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ABSTRACT
We have searched for evidence of w - v+n” in a sample
of 9696 T p - W+W_n events taken at a beam momentum of 1245
MeV/c. We have measured the branching ratio, B = Nw*Zv/

N

T for a series of assumptions of p-w coherence and

relative phase angle, ¢. The results set upper limits at
the 90% confidence level of B < 2.9% for incoherence,

B < 17.9% for coherence and destructive interference

(¢ = + g), B < 0.51% for constructive interference (¢ =
g), and B < 3.0% for ¢ = m. We have also measured the

Dalitz plot asymmetry of an accompanying sample of about

°h to be A = -0.014 =+

7600 w - 7 7 7° events in T p - T
0.028. The non-resonant background was subtracted from these
data in 28 independent Dalitz plot regions. The Dalitz plot
distribution of the w events agrees very well with the simplest
matrix element for a JP = 1 particle and shows no evidence

of any rho dominance effects.






I. INTRODUCTION

The possibility that omega decays to two pions was
suggested first by Glashow in 1961l shortly after the
vector meson was first observed by Maglic et al.2 Omega
was observed to decay heavily to 37 through the strong
interactions and so its G parity3 was known to be negative
at a very early stage. A decay to 27 would violate G parity
and isotopic spin and would be forbidden under the strong
interactions. But it was quickly noticed by Glashowl and
Nambu and Sakurai4 and Feinberg,5 and others that the mass
of the w (mw = 783.4 MeV, Ty = 12.2 MeV) was very close to
the mass of another new vector meson, the p (mp = 765 MeV,
Tpo = 125 MeV). In fact, p is so wide that the narrow w
would sit right on top of the p if it decayed to 2w. These
theorists suggested that since the only essential quantum
number difference between p and w is G parity or I spin, the
electromagnetic interaction cannot distinguish between the
two particles and electromagnetic transitions between p and
w are allowed and likely. They suggested that this would
raise the likelihood of w - 27 significantly.

Many searches for evidence of w in the 27 mass spectrum
were made. The first significant statistical sample was
obtained when Lthens and Steinberger compiled all the early
results.6 These authors were aware of the p-w interference
problem (to be discussed shortly), and of the fact that when

they cited upper limits on the branching ratio




B = Nw*ZW/Nw43W

based on the compilations, these upper limits depended on
the assumptions made about coherence of p and w production.
Their result, assuming complete incoherence, was B < 0.008
with 90% confidence.

In 1966, Flatte et al reported evidence of a possible
w — 27 effect in a new high statistics sample observed in
the single reaction7

Kp -~ Aw .
Their recently8 revised conclusion is that B > 0.002 but
that no upper limit may be set without assumptions about
coherence.

In this experiment, we search for evidence of w - 27 in
T p - v+v_n. Before describing this experiment and citing
other recent results on theAsubject, we will prepare a
theoretical framework for the experimental analysis of later
sections. The various historical approaches to the problem
of w - 27 can be shown to be essentially equivalent.9 We
will follow here the w-p mass mixing scheme which shows the

equivalence of this problem with the K system. This

1%2
approach was first used (for the w-p problem) by Bernstein
ghdl Fainbarg in 1963701
A. Theory of w-p Mixing
When dealing with the K;-K, problem, one is interested

in the time development of a given combination of Ky and Ro'

For this reason, the mixing is dealt with by starting with a



set of coupled Schroedinger equations that connect the two

= i all
K and aK , and a other

available states. The problem may be treated in a way similar

states of interest, amplitudes a

; . . 11
to that used by Wigner and Weisskopf for atomic states Tt

one first assumes an exponential time dependence for ag and
ag evt, and then, in sums over the energy of connecting states,

neglects the widths of the states compared with their energies.

The problem is thus reduced to a two dimensional eigenvalue

equation,
a a :

M K = 'v( K (1)

AN 2R
where T

m,+i 2—1 —612
M = T
= | - m,+i ==
21 2 2

The elements of M, which we will call the mass matrix, are
related to the elements of the Hamiltonian which connect the
states 1 and 2 to the continuum of states. The eigenvalue
equation may be solved to obtain the time dependence in the
problem. In this experiment, however, we are deaiing with
particles of such short lifetime that we have no experimental
interest in the actual time dependence. Rather we wish to know
the form of the energy spectrum of the two pions which contains
all the experimentally available information on the problem.
Following Bernstein and Feinberglo, we could obtain the energy
dependence as the Fourier transform of the time dependence.

Another approach is to start with a propagator equation for




the 27 production amplitude. The propagator is just the

Fourier transform of the Green's function of the relativistic

Schroedinger equation (P2 1 —‘EZ)Y = 0, where the four momentum
operator P = PW+ + Pv- and 1 is the unit matrix. In this way,

we may include in the 27 production amplitude the p and w
production amplitudes,

= =(Ap) _ <pn|H| 7 p>

A, <gn|H| T p>

and the transition probabilities of p and w to 2w,
Tt <2W\H'\p>

=-() - (

- T, <27|H' |w>
The prime on H' indicates that T includes all possible tran-
sitions except those that involve transitions connecting w
and p which will be included in the mass matrix.

We consider [p> and lw>vto be eigenstates of G parity
with eigenvalues Gp = 1 and G, = -1. Then <2v\HST|w> = 0, so
that the only non-zero part of T comes from <2W|Hy'\w>, where
Hy' represehts isospin violating transitions (presumably second
order electromagnetic) that do not involve p. If present
theoretical understanding of such terms is correct, they will
be so small that within the available experimental sensitivity
it is reasonable to assume TUU is negligible. Then the possibility
of w - 27 comes from the small electromagnetic mixing term, 5§,

of the w-p mass matrix

T
M - m -i 3P— =5
-5 Mw -5 mw—l >

v
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(The fact that 6wp = 6pw = § 1s a consequence of CPT invariance.g)
One must note that there are no absolute grounds for assuming
Tw = 0. As Gourdin, Stodolsky and Renard suggest,l2 it may
turn out to be necessary to set q” # 0 in order to understand
experimental results. For this reason, in what follows we
will assume T, # 0.

A and E:are functions of phase space variables like
momentum transfer and decay angle in the rest frame, as well
as of spin variables. In the subsequent analysis, we will
assume A and‘z to be averaged over the spin states and the
small region of phase space accepted by the experiment. This
will introduce some degree of incoherence into the results
and reduce the size of any w-p interference effect. For the
time being, however, we will ignore this problem.

In terms of A, E& and M, we may write the propagator
equation for the amplitude, Y, bf the reaction 7 p - 7 n

proceeding through p or w a59

1

¥ = ——s—= A (3)
where m is the 27 invariant mass.
After inverting the propagator matrix and carrying out
the multiplication, we find for the amplitude squared
2 2 2 2 % 2
, A 1%t la, | 1T | A a,lT |
]2 Pt e ¥ Bie| ey g
| m M | | m -M | (m“-M ) (m M )
(4)

where



(mw+m ) _ EE
a, =~ A, ?;Ejggf)[6(l+BAp/Aw)+ﬁ(mw_mp+l 5 )] (4a)
p

with B = T@/Tp. The details of the algebra that lead up to
Egs. (4) and (5) may be found in Appendix I. With obvious

justification, it is assumed here that 62 << Mp2 or Mm2, and

that the widths may be neglected in (Mw+ Mp)' Note that a,
(the amplitude of the w - 27 effect) is a slowly varying
function of m, and that the numerator of a, in Eg. (4a) has
been evaluated at m = m In Eg. (4), the squared denominators
are just the Breit-Wigner quadratic denominators. For example,
2|2 2 2y 2 2. 2

p

~ (m“=m_“)" + m_ T .
( p

\m2—M
PP

Using Eg. (4) we may obtain the experimental distribution

of 27 events, NZW(m), by integrating lY[z over the 27n phase

space. After integrating over the neutron variables we havel3
2 _ 2 ' q 2
N, (m)dm™ = nf‘Y] QZW(m,9)¢(m)4m2W dcos6 dm . (5)

Here e2v(m,6) is the experimental efficiency function of m

and the 27 center of mass angle €, n is a normalization constant,
and g is the momentum of either pion in the 27 rest frame.

¢ (m) is the phase space function of m that results from the
integration over the neutron variables. Carrying out the

integral in Eqg. (5), we write sz(m) in a general form useful

for fitting:
2

_ 22 2 2 2 2
N, (m) = [lAp\ BW +\aw(m M, ) | BW le‘
* 2 oy Bt P * 2 2
+2|Ap a,, (m"-M_ )lcosgbBWp Rer+2‘Ap a, (m —Mp)\
sing BWDZIme+ Background]ezv(m)¢(m) (6)

Here 2

P = arg(Ap*aw(mz—Mp )) (7 a)



is the relative phase of the p - 27 amplitude and aw(mZ—Mp2).

The function €2W(m) is the efficiency averaged over cosf.

In this equation, we use Jackson's form of the p Breit-Wigner

amplitude squared.l3 We have
12

2 f | T q mpfp '
= p - -
BW =~ =n 2mdcosf = n (7b)

o '|m2—M 2|2 4m (m2—m 2)2+m 2T 2
since

1 2 g 3
m) = — T = = gy i
T, (m n RN am 2mdeosd =T (L) O
o p

where d, = 4 when m = mp. Fw is the Breit-Wigner amplitude
function for w in the 27 spectrum:

rj?2=—1-—~ :

w 2 272 2 252 2_ 217
- — +
|m“-m “| (m”-m ) m, T,
2, 2 2. 1 2
= — + =

ReF iFw\ (m%-m “+ Z T, )
and 2 :

ImF, = —\Fw\ (m ) - (7¢)

The w production amplitude, Ay, may be determined in
- . ' + - .
this experiment from a large sample of w - 37 in 7T 7 m°n final
state events. Corresponding to Eg. (6) for 2m, we have for

the distribution of events in the 37 mass spectrum

Ny (m) = [\Aw|2BWw2+ Background]€3w(m)¢(m) (8)

where e3w(m) -4 €2W(m) is the efficiency function for the 37
events. Here a 3mn phase space has been integrated to get

Eg. (8), and €3 (m) is averaged over the Dalitz plot.

-
waz has the same form as Iﬂ%z of Bg. (6):

2 2

2 _ | Tyagyl TTTAB AR, . Myl =37 (aa)
nf 2 T 2 2 2.2 2. 2

\m | (m“—m °)“4m T
w w w




with the partial width assumed to be Fw~3w = 0.9 Tw' (see Ref. 30)

and the same normalization constant as in Eg. (7b).
Integrating over the various terms of Egs. (6) and (8)
allows us to relate the p and w amplitudes to the number of
p and w experimentally observed in the 27 and 37 spectra.
These integrations were carried out with Monte Carlo techniques
that included the experimental efficiencies. The details of
" the calculations are discussed in Appendix I. We find
l2

|a = 2.193 N 5. (9a)

w
|2,

2
\ 1.775 N, on (9b)

In a later section we shall see that in this experiment,

N /N ~ 0.38. Thus, |A |/|A | ~ 0.56. This combined with
o’ Tw-3T 0 w

an estimate of the upper limit of B justifies dropping the BAp/
A, term of Eq. (4a) for a,- To see this we relate B to the

branching ratio B = rw~2v/r , remembering that the direct

w31

w - 27 transition (Tw) contributes only a small part of the

1

w 27 rate:

o /2 _ 1/2 1/2
B = Tyar/ Ty = Tyoar/Ty) = (BL_3,/T )" ~ (8/10) .

If we assume B < 10% with considerable justification then
BAp/AUJ € 0.56. Thus with an error that must be considerably

less than 6%, we may drop this term leaving
+ + — +3i
(m mp)(é B(m, mp) i FQ/Z)

2

a = A
2
(m™=M
" )

W w

(m +m )& (4a')
~p ® 0
W 2 2

(m —Mp )

where §' = § + (mw—mp+ _P)YB. Given the possibility that & is
2

very small, which has not been ruled out experimentally,



there is no justification for neglecting B at this stage.

And b8' not & is the physical parameter measured by experiments
studying w - 27.

l2

Just as we did for Aw and Ap, we can relate |aw to

N

2T which is the experimental number of events corresponding

to the second term of Eg. (6). Nyoor is the number of w - 27
events not including the interference effects. Knowing the
magnitude of a, from the number of w events in the 27 spectrum
and the magnitude of Aw from the number of w in the 37 spectrum,

we can determine the magnitude of §' in the experiment by

solving Eq. (4a'):

; 1/2
€, (m ) N
|6'] = 20.2 ¢ 3”(m‘”) = il = 20.2 BY? Mev. (9¢)
2m W' Tw-3T
Here B is the branching ratio, B = erZW/de3W, and as

discussed later the ratio of experimental efficiencies is
determined using a Monte Carlo calculation.

As is evident from Eg. (7c¢), Im f, is experimentally
indistinguishable from |Fw‘2’ so that in practice we are forced
to combine the fourth and second terms of Eg. (6). Thus the

2
|

coefficient of BW F@lz in Eg. (6) is

2 2,12 L3 2 2 :
law(m —Mp ) | —ZmWTwlAp aw(m —Mp )| sing . (10)

Since the second term of this céefficient may clearly be
either positive or negative, the fact that experimentally the
whole coefficient turns out to be zero does not necessarily
imply that a, = 0. This was pointed out as long ago as 1964

: : 6
by Lutjens and Steinberger, and has been the source of much

difficulty in efforts to understand what really is going on



~1—

with respect to w - 27. The problem is compounded by the fact
that we have no way of really knowing how valid is the complete
coherence of w and p in the 27 mass spectrum that is implied
by Eq. (4) or (6). The complete coherence of these equations
is clearly valid for that impossible situation where all events
come from the same point in phase space. But for real experiments
in which events come from a finite range of momentum transfer,
for example, some degree of incoherence will creep in, and
the size of the interference terms will be reduced. - This will
happen since the relative phase, ¢, may vary over the phase
space accepted by the experiment. Then cos¢ and sing in the
third and fourth terms of Eg. (6) must be averaged over the
range of phase space variables. This can only reduce the
magnitudes of these terms.

The degree of coherencé may be parameterized by multiplying
the two interference terms of Eqg.(6) by the variable c. For
complete coherence c=1, and for total incoherence c¢=0.

Taking this into account the experimentally measurable distri-

bution (Eqg. (6)), becomes in practice:
N, (m)= [a,BwW 2+a BW 2\F |2+a BW 2ReF +Background]¢ (m) €, (m) (11)
21 17" 277p W 377p T 2T !

where >

a) = |a|

_ 2 2y (2 x 2 2 ;
a, = law(m -M ) | —2cmwfw\Ap a, (m —Mp ) | sing
a, = 2c|A *a (m%-M 2)|cos¢ . (1la)
3 P W P

Theoretical efforts to predict the rate of w~2v12’l4'15

are aimed in two directions: the magnitude and phase of %,



and the relative production amplitude phase, ¢. With knowledge
of these quantities, the magnitude and shape of the w - 27
effect may be predicted.

By limiting the region of momentum transfer in their
experiment, G. Goldhaber et al were able to observe a negative

interference dip at the w mass,l6 clear evidence that their

data was at least partially coherent and that %, < 0 and ¢ =~ %.
That experiment studied the 27 spectrum in the reaction

+ + - ++

Tp =TT A , (12)

and the theorists, A. Goldhaber et al, have predicted that if

negative interference is observed in reaction (12) with ¢ =~ % .

then positive interference should be observed in our reaction,
— + _
Tp —= T Tn
. T 14 ’ .
with ¢ ~ - 5 Their calculations assume a momentum transfer
considerably smaller than that of this experiment. However,
as we will see later, if this phase is assumed for our data,
it provides a very strong restriction on the result.
Recently, evidence for a positive p-w interference peak,
¢ ~ - /2, was reported by a French group for the clashing
beam reactionl7
+ - + -
ee - T T .
A. Goldhaber et al predict ¢ ~ 7 for this reaction,l4 which
has been studied independently by Gourdin, Stodolsky and
Renard12 who also find the clashing beam resultsl7 in

contradiction with their expectations that ¢ ~ 7.

The subject definitely is not closed, and in the
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following sections, we describe still another experiment
- studying the ephemeral decay of omega to 2.
IT. EXPERIMENTAL APPARATUS AND RUNNING PROCEDURE

In this experiment, omegas were detected in the reaction
T p - wn. The three pion decay mode was studied in

T p — 7 7 7%n ' (13)
and the search for effects of w in the two pion spectrum was
made in the reaction

T p - 7 . (14)
The experiment was run at the Brookhaven AGS in 1967 using
equipment designed for a study of the charged decays of the
n- The apparatus and running prccedure for that experiment
are described in detail in the Ph.D. dissertation of Stephen
Stein.l8 Essentially no changes were made to the apparatus
for the w experiment.

A beam of negative pions at a momentum of 1245 MeV/c #*
3/4% was produced by circulating protons inside the AGS incident
on a 0.050 in. Be wire and defined by a beam transport system
that included two electrostatic séparators (Fig. 1). A beam
spot of about 1 in. diameter was focused on the end of a
2 in. diameter by 1 ft cylindrical liquid hydrogen target.
An incident pion on target was defined electronically by
the coincidence of signals from four small scintillation
counters (TlT2T3T4) that formed a telescope af the end of the
beam line after the last bending magnet. T, was placed
directly in front of the target and was 1.25 in. in diameter.

A fifth counter Ty was placed immediately behind the target,
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and the anti-coincidence of T5 with a coincidence in the
telescope provided a signal (called pi-disappearance) that
indicated a pion interaction inside the hydrogen target.

The target was suspended in the well of a U-shaped
array of nine spark chambers, three in each of three quadrants
(left side, right side, and bottom). This array of chambers
was itself suspended inside a large magnet as shown in Fig. 2.
During this experiment, the magnitude of the B-field within
the magnet was about 6.9 kG. The direction of the field was
the same as that of the beam so that the beam was not affected
by the field. However, the charged pions of Reactions 13 and
14 coming out in general transverse to the beam did have their
trajectories curved by the field. This curvature, and thus
the momenta of the pions, was measured by the spark chambers.
But before a commitment was made to fire the spark chambers
and invest about 20 msec of deadtime, it was necessary to know
whether two charged pions had actually passed through two
different spark chamber quadrants. This information was
determined very rapidly from signals from three pairs of
overlapping counters directly behind the outermost spark
chamber in each quadrant. If two (and only two) of these
so-called "logic counters" signalled in different quadrants
and no signals came from a variety of anti-counters placed
at other points surrounding the magnet, the decay pion require-
ments were assumed to be satisfied.

The charged pions in the beam that did not interact in

the target were swept to one side by a wide gap bending magnet



.

immediately following the analyzing magnet. This beam, after
passing through a large helium bag (in order to reduce scattering
that might confuse the neutron detection), was dumped in a

wall of concrete. The neutrons resulting from reaction 13 or
14 in the target were detected by a bank of nine neutron
detectors about thirty feet away from target. These nine
detectors, each a 2 ft cube of liquid scintillator, were
arranged in three rows of three. An overall view of the
experiment is shown in Figs. 3 and 4. Directly in front of
each liquid counter was a charged particle counter which was
used in anti-coincidence with the liquid counters to indicate
the presence of a neutral particle. The spark chamber trigger
requirement from the neutron counters was the presence of one
and only one neutral particle arriving in a specified time gate.
The clock for this time was 'started when a beam particle went
through T3 and was stopped at a pulse from the neutron counters.
If there was a "pi-disappearance" signal, this clock measured
the time of flight (TOF) of the neutron from the target to

the neutron counters. The time of flight gate was adjusted

so that it included the unique time of flight of a neutron
scattering off an w in the reaction m p - wn. The gate

opened about 4 nsec before this w TOF and remained open about

10 nsec. A very clear peak can be seen in the W+F—Won final
state events at the w TOF. After corrections (which will be
discussed in detail later) were made for the location of the
interaction vertex and for the delay in the detectors correlated

with pulse height, a Gaussian fit to the w peak in the TOF
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spectrum gave a width of 0.839 + 0.016 nsec. Part of this
width is due to the intrinsic w width. If this is removed,
one finds that the timing resolution is 0.78 + 0.02 nsec.
This excellent resolution enables one to use the neutron TOF
information in studying the two pion mass spectrum in Reaction
14 as we shall see later. The mass resolution in this spectrum
was determined, using a Monte Carlo technique, to have a half
width of about 13 MeVv.

Summarized below are the requirements that had to be
satisfied before the fast logic fired the spark chambers:

pi disappearance -- (T1T2T3T4)T5

logic counters -- 2 logic counters in 2 different

quadrants and no antis

neutron counters -- 1 neutron counter and no anti
neutron time of flight -- within 10 nsec gate surrounding
w TOF.

If all these requirements were satisfied, a high voltage pulse
was applied to the spark chambers. During the w experiment,
the chambers were fired about five times per AGS beam spill.
The spills lasted about 400 msec and were repeated every

2.4 sec.

In order to handle the large amount of data, it was
necessary to use some kind of automated spark chamber system.
Sonic techniques which work reliably inside a magnetic field
were used in the experiment. Within each chamber a set of
four microphones, one at each corner, sensed the sound wave

produced by a spark. The time when the sound of the spark
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reached each microphone was digitized and transmitted to an
IBM 360/30 computer on line. The computer also received the
neutron time of flight and information indicating which logic
and neutron counters were hit. All this information was writtel
on magnetic tape from which the data were later reconstructed
and analyzed on the Nevis 360/44. The on-line computer
reconstructed spark positions, calculated spark chamber
constraint guantities, maintained tables of chamber and
counter triggers, and displayed this information on a type-
writer at the request of experimenters. The displays enabled
the experimenters to monitor equipment performance and correct
malfunctions at a very early time. The computer also did a
preliminary momentum reconstruction on-line and displayed
histograms of kinematic quantities and the neutron time of
flight on an oscilloscope. These histograms provided
information on the rate of production of w in Reaction 13

and on the kinematic cleanliness of the data being taken.

An alarm system independent of the computer sounded when the
spark chamber pulser fired without a trigger from the fast
logic. This provided early warning of pulser failure.

The quality of the beam was monitored without help from
the computer by routine checks of the ratio of certain rates
in the beam telescope. For example, the ratio of (T;T,T,T,)/
(T1T2T3) indicated how well the beam was focused on the target.
If these checks indicated a problem in the beam, the beam
tuning was touched up in the beam trailer or the AGS control

was requested to replace the Be target.



Reversing the magnetic field in the analyzing magnet has
the effect of cancelling out asymmetrical biases in the geometry.
Reversing the spark chamber electric field reverses the
direction of drift of ions between the chamber plates and
reverses the direction of the E x B drift that can bias the
momentum measurement. Removing the magnetic field entirely
allows a later study of straight line tracks to determine
the relative position of the spark chambers. Taking all these
factors into consideration, the running procedure called for
the following schedule: Every two hours the magnetic field
in both the analyzing and sweeping magnets was reversed;
every four hours the electric field was reversed; and every

ten hours the magnetic field was turned off for a two hour run.

ITT. RECONSTRUCTION AND EVENT DEFINITION
A. Sonic Determination of Spark Position
The sonic spark chambers used in this experiment each

consisted of a pair of 1 mil aluminum foil plates separated
by a gap of 1/4 in. with four ceramic cylindrical microphones
near the corners. A test spark device made of two needles
with a small gap was accurately positioned near one edge
of the chamber. A schematic layout of a typical chamber is
shown in Fig. 5. The nine spark chambers were contained in
a large air tight vacuum box through which a gas mixture of
90% neon 10% helium was slowly circulated so that the gas

temperature was nearly the same in different chambers.
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The propagation of sound in the close vicinity of such
cataclysmic events as sparks in spark chambers and atomic
bomb explosions is known to be non-linear because of the
initial shock wave. The effects of this non-linearity can
be accounted for in the linear region away from the spark
by a constant shift in the time scale, Ep{ In terms of t
and the velocity of sound in the gas V, the distance d from
the spark at a measured time tm is

d =v(t + t ) =Vt
m P

where t = tm + tp' Referring to Fig. 5, it is easy to

compute the spark coordinates u and z in terms of the sonic

times t, measured at each microohone (including the tp factor) :
2

_V 5 2 2 2

u = §g (t3 —-tl +t4 —t2 )
2 (15)

_ VvV 2 2 2 2

== % (t2 —tl +t4 -—t3 )

It remains to determine V and tp for each chamber. If
di represents the distance from the test spark to micronhone
i, then the velocity may be determined from test spark events.
Using microphones 1 and 3 for example, we have
o o

v = =3 )
Bty

Note that this result is independent of the shock wave factor
tp. The test spark in each chamber was fired five times every
256 AGS pulses. The velocity calculated from these'test

spark firings (typically V ~ 0.047 cm/lLsec) was averaged

for each data taking run of one to two hours. Run to run

changes in V due to temperature changes were taken into account

-



o

-

in the reconstruction using these numbers. However, the test
spark velocities in different chambers differed from each
other and from an optical calibration by a small constant
amount. A better understanding of V and a determination of
tp can be made on an event by event basis using the extra
information available from the four microphones in each
chamber which over-determines the spark coordinates. Details
of this method and its relation to the test spark velocities
along with a discussion of corrections for sparks occurring
near a microphone have been described by Stephen Stein in

Ref. 18. Using these techniques, the parameter tp was

determined for each event and the coordinates u and z calculated

according to Eqg. (15). Also computed was the constraint
quantity

DT = t,°~t, %t 2+,
which may be used to eliminate double spark events and
chamber malfunctions. Note that DT is proportional to the
difference in the coordinate u or z as determined by adjacent
pairs of microphones. Normally DT should be zero.

B. Magnetic Field Map

The pion momentum reconstruction technigue which will
be described in the next section requires a point by point
knowledge of the magnetic field in the analyzing magnet.
A mapping of the field was carried out at irregular spacing
of about 3 in. in the x and y directions and 2 in. in the z

directions using a Hall probe.20 (The coordinate directions

are shown in Fig. 2.) Measurements were made of the three
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field components. The data was corrected for the fact that
the probe axis of sensitivity was not actually in the precise
direction it was supposed to be. The axis was determined by
enclosing the probe in a carefully machined 4 in. cube and
taking measurements at the same place in the field but with
the cube in a series of different orientafions. With the axis
known, one can effectively rotate the data so that one gets
the three components wanted.

Using a three dimensional quadratic interpolation technique,
the measured data points were convertéd into a new set of points,
at a more convenient regular 2 in. spacing in all directions.
Small measuring errors in the data points are enormously
magnified when one takes differences of nearby points in
order to calculate the first and second derivatives that are
needed by the reconstruction program. It is therefore
necessary to smooth the data in some manner. The method
chosen was to fit the interpolated data to a hypothetical

field function‘E‘that satisfies Maxwell's equation:

Bi(E) = E Ay (£:6,9)
where
H =9 (rzy (é¢)) i=1,2,3
fmi  dr; gm ! e

The derivatives of the harmonic polynomials, H,ni+ are
solutions of Maxwell's equations sincevthe harmonic polynomials
are solutions of V2¢ = 0 and B =Yg, and these two equations
are equivalent to the magnetic field Maxwell's equations in a

region of no magnetic sources or changing electric field.



The hypofhesis therefore constrains the data to the
requirements of Maxwell's equations.

The estimated measurement errors for the three different
field components used in the fit were O, = 50 G, Gy = 40 G,
and o, = 15 G. Since.the major component of ELis in the =z
direction, a slight rotation of the probe when measuring the
other two components will cause a large error. This is why
O and oy are larger than a,, As a result of a circular
hole in both pole pieces, through which the beam passed,
the magnitude of the field, scanned across the x or y
direction, had a dip in the center as well as the two sides.
It was thus necessary to use térms up to sixth order in the
fit. Using all 63 polynomials up to sixth order, we were
able to get a good fit with a X2 = 5343 for 3988 degrees of
freedom. The original plan was to select a subset of the
63 polynomials that would provide an adequate fit and allow
rapid access to the magnetic field at any point in the
reconstruction program. It turned out to be possible to pick
25 out of the 63 polynomials of sixth order or less and fit
to them without significantly increasing the XZ. (For 4026
degrees of freedom, X2 = 5879 for the 25 polynomial fit.)
However, it turned out that this method of accessing the
field data would be very time consuming since the reconstruction
program requires a variety of derivatives of the field. These
derivatives are obtained automatically during interpolation.
So the method of storing and accessing the field that we

used was first to set up a table of smoothed field points
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at 2 in. spacing using the best fit of Maxwell polynomials

to the field. Then within the reconstruction program, a three
dimensional quadratic interpolation techniqﬁe was used to get
the field at a desired point. A one-dimensional quadratic
interpolation to determine B at point'S when we have a table
of B, at points Ss is given by2

S-S B_+B,-2B
1 371 2
—Bl) + 5 (B—Bl)(B—Bl—h)

h 2h

B = B,+(B

1 2

where h2 is the spacing of points in the table. One may

extend this to three dimensions by using the 27 points in the
table closest to the needed location (x,y,z) as follows: First,
interpolate across the 9 rows in the x direction to the value

X; usling these 9 values, interpolate down the three y coluﬁns
to the points at y; finally interpolate these 3 values in the

z direction to the point z. In the process, first and

second derivatives of the field are automatically determined
from the various differences.

During the w run at Brookhaven, the field inside the
magnet was kept constant at about 6.9 kG by monitoring a Hall
probe attached near the upstream pole piece. By extrapolating
the mapped field to this location and taking into aécount the
calibration of the Brookhaven Hall probe, it was possible to
normalize the field map to the actual field strength used
during the experiment. This normalization agreed with the

magnet excitation curves measured with still another Hall probe.
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C. Pion Momentum Reconstruction

The variation in the magnetic field in different parts
of the magnet was at the most about 7% according to the field
map described in the previous section. The reconstruction
program took this variation into account in determining the
momenta of the pions. This was done by starting with an
estimate of the momentum determined assuming a flat field
of 6.9 kG in the z direction. An imaginary particle with this
momentum was then traced through the actual field by the
program. The momentum was then corrected to compensate for
the deviations of the traced track chamber intersections from
the actual sparks. After one or at most two iterations of
this sort, the program was able to find a momentum which had
a trajectory that intersected the three sparks within very
good tolerance. In order to illustrate in detail how this
technique works, we will consider an event in quadrant 1 with
the coordinate system as defined in Fig. 2.

In a flat magnetic field pointing in the z direction,
the trajectory of a charged particle is a helix spiralling
around the field lines. Five parameters completely define
this helix: Xy Yg and r which define the center and radius
of the circle projected in the x-y plane by the helix, and
a and z which define the pitch and orientation of the helix.
We are interested in the intersection of this helix with the
three chamber planes, i = 1,2,3. Writing the nine equations
of intersection in terms of an angle € which is a measure of

the time along the trajectory we have
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X. = xXx + r coshb.

i o i

Y; = Y, *t r sind, ' (16)
z. =z + Q6. .

1 o i

These nine equations determine the eight unknowns (the five
helix parameters plus the three Si) and allow one further:
constraint on the data. By not using the z equation for the

outer chamber (i=3), we may calculate a projected value of z

in the outer chamber z . using the values of a and 6

proj 3

determined in the other equations. The difference of the
measured z coordinate in the outer chamber from zproj

Dz =2, - Z .
3 proj

(17)
should differ from zero only because of measurement error.
However, events with serious scattering in the plates of the
middle chamber will show a gross deviation from DZ = 0. DZ

may thus be used to get rid of events with bad scattering.

This will be discussed further in a later section. With a
knowledge of the five helix parameters and the magnitude of

the field, it is a simple matter to find the momentum of

the particle at any point on the trajectory r = (x,vy,2z):

P = F (y—yo)

r)I(D o‘m
lvs) o

(x—xo) (18)

Q

eB
&
where = 0.3 B MeV/cm for B in kG. The sign of the particle

charge is known from the curvature of the track and the

direction of the magnetic field.
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Before outlining the iteration procedure, we define a
number of simple quantities:

EFLATQEi) i =1,2,3 is the momentum vector at the inner

chamber (point r,) obtained assuming a flat magnetic field

of magnitude 6.9 kG in the z direction. -BFLAT&Ei) 18

a function of three spark coordinate measurements,EEi,

which are close to but not necessarily equal the real

spark position measurements. -BFLAT is determined from

the three pointsh‘r_i by the standard flat field method
described above using Egs. (16) and (18).

Bi(zf £start) is the set of three points obtained by

tracing through the mapped field a particle that starts

at r it with momentum P. The tracing technique will

be described later. hEiSpark

are the true measured
spark positions.

With these definitions, the program follows the following

spark - spark
< and Iotart - L1

iterative procedure letting._r_i
for the first iteration:

1s Calculate Lriat (&)

2. Trace through the field and get the 3 chamber inter-

sections R. =,BiQ?FlatQEi)%£start)'
3. Minimize spark 2
3 i
2 _ wel] wes]
K = & )
1= i

. o . =B s s )
allowing By -Biﬂ’ and determine R R; ‘é_ at the minimum
This minimization insures that by starting the trace

at the inner chamber, we do not force the track through

that spark in blind preference to the other two
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sparks. The errors o; used in this procedure will

be discussed later.

4. With the new values of R., calculate D. = R.—r;Spark.
wi -] W] ]
. = 4 — . - + . .
Let r; SX; -8y » and Loeart T Zstart T &y Continue

the iteration by returning to Step 1 with the new
values Of‘Ei and-fstart » Until xz changes by less
than 0.1 from one iteration to the next. The
iterative procedure is said to have failed if this
criterion is not reached after 8 interations.

Since this is a fitting method, one must consider the
guestion of what errors to attribute to the various chamber
measurements. However, it is worth noting first that the
momentum obtained from this method is extremely insensitive
to the relative errors of the three chambers. 1In tests, the
relative chamber error was allowed to vary over a large range
and there was no significant change in the momentum. (The
vertex calculation to be discussed below was affected an
observable amount by large variations in errors.) The
errors that were used were

g.” =0 + S. . (19)

Here IRES ~ 0.3 mm is a resolution error identical for all

three chambers and S, is the error introduced by multiple
1

scattering in the chamber foils. Si is computed for each
event by first calculating the quantity22

2Ze2

BB ) 4n (210 2'1/3)1: . (20)

<92> = 47N (
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With 2 = 13, this is the mean squared angle of scattering
projected on a plane for a singly charged particle‘of momentum
P and velocity P going through t mils of aluminum with N
atoms/cm>. The multiple scattering width for the middle
chamber S, is determined by multiplying <92> by the distance
traveled by the particle between the inner and middle chambers,
a quantity easily obtained in the trace procedure. For the
outer chamber scattering in the middle chamber is also
included in quadrature.

In order to trace the trajectory of a particle of given
momentum through a known varying magnetic field, the following
procedure which is based on a Taylor expansion of the
trajectory was used:

1. Starting at point g = with momentum P and

, cP
energy E calculate the velocity r = —%;.

2. Fetch the field and derivatives at the point r. (If

nri-start

this is the first iteration for this track, get the
field using the three dimensional quadratic inter-
polation described earlier. Store the relevant
numbers so that they may be fetched more rapidly on
subsequent iterations of the track.)

3. Calculate

e

I me Ex 2

T=52_(¥xB+rx (r - V)B)

S mc A ~fom, Fm p— O

. o ’ . 2
r=5_(¥xB+2r x (r - V)B+r x (r - v)°B)
. mc =i e = =l - R - -~ A~ .

using the values of B and the derivatives obtained in
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step 2. Note that m = mJyy = E is the relativistic
mass of the pion.
Calculate the coordinate position of the track after

the next step:

3 4

.o h = e
o

r 24 r

2
=r + hr + %— +

015

in:

r
w~NEewW

where h, the step size in seconds, is determined for
: 4
each step by making the last term %ng = 0.01 cm.

If the track did not cross the next chamber calculate

the new velocity
2 vee 3 .t s
r +

r = r + hr +
—nNew b -

nﬂ:
oﬂﬁ

r
and go back to 2 to take another step.

If the new track x position, x did cross the next

tx’
chamber, carry out the following iteration procedure
to determine the step size h necessary to get from

the old x position, X 19¢ to within 0.005 cm of the

chamber xC

h:
(X =Y 1.2)
Ae. ILet h = h (C_h_'}-(gl—d—) -
Xer old
2 3 4
. . h . h et h P e,
b. Calculate xtr—xold+hx+ 5 X + 3 x + > X -

c. If lxtr—xchl is still greater than 0.605 cm go
back to a and try again.
This simple technique normaliy converges after one
iteration. When the iteration is successful, calculate
the other coordinates (y,z) where the track intersects
the chamber plane. If this is the last chamber, the
trace procedure is complete. If not, calculate the

new r and go back to 2 to take another step.
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Similar tracing methods may be used to follow the two
pions back from the inner chambers to the point of closest
approach of the tracks. This point is assumed to be the
interaction vertex which should be somewhere within the
hydrogen target volume. The distance of separation at the
vertex of the reconstructed tracks is a measure of multiple
scattering errors in the first chambers and the hydrogen. Cuts
on this quantity perform a similar function as cuts on DZ
discussed earlier.

After the iteration procedure for both tracks is completed
as described above and the momenta at the two inner chambers
known, the program traces back, one track then the other,
searching for the point of closest approach. On the first
step back, the time of intersection with the hydrogen target
is determined in an iterative procedure identical to that used
in getting the intersection with a chamber. This time is
stored and later subtracted from the total time from inner
chamber to vertex to get the time spent by the pion in the
hydrogen. This time is then multiplied by

2
= B %E = 0.307 ch[Ei-zn(2.8l P2)—l]MeV/sec
x P

de
dt

where %5 is the Bethe-Bloch expression,23 to determine the
amount of energy lost by the pion in passing through the liquid
hydrogen (density p = 0.0586 gm/cm3). The pion energy is then
corrected by this amount. All other contributions to energy
loss are negligible compared to the loss in the hydrogen whicth

typically amounted to 5 MeV.
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The size of the first step back is determined by using
as an estimate the time from vertex to inner chamber using the
flat field technique to get the helix angle and multiplying
by radius/ﬁq to get time. After this first large step, a
minimization procedure is used to get the appropriate step.
size for each track in order to converge on a solution for
the point of closest approach: Let 52 be the separation -squared

of the two tracks at times tl and t2 and at positions r, and

1
Lo respectively on the two tracks. Then use the derivatives
2
as — o .
3t 2t i -k
1
2
as p—yg iy - —
3t, | "2y v i@y - x)
2
2 2
O S_ = 2(r 2 4 (r, - r ) - r.) etc.
2 pect | anl 2 -~
ot
1
as2 as2
to search for the point where = —— =0 . This is called
atl at2
the point of closest approach. (The method does not work if
one searches for the point where s = 0 since there is in

general no such point for two arbitrary helices.) The new

step sizes At, and At, are found by solving the equations

1 2
2 2 _2 2 2
ds 37 s 07s - '
0 = =2 + At, —= + At, =——
atl 1 at12 2 atlat2
2 2 2 2 2
ds 9°s d°s
0 = + At, —m—/— + At .
at2 1 atlat2 2 at22

The necessary derivatives are found easily in the trace
program. The method typically converges satisfactorily in one

iteration. This vertex technique gives results as good or
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better than flat field techniques18 when judged from distri-
butions of vertex separation. It is obviously sensitive to
the direction of the reconstructed momentum at the inner
chamber and so is somewhat sensitive to the choice of o5 in
the momenta iteration-trace procedure. The method worked
best when the errors corresponding to multiple scattering
were used (Eg. 19).

As the last step in the reconstruction of the two tracks,
the momentum at the point of closest approach was determined
using Eq. (18).

D. TOF Calibration and Neutron Reconstruction

As has already been mentioned, a clear peak in the time
of flight spectrum can be seen at the neutron time of flight
corresponding to w production. The peak is even more sharply
enhanced if kinematic cuts (of a type to be discussed in
detail later) are used to isolate events with three pions in
the final state. This peak was used to calibrate the time
of flight measurement. It was expected from previous experience
that the location of the w peak would show a éorrelation with
the neutron counter pulse height. This results from the slight
dependence on pulse height of the propagation time down the
coaxial cable connecting the neutron counters with the dis-
criminators. The data were separated into several pulse
height ranges, and for each of the nine neutron counters the

time of flight spectrum was fit to a gaussian plus a polynomial
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background. The fitted centers of the w peaks showed a linear
dependence on pulse height. For each neutron counter, a
straight line was fitted to the w peak channels, and a parameter
relating time of flight delay to pulse height was determined.
Using this information the data were corrected for the pulse
height effect and refitted to a gaussian peak plus a polynomial
background. The center of the gaussian w peak so determined
and the pulse height correction factor were used in the initial
neutron reconstruction. (In fact, after the final 37 kinematic
definitions were made (see Sec. III.G), the TOF spectrum for
each neutron counter was refit and w peak centers determined
from this final fit were used in the 27 mass spectrum analysis.
This second fit made a very small correction of about 0.1 nsec
which compares to the fit error in the gaussian center of

about 0.04 nsec in each neutron counter.) The time of flight
spectrum for all neutron counters combined and corrected for
the pulse height effect is shown in Fig. 6.

The calibration of the time of flight analyzer elec-
tronics was performed using a pulse generator and calibrated
delay lines. It was determined in this manner that one analyzer
channel corresponded to 0.2125 nsec. 1In reconstructing the
neutron momentum for a given event, we first determined the
TOF channel relative to the w channel as determined for an
average w —~ 37 event in the calibration procedure described
above. The mean vertex position in the z direction, V_ = A,

Z

for such events is not equal to zero because the geometrical
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efficiency of the spark chambers favors upstream vertices.

In fact, A -3.60 cm. Also correcting for pulse height,
we calculate TOF for each event to be

TOF = (measured channel)-(w channel)-(pulse height factor)

X (pulse height - 250) .

TOF represents the time of flight of the given event relative
to the time of a neutron in the center of the w peak coming
from the mean vertex position, A. It is now necessary to
remove the vertex dependence from TOF and correct for the
time of flight of the beam pion that is still included in TOF.

The corrected time of flight CTOF is

CTOF = TOF - (VZ~A)/5WC

where ¢ is measured in cm/channels. CTOF is the time it took
the neutron to travel from the vertex to the neutron counter
relative to an w neutron coming from the mean vertex position.
From simple kinematics, we may calculate the time TO for an w
neutron to travel from the mean vertex position to the center

of the given neutron counter (a distance DO). Then the velocity
of the neutron is simply

_ |zl
6n ~ CTOF+T
O

where r, as shown in Fig. 7, is the distance vector connecting
the actual vertex and a point (in,§n) near the center of the
neutron counter. The point (Qn,§n) is the average neutron

intersection with the particular neutron counter. This

: . . + -
point is determined from the four constraint m 7 n data by.
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projecting the missing neutron momentum vector as determined
from the pion momenta and averaging for each neutron counter.
At this stage, it is easy to finish the reconstruction of the
neutron momentum

vl nnn ‘r\

e ‘

For display purposes and the time of flight resolution
measurement, we have further corrected CTOF so that all events
appear to come from the same point eliminating a false

widening of the CTOF w peak due to the variation in vertex

position:
-l
O e
p.c

n

CTQF = CTOF +

This is the variable that is histogrammed in Fig. 6.
E. Event Selection

In this section, we will describe the selection criteria
that were applied to the data to provide a clean sample of
events for analysis. In making these cuts, care was taken
to study correlations between parametérs being cut and other
factors in order to avoid biasing the data. Each cut was
determined by studying histograms of the variable of interest
after the data had been cleaned up with a preliminary set of
cuts for the other variables.

During the data taking runs considered in this experiment,
the spark chambers were fired 144,763 times. At a very
early stage, events were eliminated in which at least one
of the six chambers did not fire in the guadrants where a

logic counter detected a particle. Also removed were events
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in which more than one neutron counter signaled and those in
which sparks reconstructed outside the chamber foils. After
these preliminary cuts, 88941 events remained.

A class of events that would anyway have failed later
cuts like DZ and vertex separation failed during reconstruction
and were removed leaving 67544 events. For example, these
included situations for which the reconstruction iteration
could not converge.

Serious failures in the sonic spark chambers such as
double sparks or falsely triggering microphones are detected
by looking at the variables DT and TP defined earlier. Neither
the width nor the center of the TP distributions showed a
dependence on such other factors as track momeﬁtum or spark
position in the chamber. On the other hand, the width of DT
in two chambers showed a significant dependence on the distance
r from the chamber center. This effect resulted from occasional
misfirings of certain microphones in these chambers. The DT
cuts for these two chambers took this r dependence into account.
The DT and TP cuts for all nine chambers are listed in Table I.
Plots of the DT and TP distributions in a typical chamber are
shown in Fig. 8. After these two cuts, 56907 events remained.

The constraint quantity DZ is designed to eliminate effects
of serious scattering. The dependence of the width of DZ
distributions on the multiple scattering factor 1/B is
evident even at the high values of pion momentum seen in this

experiment. The multiple scattering width also depends on the
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angle 6 the track makes in the x-z plane with the perpendicular
to the chambers (6 is shown in the inset to Fig. 9). By
including such effects as the extra path lengths between
chambers and in the chamber foils as 6 increases, a depen-

57

dence of sec 26 can be accounted for easily. In fact, the
width of DZ distributions in the data shows an even stronger
dependence on 6. It was found by dividing the data into 70

bins of different momentum and angle and performing a simple

fit, that a good 30 cut on DZ at all angles and momenta is

DZ| < 0.25 4&1(29)25ec79 "
pB

Plots of the distribution and this cut for various angles and
values of pB are shown in Fig. 9. After this cut, 52734 events
remained.

The separation s of the. two helices at the point of closest
approach provides another important means for eliminating false
events. A variation in the angle of intersection 6 affects
the resolution widths of s. As a result, the Sy and s
distributions for events with pions that went into gquadrants
1 and 3 (Q 13) are different from those that had a pion in the
bottom quadrant 2 (Q12 and Q23). Furthermore, these distributions
have a non-gaussian appearance with wider tails than a gaussian.
In order not to remove good events in the tails, these distri-
butions were cut somewhat more loosely than normal. The cuts
on s_ and sy were:

QL3¢ -0.25 < s, < 0.11 cm
| s | < 0.40 cm
¥
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Q12 and Q23: \sxl < 0.35 cm
. -0.47 <s_< 0.54 .
4
Distribution of S, and sy are shown along with the cuts in
Fig. 10. Though the multiple scattering factor 1/pP
apparently does not significantly affect the x and y components
of s. s, does depend on momentum. This is most easily handled
by separating the datarkinematically into 7 7 n and 7 7 7°n
final state events in a manner to be described in the next
section. The momentum spectrum of 37 events is lower than that
of 27 events, and for these events multiple scattering effects
mask the resolution sensitivity to the opening angle 6. 1In the
2m data, with higher momentum events, a dependence on cos®
in the width of s, becomes evident, and this dependence is
taken into account in making the cut. The cuts on s, are:

31 ls | < 0.46 cm
z

27 |s,| = (0.353 - 0.561 (l+cos®))

These cuts and typical distributions of s, are alsé shown
in Fig. 10. At this point, all events that did not satisfy
the 27 or 37 kinematic criteria described in Sec. III.F were
removed and there remained 16735 37 events and 15799 27
events. Then 369 events with two tracks of the same apparent
electric charge were eliminated.

>In making cuts on the vertex location V, the objective
is to insure first that events came from interactions in the
liguid hydrogen and second to eliminate events that clearly

passed through metal supporting pieces near the target. By
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studying distributions of the x and y locations of the vertex
at different regions of z along the target, it was possible

to determine that the center axis of the target was essentially
parallel to the z axis but shifted slightly from zero in one
direction. Thus, the basic vertex cuts are:

- 15.8 < Vz < 15.0 cm

_ 3 3142
v, = [(vX—o.29) +- (vy—o.oe) ] < 2.45 cm .

A schematic drawing of the target with the v, cuts indicated
is shown in Fig. 1ll. Visible in the drawing are three metal
supports running the length of the target at the top and sides.
Essentially no events that passed through these supports could
also make it into the chamber geometry and so no data cut was
needed. The drawing shows a small metal contraption (through
which the target was filled with hydrogen) near the upstream
end. All events that intersected this piece of metal at any
point were eliminated. There were about 1000 such events.

Consideration was given to removing a small sample of
events that went through another set of minor obstructions.
These were chamber support posts, narrow aluminum dowels near
the extreme end of the middle chambers. It was concluded that
any event that was so significantly affected by a post to
warrant cutting would have a false reconstructed track which
would not pass through the post anyway. Those with tracks
that reconstructed correctly through the post need not be
removed. Therefore, no post cut was included.

In the next section, we describe the kinematic selection

of 2m and 37mn events that we have already mentioned.
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F. Kinematic Event Definition
When searching for evidence of w in the 27 n final state
- + - : ; .
events of reaction (14) (m p - 7™ m n), it is important to have
. . — + -
a sample of data that is free of reaction (13) (mp » 7 T 7°n) .
In order to divide the data into these two classes of events,
we studied distributions of two missing masses, My2 and sz,
and took advantage of energy conservation for the 4 constraint
2T n events. My2 is the mass squared of y in
- + -
Tp > T TY
and MX2 is the mass squared of x in
= T =
T p =TT Xn .
Ignoring the effects of resolution, for reaction (14)
2 2

M = M
Yy n

M 2 = 0
X

and for Reaction (13)
My > (mvo + mn) = 1.308 m

2 2
Moo= m 0

A distribution of My2 for all gquadrant 1 and 3 events at this
stage is shown in Fig. 13. Two clearly defined peaks corre-
sponding to the two reaction channels of interest are visible.
The My2 cuts that were used to isolate these peaks were

Ql3:

2T 0.73 mn2 < My2 < 1l.23 mn2

37T M 2 > 1.27 m -
y n
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Ql2 and Q23:
2T 0.70 m 2 <M - < 1l.22 m 2
n y

37 M 2 > 1.30 m - -
v n

The quadrant 1 and 3 cuts are shown on Fig. 12. Different
cuts are used for the different quadrant combination because
the resolution widths are not quite the same. It should be
noted that the geometry of the experiment accepts virtually
no 2mn events in other than gquadrant 1 and 3.

The sz distributions of the preliminary samples of 27
and 37m events as defined above are shown in Fig. 13. The
striking difference in the widths of the two peaks is at
first surprising. This may be understood by writing out to
first order the equation relating the width of MX2 to the
various momentum resolutions. This is most profitably done by
first writing sz in terms of the 27n energy and momentum

conservation variables AE and AP:

2 2 2
M " = (AE)” - (AP)
X o
where
= + = = =
AE Ebeam Etarget En Ev+ EW—
and
= -+ — — — .
QE ufbeam ~£target ugn u£v+ hEW_

Then we have for the resolution width of sz

2 2

2y 2 2
(6M_ ") = (20E) " (8E _"+ ...)+(2aP )" (6P "+ ...)+ ...

Each term of this expression includes as a factor one of the
energy or momentum conservation variables, AE or AP, which

are all zero for the 2mn events. To first order, then,



6MX2 = 0 for reaction (14) data. AE and AP are decidedly

. 2
non-zero for reaction (13) events and so oM~ > 0 for these
events. This explains why the 27 peak is so much narrower

than the 37 peak in the distributions of MXZ in Fig« 13«

-~
<

The narrowness of the 27 peak suggests that a cut on Mx
will be a good way to remove remaining’ 37 events from the 27

data. The following cuts (shown on Fig. 13) were made:

2 2 2
Ql3: -0.65 Mo < MX < 0.20 m o
Ql2 2 2 . o 3 2 .
. -0. < 2 O, r
and Q23}' 0.65 By M 5 m_q

On the other hand, no 2mn events would be removed from the
37 data by cutting on MX2 at this stage. 1Instead we look at
the AE distribution (Fig. 1l4) in which the 37 events are

better separated and make the following cuts.

Ql1l3: 70 MeV < AE < 55C MeV
3T
Ql2
and QZB}: 25 MeV < AE < 582 MeV .

Finally to remove any last vestiges of contaminating events
from the two samples of data, we use up the available information

in these last two cuts:

-130 < AE < 150 2
2 2 2
Q13 -0.9 m_o < MX < 3.25 mvo 3T
012, 2 2 2
and Q23}' ~1.1 moo <M< 3-2 m 6" -

Defined in this way, we have a sample of 15801 reaction
{(13) {37) events and 15281 reaction (14) {27) events. From a

Monte Carlo calculation, we estimate that there are less than
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five w - 37 events contaminating the reaction (14) sample.
G. Final Input Parameter Calibration

Errors in the assumed values of such parameters as the
field normalization, the beam momentum Pbeam’ and the distance
of the neutron counters from the center of the hydrogen target
do may shift the means of the QE, AE, sz'and My2 distributions
from their correct values. However, these correct values may
be shifted somewhat from the expected values stated earlier
by the kinematic definition cuts. Using a Monte Carlo program
which includes resolution effects (see Sec. IV.B), we were
able to simulate the effect of the kinematic selection and
determine the correct centers of the various distributions
for comparison with the 27n data. If the field normalization
is assumed to be correct, then in principle, any error in Pbeam
or do may be determined from the shifts of the AP, and AE
distributions. It was found that for the initially assumed
values, Pp__ = 1245 MeV/c and do = 31 ft, the centers of these
distributions agreed with.the Monte Carlo predictions within
a few MeV. The field normalization assumed here has been
checked as discuséed in the section on the field map and in
Sec. IV.e.

IV. ANALYSIS OF THE DATA
A. Outline of the Analysis
The focus of this analysis is on the 27 mass spectrum

of reaction (1l4). 1In a spark chamber experiment of this nature,

an understanding of the geometric efficiency of the apparatus
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in different regions of phase space is essential. This
information can best be determined with Monte Carlo techniques.
Those used in this analysis are discussed in Sec. IV.B. 1In
the following section, the w - 37 events are studied.
Information on the dynamics of the w - 37 Dalitz plot is also
obtained and the number of w - 37 events that were detected in
the experiment is determined. The efficiency of the experiment
at the w mass in the 27 spectrum depends con possible correla-
tions of the pion momenta due to alignment or polarization of
the spin of their "parent" particle. 1In the event the parent
particles are truly omegas, it is possible for us to determine
their degree of alignment by studying the copious sample of
w — 37 that is available in the data. The polarization theory
that enables us to relate w - 27 pion correlations to w - 37
is discussed in Sec. IV.D and the degree of w alignment found
from thé>3w data. Finally in the last group of sections, the
2m data are studied first with an eye to understanding the
various components in the data and then to estimates of the
possible size of any w - 27 effects.
B. Monte Carlo Programs

Monte Carlo programs were used in this analysis to
simulate as accurately as possible the experimental apparatus
and learn the efficiency and resolution of the equipment in
different areas of the phase space of reactions (13) and (14).
The efficiency programs can all be divided into three basic
sections: An initial section generates events for the reaction

being considered; A geometry section which never changes
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determines if a given event will be accepted by the apparatus;
and finally an analysis section provides histograms of
appropriate quantities as the result.

Once an event has been accepted by the neutron counter
geometry and time of flight restrictions, it has a 3-5% chance
of passing acceptably through the sparkgchambers. The geometric
efficiency of the neutron cbunters depends on the mass of the
pion system but is always about 2%. As a result, a naively
conceived program that generates events with the same weight
in all parts of phase space will take an incredible amount of
computer running time. It is possible, however, to study the
dependence of the efficiency on various phase space variables.
When this dependence is very strong, it is profitable to weigh
the generation of events so that more are generated in the
regions of high efficiency. 'As will be explained later, it
is a simple matter to remove this weighting in the analysis
section. Situations in which this technique may be applied
are often very obvious. For example, because the neutron
counters subtend a small angle in the forward direction, no
events are accepted which are generated beyond a certain
center of mass neutron angle 6. This  cutoff angle comes at
about coseC = 0.85 for a pion system mass near 780 MeV and
decreases at higher mass. Thus, one may cut off the neutron
angle during generation at a number of different angles for
different pion system masses and increase the Monte Carlo program
efficiency from about a tenth of a percent to 10% or better.

The relative weights W of events at different masses m may

be determined from
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1
f(cosfB)dcoshH
W(m) = I‘f(m) (21)
f f(cosfB)dcosb
1

Here c(m) is the cutoff cosine at mass m, and f(cosf) is the
shape of the cos6 distribution after generation including any
reaction dynamics. If the generation is pure phase space and
no dynamics are assumed, then f(cosf) = 1 and the calculation
of W(m) is trivial.

This cutoff and weighting method has been applied wherever
it seemed worthwhile in the Monte Carlo programs of this experi-
ment and it has always reduced computing time. In the case.of
2mn events, there are so many correlations that it was
possible to increase the speed of the program from about
3300 to 50,000 events/hour on the Nevis 360/44 computer.

As will be seen in later sections, it was often necessary
to include a large variety cof prcduction and decay dynamics
in the Monte Carlo. This may be done, of course, during the
generation phase of the Monte Carlo. Then one must rerun the
whole program, geometry and all, each time a new dynamics 1is
called for. However, as a glance at f(cosf) in Eg. (21) will
show, the dynamic functions are just weighting functions that
may be treated in the analysis section like the other weights.
This made it possible to carry out three pure phase space
high statistics Monte Carlo runs through the generating and
geometry stages writing only successful events on tape. The
tape was then read as often as necessary by the high speed
analysis section of the Monte Carlo program which included

various dynamic weightings and histogrammed relevant gquantities.
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In the few situations when it was necessary to analyze events
with different dynamics at the generation stage (without geometry)
it was simple and quick to regenerate the data.

In order to understand how the desired weighting and
unweighting is handled at the analysis stage, it is useful to
be somewhat mathematical. ‘Let

a%p = w(a) I da, : (22)
1

be the n-dimensional differential probability for an event
to be éenerated in a volume of phase space defined by the n
element vector a. The n elements ofﬁg‘correspond to any
complete set of phase space coordinates. The weight of the
various regions of phase space at generation time is W&gl.
If we want to know d"p after the events are subjected to the

gecmetry selection, we include a function

Gla) = {O if events with phase space variables & fail geometry
e 1 -if these events are accepted by the geometry.
Then after geometry, we have simply

ap = G(a)w(a)lda, . (23)
XL

When we histogram one of the phase space variables, say Q.
in the Monte Carlo analysis, we are Jjust integrating over all
of the elements of & except a. . Normalized to one, the
histogram distribution (in the limit of high statistics) will
be just

N(aj)daj = IGQZ)W(“) I da . ' (24)

(If we histogram a quantity that is not cne of the Q.. we

transform to a new set of ai and include the Jacobean of the



transformation in the integral.) It is clear that if we wish
to change the weight at generation time from W(g) to, say
Wagg), we just multiply the right side of Eg. (22) or (23)
by Wagg)/Wle. To see the effect of such a change of weight
on the histogram distribution N(ai), this factor is included
inside the integral of Eg. (24). But in practice, this just
means that at the analysis stage, we add Wagihﬁwgﬂ instead of
1l to the histogram bin corresponding to a given event. 1In this
way, we will have changed weights just as effectively as if we
regenerated the events. This is the technique that was used
to remove the generation stage weights described earlier and
to vary the dynamics at will while events were histogrammed.

In order to calculate the statistical errors of such
weighted histograms, a second unweighted histogram was carried
along. The percentage error'ni_l/z, for n; the number of
events, was computed for each bin of the unweighted histogram
and multiplied by the number in that bin of the weighted
histogram to get the error of the main histogram.

Special techniques were used in the analysis section to
reproduce thé experimental resolution. Each event that was
on the tape (and had already passed geometry) was passed
through a program similar to the geometry program. This
program redetermined the spark positions of the events and
then moved them randomly with a gaussian width that included
the chamber position resolution and multiple scattering combined

in quadrature as was done during reconstruction in Egs. (19)
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and (20). The tracks were then reconstructed and new values

of momentum and other quantities determined. To get the
resolution of the neutron the time of flight of the neutron

was calculated and then moved randomly with a gaussian width
corresponding to the time resoluéion. The neutron momentum

was then recalculated assuming the neutron hit the same point
near the center of the neutron counter as was assumed in the
reconstruction of actual events. The new values of the various
gquantities were written on a tape which then would be passed
through the analysis program exactly as'the no-resolution

tape. The whole procedure depends on only two variables,

and o

o) the chamber and time of flight measurement

ch

resolutions. Histogram distributions of various quantities

TOF'

(like AE and MXZ) for resolution Monte Carlo events and real

data can be compared for different values of Oh and OmoF*

It was possible to obtain very good agreement between the

was set at the value determined from the w peak

two 1f S poF
width (as described in Sec. II), Crop 0.78 nsec, and the
chamber resolution set at o = 0.037 cm and these were the

CH

values finally used. Examples of the good agreement for these
values in DZ, AE and Amz distributions are shown in Fig. 15.
The perfect agreement in the DZ distribution shows that Ocy
has been well set and that the spark chamber part of the
Monte Carlo program is very accurate. The AE distribution

also shows a good agreement except in the positive side tail

which extends further in the data than the Monte Carlo. This
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is because neutron scattering and complications in the beam
momentum profile, two effects difficult to include, are not
in the Monte Carlo. Later, we will need estimates from the
Monte Carlo of the mass resolution in the 27 mass spectrum,
and the Am2 distribution is a direct test of the mass resolution
predictions. The quantity Am2 will be explained in Sec. IV.e.
In this distribution, also, there is very good agreement
between data and Monte Carlo except for the neutron scattering
effect which shows up in the negative side tail.
C. Analysis of m p - 7 7 7°n Data
The 15801 events which correspond to Reaction (13)
according to the criterion described in Sec. III.F contain
a large sample of omegas decaying to three pions. In order
to determine exactly how many omega events there were, the
omega Dalitz plot was divided up into 28 regions. These
regions (shown on Fig. 16) each contain about the same number
of events. They are bounded by contours in the Dalitz plot
on which the guantity
qg = |£+ va_‘Z (25)

is constant and by orthogonal lines where

-1 .x T
6 = tan ~ (=) = {z£2 .
y +0
The variables
_ /3
X =5 (TW+ - Tw-) (25a)
and _ 3T7To
y = -1

Q



are the Dalitz plot coordinates in terms of the kinetic

and Q =

energies of the three pions T+ T -

and TW
m,= M4 = M__ -~ M oo The time of flight spectrum of the
data in each region was fit to a Gaussian plus a cubic
polynomial background. The number of events in the Gaussian
peak represents the number of omega events in the region.
A fit to the complete sample of data from all regions gave
o = 0.836 £+ 0.015 nsec as the width of the Gaussian peak.
The width and center of the Gaussian were set to the values
determined in this overall fit in making the fits for each
region. (The. fit by régions was also done allowing the
individual widths and centers to vary, and the results were
essentially unchanged.) This technique is necessary because
the fraction of background events varies over different regions
of the Dalitz plot as may be seen from the representative
time of flight spectra shown in Fig. 17. In Table II for each
Dalitz plot region are listed the number of omega events and
the fraction these are of the total. The error in the number
ot omégas in each region is/calculated assuming the number of
background events (NBG) is statistically independent of the total
number of events (N) in the region. Then the error in the
number of omegas is the error in N—NBG. By adding up all the
regions, we find the total number of w - 37 events in our
data:

Ny = 7582 = 217 .
Here the error is just the statistical error of all the regions

combined in quadrature. There is to be considered in addition

"

-



=51

the systematic error resulting from the error in the width of
the Gaussian which was held fixed in the fits. To determine
the effect of the error in this width, we have also carried
out the time of flight fits for each region assuming the width
tb be 0.855 nsec which is one standard deviation wider than
the best value. These results are also listed in Table II,
and the total number of w - 37T events computed with this
width is

N, = 7698 £ 209 .
Including both the statistical error and the error due to the
width, we have

Ny, = 7582 = 3325 .
In order to determine the asymmetry parameter, A, which is a
test of C invariance, we sum the number of events on the left
and right side of fhe Dalitz plot. Then

N - N

a = _LEFT RIGHT - _0.014 + 0.028 .

NBW

The systematic error of the Gaussian width is included here

37t but it does not increase the error of A.

This result for the asymmetry is clearly consistent with zero

just as for N

and no C violation.

It is also interesting to use this information to study
the matrix element dependence in the w Dalitz plot. Here we
must make use of an w - 37 @onte Carlo run to learn the
efficiency of the experiment in different parts of the Dalitz
plot. From the considerations to be discussed in Sec. IV.D,
we would expect the simplest form of the matrix element

squared for a gF =17 particle to be
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2
«g® = |p, x By}
where thewgi are the momenta of the pions in the w rest frame.
The background corrected data as a function of q2 was compared
with the expected form of this distribution as determined by
the Monte Carlo for a simple q2 dependence and a X2 computed
using only the statistical error to test how good the agreement

is between the data and Monte Carlo for this assumed matrix

element. For 6 degrees of freedom, X2 5.1. The data divided
by the results of a pure phase space Monte Carlo run is shown
in Fig. 18 and has the expected linear dependence on q2. As
Zemach has shown, the basic form of the Dalitz plot dependence
recurs for every other spin value.24 We would therefore expect
a distribution peaking at the center and falling off at the
edges, as it does in the data, if the spin of the omega were
1" or 3°. Flatte et al have pointed out that it is very hard
to rule out 3  absolutely on the basis of the Dalitz plot
distribution, because it is always possible that the form
factors conspire in such a manner that the Dalitz plot distri-
bution of a 3~ omega reproduce the available data. Angular
momentum barrier would tend to make the decay rate of a. 3
particle smaller than that of a 1 particle. The relatively
large 12.4 MeV width therefore supports the choice of 1 for w.7
The possibility of p dominance showing up in the matrix
element was also investigated. A matrix element of this type

would have the form25

2. 2

2 s Ts g . .
M| < e 5 > 72 LEl x‘£2| +cyclic permutations.
(m™=m_ ") “+m

o to
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Here mp = 760 MevV, Tp = 125 MeV and mij is the mass of the Wivj
system. We have looked for the possible effects of this matrix
element in the data in two ways. First, we have prepared a
Monte Carlo distribution of q2 assuming p dominance. This
curve is shown on Fig. 18 for comparison with the simple q2
matrix element and the data. To see how well these matrix
elements fit the data, we have computed xz for each of the two
hypotheses. Only the normalization of the Monte Carlo curves
waé allowed to vary in making the fits. For 6 degrees of
freedom, x2 = 16.4 for p dominance and, as we stated earlier,
xz = 5.1 for the simple q2 matrix element. We have also studied
the dynamics of the w Dalitz plot by looking directly at
distributions of the 27 mass, mij' for each of the three
combinations of two pions. Because of conservation of energy
and momentum, the mass of one pair of pions depends only on
the kinetic energy of the third pion. Thus, each of the three
mass distributions is essentially just a projection of the
Dalitz Plot density on one of the three pion kinetic energy
axes. Studying éhese three mass distributions is therefore
a test of the two matrix element hypotheses in different regions
of the Dalitz plot. The distributions of data as a function

of were prepared by subtracting the background in each

m. .
1]

bin using the same technique described earlier for the background

subtraction as a function of q2 and 6 in the Dalitz plot.

The distributions were then divided byva Monte Carlo determined

dist;ibution assuming the simple q2 dependence and including

~the experimental éfficiency. The resulting plots are shown
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in Figs. 19a,b,c., If the matrix element is of the simplest

1~ form, lM\z o q2 and free of p dominance, we would expect

the data in these plots to fit a straight line. The best fit
to this hypothesis is shown on each of the plots. Also shown
is the best fit to a curve produced by the Monte Carlo assuming
p dominance. Note that not only does this curve rise at the
high end of the mass scale (which is about 100 MeV below the

p pole) but it also rises slowly at the low end. This is a
result of the fact that the three mass combinations are related
through the energy and momentum conservation laws, so that if
one mass combination tends to be high for a given event, the
others will be low. The X2 for the two hypotheses for the q2

plot and the three mass plots are summarized below:

plot degrees of x2 no p x2

freedom dominance p dominance
2 .
q 6 By 1 l6.4 Fig. 18
m,q ) 8.4 12.4 Fig. 19a
m_g 9 6.5 13.3 Fig. 19b
m, 9 18.4 36.2 Fig. 19c

The effect of the p dominance matrix element is a tendency to
pull events into the three outside corners of the Dalitz plot.
The outside of the Dalitz plot, however, is heavily depleted
by the required q2 dependence of g = 17. This makes it
difficult for any experiment to search for p dominance in w
decay with any precision. 1In spite of this, the results
listed above are clearly more likely if the matrix element

does not include p dominance than if it does.
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D. Measurement of the Polarization Parameters and

the Relative Experimental Efficiency
We now wish to use the distribution of events in the large
sample of w - 37 to predict the pion angular correlations for
a Monte Carlo study of w - 27. To understand the theory behind
the technique we shall use, we need first to write the most
geheral form of dog for the two reactions

T p - wn
L_,{TTTTTT

and in doing this we will follow the approach of C. Zemach
aimed at three pion decays of unstable particles.24 In
Zemach's scheme, we work in the w-rest frame. We must find
for both the w production and decay states all distinguishable
combinations of physical variables that, after including the
intfingic properties of the relevant particles, transform in
the same way as an object with the intrinsic properties of the
w, JP = 1. The most general combinations of variables of

the production and decay states are then coupled to form a
rotational invariant and get the general angular dependence

of the matrix element.

The key to the value of this approach is that the only
difference between w - 27 and w - 37 appears in the decayv
state. There we find that for w - 37 the only combinatioh
which transforms as a vector when the intrinsic 0  character

of three pions is included is

(37r) gq=P, x P =P xP =P xP .
wA v w O

+ - — -
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+
Here‘?+, P ,'20 are the rest frame momenta of m# , m and

o

7°. (The last two equalities follow from conservation of

momentum, P, +_P = 0.)  For w - 27w, there is also

+ P
— m
only one vector available:

(2mr) g =P, = - P "

I s
The neutron of the final state 1is thought of as going
backward in time to join the ™ and proton and form the two
nucleon and one pion production state. This state has

negative intrinsic parity so it must transform as a pseudo-

vector. There are six pseudovectors that may be made out of
EL(the beam momentum),agT (the target nucleon momentum), and
o_ (the spin vector of the nucleon). They are

1. g =P x’E

Pt T
sl
3. (g *+ P)P

A~ P A
4. (2_-_3)Q x P = (g~ 595;
g R
6. (g. 5)& .

All these production and decay vectors are shown in Fig. 20.
We are now in a position to write the angular dependence

of do for an unpolarized beam:

dc « T |<#k|(£,Q+f,0+F; (g P)P+E, (0-P)RFE (0-R)P+E (9 R)R]

o A e 64—‘-4“‘-...
i%,i%\ - P e Aoy

26
. ql+k>]%0 da, . (26

Here the bra and ket vectors indicate the nucleon spin

state before and after the event, the fi are form factors
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independent of angle that may depend on any scalar like P2,
and the @y represent a set of phase space variables just as
in Sec. IV.B. If we carry out the sums and square, we end
up with four different types of terms. For A and B any two

general real vectors, these four types of terms are

£|<t|a-B|+>|? = |a-B|° (1)

2l geale]? = [<Hloa, |+l Hle-fon, 1 -] 2

+ |<t+|3o,a_|->| 2+ <-|30_a,|+>]?

= A2(%cos29+%cos29+%sin29+%sin29)
=3 a° (11)
£2 £ <] < *y = L 1
Re (£_£, ”(Z-‘Z.\.I:{:> i|g-£lﬂ:> ) = (2Re[f_f, (3A B +:A B,
*
+iA,B, +A_B_)]
= £ £
= Re ( b JA*B (II1)
*
T2Re (<t|A-B|t><t|g-B|t> ) = 2Re (A-B($B,-3B,)) = O . (IV)

We are now able to compute all terms of Eqg. (26) using these
results. We collect terms and make use of the fact that

P-§;= 0 and that

P

()’ + (rg?+ ®Raq? =1

P, R AAr A,

since P, Q, and R are perpendicular.
o B e
Finally, we have

A
(P-q) 2ip

n _ A a2 A A A A
do = [F1+F2MM 3(3-22 +F4(P-Q) (R-q) ] 1 da, .

A, SR e ey 1
The Fi are a new set of form factors that include all but

the purely angular dependence. In the limit of forward

production of the neutron

(27)
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= P P =0
and R = 0 so
do _ 2 - 2
au (F1+F2u YP(u)du = n[ (1-a)+au“ldu (28)
AA ]
where u = P+q and P(u) contains the phase space dependence

that remains after integrating Eq. (27) over every variable
but u. In the alternate parameterization given in Eg. (28)
n is a normalization factor and a measures the amount of
alignment ranging from O to 1. |

Since neutrons in our experiment were produced so
predominately forward, it became apparent very early in our
analysis that very little information could be learned from
the data regarding Fi and F4. Accordingly, we concentrated
on Eg. (28) in analyzing the spin alignment of the omegas.
It is, of course, possible to calculate u for each w - 37 —
event and fit Eg. (28) to a histogram distribution of u.
However, u is an w rest frame guantity and its determination
involves a Lorentz transformation that requires a good
knowledge of the neutron momentum. In order to avoid the
complications introduced by the resolution functions of the
neutron counters, the alignment was studied in terms of the
quantity

qzlab =£F+ X~B_)

» Z

which is evaluated in the lab. A background corrected histogram
of qzlab is shown in Fig. 21. The background subtraction was

lab

performed for each bin of q, as described in the last

section. The data distribution was fit to a linear sum of
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narmalized curves corresponding to Monte Carlo calculations
of the expected qzlab distributions for complete and no
alignment, a = 1 and a = 0 respectively. The best fit shown
on Fig. 21 gave a = 0.004 ig:ég4 and XZ = 26 for 19 degrees
of freedom. (When only central neutron counter events were
included, the results for a remained the same but XZ reduced
to 1l4.) We conclude from this that the omegas are essentially
unaligned.

This information may now be used in conjunction with
two Monte Carlo runs to determine the relative efficiency
of the experiment to the decays w - 37 and w - 27. With
q as defined earlier for two and three pions, a Monte Carlo
run determined the efficiency for each of the reactions for
ten different values of a. The results are shown in Table III.

Taking into account the error in the fit value of a, we

determine the ratio of efficiencies to be

€
3T _ +0.014
= 0.6474 _0.004 °

“ar
E. The 27 Mass Spectrum and Its Calibration
The mass of the two pions, m, for events classified in
the reaction 7 p - W+v—n, may be computed in two different
ways in this experiment since all final state momenta (including
that of the neutron) have been measured. The mass may be
computed directly from the two pion momenta

_ 2 2,1/2
m2 - ((E++E_) —££++£_) ) ’

T
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or it may be computed from the missing mass of z in
T p —= zn

2,1/2

m_ = (( +m—E)2—-(p ) 7)) i

z Epeam p n Poeam™ LIn
which essentially depends on the time of flight measurement.
Monte Carlo studies indicate that the mass resolutions of

my and m_-are virtually identical at the w mass. It is

thus profitable to use m = %(m2W+mZ) and improve the

resolution of m by a factor of /2. This is the definition
of the two pion mass that will be used in analyzing the 27
mass spectrum.

The techniques used in the Monte Carlo generation of the
experimental resolution were discussed in Sec. IV.B. A

histogram of the guantity

27 Z
in the data and the curve predicted by the Monte Carlo are
shown in Fig. 15. The good agreement is the best test of
the accuracy of the Monte Carlo resolution program in the 27
mass spectrum itself since the shape and width of Am are

obviously closely related to the resolution functions of

mZW and mz. -
The quantity Am is very useful in checking the final cali-
bration of the absolute mass scale. This is so since m,

which depends only on the neutron measurement has been precisely
calibrated at the w mass (£< 1.0 MeV by the fit to the w peak

in the time of flight spectrum of the 37 data. Then by checking
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to see if Am = 0 at the peak of the Am distribution for the 27

data, we may force m to be calibrated correctly (£ ~ 3 MeV)

2T
at the w mass. This checks the accuracy of the assumed normali-
zation of the magnetic field in the pion spectrometer. It also

allows us to be confident that the absolute value of m at
the central w mass is correct to + ~ 1.6 MeV.

In Fig. 22 a histogrammed distribution of m for events
classified as belonging to the reaction 7 p = W+W—n is
compared with the phase space predicted by a Monte Carlo
program assuming no matrix element dynamics. Events below
a mass of 670 have been eliminated to avoid problems with
the neutron time of flight gate electronics which begins to
cut in at this point. There are 9696 events left in the
distribution. The dynamical aspects of this spectrum become
most obvious if we divide the data by the Monte Carlo distribu-
tions. This removes all phase space and efficiency dependence.
The resulting distribution, which we shall be studying from
here on, is shown in Fig. 23.

A fi?st glance at this distribution shows that not cnly
is there no striking effect at the w mass, but that the p 1is
not as prominent as one might expect. However, a moments
thought explains why: p production governed, as it is, by
one pion exchange tends to produce p that go forward and
neutrons that go backward in the center of mass, or, equivalently,
the p production cross section is largest for momentum transfer
t < 0.3 (BeV/c)z. Since the neutron counters are very much

forward in the lab, and because of the time of flight gate,
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no neutrons that go backward in the CM are accepted by the
experiment. As a result, the momentum transfer distribution
looks as it does in Fig. 24 with 0.55 < t < 1.2, and p production
is not as heavy as would otherwise be the case. p still is
produced in the experiment, and as we shall see, p production
corresponds to about a third of all events. The p production
becomes much more evident in the 27 mass spectrum if we remove
some Qf the background. -As will be discussed in the next
section, this background is dominated by the N*— resonance.
Therefore, cuts of L 1300 MeV and Mv‘n > 1360 selectively
remove a large fraction of the N*— background. 27 mass spectrum
plots of the data with these cuts are shown in Fig. 29. 1In
these figures the p is more prominent than in Fig. 23. It is
clear from these figures that a large background sloping down
as m increases must accompany the p to account for the shape
of the data in Fig. 23. In the next section, we will discuss
thié background. Limits on the minimum number of p in the data
will be discussed in the section on systematic error.
F. Background in the 27 Mass Spectrum

Histograms of the 7 n and v+n spectra are shown in Fig. 25.
In the 7 n plot there is a heavy enhancement due to N* near the
low end of the spectrum near Mo —a™ 1236 MeV. A curve corresponding
to pure phase space as predicted by the Monte Carlo is shown
on these figures. Also shown on each histogram is a curve
corresponding to 40% pure phase space and 60% an N*_ resonance

in the 7 n spectrum at 1236 MeV with width 120 MeV. Fits to
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the 27 mass spectrum that will be discussed later show that
the background corresponds to about 2/3 of the data. The
heavy N* enhancement in these histograms indicates that N*
accounts for a large fraction of this. Therefore, as an order
of magnitude, the N*— resonance accounts for something like
60% of the data. This order of magnitude has been used in
preparing the curves for Fig. 25 which are only meant to
demonstrate the presence of data due to the N*_ resonance.
Because of the shape of the kinematic boundary of the Mﬂ—n2
Vs Mv+n2 phase space, a resonance near the low end of the
Mv—n scale shows up as an enhancement near the high end of
M 4+ - The N resonance therefore is reflected into a rise
at the high end of the v+n spectrum in the data. There is
no evidence for a W+n resonance near 1236 MeV. However, the
two histdgrams of Fig./25 clearly do‘show evidence of an N*
resonance of the m and the neutron.

The large amount of N ~ and lack of avidenes for N &
in this reaction is in agreement with a number of earlier
experiments that have studied T p ~ 7 7 n near 1-2 BeV/c.26
The fraction of data corresponding to the N*- resonance is
also in rough qualitative agreement with these experiments.26
The experiment of Banner et al27 run at an incident momentum
of 1000 MeV/c measured the center of mass production angle

distribution of the ™ n system for this reaction. The distri-

bution in the center of mass, corrected for efficiency, of
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< 1300 MeV)

in our experiment for events in the N region (MW
is shown in Fig. 26. In making the efficiency correction,

the Breit Wigner resonance form of the N*— was assumed for the
Monte Carlo calculation. In the region of sensitivity of

this experiment the results agree well with a Legendre polynomial

5 Their fit for events

fit made by Banner et al to their data.
in the region 1200 MeV < M - < 1300 Mev is shown on Fig. 26.

We noted in the last section that underneath the p in the 27
mass plot of Fig. 23 the background apparently slopes down
towards small values at the upper limit of m. According to
a Monte Carlo prediction, an N* Breit Wigner in the 7 n |
spectrum combined with the production angle distribution of
Banner et al appears as a relatively flat curve in the 27 mass
plot. Thus, it is not possible to explain the background
shape in the 27 spectrum with the facts we have already
mentioned about the N* data. It is conceivable that momentum
dependence at the vertices of the various possible diagrams
for N* could explain some part of the shape of this background.
It is also possible that the efficiency of the neutron counters
was dependent on the neutron momentum and therefore on the 27
mass. Since we know very little about this dependence, it
was not included in the Monte Carlo calculations and therefore
not corrected for. An explanation which is quite likely and

at any rate easier to discuss is the possibility of correlations

in 6_, the neutron decay angle in the 7 n rest frame. This
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angle is very closely related to the 27 mass m, since in the

center of mass

2 _ 2 2
A= (Einc - E:n) =
2 2
= E, + - .
E1nc mn 2EincEn

The 27 mass m, thus, depends bn the center of mass neutron
energy, En' which in turn depends on the decay angle, Gn, in
the 7 n rest frame. Therefore, any decay angle correlation in
the rest frame of a 7T n resonance will ghow up directly in a
distribution of—the 2T mass m. We choose to define Qn as the
angle the neutron makes in the 7 n rest frame with the z axis.
(z is the direction of the incident pion in the lab or CM).
It is shown in Appendix II that with this choice of axis the
most general form of the distribution in Gn for a spin 3/2 7 n
resonance in this experiment is

F(Gn) =1+ a coszGn + Db cos@nsinen {29)
providing the target is unpolarized and we average over the
azimuthal decay angle. The Monte Carlo predicted effects of
a flat distribution, of a c0829n distribution, and of a cosGn
sinGn on the 27T mass spectrum are shown in Fig. 27. It is
evident from this figure that both the coszen and cosensinen
distributions have slopes in the' same direction as the background
of the data.

From the analysis ih Appendix II, we see that if the N*
is produced as a pure partial wave, F(Gn) will be a character-
istic non-uniform distribution. For example, if the production

is S-wave, then
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2
— + .
FS(Q ) =1 3 cos en

(Thig is also the characteristic decay distribution of N* in
two body final states,28 as well as of N* produced forward in
three body final states like that of this.experiment.) It is
well known that quite a number of partial waves contribute
significantly to the production of N in T p - 7o n. 29 In
principle, it is possible to predict the form of F(On) if the
relative weights of the various partial waves are known. The
present knowledge of these yeights, however, allows virtually
any distribution consistent with Eg. (29). Most likely the
parameter a # 0 since it would require a very fortuitous
combination of partial waves for F(On) to turn out to be
uniform.

In concluding this discussion of the background, we note
that it is very difficult to separate the N* and p data in
this experiment since there is a large overlap in the Mw_nz X m2
Dalitz plot. This Dalitz plot (corrected for efficiency) is
shown in Fig. 28. We have attempted to remove some of the N*
when studying the 27 mass m by cutting at 1300 MeV and 1360 MeVv
(corresponding to about one and two half widths of thevN*
above 1236) as shown in Fig. 29. The p is clearly more
prominent after these cuts are made than in Fig. 23. However,

the loss of statistics will reduce the sensitivity of the

measurement of w - 27 which is the main object of this experiment.
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G. Fitting the 27 Mass Spectrum
When fitting the 27 mass distribution to measure the size
of the w - 27 effect, we make the following assumptions:
a. The distribution of events takes the form of Eg. (11)

derived in Sec. 1 with30

mp = 765 MeV
Fp = 125 MeV
m, = 783.4 MeV
o= 12.2 MeV .

Hg
b. The background is all N (1236 MeV) produced according

to the angular distribution of Banner et al,27

and
decaying in the general form of Eg. (29), discussed
in the last section, with b = O,

F(Gn) =1 + ac0529n . (29)

We set b = 0 in making the fit to the 27 mass spectrum
because the cos?'Gn and cos@nsinen distributions have
similar shapes in the 27 mass spectrum (see Fig. 27),
and in practice the fitting procedure cannot distinguish
them. .

c. There is no interference between the Nf— background
and the p and w. This assumption may be justified
by the completely different production mechanisms
involved for nucleon and pion resonances in our reaction.

The possible éystematic errors introduced into the results by

these assumptions are discussed in the next section.
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The fit was made to the sum of a set of Monte Carlo

generated distributions. Each distribution was prepared by .

reading the mmn Monte Carlo tape that included the experiment's
resolution (as described in Sec. IV.B) and making a histogram
of the resolution shifted mass weighted by an appropriate
function (of non-resolution shifted quafitities) that defined
the particular dynamical character of the distribution. Each
distribution was then divided by the purely phase space Monte
Carlo spectrum just as the data was for Fig. 23. These
distributions automatically contain the Monte Carlo determined
mass resolution function. They correspond to each of the

three terms and background of Eg. (l1ll1) in Sec. 1. The
background of Eg. (l11) is here assumed to consist of two
distributions each weighted by one of the first two terms of
Eg. (29) for the decay distribution of N*. These two terms
which each include the N*— Breit Wigner and production angular
and BG

distribution will be referred to as BG All

flat cos?2°®

the distributions are shown in Fig. 27 and their weight
functions defined in Table IV.

Since we have no way of knowing the degree of coherence
\

of the w-p interference, we analyze the data for a series of
assumptions of relative w-p phase and degree of coherence.

We consider first the cases of complete coherence with constructive
or destructive interference (¢ = % %) as‘well as the case of

total incoherence, deferring until later such possibilities

as ¢ = 0 or 7. A fit was therefore made to the hypothesis

(m) = a BW 2 +ocBWp2i

ol 159, 2

P
2T le * bl BGflat * b2 BGC082 (30)
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which corresponds to Eg. (11) with ay = 0. The fit gave X2=29.6

for 18 degrees of freedom and the best values listed below:

a, = (5.15 =+ 0.76) x lO3
a, = (1.05 £ 1.39) x lOll
b, = (3.84 + 1.46) x 1072
b, = (7.43 + 0.32) x 107" .

(All errors cited in this section are purely statistical.
Systematic errors will be considered in the next section.)

The best fit to Eg. (30) is shown on Fig. 23. From the

results of this fit, we find that the number of p and background
events in the data are:

N = = 2887 + 424

p qu RHO
b, I + b,I = 6657 + 380 .

BG L BGflat 2 BGc082

N

The number of events corresponding to the experimental size
of the w - 27 effect including the enhancement or suppressive
effects of any p-w interference is

N = Q = 75 + 100 .

exp 2 IOMEGA
As we already noted in the theoretiéal introduction, the
imaginary part of the Breit Wigner amplitude is indistinguishable
in practice from the Breit Wigner amplitude squared. For this
reason, we were forced to combine the second and fourth terms
of Eg. (6) into the second term of Eg. (l11) and Eq. (30) for
the actual fit. Thus the experimental number, Nexp' includes

both Nw (which would be the number of w-27m in the absence

2T

of p) and an interference term. It is possible to separate
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Nw~2v from Nexp if we make assumptions about the relative
phase, ¢, and the degree of coherence, ¢, since we know the
size 6f the p amplitude from the first term of the fit. To

do this, we recall two of the relations of Eq. (lla):

2
a = |Ap|
2 2§ 2 * 2 2 :
a, = |aw(m Mg ) | —2cmw1“w|Ap a, (m M )| sing (11la)
- 1Y 2 * ;
|aw| - ZmeFw|Ap aw]51n¢ »

We are interested in using these equations to solve for
2 2

|aw‘ = |aw (m —Mp ) |
since Ny_or = \Zw|2 IoMEGA is the number we are looking for.

For the cases of destructive and constructive interference,

S

® = % . we have the following quadratic equation for \Ewl:

2
13 |2

» - (icmwTw/dl)\aw|—a2 = 0 =

Using the fit value of oy and defining

*
k=mT |a | = (6.86 + 0.50) x 10° ,
ww'p
the solution of the quadratic equation is
| J————————————
3,1 = (xck) + ¥ (ck) P, (31)

We have chosen the + sign in the quadratic formula of Eqg. (31)
so that \3w|>0 since ck > 0. The case of destructive interference
(¢ =+ %) corresponds to Eg. (31) with the + sign before ck so
that, if there is coherence (cal), |E@\2 may be very large

even if the experiment observes no w - 27 effect. But for
constructive interference (¢ = —%), a very small intrinsic w-21

effect will result in a significantly large experimental effect,

since in this situation,
a

w‘ o (_3

4k

for the relative size of a

|a

2)a . aL (32)

1 and a2 in our data.
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By squaring Eqg. (31) and multiplying by I we can

OMEGA'’
.

determine - from the fit to Eq. (30) for ¢ = = 5 and

any degree of coherence, c. Using earlier results for the

vaiue of =
1 3w

N@*3W ezv

we may determine the branching ratio

Nw~2v €3W _ Nw*2w

B: =]
N, 3y a7 11700

Also it will be recalled from the theoretical section that
i
. e T 4q D .
the mixing parameter & ) (mUJ m i 5 )T@qz /Tp is related

1/2 MeV. The

to the branching ratio according to &' = 20.6 B
values of these quantities derived from the fit to Eq. (30)
are listed below:

N

= 75 £ 100 incoherence
W—2T
B = (0.64 + 0.86) x 102
' +0.87
6 - 1065 —1.65 Mev -
Nw~2v = 1499 + 186 coherence
B= (12.8 £+ 1.6) x lO—2 destructive interference
. +0.45 _ T
Nw~2w = 3.8 £ 9.9 constructive interference
B = (0.032 + 0.084) x 10”2 ¢ = - g
) — +0.33
5'= 0.37 _57 37 MeV .
In order to consider the situation where ¢ = O or 7, we
have also made a fit to
N._(m) = a BW +0 BW 2|F \2+a BW 2ReF +b.BG +b,BG 2.
2T 17 277p w 37p w 17 flat 727 cos

For 17 degrees of freedom, X2 = 22.0, and

(33)



a, = (2.90 + 1.11) x 10

o, = (1.98 + 1.43) x 1ot
o, = {-5.25  1.90) x 10’
b, = (9.0 + 2.4) x 1077

b, = (6.72 + 0.41) x 107" .

The best fit to Eg. (33) is shown on Fig. 23. For this fit,
we find

Np = 1630 + 620

Ngs™ 7650 £ 520

and the number of events corresponding to the w - 27 effect is

= +
Newp = “2Tommca™ *3'REOM

The results of this fit are consistent with a small w - 27

= 360 £ 140 .

effect with ¢ = T and complete coherence. This is so since
if we assume that ¢ equals either O or 7 and allow the
degree of coherence, c, to Vary, we find that ¢=7 (not O)
because Q. is negative. We also have from Egs. (lla), for

B=T,

which is consistent with complete coherence. For this

assumption (from Egs. (l1la) again),

a2
= Q
3! 2
since a, = O for ¢ = m. Thus we have for the branching ratio

and mixing parameter

B = (1.22 + 0.88) x 10~ 2

+0.71 ¢

3'= 2'27—1.08 MeV.

6 .
The Berkeley groupl observed a change at the w mass 1in

the angular distribution of the pions in the 27 rest frame .
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We have studied the distribution of

B
w~beam

.cosG={3\+

\ T
for a succession of 20 MeV mass regions and can observe no
change near the w mass. A selection of these distributions,
corrected by dividing out the Monte Carlo determined efficiency,
is shown in Fig. 30. It should be noted that this experiment
is completely insensitive near cos6 = 1 because of the
spark chamber geometry, and this is the region in which a
change near the w mass might be expected.

It was suggested earlier that the w-p interference phase,
¢, depends on production and decay variables like momentum
transfer, t, and decay angle, 6. As a result, the fact that
the experiment covers a finite range of such variables means
that the w-p interference will be reduced by some unknown
amount. As a check to see if we might have missed some sharp
effect at the w mass by\studying all the data at once, we
have prepared 27 mass spectrum plots for several regions of
cosfB. These are shown in Fig. 31 where it can be seen that
there are no clear effects at the w mass in any region of
cos6. This is no surprise since the only dependence of ¢ on
decay variables like cosf is through the direct w-27m transition
amplitude TUU which is presumed to be very small (see Egs. (4a)
and (7a). It is not possible to divide the data into different
regions of momentum transfer, t, to study the mass distribution

since the 27 mass, m, and t are very strongly correlated by

the kinematics of the experiment. The data as a function of
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m and t 1is shown in Fig. 32. The fact that the w mass appears
only for the limited range 0.6 < t € 0.9 GeV/c2 is further
support for the possibility that w and o are coherently
produced in this experiment.
H. Systematic Errors
The results of the last section depend on the accuracy
of the following:
a. The assumptions concerning the p mass and width.
b. The calibration of the 27 mass scale.
c. The Monte Carlo prediction of the resolution
function which was implicit in each of the distri-
butions used in the fits.
d. Tﬁe assumed form of the background.
Each of these factors may contribute some error to the results.
We will consider the magnitude of these systematic errors in
this section.
~ The Partiele Data Group has cited the following values
of the mass and width of the p in their January 1969 listings:30
m_ = 765 = 10 MeVv

P

T
TP

In their words, these values

i

125 + 20 MeV

"...are not average values from
various experiments, but rather are intended to give the range
where we believe the actual values are most likely to fall."
In this spirit, we assume that the p mass and width may fall
with equal probability anywhere in their ranges. 1In order

tc determine the effect of these uncertainties. on our results,

we have carried out the fits and calculations of the preceding
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section for nine combinations of mp and Pp corresponding to
the two ends and center of the ranges of these two parameters
in all combinations. The results are listed in Table V. The
maximum and minimum values of the branching ratio and mixing
parameter in Table V indicate- the error caused by the lack of
knowledge of the p parameters.

As discussed in Sec. IV.E, the mass scale calibration is
accurate to = ~1.6 MeV. This error is considerably less than
the error in the p mass. Since the essential effect of a
shift in the mass calibration is to shift the p peak, it is
clear that the errors in the results due to the small uncer-
tainty in scale calibration may be neglected compared with
those due to the p mass.

The error in the width of the resolution function depends

on the uncertainty in two qdantities discussed in Sec. IV.B,

the time of flight resolution width, dTOF = 0.78 + 0.02 nsec,
and the chamber resolution width, Sey = 0.037 +# 0.002 cm.
The error in Omop is known from the fit to the 37 time of

flight spectrum (Sec. IV.C) and results in an error in our
knowledge of the resolution width of m,, (the 27 mass determined

from the neutron momentum) of about 2 1/2%. The error in OCH

is known from comparisons of Monte Carlo distributions of D2z

with the data (see Fig. 15a) for different values of Ooy®

The error in our knowledge of the pion momenta is due both

to o and to multiple scattering. These two sources contribute

CH

in about equal proportions, so that it is fair to say that the

error in our knowledge of the pion momentum resolution is 3%
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or less. This is also the order of magnitude of the error in
the resolution width of P (the 27 mass determined from the
two pion momenta). All this is simply meant to justify the
statement that the error in our knowledge of the resolution
width of m = (mZ + m2v)/2 is clearly considerably less than
5%. This uncertainty shows up in our results only in the
omega terms in the fits. However, since the statistical
errors alone are always much larger than 5% of the values of
the omega parameters, it is safe to ignore this possible
source of error.

The assumed form of the background may contain errors
from a number of sources. These include the errors in the
production distribution of Banner et al.27 that were assumed,
the neélect of the cos@nsinen term (which is in practice
indistinguishable from the c0526n term), and the possibility
of some sharp momentum dependence at one of the production
vertices. The true shape may also be affected by as much as
10% of the data which is neither N - nor p or w, and it is
very possible that the éfficiency of the neut;on counters varies
with the 27 mass. The primary effect of the uncertainty in
the background on our reéults is on the number of p that are
found in the fits. For example, if the backgrouﬁd were more
concave than wevthink it is, the parameter Q,, which indicates
the number of p, would be larger Fhan indicated by the fits.
This uncertainty in the number éf p affects o;r calculations
of p-w interference in the determination of the branching

T

ratio at full coherence with ¢ = % 5 - The branching ratio
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for incoherence and for ¢ = T are unaffected. As we have
already noted, by cutting the data at Mn—n = 1300 Mev, it
is possible to remove a much larger fraction of the N*
events than of the p events. The 27 mass spectrum for data
with Mo > 1300 MeV (Fig. 29a) shows a much clearer peak at
the p mass than the plot of all the data (Fig. 23). Cutting
at 1360 MevV (Fig. 29b) reduces the background even more
leaving a large p peak. Fitting the data cut at 1300 MeV to
Eq. (30), we find the number of p events to be

Np = 2106 £ 387
(for mp.= 765, Tp = 125 MeV). Since the background constitutes
a smaller fraction of the data for this fit, any error in the
assumed form of the background should have less of an effect,
and this value for the number of p is a good check of Np for
the fit to all the data. Acéording to the Monte Carlo, cutting
at 1300 MeV will reduce the number of p events by a factor of
0.785 because of the smaller phase space. Correcting for this,
we would expect‘Np= 2684 for all the data. This agrees well
with the actual value of Np = 2887 = 424 determined from the
fit to all the data. As a further check on the number of p
we have fit the 27 mass distribution for three ranges of Mo

These were fits to Eqg. (30) with the w parameter, o set to

2!
zero. In this way, the fit errors in the number of p were
reduced over those determined from four parameter fits in

which correlations between the errors in Np and Nw increase

the uncertainty in Np. The results were as follows:
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Region Np Fraction of Total
Events in Region

M__ <1300 MeV 7104250 20%

13C0<M7_q51360 1205+£190 37%

Mv“n<l36o 1310+170 43%

sum of three 3225+357

regions
all events 3060+356 32%

The increase in the fraction of p as one moves away from

* -
the N region is further evidence that the clear peaking at

the p mass in the Mv n<1360 MeV 27 mass plot is not spurious.
Because of the clear peak.in this region one is assured that
the fitted determination of Np= 1310 is not far off because
of a systematic misinterpretation of the background. The
above results show that the p events extend into the regions
closer to N*.

As an upper/limit, it is hard to believe that the value
of Np used in the w-p interference calculations is more than
750 events off in either direction. Less than 2100 p events
wouid be inconsistent with the number of p found in the fits
to the mass plot in the two regions away from N* and with the
clear peaks seen at the p mass in the plots of data with Mv‘n
cuts at 1300 and 1360. More than 3650 p events would make it

1

el

o

pl

to explain the large number of events involved in the

*

N peak of Fig. 25. To see how an error of 750 events in
Np would affect the results, we have computed the branching

- T . . )
ratios for complete coherence and ¢ = % E‘]USt as we did in
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the last section with only %y changed to correspond to 750

more and less p events. Changes of this magnitude in ay

resulted in changes in the branching ratio of * 3.0 x lO_2
+0. i s
for.¢ =+ %-and —O.gég for ¢ = - %’- These limits on the

systematic error due to the background shape are in some sense
arbitrary since we do not know all the mechanisms involved in
the background. However, they do give a good idea of the
range of error from this source that seems to be consistent
with the data. The only number that is significantly affected
by this error is the branching ratio for ¢ = + % alone.
V. RESULTS AND CONCLUSIONS

Since there is no way of knowing the degree of coherence

between p and w in the data and since there is no clear

w - 2m effect, the best way of reporting the branching ratio,

NwaZv e3v

B:
Nw~3v Cor
and mixing parameter, §', is to make a series of assumptions
of coherence and relative w-p phase angle. The results of

this experiment's measurements of B and §' are listed below.
For each number the best value is listed first with the
statistical error. This is followed in square brackets by
the lower and upper limits of the systematic errors cdiscussed

in the last section.

/
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B = 0.64+0.86% [-1.16+1.03% 1.91+0.79% ] incoherence

§'= 1.621):2; MeV [0.981'(1):32 MeV 3.l6t8:$2 MeV]

B = 12.8+1.6% [9.8+1.6% 15.8+1.6% ] coherence:

7= 7.2470747 mev [5.9810 4% wev 8.7270"2) mev] {pETACTIVE.
p=+1/2

B = 0.032+0.084% [0.0002+0.0062% 0.25i0.20%] constructive

5= 0367033 ey (0157026 oy 1.14%0-38 yoyy getn ST

B = 1.22+0.88% [0.26%1.11% 2.00+£0.79%)

5= 2237970 mey [0.90*116 ey 3.2370:59 yeyy * T

Because events near the w mass in this experiment are
limited to a very narrow range of momentum transfer, which is,
furthermore, a region in which the p and w production
amplitudes are very slowly varying, it is not unlikely that
there is a good deal of coherence between p and w. If this
is the case, then the results listed above indicate that if
the w — 27 effect is not df very small size, ¢ # - % in this
e%periment. The results are consistent with either a small
effect or no effect for incoherence or if ¢ = m. The X2 of
the fit improves somewhat,for this latter assumption, but not
too much should‘be taken from this improvement in xz because
of the possibility of fluctuations.

We have also studied a large sample of 7 p - 7 7%n
data including about 7600 w - W+W_Wo events. We have measured
the Dalitz plot asymmetry of these events to be

A = -0.014 + 0.028.
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A is a measure of C-invariance, and this result is clearly
consistent with no C-violation. The Dalitz plot distribution
was found to satisfy the simplest JP = 1 matrix element very
well. No evidence was seen of a rho dominance effect in

the matrix element.
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APPENDIX I

Relating the 27 Mass Distribution to the w-p Mixing Parameters

We start with the propagator equation for the 7mn
reaction amplitude, Y, Eq. (3):
(ml) =M
=R
If we assume that

62 << sz and 62 << M e

then we can determine the inverse of

2 2, 2
= + ==
ol m (Mp 57) 6(Mw Mp)
o 2 2, 2
+ = +
6(Mw Mp) m (MUU §)

The result is the propagator of Eq. (3):

2 2
- +
1 m~-M 5(Mw Mp)

w
P:
o ) 5 ) 2 ‘ 2 2
= = + =
(m M ) (m Mp ) 5(Mw MJ) m Mp

Using Eq. (A.l), we may now write out Eq. (3) for Y:

T +tA P,.T +A [P

N M L N
AT (M +M )6 AT
- P D w p’ W w
+ (AT +A T ) %
2 x. 2 w'p "pw 2 4 2 2 . 2 2 . 2
(m*-m. ) @M %) (0>, %) (o %)
Squaring, we get
2 2
- +
2= gl el BTN B L
| m —Mp I (m2—M 2) W | m -M,
* * e |
A T AT +A T ) (M +M )
r_p P ( w'p " w)ﬁ w p)8 1
+ 2Rel—H——— | 5 — 2 2Ty T3 3
(m™=M_7) (m“-M_7) (m =M )
la_|%|T lzp la | 2T |2 i A a |7 |2
=P p w o w'p ]

+ + 2Re P
2 2,2 2 2 2
‘ |m®-n 2| 2 . Dy 1 2 o D

(m?-M, %) (m-m )"

(AI.1)

2l2
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where (A +BA ) (M +M )
a =———=F -2 P 43,
w 2 2
m -Mp w
(mw+mp) r
=A, —— [6(1+BA /A )+ -m +i - P
w (mz_Mpz) o/ By) +B (m —m PRI (4a)
and

p = Tw/Tp - ,
This is Eq. (4) of Sec. I. 1In Eg. (4a) we have calculated
the numerator of the second term at m = m for clarity, and
ignored the widths in (Mw+Mp) .

Combining |Y\2 of Eq. (4) with the efficiency and phase
space functions of mass gives the 27 mass distribution of
Eq. (6). For the 3mn final state events we have a similar
equation, Eq. (8). Integrating over the various terms of
these two equations relates the p and w amplitudes to the
number of p and w observed in the 27 and 37 spectra. For

example, integration over the w term of Eq. (8) determines

the number of w-37m in the data for a glven value of A :
¢ (m)e, (m)dm

2
N =nl|la |“m 1
w-=31T -“ W W w-3mT (mz-—m ) +m I‘
2 ¢(m)dm
~ n|a | m,T (m,)
w w- 3W 3T I (m —m ) +m ZF 2
o 2
B lA | “m L 3v(m )I (AI.2)
where _ 2
— ¢ (m) dm
1 = nf - N

2 2,2
- + i
Ty ) Ty tw

(Where useful, we can pull slowly varying functions of m like

Lo out of the integral since the w Breit Wigner is so

sharply peaked.) Similarly, integrating over the w term of
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Eg. (6) gives the number of w-2T (not including any interference

~ 2 .2
effects) in terms of a, = aw(m —Mp):

m T

~ 2 1 2
N = nla_| f > p2$2+ 2F 2 ( 2 2)2+m ZF 5 ¢(m)627(m)dm
(m —mp mp 5 m--m s T

(AI.3)

-10 i ;
i = 7. 0]
The integral IOMEGA 7.186 x 1 and the efficiencies

i Carl
eZW(mw) and €3v(mw) were computed using the Monte Carlo
technique described in Sec. IV.B. The integral Iw3ﬂ' used

for w-3m, can be related easily to IOMEGA since

mprp(mw)QZW(mw)

2 2,2 2. 2
(mUU -m, ) +mp Tp

6

IOMEGA: Iw = 8.778 x 10 CZW(mw)Iw 5

By integrating the first term of Eg. (6), we have

2 _
|Ap| = N, o/ Truo (AI.4)

where N is the number of p observed in the data and

zeZW(m)¢(m)dm2 = 0.5607

p—=2T
Ipuo = JBW,

was also determined using a Monte Carlo calculation.
Using Egs. (4a'), (AI.2) and (AI.3), we have enough

information to determine the mixing parameter §' from the

experimental results for N and Nw $

W—2T =377
e 1 D 2 2.'2
= +
[awl_ |Aw| (m+m ) %8 o
€ m f
= 3.405 x 106 2L W 2
3r T w
B Nw~2W/IOMEGA )

Thus in terms of the branching ratio, B,
€3v(mw) N, 1/2
eZTr(mL;7 Nw~3v

20.2 Bl/2 Mev.

|5'] = 20.2¢ =0
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APPENDIX IT
. . . LT - + -
Decay Angular Distribution of N in T p - T T n
We define the z axis to be the direction of the beam in

the lab or center of mass. In the rest frame of the 7T n

system, the neutron has orbital angular momentum Ln= 1 since

* + =
N has J° = 3/2 and decays into a T (JP

P

07) and neutron

+ . ’
(7 = 1/2). The state L, = 2 is forbidden, assuming parity

*
conservation in the strong decay of N . We may decompose

*
the N wave function Y into the neutron spin function,

3/2,m

X+l/2' and the orbital angular momentum spherical harmonics,

YLmL(en'¢n)' as follows:

- 1 3

- 3 _a ig
¥ 7ZF( 5 51n9ne n)Xl/Z

3/2 © Y11%1/2

Y1/2 J3 X% 10" J3_Y10X1/2 7ar V2 COSanl/z‘\/z sind e K 190
— 2_ l-_ . — 1 i 3 l¢n o

Y1727 V3 Yo% 1/2" V3 Y _1%1/27 7372 CosenX-l/zﬂ/zsmene X1/2)

fo3/2” Y1o1%e1/2 :74W(J2 sinfpe "X 15 - IRTTe 11

For clarity, we have written only the subscript m on Ym=Y3/2,m'
The general spin state of a spin 3/2 particle is completely
defined by four complex amplitudes, cm-lcml2 is the probability

of measuring the spin of the particle to be m, and the only

restriction is that T \cm|2 = 1. The angular distribution
m
of the state characterized by the set of > is
_ it
f(enl ¢n) - (Zcm\fm) (Z’Cmuyml)
m m
2 .2 ; .
= + +
a,cos 9n+a281n Gn(l+a3c082¢n 6451n2¢n) a5c059n51n9n

(cosg +a,sing )

where the a; are rel ated to the various products of the C e
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If we average f(en,¢n) over the azimuthal angle ¢n, taking
into account the efficiency of the experimental apparatus,

we have

o D 2 .
f(Gn) Asin 9n+Bcos 8n+C cos@n51n6n

2 .
s IT.2
A (l+acos Gn+b cos@n51n9n) (AT )

Included in A and C are the experimental averages over cosgbn
and sin¢n. Clearly, if the experimental efficiency were
independent of ¢n,/these averages would be zero and C would
be zero. But this is not the case in this experiment so that
we must, in general, include the cos@nsinen term.

More may be learned about this distributibn by looking
in the center of mass. In this frame, the total angular momentum,
J, is made up of the center of mass orbital angular momentum
of the ™ n system, L, and the spin of that system, S. S is,
of course, the same spin that defines the total angular momentum
of the ™ n system at rest that we dealt with first. If we
look at the incoming 7 p system in the center of mass, it is
clear that there can be no z component of orbital angular
momentum since both particles move in the z direction. As a
result J, = +1/2; all the angular momentum in the z direction
comes from the proton spin. By conservation of angular
momentum, J = +1/2 in the ﬁ+v_n final state, though J may take
any half integral value. N* production has been analyzed
in terms of partial waves of specific J and L, and it is
well known that a number of partial waves contribute.27
For each partial wave, we may predict the decay angular dependence

(in the 7 n rest frame), of the wave function FLj(Gn,¢ )., for
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a. = +1/2. This is done by first finding the Clebsch-Gordan
decomposition into the different states of m,

|35,> = §|LLZSm><LLZSm|JJZ>

. o,
and then writing F 5 1n terms of the Clebsch-Gordan coefficients

and the ¥  of Egs. (AII.1):

+

Foo (6,.0.)

= i <LLZ3/2m|Jil/2>Ym(6n,¢n)

Then if the relative (complex) weights, X of the partial

LJ’!
waves are known, we may determine the angular distribution

1 + + +
£(6_,¢ )== XL (L X__F 6 ,p )1l = X_,_,F., (6,0 )] (AII.3)
n' "n 2Jz=il/2 LT LI LJ n’"n LT L'J'""L'Jg n'"n

In Eq. (AII.3), we assumed the protons of the target are

unpolarized. Listed below are a number of FLj for low order

partial waves:

%
Ly Jar F.T (6, ¢) y
; , = _ : :
. 3 +ig [3  Fi 5 _ =
Dl/2 Xi[Slne( 50 © 19 55 © ¢)f\[-; c059]+X:F[Sln9(_«/l:6 & ig
+J%'e$l¢)*J% cosf]
S [V2 cosB] +y.[F /1/2 sinoet?]
3/2 | %= X ,
Py Xi[—sinQ(J%jeil¢+J%§ e¥l¢)rJ%§ COS@]+X;[=%%% sinoeti? %gcosej
D3/2 Xi[:FsinS(\/%" eii®) —r\/—g—_ COSO]-FX:F[:tSinQ('/%GeiiQ)«k\/% e:Fj_¢,)]

*
N produced in states of various combinations of partial waves
will decay, in general, according to non-uniform angular distri-

, these

butions. For some combinations of relative weights, XLJ

distributions may have heavy c0526 dependence as the data

*
appears to have. For example, a pure S-wave N will decay
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according to

- & 2
f(Gn,¢n) = o7 (1+3 cos Gn).
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TABLE I

DT and TP cuts for the Nine Chambers

Chamber TPLO < TP < TPHI | pT-DT | < DTCUT
Quadrant TPLO TPHI DT DTCUT
1 inner 118 145 -4500 52000
middle 127 158 20000 134000
outer 146 178 25000 120600 + 744 r"
2 inner 124 148 0 75000
middle 121 157 -8000 110000
outer 117 156 0 235000
3 inner 117 149 -6000 55800 + 178 r*
middle 100 151 1000 116000
outer 130 162 0 195000

*

r is distance from chamber center - see text.
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TABLE II

3T Data: Background Subtraction for 28 Dalitz Plot Regions

Dalitz Plot Total 37 w Events N /N w Events
Region Events N, w (=0.855 nsec)
A =Ve. @
(see Fig. 16) N (0=0.836 nsec)
1 502 145.1+41 0.29 146.8:41
2 543 275.041 0.51 279.1£39
3 389 237.0+39 0.61 240.6+36
4 388 235.8+38 0.61 239.4+36
5 380 233.2+38 0.61 237.3+35
6 348  190.3:37 0.55 193.8+35
7 376 245.6+38 0.65 249.5+36
8 423 138.0+38 0.33 140.1+37
9 789 377.0+44 0.48 382.8+43
10 612 325.2+41 0.53 330.2+40
11 598 324.8:41 0.54 329.6+39
12 620 317.5+41 0.51 322.9+40
13 628 373.6+42 0.59 379. 6:40
14 671 426.1+43 0.63 432.1:40
Left Side of 7267  3844.2:150 0.314 3903.8+144
15 488 90.4+42 0.19 91.8+42
16 932 405.1£49 0.43 410.2+48
17 718 366.7+43 0.51 372.3x41
18 697 387.7:43 0.56 393.5+41
19 705 349.7:43 0.50 354.4+42
20 638 313.8+42 0.49 319.1:41
21 804 431.9+45 0.54 438.2+43
22 669 71.9+46 0.11 73.346
23 635 216.9+44 0.34 220.043
24 452 221.6+39 0.49 225.0+37
25 405 223.2+38 0.55 227.2436
26 392 222.7+39 0.57 226.5+36
27 370 197.1+38 0.53 200.2+35
28 al1 238.6+36 0.58 242.7+36
Right Side of  g316  3737.3:156 0.449 3794.4+152
Whole DAlit®  ;.533  7581,5+217 0.486 7698. 24209

Plot
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TABLE IIT

Monte Carlo Results: Chamber Efficiency for w - 27

and w - 37 vs w Spin Alignment

w Spin Chamber Efficiency (x10™2) €3

Alignment e " -
o 2T 3T 2T
0 4.350+0.02 2.816+0.013 0.6474+0.004
0.1 4.197 2.750 0.6552
0.2 4.020 2.673 0.6649
0.3 3.815 2.584 0.6773
0.4 3. 571 2.478 0.6939
0.5 3.280 2.351 0.7170
0.6 2.924 2.197 07513
017 2.478 2.003 0.8080
0.8 1.907 1.753 0.9196
0.9 1.145 S 1.421 1.2410

10 0.0798 0.955 11.962
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TABLE IV

Table of Mass Spectrum Distribution

1.1439x10%

Dist. Description Function Integral over
Mass Spectrum
2 : : m T
BWp p Brelt Wigner o7 p
m = 760 MeVv 2 2+ 2 2 2
o + — =
Tpo=120 MeV (m mp ) mp I‘p IRHO UESEUs
P where g3 m
T =T o(= )~ — and
ppOlq,” m
g=momentum of 7T in
21T rest frame.
Bwplewl2 w Breit 5 1 10
Wigner Mixing BWp N 55 IOMEGA_ 7.18x10
Term (m“=m ) +mw T
m =783.4 MeV & &
r=12.2 Mev
w
"BW “ReF_ Real part of w BW 2\F \2(m2—m 2,1 r 2y 1 =_4.13%10~°
P Y Breit Wigner o Tw w *Cw REOM °
Amplitude
2
*
N Background (mN*rN*) F(ec) Ay
BG lsotropic Decay - 2 2,2 2 g =2.937x10
flae Term (Mv-n—mN*) +(MN*TN*) B g1 ot
F(0_ ) is production
angle distribution
fit to Legendre Poly- 27
nomials of Banner et al
c0829 2
BG 2 n BG cos 6 _ 3
cos Decay Term flat n IBG =7 .446x%x10
A cos?2
cosfB=(P_)
nw—n’z
in m— rest frame
BGcos sin cos9n51n9n BGflat cos@n51n9n I -
BG .
Decay Term CcOs si1n
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TABLE V

Study of Systematic Errors Due to o Parameters

Branching Ratio Mixing Parameter - §'
(x10~2) (MeV)
m . — -
o Lo p=+  p=- | p=+  0=-
MeV MeV incoh. 7/2 T/ 2 ¢=T incoh. w/2 T/ 2 =T
755 10541.53 1ll.6 ©0.201 1.73 2.51 6.93 0.91 2.66
+.81 1.5 x.200 .82 +.60 *.43 +.37 +.57
-.80 -.46 -.85 -.73
755 125]1.71 13:0 0s2225 1.87 2.83 7.80 1.02 2.95
+.80 x1.6 +.197 +.80 +.60 +.46 .38 .58
-.76 -.49 -~-.66 -.72
755 145]11.91 14.6 0.250 2.00 3.16 8.72 1.14 3.23
.79 1.7 #£.495 £.79 +.60 +.51 +.38 +.59
-.74 ~-.54 -.60 -.72
765 105|0.27 11.4 0.007 0.96 0.98 6.34 0.15 1.84
.89 *£1l.5 £.042 £.93 +1.04 +.41l +.26 +.74
-.98 -.44 -.15 -1.49
765 125|0.64 12.8 0.032 1.22 1.62 7.24 0.36 2.23
+.80 1.6 +.084 +.88 +.85 +.45 +.33 +.70
-1.62 -.47 ~.36 -1.06
765 145|0.97 14.2 0.067 1.43 2. 1.3 8.14 0.56 2.58
+.83 *£1.7 =#£.111 +£.85 + o % +.48 +.35 +.68
-1.32 -.51 -.56 -.93
775 105 —l.l6*ll.6 0,115 0.26 - 5.98 0.60 0.90
£1.03 #£1+7 =®.212 &£1s1ll +.42 +.41 +1.16
-.45 -.60 -.90
*
775 125|-0.55 13.1 0.023 0.59 % 6.92 6.29 1.47
+0.96 1.7 +£.082 +£1.02 +.44 +.33 +.96
=47 =.29 =1.47
- .
775 145|-0.05 14.4 0.0002 0.87 - 7.81 0.027 1.92
#:91 £1-8 £.0062 #.95 +.48 +.14 +.80
-.51 -.27 -1.92

A negative branching ratio for the incoherent case indicates
small negative effect near the w mass-

o))
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FIGURE CAPTIONS
Beam transport system.
Location of spark chambers in magnet. Left:
looking upstream. Right: looking downstream.
Overall view of experiment.
Photograph of spark chambers.
Schematic layout of a typical spark chamber
Corrected time of flight spectrum for events
corresponding to the reaction 7 p - it 7%n.
Schematic drawing of experiment showing distances
invol&ed in time of flight correction and neutron
momentum reconstruction.
?p and DT distributions for the inner chamber
of quadrant 1.
Histograms of DZ for 3 different regions of & and pB.
Histograms of vertex separation: a) S i b) Sy
c) and 4) s, for different ranges of cosf6 for 2mn
final state events.
Schematic drawing of liquid hydrogen target and
enclosure showing obstructions and limits on VZ.
Hisfogram ot Myz, missing mass squared of y in
T p - W+W_y, for events that went into guadrants 1, 3.
Histograms of MX2, missing mass squared of x in
T p — 7 7 xn. Above: preliminary 3mn final state
events. Below: preliminary 2mn final state events.

Histograms of AE=E E -E -E__. Above:

+ —
beam “target Tn EW+ T

preliminary 37n events. Below: preliminary 27mn events.

Comparisons, of Monte Carlo predictions of resolution
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functions with 27n data. Monte Carlo functions are
drawn as solid curves, data as histograms.
2 - _

a) DzZ; b) AE; <) Am”. Oy~ 0-037 cm. Opop- 0-78 nsec.

+ - , : s
w - 7 7 7° Dalitz plot showing 28 regions used for
matrix element analysis and background subtraction.
Corrected time of flight'histograms for 37 events
in a) Region 1l; b) Region 4; c¢) Region 7; d) Region 9.
Matrix element of w — 37 data (background corrected)

2
vs g .
Search for p dominance in matrix element of background

corrected w — 37 data. Plots of matrix element/q2

c) m_

(see text) vs a) m_ 4 O, b)m -

=70’ -
Production and decay state vectors for measurement
of w polarization. Above: lab frame. Below: center
of mass of pions.

Background corrected distribution of qz;ab

for w - 371
events. Solid curve 1s best fit to Monte Carlo
distributions with 0 < a < 1.

Histogram of 27 mass for 7mmn data. Solid curve 1is
pure phase space including experimental efficiency.
Data/Monte'Carlo vs m. Best fits to Egs. (30) and
(33) are shown as solid curves.

Histogram of momentum transfer for mwrn events.
Histograms of a) M ., and b) M, 4+, for mmn events.
Curves show Monte Carlo predictions for pure phase

*__
space and N production at Moy = 1236 (7=120)

including efficiency.
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A A
Efficiency corrected data vs cos@C = p .

_ P.
sm TN w~inc
Points with error bars are data from this experiment.
Solid curve shows Legendre polynomial fit by Banner
et al to data taken at Pine™ 1000 Mev/c.
Monte Carlo generated functions vs 27 mass for
various dynamical assumptions defined in Table 1IV.
; 2 Z s . 2_ 2 2
Dalitz plot of M__ vs m~ (in units of MN* =1236"MeV
T™n
and mw2 = 783.42MeV2, respectively) for efficiency
corrected mmn data.
*
Data/Monte Carlo vs m with N cuts. a) M__ > 1300
MeV; D) Mo S 1360 MeV.
Data corrected for efficiency vs 27 rest frame decay
angle 6 for 4 regions of m.
Data/Monte Carlo vs m for 4 regions of 27 rest frame
decay angle 6.

Phase space plot of m vs momentum transfer for 7mn

data.
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