 

amplitudes are very slowly varying, it is not unlikely that 

there is a good deal of coherence between p and w. If this 

is the case, then the results listed above indicate that if 

the w - 27f effect is not of very small size, ¢ f - ; in this 

experiment. The results are consistent with either a small 

effect or no effect for incoherence or if ¢ = 7f. 2 
The x of 

the fit improves somewhat for this latter assumption, but not 

too much should be taken from this improvement in x2 because 

of the possibility of fluctuations. 

We have also studied- a large sample of 7f p 
+ - 0 -7f7f7fn 

+ - 0 data including about 7600 w ~ 7f 7f 7f events. We have measured 

the Dalitz plot asymmetry of these events to be 

A = -0.014 ± 0.028. 
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, A is a measure of C-invariance, and this result is clearly 

consistent with no c-violation. The Dalitz plot distribution 

d . h. l pl was foun to satisfy t.e simp est J = matrix element very 

well. No evidence was seen of a rho dominance effect in 

the matrix element. 
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APPENDIX I 

Relating the 2~ Mass Distribution to the w-p Mixing Parameters 

We start with the propagator equation for the rrrrn 

reaction amplitude, 't', Eq. (3): 

'±' = T l A = T P A 
"""'( l) 2 2 ""'" .,.... ...... .,..... m -M _,. 

.,.... ""'"" 
""'"- """" 

If we assume that 

o2 << M 
2 

and o
2 << M 

2 
w p 

then we can determine the inverse of 

_1 m -(M + o ) 
p = p 

( 

2 2 2 

-~ 
o (M +M ) w p 

o (M +M ) ) w p 

m2 - (M 2+o 2) 
w 

The result is the propagator of Eq. (3): 

( 

2 2 
m -M · 

- l w x.- 2 2 2 2 
(m -M ) (m -M ) o(M +M I) 

w p w ~ 

o (M +M ) w p 

m2-M 2 
p 

Using Eq. (A.l), we may now write ut Eq. (3) for'±': 

'±' = ApP11Tp+AwP21Tp+ApP21Tw+A 

A T +M ) o A T 
= p p + (A T +A T ) 

(m2-M _2) wp pw 
~~~---''---~~~- + ~=w_.:..:;.w~ 

(m2- 2) (m2-M 2) (m2-M 2) 
p w w p 

Squaring, we get I 
I I 2 1 I 

2 
(A T +A T ) ( +M ) 0 

1'±'12 = AP Tp + I w p p w w p 

lm2-M 212 2 2 p (m -M ) 
* * p 

2 
+ A T I w w 

l 

AP Tp (AT +AT) M +M ) ~ l 
+ 2Re [ ( w w w +A T ) 2 2 J 

(m2-M 2)* (m2-M 2y, w w (m -M ) 
2 2P P 1 w 

IA I IT I la l
2

1T \
2 

A *a IT \
2 

= P P + w p + 2 [P w p ] - e 
lm2-M 212 \m2-M 212 I (m2-M 2) (m2-M 2) * 

p w w p 

(AI. l) 

( 4) 
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where 
(A +f)A ) (M +M ) 6 
~-w~~P~__.,,...w"--~Pc;__ + ~ A 

and 

a 
w = 

m2-M 2 w 
p 

(m +m ) r 
~A w p [6(l+~A /A )+~(m -m +i _e_)J 

w (~2-M 2) p w w p 2 
p 

~ = T /T . w p 

This is Eq. (4) of Sec. I. In Eq. (4a) we have calculated 

the numerator of the second term at m = m for clarity, and 
w 

ignored the widths in (M +M ) . 
w p 

Combining 1~1 2 
of Eq. (4) with the efficiency and phase 

space functions of mass gives the 2rr mass distribution of 

Eq. (6). For the 3rrn final state events we have a similar 

equation, Eq. (8). Integrating over the various terms of 

these two equations relates the p and w amplitudes to the 

number of p and , w observed in the 2rr and 3rr spectra. For 

example, integration over the w term of Eq. (8) determines 

where 

(4a) 

(AI. 2) 

~Where useful, we can pull slowly varying functions of m like 

€Jrr(m) out of the integral since thew Breit Wigner is so 

sharply peaked.) Similarly, integrating over thew term of 
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Eq. (6) gives the number of w-2rr (not including any interference 

2 2 
effects) in terms of aw= a (m -M ): w p 

2 m r 1 
N = I"' I r __ .....i::P_..i::..P _ ____,=---=- --------

w-2rr n aw ..I (m2-m 2) 2+m 2r 2 (m2-m 2) 2+m 2r 2 
p p p w w w 

= lawl
2 1oMEGA 

2 
¢ (m) e: 2rr (m) am 

The integral IOMEGA= 7.186 x 10-lO and the efficiencies 

e:
2 

(m ) and e:
3 

(m ) were computed using the Monte Carlo 
Tr w Tr w 

technique described in Sec. IV.B. The integral Iw)rr' used 

for w-3rr, can be related easily to IOMEGA since 

1 0MEGA""" 

m r (m ) 8 2 (m ) p p w Tr w -6 ) I = 8.778 x 10 e: 2 (m I 
w Tr w w 

By integrating the first term of Eq. (6), we have 

(AI. 3) 

IAPl
2 

= Np-2~IRHO (AI.4) 

where N 2 is the number of p observed in the data and 
p- Tr 

r 2 2 
IRHO = JBWP e: 2rr(m)¢(m)dm = 0.5607 

was also determined using a Monte Carlo calculation. 

Using Eqs. (4a'), (AI.2) and (AI.3), we have enough 

information to determine the mixing parameter 0 1 from the 

experimental results for Nw- 2rr and Nw-)rr: 

Thus in terms of the branching ratio, B, 
e: (m ) N 1/2 

lo'I = 20.2( 3rr w w-2rr) 
e: 2rr (mw) Nw-3rr 

= 20.2 Bl/2 Mev. 
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APPENDIX II 

*­Decay Angular Distribution of N -in rr p + -_,rrrrn 

We define the z axis to be the direction of the beam in 

the lab or center of mass. In the rest frame of the rr n 

system, the neutron has orbital angular momentum L = 1 since 
n 

N* has JP= 3/2+ and decays into a rr-(JP = 0-) and neutron 

The state L = 2 is forbidden, assuming parity n 

* conservation in the strong decay of N . We may decompose 

* the N wave function f 3;2 ,m into the neutron spin function, 

X+l/2 ' and the orbital angular momentum spherical harmonics, 

YL (8 ,¢ ), as follows: 
mL n n 

f 3/2 - Y11X1/2 = f4rr(~~ sinBnei¢n)xl/2 

= 11 i 2 1 ( 12 8 11 . 8 i ¢ n ) 
fl/2 ~3 Y11X-1;2+ ~3 Y10X1;2= /4rr cos nX1;2-'l/2 sin ne X-1/2 

12 11 1 8 . 11 . 8 i¢n ) 
f -1/2= ~3 Y 10~-l/2 + ~3 Y 1-1 X1;2= /4rr (/2 cos n X-1/2 +v2sin n e X 1/2 

f _3/2= Y1-1X-1/2 = f4rr(~~ sinBne-i¢n)x_l/2 
(AII-1) 

For clarity, we have written only the subscript m on fm='f 3;2 ,m. 

The general spin state of a spin 3/2 particle is completely 

defined by four complex amplitudes, cm·[cm\ 2 is the probability 

of measuring the spin of the particle to be m, and the only 

le 12 = 1. m 
The angular distribution restriction is that ~ 

m 
of the state characterized by the set of c is 

m 

f ( e , ¢ ) = (Le 'f ) (Le , 'f , ) t 
. n n m m , .m. m m m 

= a
1

cos 2e +a2sin2e (l+a3cos2¢ +a
4

sin2¢ )+a5cos8 sin8 n n n n n n 

(cos¢n+a6sin¢n) 

where the a. are related to the various products of the c . 
i m 
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If we average f(G ,¢ ) over the azimuthal angle ¢ , taking n n n 

into account the efficiency of the experimenta·l apparatus, 

we have 

f (8 ) = Asin 2 e +Bcos 28 +C cos8 sin8 n n n n n 

= A(l+acos 2e +b cos8 sine ) n n n 

Included in A and C are the experimental averages over cos¢n 

and sin¢ . n 
clearly, if the experimental efficiency were 

independent of ¢n' ' these averages would be zero and C would 

(AII.2) 

be zero. But this is not the case in this experiment so that 

we must, in general, include the cose sine term. n n 

More may be learned about this distribution by looking 

in the center of mass. In this frame, the total angular momentum, 

J, is made up of the center of mass orbital angular momentum 

of the rr-n system, L, and the spin of that system, s. S is, 

of course, the same spin that defines the total angular momentum 

of the ~-n system at rest that we dealt with first. If we 

look at the incoming rr-p system in the center of mass, it is 

clear that there can be no z component of orbital angular 

momentum since both particles move in the z direction. As a 

result J = ±1/2; all the angular momentum in the z direction z 

comes from the proton spin. By conservation of angular 

±1/2 in + - final momentum, J = the rr rr n state, though J may take z 
* any half integral value. N production has been analyzed 

in terms of partial waves of specific J and L, and it is 

well known that a number of partial waves contribute. 27 

For each partial wave, we may predict the decay angular dependence 

(in the rr-n rest frame), of the wave function F ±(e ~) for LJ n' 'f'n ' 
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J 2 = ±1/2. This is done by first finding the Clebsch-Gordan 

decomposition into the different states of m, 

\JJ >=~\LL Sm><LL Sm\JJ > z z z z 
m 

and then writing FL~ in terms of the Clebsch-Gordan coefficients 

and the 'f of Eqs. (AII .1) : 
m 

FLJ±( en,¢n) = L <LL
2

3/2m\J±l/2>'fm( en,¢n) . 
m 

Then if the relative (complex) weights, XLJ' of the partial 

waves are known, we may determine the angular distribution 

1 ± ± t 
f ( e , ¢ ) = -2 L [ L xLJFLJ ( e , ¢ ) J [ L xL , J, FL , J , ( e , ¢ ) J (Arr • 3) 

n n J =±l/2 LJ n n L'J' n n 
z 

In Eq. (AII.3), we assumed the protons of the target are 

unpolar ized. ± Listed below are a number of FLJ for low order 

partial waves: 

± 
/4 TT FLJ (8 , ¢ ) 

x±[-sin e (4 e±i¢-4s e~i¢)~5 cos e ]+x~c-40 sin 8e±i¢~cose] 

x ± [~sin8 (4 e±i¢ ) _j'f cos e J+x~ [±sin e (4oe±i¢~ e ~i¢)] 

* N produced in states of various combinations of partial waves 

will decay, in general, according to non-uniform angular distri-

butions. For some combinations of relative weights, XLJ' these 

2 distributions may have heavy cos e dependence as the data 

* appears to have. For example, a pure S-wave N will decay 
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according to · 

f(Sn,¢n) = ~rr (1+3 cos
2
en). 
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TABLE I 

DT and TP cuts for the Nine Chambers 

Chamber TPLO < TP < TPHI I DT-DT
0
I < DTCUT 

Quadrant TPLO TPHI DT DTCUT 
0 

1 inner 118 145 -4500 52000 

middle 127 158 20000 134,000 

* outer 146 178 25000 120600 + 744 r 

2 inner 124 148 0 7 5000 

middle 121 157 -8000 110000 

outer 117 156 0 235000 

* 3 inner 117 149 -6000 55800 + 178 r 

middle 100 151 1000 116000 

outer 130 162 0 195000 

* r is distance from chamber center - see text. 
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TABLE II 

31T Data: Background Subtraction for 28 Dalitz Plot Regions 

Dalitz Plot Total 37T w Events Nw/N w Events 
Region Events N 

(o=0.855 nsec) (see Fig. 16) N w 
(cr=0.836 nsec~ 

1 502 145.l::t41 0.29 146.8::t41 
2 543 27 5. O::t41 0.51 279.1±39 
3 389 237.0::t39 0.61 240.6::t36 
4 388 235.8±38 0.61 239.4±36 
5 380 233.2±38 0.61 237. 3±35 
6 348 . 190.3±37 0.55 193.8::t35 
7 376 245.6±38 0.65 249. 5±36 
8 423 138.0±38 0.33 140. l::t37 
9 789 377.0±44 0.48 382.8::t43 

10 612 325.2±41 0.53 330.2±40 
11 598 324.8±41 o. 54 329.6::t39 
12 620 317. 5±41 0.51 322.9±40 
13 628 37 3. 6±42 0.59 379. 6::t40 
14 671 426.1±43 0.63 432.l::t40 

Left Side of 7267 3844.2::tl50 0.314 3903.8::tl44 D.P. 

15 488 90.4::t42 0.19 91.8±42 
16 932 405 .• l::t49 0.43 410.2±48 
17 718 366.7±43 0.51 372.3±41 
18 697 387.7±43 0.56 393.5::t41 
19 705 349.7±43 0.50 354.4::t42 
20 638 313.8±42 0.49 319.1±41 
21 804 431.9::t45 0.54 43B.2::t43 
22 669 71.9±46 0.11 73.3±46 
23 635 216.9±44 0.34 220.0±43 
24 452 221. 6±39 0.49 225.0±37 
25 405 223.2±38 0.55 227. 2±36 
26 392 222.7±39 o. 57 226.5±36 
27 370 197 .1±38 0.53 200.2±35 
28 411 238.6±36 o.sa 242. 7±36 

Right Side of 8316 37 37. 3±156 0.449 3794.4±152 D·.p. 

Whole Dalitz 15583 7581.5±217 0.486 7698.2±209 Plot 
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TABLE III 

Monte Carlo Results: Chamber Efficiency for w ~ 2rr 

and w ~ 3rr vs w Spin Alignment 

w Spin 
Alignment 

a 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

l. 0 

Chamber Efficiency (xl0- 2 ) 

4.350±0.02 2.816±0.013 

4.197 2. 7 50 

4.020 2. 67 3 

3.815 2.584 

3.571 2. 478 

3.280 2.351 

2.924 2.197 

2. 478 2.003 

1. 907 l. 7 53 

1.145 1.421 

0.0798 0.955 

0.6474±0.004 

0.6552 

0.6649 

0.6773 

0.6939 

0.7170 

0.7513 

0.8080 

0.9196 

1.2410 

11. 962 
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TABLE IV 

Table of Mass Spectrum Distribution 

Description 

p Breit Wigner 
m = 760 MeV 
rP =120 MeV 

pO 

Function 

m r 

(m2-m 2) 2+m 2r 2 
p p p 

where 3 
rp=rp 0 (~) : and 

0 p 
q=momentum of rr in 

2rr rest frame. 

BW 
2

\ F 1
2 

p w w Breit 
Wigner Mixing 

Term 
BW 2 1 

BW 
2

ReF p w 

m =783.4 MeV 
rw=l2. 2 MeV 

w 

Real part of w 
Breit Wigner 
Amplitude 

*-N Background 
isotropic Decay 

Term 

p ( 2 2) 2+ 2 2 m -m m f' w w w 

F( 9 } is production 
angle distribution 

Integral over 
Mass Spectrum 

IRHO= 0.5606 

-10 
IOMEGA= 7.18xl0 

4 
IBG =2.937xl0 

flat 

fit to Legendre Poly- 27 nomials of Banner et al 

BG 2 cos 

BG cos sin 

2 cos e 
n 

Decay Term 

cos 9 sine 
n n 

Decay Term 

2 
BGflatcos en 

I\ 
cos e =(p ) 

n -n z 
in rr - rest frame 

3 
IBG =7.446xl0 

cos2 

1 BG . = 
cos sin 

l.1439xl04 
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TABLE V 

Study of Systematic Errors Due to p Parameters 

Branching Ratio Mixing Parameter - o' 
(x10- 2 ) (MeV) 

m rP ¢=+ ¢=- ¢=+ (j)=-p 
MeV MeV incoh. rr/2 rr/2 ¢=rr incoh. rr/2 rr/2 ¢=rr 
----

7 55 105 l. 53 11.6 0.201 l. 7 3 2.51 6.93 0.91 2.66 
±.81 ±1. 5 ±.200 ±.82 +.60 +.43 +. 37 +. 57 

-.80 -.46 -.85 - . 7 3 

7 55 125 l. 71 13. 0 0.225 l. 87 2.83 7.80 l. 02 2.95 
±.80 ±1. 6 ±.197 ±.80 +.60 +.46 +.38 +. 58 

- . 7 6 -.49 -.66 -.72 

7 55 145 l. 91 14.6 0.250 2.00 3.16 8.72 1.14 3.23 
±. 79 ±1. 7 ±.195 ±. 79 +.60 +.51 +. 38 +.59 

- . 74 -.54 -.60 -.72 

7 65 105 0.27 11.4 0.007 0.96 0.98 6.34 0.15 l. 84 
±.89 ±1. 5 ±.042 ±.93 +l.04 +.41 +.26 +. 7 4 

-.98 -.44 -.15 -1.49 

765 125 0.64 12.8 0.032 l. 22 l. 62 7.24 0. 36 2.23 
±.86 ±1. 6 ±.084 ±.88 +.85 +.45 +.33 +. 70 

-1.62 -.47 -.36 -1. 06 

765 145 0.97 14.2 0.067 l. 43 2.13 8.14 0.56 2.58 
±.83 ±1. 7 ± ,, 111 ±.85 +.77 +.48 +.35 +.68 

-1. 32 -.51 -.56 -.93 

* 775 105 -1.16 11.6 0.115 0.26 
* 

5.98 0.60 0.90 
±1. 03 ±1. 7 ±.212 ±1.11 +.42 +.41 +l.16 

-.45 -.60 -.90 

* 775 125 -0.55 13.l 0.023 0.59 
* 

6.92 0.29 1. 47 
±0.96 ±1. 7 ±.082 ±1. 02 +.44 +.33 +.96 

-.47 -.29 -1.47 
---

* 775 145 -0.05 14.4 0.0002 0.87 
* 

7.81 0.027 1. 92 
±.91 ±1. 8 ±.0062 ±.95 +.48 +.14 +.80 

-.51 -.27 - 1. 92 

* A negative branching ratio for the incoherent cas e indicates 
a small negative effect near the w mass. 



Fig. l 

Fig. 2 

Fig. 3 

Fig. 4 

Fig. 5 

Fig_. 6 

Fig. 7 

Fig. 8 

Fig. 9 

Fig. 10 

Fig. 11 

Fig. 12 

Fig. 13 

Fig. 14 

Fig. 15 

-98-

FIGURE CAPTIONS 

Beam transport system. 

Location of spark chambers in magnet. Left: 

looking upstream. Right: looking downstream. 

Over~ll view of experiment. 

Photograph of spark chambers. 

Schematic layout of a typical spark chamber 

Corrected time of flight spectrum for events 

- + - 0 corresponding to the reaction rr p ~ rr rr rr n. 

Schematic drawing of experiment showing distances 

involved in time of flight correction and neutron 

momentum reconstruction. 

T and DT distributions for the inner chamber 
p 

of quadrant 1. 

Histograms of DZ for 3 different regions of e and p~. 

Histograms of vertex separation: a) s . b) 
x' 

s . 
y' 

c) and d) s
2 

for different ranges of cos 8 for 2rrn 

final state events. 

Schematic drawing of liquid hydrogen target and 

enclosure showing obstructions and limits on V . z 

Histogram of My2 ' missing mass squared of y in 

+ -rr p rr rr y, for events that went into quadrants 1, 3. 

Histograms of Mx
2

' missing mass squared of x in 

-rr p + -rr rr xn. Above: preliminary 3rrn final state 

events. Below: preliminary 2rrn final state events. 

Histograms of 6E=Eb +Et t-E -E +-E . Above: earn arge n rr rr-

pre l iminary 3rrn events. Below: preliminary 2rrn events. 

Comparisons , of Monte Carlo predictions of resolution 



Fig. 16 

Fig. 17 

Fig. 18 

Fig. 19 

Fig. 20 

Fig. 21 

Fig. 22 

Fig. 23 

Fig. 24 

Fig. 25 
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functions with 2rrn data. Monte Carlo functions are 

drawn as solid curves, data as histograms. 

2 
a) DZ; b) 6E; c) 6m · OCH= 0.037 cm. oTOF= 0.78 nsec. 

+ - 0 w - ~ rr rr Dalitz plot showing 28 regions used for 

matrix element analysis and background subtraction. 

Corrected time of flight histograms for 3rr events 

in a) Region l; b) Region 4; c) Region 7; d) Region 9. 

Matrix element of w - 3rr data (background corrected) 

2 vs q . 

Search for p dominance in matrix element of background 

corrected w - 3rr data. Plots of matrix element/q
2 

(see text) vs a) b)m 
0

, c) m + _. rr- rr rr rr 

Production and decay state vectors for measurement 

of w polarization. Above: lab frame. Below: center 

of mass of pions. 

lab Background corrected distribution of q , for w - 31T z 

events. Solid curve is best fit to Monte Carlo 

distributions with 0 s a s 1. 

Histogram of 2rr mass for rrrrn data. Solid curve is 

pure phase space including experimental efficiency. 

Data/Monte Carlo vs m. Best f i ts to Eqs. ( 30) and 

(33) are shown a s solid curves. 

Histogram of momentum transfer for rr n events. 

Histograms of a) M _ and b) M + for rrITTl events. rr n Tr n 

Curves show Monte Carlo predictions for pure phase 

*-space and N production at Mrr_n = 1236 (1=120) 

including efficiency. 



Fig. 26 

Fig. 27 

Fig. 28 

Fig. 29 

Fig. 30 

Fig. 31 

Fig. 32 

-100-

A J'\ 
Efficiency corrected data vs cose = P · P. 

c - Tr-n -inc 

Points with error bars are data from this experiment. 

Solid cuLve shows Legendre polynomial fit by Banner 

et al to data taken at P. = 1000 MeV/c. inc 

Monte Carlo generated functions vs 2Tr mass for 

various dynamical assumptions defined in Table IV. 

Dalitz plot of MTr_n
2 

vs m
2 

(in units of ~* 2=1236 2Mev2 

2 2 2 and mw = 783.4 MeV , respectively) for efficiency 

corrected TrTrn data. 

* Data/Monte Carlo vs m with N cuts. 

MeV; b) MTr_n > 1360 MeV. 

a) M > 1300 Tr-n 

Data corrected for efficiency vs 2Tr rest frame decay 

angle e for 4 regions of m. 

Data/Monte Carlo vs m for 4 regions of 2Tr rest frame 

decay angle e. 

Phase space plot of m vs momentum transfer for TrTrn 

data. 
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