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Abstract

Spires on the Building of Science is a thorough investigation of the complex network of
scientific publications in the SPIRES hep database. Chapter by chapter, the most important
results are:

Chapter 1 Is a general introduction to the field of complex networks. The physics of complex
systems and the subject of graph theory (random graphs and the Watts-Strogatz model)
are briefly summarized, in order to list some key results and to introduce important
nomenclature used in the remainder of the thesis. A number of real world networks are
described with a special emphasis on networks related to scientific publications. Finally,
a brief history of the SPIRES database is supplied, along with considerations regarding
applications of the physics contained in this thesis.

Chapter 2 Here, the network constituted of papers citing papers is investigated. It is found
that the probability that a given paper in the SPIRES database has k citations is
well described by simple power laws, P (k) ∝ k−α, with α ≈ 1.2 for k less than 50
citations and α ≈ 2.3 for 50 or more citations. A consideration of citation distribution
by subfield, shows that the citation patterns of high energy physics form a remarkably
homogeneous network. Further, the knowledge of the citation distributions is utilized to
demonstrate the extreme improbability that the citation records of selected individuals
and institutions have been obtained by a random draw on the resulting distribution.
This work was done in collaboration with Benny E. Lautrup and Andrew D. Jackson
and it is largely contained in [3].

Chapter 3 The more complicated network that arises when the level of authors is included in
the description of the network of scientific publications is discussed. The basic statistics
of the resulting network are described, and the two power-law structures from Chapter 2
turn out to re-emerge from the distributions of total citations per author and total num-
ber of papers per author. The impact on the distributions of paper- and total citations,
when removing the minimally publishing authors is also discussed. The analysis in this
chapter is, to a high degree, independent work and the main results will be published
in a paper currently in preparation.

Chapter 4 This chapter introduces the brand-new concept of author citation histories: We
shall discuss the properties of the distribution of first papers, second papers, and so-
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forth. It turns out that if we consider authors with more than 25 publications, the quality
of their publications is remarkably constant (on average) throughout their careers. Thus,
the author citation histories teach us that a highly homogeneous group of authors (with
25+ publications) constitute the backbone of SPIRES; less than 10% of the authors
are the target of around 50% of the citations. Further, because of the constant quality
of their publications, these authors stand out from the day that they publish their
first paper. This chapter is entirely my own and its contents are a part of a paper in
preparation.

Chapter 5 A very interesting property of SPIRES is the longitudinal correlations in the
distribution of citations of papers. Here, Principal Component Analysis (PCA) is uti-
lized to analyze the SPIRES data in order to learn more about these correlations. The
new-found group of authors (25+ population) is ideally suited for just this type of inves-
tigation, since it turns out that this group of authors is responsible for the vast majority
of these longitudinal correlations.

First, the theory behind PCA is reviewed. The covariance matrix for the ‘25+ pop-
ulation’ in SPIRES is established and diagonalized, hereby uncovering the principal
components. We then discuss PCA as a means of ‘reverse’ quality control in order to
pinpoint interesting authors, and demonstrate the use of PCA on the selected authors
from Chapter 2—thus using PCA as an augmentation of the probability measure put
forth in that chapter. The idea of employing PCA stems from my advisor, but all of
the work and the interpretations are my own. The material here is also intended for
publication.

Chapter 6 The growing networks (GN) model proposed by Barabási and Albert [4] is thor-
oughly reviewed with a focus on the analytical results. Many properties of the model
are discussed. The GN model is then used as the starting point when creating a model
for the SPIRES data; the resulting model is very successful in recreating the topologies
seen in the distribution of citations of papers in SPIRES (discussed in Chapter 2). The
work on this simple model for SPIRES is original, and solely the work of the author. In
the latter part of this chapter, the subject of several intrinsic problems of the model is
discussed.

Chapter 7 This chapter continues where Chapter 6 left off. We begin by discussing other
forms of preferential attachment in the GN model and their implications regarding
the network topology. After this, some recently proposed alterations of the model are
reviewed: We learn how to account for carelessly compiled lists of references and how
compensating for ageing of papers affects the citation distributions. The work done on
these modifications of the model is not original. Finally, the topic of constructing a
model that includes the level of authors, is discussed (this is original work).

Chapter 8 In this postscript, I outline what I believe to be promising venues for future
research of the SPIRES database.
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CHAPTER 1

Introduction

The best way to introduce this Cand. Scient. Thesis is to answer a simple question that has
arisen in countless discussions since the process of writing began, namely,

What in the world does the distribution of citations in scientific publications have
to do with physics!!???

The short answer to this question is simply that the study of citation distributions is a part
of the physics of complex systems. To answer this question more precisely, a short review of
the genesis of the field of complex networks is appropriate:

1.1 Complex Networks

The field of complex networks stems from a union of the fields complex systems and network
theory. In this section, we shall briefly study these two fields.

1.1.1 Complex Systems

The physics of complex systems emerged from statistical physics in the 1980’s, rooted in
ground-breaking work on phase transitions a decade earlier. It is a very inhomogeneous field
that is difficult to characterize precisely. In broad strokes, the evolution is as follows. In
their seminal paper from 1987, Bak, Tang, and Wiesenfeld [5] suggested that the 1/f -noise1

seen in a number of transport systems normally considered outside the realm of statistical
physics—resistors, the hour glass, the luminosity of distant stars, etc.—has the same origin
as the self-similar fractal structures observed in spatially extended objects such as coast lines,
mountain ranges, or cosmic strings. In turbulence, self-similar structures appear both in space
and time.

Bak, Tang, and Wiesenfeld hypothesized that the power-law spectra emerge, when the
system in question naturally self-organizes into a critical state akin to the microscopic state

1This name is terrible for more than one reason. First of all, the ‘1/f ’ part of the expression, should have
been 1/fβ , since it refers to the power-law nature of the noise spectra. Second of all, as we shall see in the
following, whether ‘noise’ is the correct classification of these spectra is highly questionable.

1
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of a physical system (gas, liquid, magnet, etc.) at the critical point of a phase transition.
According to the theory of phase transitions, many physical systems are characterized by
universal behavior around the critical point, meaning that when we find ourselves on scales
that are much larger than the intrinsic scales, the behavior of the system is scale invariant
and does not depend on the microscopic details. Near the critical point, correlations are
distributed according to power-laws with exponents determined by the universality class of
the system2. The criticality in Bak, Tang, and Wiesenfeld’s theory is fundamentally different
from the critical point in the theory of phase transitions in one important aspect, namely in
its robustness; no fine tuning is needed. In equilibrium statistical physics, the critical point is
reached by tuning a parameter, e.g. the temperature; here, the critical point is an attractor
reached by starting far from equilibrium.

The argument begins with proposing a simple computer model that produces power-law
behavior, and their main idea roughly consists in hypothesizing that if in their simple model,
a system naturally grows into a self-organized critical (SOC) state and is kept there by the
internal dynamics of the system, then this may also be the case for the more complicated
macroscopical systems described above. This may not seem like the best of arguments, but
it gains strength from the knowledge that if two systems belong to the same universality
class, many microscopical details of the system are unimportant: Most features of the specific
microscopic dynamics will also be insignificant. Hence, certain general properties will be seen
in vastly different systems. Universality classes are typically defined by more fundamental
quantities like conservation laws and symmetries.

Thus, with Bak, Tang, and Wiesenfeld it is possible to apply the concept of SOC to a host
of wildly disparate phenomena that have the common property that they are characterized by
scale-free behavior; in other words, governed by power-laws. At present, complex phenomena
are believed to appear almost everywhere in our daily world: earthquakes, evolutionary biol-
ogy, congested traffic, the economy, etc. Because of the diverseness of these physical systems,
the physics of complex systems naturally traverses across the boundaries of traditional fields of
research, thriving especially in newly formed areas of physics, such as biophysics, geophysics,
and even creating new ones, such as econophysics. In this vein the study of citation patterns
could be coined sociophysics.

Another common denominator is the methodology: Throughout the history of science,
physicists have been immensely successful in developing tools to predict the behavior of a
system as a whole by understanding the properties of its constituents. This approach is
known as reductionism, and it is widely believed3 that the almost unbelievably successful
application of reductionism in physics and its failure in other fields is due to the simplicity
of the interactions in the systems traditionally considered a part of physics. As it turns out,
however, the methods of statistical physics seem as if tailor–made for describing systems with
more complex interactions, cf. the examples mentioned above.

1.1.2 The Study of Networks

The study of networks originated from the mathematical field of graph theory, where Erdös
and Rényi lay the foundations of the theory of random graphs [8]. As the deficiencies of the

2To limit the size of this introduction, I have been forced to omit countless details. For an excellent and
complete introduction to the statistical physics of phase transitions, the interested reader is referred to [6].

3For example by most philosophers of Science and people in the humanities in general. For an introduction
to this way of thinking, cf. [7]

Copyright 2003 c© Sune Lehmann 2 Version 3.01, Revised June 30, 2003
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Figure 1.1: A random network with 10 vertices and 25 edges; this corresponds to p = 5/9.

random graph as a model for real networks became apparent, Watts and Strogatz designed
an elegant model that closely follows our intuitions about social networks [9]. The most
recent idea is Barabási’s growing network model, characterized by power-law distributions of
links [4]. Here, I will review all of these models briefly and introduce common terms and
concepts from network theory.

Random Graphs

A random graph is the simplest realization of a complex network: We start out with N points
(in the language of network theory, these are called nodes or vertices) and draw lines (edges
or links) between every pair of nodes with probability p, creating a graph with approximately
pN(N − 1)/2 edges distributed randomly. With this definition, it is clear that the limit of
large N , the degree (number of edges) of nodes on a random graph is Poisson distributed.
Figure 1.1 is an illustration of a random network.

Although random graphs have been studied extensively in the mathematical community,
physicists have taken an interest in the study of networks because they wish to understand
real physical systems. Switching the focus to actual networks, the question inevitably ap-
pears whether real complex networks – citation networks or the internet – are fundamentally
random. When it comes to citations it is clear that our intuition tells us that the number of
citations a given paper receives is a not random distribution. On the contrary: The number
of citations is considered a measure of the quality of a given paper; therefore the expected
degree distribution of scientific publications should be far from random. Analogously, we
expect some kind of non-random underlying principles to be reflected in the topology of most
other real world systems.

Copyright 2003 c© Sune Lehmann 3 Version 3.01, Revised June 30, 2003
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Small-world Networks

One property that is central to all complex networks is what is called the small-world effect.
The notion of small-world networks was introduced by Harvard social psychologist Stanley
Milgram in the 1960’s [1]. Milgram conducted a simple experiment, in which a number
of letters addressed to an acquaintance of his in Boston, Massachusetts, were distributed to
random people in Nebraska—which he considered to be the farthest imaginable place (at least
socially speaking) from Boston. Each initial recipient was instructed that the letters were to
be handed over to a person known by first name by the sender and most likely to know
somebody familiar with the addressee. The letters reached their destination in surprisingly
few steps (on average 6), which gave rise to the term ‘six degrees of separation’, which has
passed on to popular folklore. Though Milgram’s experiment was very primitive, the general
result that any two people can be connected in very few steps is beyond questioning, and it
is exactly this property that has resulted in the name small-world networks.

The small-world effect is the reason that random graphs were used as a first approximation
to real world networks. It is easy to see that a random graph must display the small-world
effect. If a person A is a node in a random network, and has k neighbors, then A has
about k2 second neighbors, and extending this argument, A has k3 third neighbors and k4

fourth neighbors and so on. Since most people have between a hundred and a thousand
acquaintances, k4 is already between 108 and 1012 which is comparable to the population of
the world. As explained above, the problem when trying to apply the random graph to the
real world is that it does not appeal to our every day experiences—our friends are not chosen
at random4—our friend’s friends tend to be our friends as well. This means that in a real
social network it is not true to say that a person A has k2 second neighbors, since many of
these friends are likely to be his own friends. This property is called clustering.

To deal with the subject of clustering in real world networks, one can define a clustering
coefficient, C, which is defined as the average fraction of pairs of neighbors of a node that are
also neighbors of each other [9]. Consider a single node i, with ki edges. Now, if i’s neighbors
were all connected, there would be ki(ki− 1)/2 edges between them; the clustering coefficient
is defined as the number Ei of actual connections, divided by the total number yielding,

Ci =
2Ei

ki(ki − 1)
. (1.1)

C is simply the average of the Ci’s. In a fully connected network (everybody knows every-
body), C = 1; in a random network Crand ≈ O(n−1) [9, 11], which is of course very small
for large networks. This was the next step for network theory: To include models that in-
corporate clustering. This has been done by Watts and Strogatz [9], as we shall see in the
following.

The Watts-Strogatz Model

In the class of models proposed by Duncan J. Watts and Stephen H. Strogatz [9], the focus
is on creating a model of a small-world network that has a structure that mimics real social
networks. The clustering in real social networks appears because most people usually have a

4This statement is made very precise in a recent paper by Newman [10] entitled: Ego–centered networks
and the ripple effect—or—Why all your friends are weird. In this paper Newman demonstrates how the
small–world argument made for random graphs above, does not apply to a variety of real networks.
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1. Introduction 1.1. Complex Networks

group of friends that are close to them in some sociological sense, our own little sub-culture:
co-workers, neighbors, fellow philatelists, etc.

The simplest model one can think of that displays clustering, is simply a one dimensional
lattice in which each node is connected to its k nearest neighbors. We give it periodic boundary
conditions so that it wraps around in a ring. The result is shown in Figure 1.2 a. For the
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Figure 1.2: a. A one dimensional periodic lattice with k = 1. b. The Watts-Strogatz model.

lattice shown in Figure 1.2 a, we can calculate the clustering coefficient exactly; for k < 2
3N ,

which will be the case for almost any graph, we find that

C =
3(k − 2)
4(k − 1)

(1.2)

which → 3
4 for k →∞. For higher dimensional lattices, the corresponding value of C is

C =
3(k − 2d)
4(k − d)

, (1.3)

where d is the dimension of the lattice. This expression also tends to 3
4 for k � 2d.

Obviously, low-dimensional regular lattices do not show the small-world effect, since the
typical node-node distance increases too rapidly with the system size. A regular lattice with
the shape of a hyper-cube of side L has N = Ld nodes; the average node-node distance for the
hyper-cube increases with L or equivalently with N1/d. Thus, for a one-dimensional lattice
L ∼ N . If we let d become sufficiently large N1/d becomes a slowly increasing function—in
other words, real social networks might roughly be lattices of very high dimensions.

The idea of a social network having the same structure as a regular lattice does not
correspond very well to our intuitions. Aside from the group of people in our particular
‘subculture’ (our nearest neighbors on the lattice), most people also have acquaintances in
wholly different walks of life, people that are not close to us on the social lattice: The punk
rocker has a boyhood friend who became a classical cellist, the Oscar winning actor grew up
having a best friend who is now in the army, etc. In figure 1.2 b, the Watts and Strogatz
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model [9], in which this aspect of the social structure is included, is illustrated. Their proposal
is to consider a low dimensional lattice—for instance, a one-dimensional lattice—where, with
some probability p, we rewire each of the links. Rewiring means that we move one end of a
link to a new position chosen at random from the rest of the lattice; this rewiring models the
occasional friend from another subculture. For a small p this results in a graph that is still
mostly regular but has a few connections which stretch over long distances. The coordination
number is still k on average, although the number of neighbors of any particular node can be
greater or smaller than k.

Clearly the strength of the Watts-Strogatz model is the strong correspondence to our
intuitions. The model is tailor-made to correspond to how sociologists perceive the structure
of human acquaintances.

Results in the Watts-Strogatz Model

Since the topic of this thesis is rather removed from the Watts-Strogatz model, I will only very
briefly review the key results. The most important realization in the context of the SPIRES
network, is that the Watts-Strogatz model and its variations, have been demonstrated to have
exponential degree distributions5. It is clear that the clustering coefficient C is close to that of
a perfectly ordered lattice for small values of p. Watts and Strogatz have shown, by numerical
simulation, that the average node-node distance ` is comparable to that of a random graph,
even for quite small values of p.

For example, for a random graph of N = 1000 and k = 10, the value of ` is 3.2. For
p = 1/4 the Watts-Strogatz model gives us ` = 3.6, which is only slightly higher than the
random graph value. If we put p = 1

64 , which is quite small, we will find that ` = 7.6—a
number that is still considerably lower than the ` = 50 which is the corresponding result for
the perfectly ordered lattice. Thus, these initial simulations show that the Watts-Strogatz
model indeed displays both clustering and small-world properties.

There has been a great deal of theoretical interest in the Watts-Strogatz model in the
late 90’s, which has generated a wide variety of analytical results for this model; these are
periphery in the context of this thesis6. This due to the fact that the growing networks model
(introduced below) has many advantages over the Watts-Strogatz model: The most important
of which is that it generates power-law degree distribution of the edges.

Growing Networks

Another—and by far the most successful at present—class of network models is the Growing
Networks (GN) models. These incorporate some clustering and also maintain the small-
world properties, while emphasizing the fact that networks grow ! Just like the internet grows
(rapidly) over time as webpages are added one after the other, their model grows node by
node, with new nodes linking to older nodes according to a ‘rich get richer’ principle. This
model was proposed by Barabási and Albert [4]. The degree distributions of many variations
of their growing networks have power law tails and are, therefore, often referred to as scale
free networks. The power-law tail is, as we shall see in the following, a common trait of many
real world networks—and an interesting trait as well, because it unexpectedly sheds light on

5They are sometimes referred to as exponential networks in the literature.
6The interested reader is referred to an excellent review by Newman [12], or to one of the more general

reviews that can be found in [13,14].
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yet another connection to the physics of complex systems. The details of these ideas are
outside the scope of this initial review, but I will discuss this in much detail in Chapter 6, in
which I propose a model for the network of scientific publications.

Summary

Defining exactly what a small world network is, is difficult—and still a matter of debate. A
reasonable definition, however, is that the average distance between two nodes ` (the average
path length) should be comparable to the value it would assume on a random graph of the
same size and average degree. The diameter is defined as the maximum distance between
two nodes of a network. In summary we find that three key results seem to crystallize in the
investigation of complex networks:

• Complex networks are small worlds, i.e the average distance between two nodes is
comparable to the value it would assume on a corresponding random graph.

• Real networks display a degree of clustering that is higher than what is expected for a
random graph.

• The degree distribution of most real world networks are radically different from the
Poissonian distributions seen in random and Watts-Strogatz networks. Often the degree
distribution of real world networks are power-laws, P (k) ∼ kα.

1.2 Real World Networks

Another important step forward for the study of networks is the technological progress. First,
the problem of data: Early sociological investigations of networks have all been carried out
via field studies, interviewing the members of a certain community, e.g. a school [15] or a
business community [16]. Interviewing, as a method of collecting data, is surely useful for
sociological and anthropological purposes, but from the point of view of statistical physics it
suffers from a very serious drawback, namely the relative sparseness of data—to a sociologist
a thousand actors is a huge network, to a statistical physicist a data set of a thousand nodes
equals poor statistical accuracy.

Secondly, increased computational power: It is now possible to analyze networks con-
taining millions of nodes on a regular personal workstation, enabling physicists to explore
questions that could not possibly have been answered just a few years ago.

1.2.1 The Networks

It is interesting to take a look at some of the real world networks that have been studied
by physicists, and review some of the properties of these networks that have been unveiled
during this study.

World Wide Web

There is no doubt that the world wide web is the largest network for which data is available—
it was estimated to consist of some 800 million pages in 1999 [17]. In this network the nodes
are the individual web pages and the edges are the hyperlinks connecting them. There is one

Copyright 2003 c© Sune Lehmann 7 Version 3.01, Revised June 30, 2003



1. Introduction 1.2. Real World Networks

important difference between the www and the social networks that we have encountered so
far—the www is directed. A hyperlink points from one page to another, but not necessarily
in the opposite direction.

The internet is a scale free network. Let Pin(k) denote the probability that a web page
has k incoming links and Pout(j) the probability distribution of the outbound links, j; it has
been shown that

Pin(k) ∼ k−αin and Pout(j) ∼ j−αin . (1.4)

The numerical value of αout varies, assuming the values αout = 2.45, αout = 2.38, and αout =
2.72 in the studies [18,19,20], respectively—seeming to increase with the sample size. This is
not the case for αin which takes on the same value, αin = 2.1 in all of the before-mentioned
investigations. Because of the directed nature of the internet, the clustering coefficient C is
not directly determinable. In spite of this, it is clear that the internet displays small–world
behavior: The average path length in a sample of 325,729 pages was found to be ` = 11.2
(`rand = 8.3) [18] and in a 50 million sample, Broder et al. [20] found an average path length
of ` = 16 (`rand = 8.8). The www is indeed a small world.

Email Network

Another example of a complex network that has recently emerged is the email network.
Knowing the structure of an email network is interesting when one has to decide on strategies
for fighting computer viruses. In [21] the address books from a large university system were
analyzed. The email network consisted of 16,881 address books (nodes); the edges of a node
are, of course, email addresses contained in each node (address book). The email network is
also directed and both the in and out degree distributions are markedly faster decaying than
the power law distributions, found in many other networks. The in-degree is well described
by a simple exponential, Pin(k) ∼ exp[−k/k0], and the out-degree by a stretched exponential
with exponent 1

2 , Pout(j) ∼ (1/
√

j) exp[−
√

j/j0], with k0 = 8.58 and j0 = 4.15. If the system
is considered a semidirected network (since some of the edges are bi-directional), a clustering
coefficient can be calculated, using only these bi-directional edges. It turns out that Cemail

is around one order of magnitude higher than Crand, the clustering coefficient for a random
graph with the same parameters.

Internet

The final example from the world of IT is the internet, the network of physical links between
the computers that make up the www. We can study the internet at two different levels:

• The level of routers. Each router is a node, and the edges are the physical connections
(cables) between these.

• Inter-domain level. At this level each node is a domain (a domain usually consists of
many routers and computers).

Both levels are studied in [22] and in both cases the degree distribution follows power-laws.
Based on a 1995 study, the slope router level distribution had slope αrouter = 2.48 and for
the inter-domain level a slope of αdomain ≈ 2.2 was found.

It has also been established [23, 24] that on the domain level, the clustering coefficient
Cdomain takes on a value somewhere between 0.18− 0.3—which is orders of magnitude higher
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than the Crand ≈ 0.001 found for a complex graph with the same parameters. With regard
to the average path length, ` was determined to be somewhere in the range between 3.70 and
3.77, fully in agreement with the corresponding random graph.

Movie actor collaboration network

Surfing to the webpage entitled the ‘Oracle of Bacon’7 one can calculate the Bacon number
of any actress or actor. The Bacon number is defined as an actors degree of separation from
the actor Kevin Bacon. If you have acted in a movie with Kevin Bacon your Bacon number
is 1, if you have been in a movie with someone who has acted with Kevin Bacon, your Bacon
number is 2, etc. A network centered around a single person is called an ego-centered network.
In the network of movie actor collaborations, each actor is represented by a node and an edge
is established between two actors whenever they co-star in a movie. This type of network is
called an affiliation network.

The data for this co-star network stems from the very comprehensive Internet Movie
Database8. This database is spectacular in its completeness (Bulgarian art films from the
fifties are included!). Thus, the IMDb gives us a unique chance to study a closed and, more
importantly, complete network.

This network was studied most recently in [25]. For this network, the average path length
is ` = 3.65 which corresponds nicely with the value `rand = 2.9 for a random graph with
similar parameters. The actor collaboration network is very connected, with a clustering
coefficient that is more than 100 times higher than Crand for the corresponding random
network. The degree distribution P (k) once again turns out to be a power law P (k) ∼ k−αactor ,
αactor = 2.3± 0.1, cf. [4].

The Small World of Paul Erdös

As an amusing analogy to the actor collaboration, the network centered around the great
(and prolific) mathematician Paul Erdös, who published more than 1500 papers with 507 co-
authors, has caught the attention of many scientists (who would like to possess a central place
in the small world of mathematics). Again, the structure is that if you have published with
Erdös you have Erdös number 1, and so forth. This network has not be charted completely
although Barabási et al. discusses part of it (papers published 1991-98) in [26, 27]. It is
also worth mentioning that Erdös has a Bacon number of four, by virtue of the movie N is
a Number, a documentary about him in which he plays himself. In the cast, we find Gene
Patterson, who later had a small role in the movie Box of Moonlight, yielding a Bacon number
of three.

Networks of the Cell

Looking at the metabolism of 43 different organisms, Jeong et al. have discovered another
interesting example of a complex network [28]. In their network representation, the nodes
are substrates (such as ATP , ADP , H2O, etc.) and the biochemical reactions, in which the
substrates participate, make up the edges of the network. It is in the directed nature of
these chemical reactions that the edges are directed, rendering calculation of the clustering

7http://www.cs.virginia.edu/oracle/
8http://www.imdb.com/
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coefficient impossible. This metabolic network also displays scale free behavior (with both
incoming and outgoing distributions having slopes ranging between 2.0 and 2.4). The average
path length assumes the value ` ≈ 3.3 for all the 43 organisms.

Related to this subject, Sergei Maslov and Kim Sneppen9 have recently mapped the
networks in yeast Saccharomyces cerevisiae [29]. The living cell actually has two levels of
networks. One, is the network of metabolic and signaling pathways, shaped by the network
of interacting proteins. These are, however, regulated by the genetic regulatory network.
Maslov and Sneppen’s approach to quantifying the topological properties of both networks
consisted in comparing the degrees of interacting nodes to a null model of the network,
in which all links were randomly rewired. Again, a familiar pattern of fat tailed (power-
law) distributions appear. Also, for both interaction and regulatory networks it was found
that links between highly connected proteins are systematically suppressed, whereas those
between highly connected and low-connected pairs are favored. This effect is highly important,
since it decreases the likelihood of cross talk between different functional modules of the cell;
simultaneously, it increases the overall robustness of the network by localizing the effect of
deleterious perturbations.

Phone Call Networks

The long distance phone calls made during a single day creates another directed complex
network. Here the telephone numbers are nodes and an edge appears whenever one person
calls another, the direction of the link going from the caller to the recipient. Both incoming
and outgoing degree distributions are power laws, both with slope α

in/out
call ≈ 2.1, cf. [30].

Power Grid

The last network described in this section is the power grid of the western United States.
The nodes of the power grid are the generators, transformers, and sub-stations; the edges are
the transmission lines. Watts and Strogatz [9], considered this network of 4, 941 nodes to be
undirected10 and found that, compared to a random graph of same size and average degree,
the clustering coefficient Cpowergrid = 0.08 is significantly higher than Crand = 0.005, and the
the average path lengths are comparable (`powergrid = 18.7 vs. `rand = 12.4). The degree
distribution of the power grid remains undetermined.

Other Networks

The networks mentioned above are only some of the networks that have been studied recently.
Other examples are: The web of human sexual relations, knowing the structure of this network
is extremely relevant when considering the spread of sexually transmitted diseases; ecological
networks; networks in linguistics, where single words are the nodes and words are connected
if they appear next to each other in a sentence; and protein folding networks, where each
node represents a different conformation state, and an edge is formed if two states can be
obtained from each other in a single elementary move. All of these networks share properties
with the ones described above. References can be found in, for example, [13, 14, 31]. Other
examples include scientific collaboration networks and citation networks, but since these are

9From the Niels Bohr Institute.
10Although it is surely not! Power lines are directed.
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closely related to the topic of this thesis, they will be discussed in further detail later (Section
1.3).

1.2.2 Linking Back to Statistical Physics

Of course the documentation of these networks has spawned a surge of theoretical interest
within the physics community. As I mentioned above, when analyzing a variety of the networks
presented in the preceding section, the methods of statistical physics constitute a particularly
well-suited tool: The application of the theoretical methods of physics is what constitutes the
direct connection from complex networks to statistical physics. Examples of the statistical
physics methods used in this endeavor include: Monte Carlo simulations [18,32,33,34], mean
field theory [11, 35], scaling and renormalization group methods [11, 35], percolation theory
[36,37,38], generating functions [25,36,38], the replica method [39], exact solutions [40,41,42,
43, 44, 45] and a variety of other techniques. Also, modelling techniques that are well known
in statistical physic have been applied [4, 9, 46]. Reviews with an even more comprehensive
list of references, than the one presented here, can be found in [12,13,14,31].

1.3 Networks of Scientific Publications

Because of the importance of citations as a measure of quality in most sciences, large databases
of scientific publications exist, and entire industries like ISI [47] have arisen from scientists’
and universities’ avid interest in citations. At least two kinds of networks can be reconstructed
from the databases of scientific publications.

1.3.1 Co-author Networks

In discussing the ego-centered network around Erdös, we have already begun considering a
(very important) node in a scientific co-author network. When we consider the total network
of scientists in a field with links defined as in the Erdös case, the resulting network is denoted
a co-author network. A visualization of this network can be found in Figure 3.1 (a) in Chapter
3. Like the actor collaboration network, the network of scientific co-authorship is an example
of an affiliation network. Needless to say, this network is especially interesting as a social
network, since two authors are likely to be well acquainted when co-authoring a paper, making
this network an important example of a true social network with many actors11. Whether or
not the movie-collaboration is a true social network is questionable: Actors usually do not
choose to work together in a given film, but are casted by producers or directors.

Mark Newman was the first person to consider scientific collaboration networks [48,49,50].
Newman’s investigations are interesting, first of all because one of the networks he considers is
the SPIRES network, which is the topic of this thesis. Secondly, Newman’s work is interesting
because it focuses on aspects of the collaboration network that are closely related to upcoming
work in the present thesis; therefore, Newman’s most important results will be reviewed in
some detail in the following.

The networks that Newman investigates stem from 4 different publicly available databases,
where the data used is restricted to the years 1995-1999. Upon investigating the properties
of these networks, the first thing that springs to mind is that the clustering coefficients for

11As mentioned above, the lack of data has been one of the problems in using statistical physics to analyze
real social networks.
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Database # of papers
Los Alamos e–Print Archive (self–submitted physics preprints) 98,502
Medline (biomedical research) 2,163,923
SPIRES (Stanford Public Information REtrieval System) 66,652
NCSTRL (Networked Computer Science Technical Reference 13,169

Table 1.1: The databases that Newman considers in [49,50,48].

all 4 networks, are extremely high. They range from 0.7 in the case of SPIRES to 0.3 − 0.4
for the other databases. If the reader recalls that Crand = O(n−1) for a random graph and
Cconnected = 1 for a fully connected graph, it becomes clear that the co-authorship networks
are truly very small worlds. Also, the average path lengths are short—from 4.0 for SPIRES
to 5.9 in LANL, the only exception being NCSTRL with an average path length of 9.7.12 As
for the topologies of the datasbase, Newman makes several interesting discoveries:

Number of Papers per Author

The average number of papers per author is between 3 and 6 over the 5 year period, the
only exception being SPIRES with an average of 11.6 papers per author13. When these
distributions are plotted, the tails of the Medline and NCSTRL data sets follow power laws14.
The corresponding exponents or Medline and NCSTRL are αmedline = 2.86 and αNCSTRL =
3.41, respectively. In the case of the Los Alamos Archive, he found that the probability
distribution of papers-per-author is well-described by an exponentially truncated power-law,

Planl(k) ∼ k−τe−
−k
κ , (1.5)

where τ and κ are constants. The SPIRES database is not fitted very precisely by either
function, but it has a violent bump at about 100 papers.

Number of Authors per Paper

The distributions of the number of authors per paper, is well described by power-laws,
Pauthors(k) ∼ k−αauthors for all 4 databases—although the exponents differ substantially: 6.2
(Medline), 3.3 (Los Alamos Archive), 4.6 (NCSTRL), and 2.2 (SPIRES).

Number of Collaborators per Author

This is the degree distribution for the co-author network. In the case of the SPIRES data, this
distribution is very well described by a power law with slope 1.20, but the average number
of collaborators for SPIRES raises the question whether or not high energy physics can be

12Newman argues that this number is artificially inflated, because NCSTRL has a poorer coverage of its
subject matter than the other databases.

13This is of course because of the huge collaborations in experimental high energy physics - much more will
be said on this subject as a part of the investigation carried out in this thesis.

14These power laws are in rough agreement with a power law distribution of papers-per-author found by
Alfred Lotka, in 1926 [51], known to sociologists and bibliometricians as Lotka’s law. In a data set completely
compiled by hand, Lotka found a power-law relationship for the number q of papers per author Plotka(q) ∼
q−αlotka with slope αlotka = 2.

Copyright 2003 c© Sune Lehmann 12 Version 3.01, Revised June 30, 2003



1. Introduction 1.4. The SPIRES Database

regarded as a social network, in the sense mentioned earlier, because of its extremely high
average number of collaborators: It is unlikely that many authors know 〈k〉SPIRES = 173
people well.

For the three remaining databases, the graphs display some curvature. This may be due to
the limited time window that creates the cut-off, or it may, simply, be the dynamics intrinsic
to the systems. Two power laws with slopes 2 (for the low regime) and 3 (for the high regime)
seem to provide a reasonably good fit.

As mentioned in connection with the Erdös network, Barabási’s group [26,27] has worked
on the network of mathematicians15, but I have chosen to review Newman’s work only, for
several reasons. Newman’s material includes SPIRES, his investigations were the first of their
kind, and Newman has better statistics, making the Barabasi work (although important in
its own right) redundant in this context.

1.3.2 Citation Networks

Given the level of interest in citation data and complex networks demonstrated above, surpris-
ingly few serious studies of citation networks have been performed by physicists. In a citation
network, the nodes are scientific publications and the edges represent citations. The structure
of this network on the paper level is very similar to the internet and, like the internet, it is also
directed. References point out from a node (to another node) and citations point to the node.
Information on the out-going distribution is difficult to get a hold of16, while the citation
information (the incoming distribution), as I mentioned earlier, is vigorously documented.

A few investigations of the structure of citation networks have been made in the past.
In 1957, Shockley [52] argued that the publication rate for the scientific staff at Brookhaven
National Laboratory was described by a log-normal distribution. In 1998, Laherrere and
Sornette [53] suggested that the probability of an author (node) to have k citations (edges),
P (k), of the 1120 top-cited physicists from 1981 to 1997, is described by a stretched exponen-
tial (P (k) ∝ exp[−(k/k0)β], β ≈ 0.3). Also, in 1998, Redner [54] considered data on papers
published in 1981, from journals catalogued by the ISI [47], as well as, data from Phys.Rev.D
vols. 11-50. Redner concluded that the large-k citation distribution is described by a power-
law such that pk ∝ k−α with α ≈ 3. In 1999, Tsallis and Albuquerque fitted Redner’s data
to a slightly different curve ∼ (k + const)−α [55]. Sven Bilke and Carsten Peterson calculated
the so called spectral dimension, dS , which reflects diffusion processes in the corresponding
graphs, for the SPIRES citation network [56].

1.4 The SPIRES Database

In this thesis, the goal is to shed new light on the citation network. The outset is that the
statistical material is of a much higher quality than in the papers mentioned above. The ISI
data set studied in [54] is materially larger (783,339 papers) than the present SPIRES data
set. However, the ISI data used by Redner, contains papers published in a single year in a
variety of scientific disciplines (including medicine, biology, chemistry, physics, etc.). There
are neither a priori arguments nor data to indicate that citation patterns in these fields are

15The network of neuro-scientists were also included in their investigations.
16It is of course easy to read the references at the end of a given paper, but to actually get a hold of all lists

of references, that is the tricky part.
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sufficiently uniform to justify their treatment as a single data set. On the contrary, Newman’s
co-author papers [48, 49, 50] indicate that there are significant differences in the publishing
habits of different scientific communities.

1.4.1 A Brief History of SPIRES

The SPIRES hep (high energy physics) data is collected from a well-defined area within
physics, i.e. high energy physics, and the database itself is one of the oldest and most com-
prehensive in all of science: Since its foundation in 1962, the SLAC (Stanford Linear Ac-
celerator Center) has been collecting new preprints and, as one of the world’s centers for
theoretical physics, it has attracted some 3000 new papers per year. In the same year DESY
(Deutsches Elektronen–Synchrotron) in Hamburg, Germany, began publishing a record called
‘High Energy Physics – An Index’ (HEPI).

In 1967, computer scientists at Stanford University began working on a new computerized
database that was designed to be able to handle (in principle) a limitless number of large
bibliographical records. Come March 1968, the SLAC Library, being in possession of a large
database that was perfect for testing the new system, began participating in this project.
Thus, SPIRES (Stanford Physics Information REtrieval System17) was born.

What is extremely important in the present context is, that the SPIRES database allowed
the SLAC librarians to add the reference list of all papers to the database, thus making
possible the extraction of citation data. Further, it is important to note that, to make this
information as reliable as possible, only references to published papers were included. It was
only natural for the DESY and SLAC libraries to cooperate, and by June 1969, the conversion
of the DESY data to SPIRES format was complete.

By 1974, SLAC and DESY18 were comprehensively collecting preprints (and by extension
published articles) and cataloguing them in a single SPIRES hep database. The next impor-
tant step for the SPIRES database was the 1991 creation of the LANL (Los Alamos National
Laboratoy) e-Print server. This allowed authors to self-publish their preprints on one common
server, assigning to each paper a unique number of the form archive/0211210; the number
signifying the 210th paper of November 2002. The unique labelling allowed systematic ref-
erencing to unpublished papers and now allows citations of preprints to be registered in the
SPIRES hep database. This point is relevant to the present thesis, because conditioning the
database to recognize that the e-Print and the published article is the same paper, could be
problematic. This could lead to an over-estimation of author productivity and an underes-
timation of the number of citations per paper. The SLAC library goes to some length to
avoid this problem. This review of the history of SPIRES, is based on a paper by Heath
O’Connell [57].

1.5 Applications

There is yet another reason that the subject matter of this thesis is interesting to physicists:
It is about them!. Now, it is always interesting to read scientific investigations in which
the subject matter is oneself, and surely many physicists have glanced through Newman’s

17SPIRES was later renamed Stanford Public Information REtrieval System.
18Later, also CERN, University of Durham, KEK, Yukawa Institute, and Fermilab participated in the

collection of papers.

Copyright 2003 c© Sune Lehmann 14 Version 3.01, Revised June 30, 2003



1. Introduction 1.5. Applications

co-author papers [48, 49, 50], simply because they were—in a very direct way—the subject
matter of the investigations. In the present work, this aspect of the investigation becomes
even more interesting, since the investigation concerns the distributions of citations in high
energy physics. As we know, the number of citations (at least in the eyes of the world) equals
the quality of a given publication.

Richard Feynman once said:

Physics is like sex. Sure, it may give some practical results, but that’s not why we
do it.

This statement captures an important issue related to physics, viz. that there are two reasons
to study physics. The first and boring reason is the engineering—the practical results in
the quote. The other reason is the sheer pleasure of a beautiful theory, the sensation of
establishing solid facts about the world; this is the reason we really study physics.

There is no doubt, that there is plenty of practical use for the charting of unknown network
territory. The specific practical outcome of studying networks depends on the network in
question. Studying the www will help us design new protocols for surfing the web, studying
the email network will help us fight computer viruses, knowing the topology of the network
of human relations will help us fight viruses like AIDS or SARS. In the case of the citation
network, the practical outcome is insight regarding the fitness landscape of human excellence.
This is due to the fact that the number of citations that a scientific paper receives, has been
regarded as a measure of the quality of the paper19. Citations as a measure of quality has
been accepted by the scientific community at least since the 1960’s [58,59].

In the beginning of this introduction, I raised the question: Why are citation networks
relevant to physics? The reason this question has been raised so many times during the
writing, is that seeing beyond the practical layer of the investigation of SPIRES is difficult
and requires knowledge of the physics of complex systems. Throughout this introduction, I
have tried to assimilate the reader into the field and demonstrated that the tools and theories
of physics are abundant here. The physics of complex networks contains lots of ‘pure physics’
and I urge the reader to keep in mind, that throughout this thesis, both the practical and the
(aesthetically pleasing) theoretical layer of the study of physics, pointed out in the Feynman
quote, will be present in the work and should be evaluated separately.

Since this is a physics thesis, the primary focus naturally falls on the physics of the complex
networks, but along the way, I will also touch on how these results influence the practical level,
i.e. how the knowledge gained by the ‘pure physics’ approach dramatically changes how we
think about quantifying scientific excellence; how the physics of complex systems is utilized
to once again turn our intuitions about how the world work upside down.

19Of course, there are many complications when dealing with this subject, but throughout this thesis we shall
exhibit great caution, and distinguish carefully between qualitative statements on the distribution of citations
and value judgements.
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CHAPTER 2

The Paper Distribution

We are now ready to begin investigating the network constituted of papers in the SPIRES
database1. Sometimes the terms ‘references’ and ‘citations’ are used inconsistently in the
literature; here, the (natural) definition that SPIRES supplies on their webpage is used:

The references of your paper are those that you list at the end; they’re the previous
papers you’ve cited. The citations of your paper are all the papers that mention
your work, that is all the papers that have your paper in their reference list2.

Thus the citation network is rather simple: The nodes are scientific publications and edges
arise when one papers cites another paper. To get an intuitive feel for the citation network,
recall that the network of papers shares certain properties with the world wide web. The
analogy is: paper ∼ webpage, reference ∼ outgoing link, and citation ∼ incoming link. As
we will learn from the following, another common property is that just like there is a massive
number of webpages that nobody reads, the vast majority of papers in high energy physics are
not cited by anybody. The subcultures that are found on the www have a clear analogy in the
subfields of the citation network. With the distinction between references and citations, it is
also clear that the citation network shares the property of being a directed network with the
www—even on the papers-citing-papers level, discussed in this chapter. As it is the case for
the www, this directedness makes calculating a clustering coefficient for the citation network
impossible. There are, however, also important differences when comparing the network of
publications to the www: Scientific papers are printed on paper, and therefore the citation
network instantly freezes in a tree structure when a paper is published, cf. Figure 2.1; this is
in stark contrast to the web, a network that is characterized by fluxus; the topology of the
internet is constantly changing, constantly being modified. When we include the authors of
papers in the analysis in the following chapters, we will see further differences between the
network of scientific publications and the www.

In this chapter, we will first investigate the functional form of the citation distribution for
papers in SPIRES—i.e. the probability P (k) that a paper has k citations. We will proceed

1A large portion of the contents of this chapter is presented in a paper that I have co-authored with Benny
Elley Lautrup and Andrew Dumont Jackson in 2002 (to be published in Physical Review E) [3].

2cf. http://www.slac.stanford.edu/spires/hep/references.html.
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time

Figure 2.1: An excerpt of the network of papers in SPIRES. The •’s are papers, and (directed) links
are represented using arrows. Note the time-line. In this illustration the tree structure is clear; papers
can only link back in time, and once they are published, no new outbound links can arise. Another
type of representation of the network of papers can be found on the front page of this thesis.

to verify that the SPIRES database is indeed a very homogeneous database, by considering
the citation distributions for papers, subfield by subfield. Finally, we will demonstrate the
extreme improbability that the citation records of selected individuals have been obtained by
a random draw from the resulting distribution.

2.1 Basic Properties

The SPIRES database3 contains 501, 531 papers. For a considerable fraction of these papers,
however, no citation information is available: 196,432 papers are preprints and conference
proceedings for which no citation information is available, other papers seem to have been
removed from the database, and in other cases no subfield information is available. All in all
we are left with 281,717 papers for which both subfield designations and citation information
are accessible. This number corresponds to about 56% of the database.

2.1.1 A Raw Plot

In Figure 2.2, an ‘atomic’ histogram of the citation distribution of the total data set is
displayed. Note the log log scales. This (normalized) histogram can be interpreted as the
normalized probability P (k + 1) that a paper has k + 1 citations. The two straight lines with
slopes −1.29 and −2.32, respectively, show that the probability distribution is well described
by two power-laws: (k + 1)−1.3 for 0 ≤ k ≤ 49 and (k + 1)−2.3 for k ≥ 49.

2.1.2 Subfields

SPIRES is divided into 5 subfields: Theory (159,946 papers), Phenomenology (68,549 papers),
Experiment (28,527 papers), Instrumentation (19,637 papers), and Review (5,058 papers); in
total corresponding to the before mentioned 281,717 papers.

So at this point, a question presents itself: Is it justified simply to collapse all of the
citation data from the various subfields of high energy physics into a single data set, as it is

3For detailed information on how and when the data used in this section is collected, the reader is referred
to Appendix A.1. A brief history of the SPIRES database can be found in Section 1.4.
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Figure 2.2: An ‘atomic’ histogram of the citation distribution of the total data set showing the nor-
malized probability, P (k + 1), that a paper has k + 1 citations. The straight lines in the low and high
citation regimes have slopes −1.29 and −2.32, respectively. Note the logarithmic scales.

done in Figure 2.2? Answering this question merits an investigation. As a first guess, one

Theory Phenomenology Experiment Instrumentation Review Total
Papers 159,946 68,549 28,527 19,637 5,058 281,717
Citations 2,362,400 1,088,269 453,803 55,927 169,165 4,129,564
Mean 14.77 15.88 15.91 2.85 33.45 14.7
Median 2.12 3.75 3.17 0.81 4.61 2.27
Un-cited (%) 29 21 27 62 22 29
≤ 10 (%) 75 69 69 94 63 74
≥ 50 (%) 6.0 7.2 7.4 0.74 14.1 6.2
≥ 1000 (h) 0.54 0.32 0.32 0 2.5 0.46

Table 2.1: This table summarizes some important basic statistics of the SPIRES database and the sub
fields of high energy physics into which it is divided. Note that the ‘Total’ data is obtained directly
from the subfield data.

would expect the SPIRES database to be relatively homogeneous, since it contains papers
published by a homogeneous population of authors publishing on a very well bounded subject
matter, viz. high energy physics. In the following section, we will discuss the question of
SPIRES’ homogeneity in some detail.
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2.2 Homogeneity

2.2.1 Skewed Distributions

The first thing that springs to mind, when inspecting Table2.1 is the approximately 29% of
the total papers that are un-cited, and the 75% of the total number of papers that have less
than or equal to 10 citations! Note that no corrections have been made for self-citations;
the removal of self citations would make the fraction of un-cited and minimally cited papers
even higher. In the other end of the citation distribution, we find that only about 6.0%
of the papers have more than 50 citations and that only 131 papers of the total data set
have 1000 or more citations ≈ 0.54h. For the data divided into subfields, the situation is
analogous—cf. Table 2.1.

For the total data set, the mean is 14.7 citations per paper, whereas the median is 2.3
citations per paper, and for the subfields a similar discrepancy between the mean and median
can be observed; again, the reader is referred to Table 2.1 for the exact numbers. Thus, we
can make the—strictly speaking meaningless—point that a paper with the average number of
citations is substantially more cited than the average paper, where the first instance of ‘average’
refers to the mean value of citations, and the second instance referring to the everyday use of
‘average’, meaning the type of paper one comes across more often, i.e. the median paper. The
large factor difference between mean and median indicates that the distributions are highly
skewed with long tails: A small fraction of highly cited papers accounts for a significant part
of the total number of citations.

It is natural to expect this type of statistics from the power-law structure seen in Figure
2.2, but some numbers on the highly cited tail merits mention, in order to quantify just how
different the populations of minimally- and highly cited papers are. Approximately 50% of
the citations in the database are generated by the top 4% of papers; in contrast, the lowest
50% supply only 2% of the total citations. The rates of citation production by these two
parts of the data set, differ by a factor of approximately 310. An interesting number related
to these, is the 18% of the papers that produce (100 − 18)% = 82% of the citations in the
database.

2.2.2 Prior Expectations

It is easy to think of mechanisms that could cause the topologies of the different subfields to
differ in a variety of ways. This is already evident from Table 2.1, where it seems obvious
that even though both instrumentation and review data sets share the power law properties
(heavy tail, large factor between mean and median, etc.), it is also clear that their statistics
are radically different from the other subfields.

The subfield that intuitively differs the most from the rest of the SPIRES, is the experiment
subfield. Experiments in high energy physics are comprehensive and manpower extensive—
it is not unusual that experimental papers have more than a thousand co-authors. As a
consequence of this, program committee approval is more or less the same as a pre-review of
the work. Compared to the theory and phenomenology subfields, where a paper typically has
one to three authors and does not require expensive experiments, it is easy to imagine papers
being written that would not survive this kind of pre-reviewing. Thus, it is natural to expect
a larger probability for minimally cited papers in the theory and phenomenology subfields,
while the experiment subfield is expected to have rather fewer minimally cited papers.
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Review papers are often commissioned by journals and are often written by recognized
experts. Thus, publications that are part of this subfield could easily be imagined to have a
higher probability of receiving many citations. Papers in the instrumentation subfield could
be imagined to be minimally cited for a number of reasons. First of all, instrumentation
papers are usually specific to an experiment and, therefore, not of general interest; that in-
strumentation papers are specific to certain experiments also implies that they become dated,
as technology evolves—this is not the case for more fundamental theoretical or empirical
discoveries; papers containing these, naturally seem likely to keep receiving citations. With
all this in mind, the importance of investigating the subfield distributions and pinpointing
homogeneities and differences is clear.

2.2.3 Visual Comparisons

In Figure 2.3, the binned subfield distributions are plotted. At first glance these look very
similar; the two power-law structure is evident in all subfields except maybe for the instru-
mentation data. Looking closer, however, one starts to notice differences. The odd one out is
clearly the instrumentation plot; this data looks like a single power-law, the characteristic two
power-law structure, seen in the other subfields, is absent. Furthermore, this relatively large
data set (19,637 papers) is minimally cited. The highest cited instrumentation paper has 627
citations; the result is a steep power-law with an usually high probability for minimally cited
papers. Consulting Table 2.1, this suspicion is amply confirmed—the instrumentation data
stands out in a variety of ways that are described in Section 2.2.4

The review data has about the same slope as the phenomenology and theory subfields, for
the minimally cited regime. This indicates that the minimally cited papers, in these fields,
have approximately the same citation rates. For the highly cited regime, the slope of the
distribution of the review subfield is radically flatter than the same slope for any other data
set. This means that the density of highly cited review papers is considerably higher than for
any other subset. Thus, our expectations towards the instrumentation and review subset are
confirmed.

A surprise with regard to our a priori considerations, is that the experimental and phe-
nomenological subfields are very alike. This is a surprise for two reasons: Firstly because we
expected the experiment subfield to be markedly different from the rest of the database—
which it is certainly not. And, secondly, because we expected the phenomenology data to be
almost indistinguishable from the theory data, because the modus operandi in these two fields
are similar (no pre-reviewing, no big experiments, etc.), which we expected to be able to see
in the distributions of papers.

The theory subfield does not have as pronounced a ‘dent’ in the distribution around 50
citations, as it is the case for the experiment and phenomenology subsets. This is in part
because the slope of the minimally cited regime for the theory data is steeper than what is
the case for the experiment and phenomenology data, and because the slope of the highly
cited part of the distribution is less steep.

2.2.4 Quantifying Differences

Indications of the differences between the five categories can also be seen from Table 2.2. This
table concerns the probabilities for the minimally cited regime. The probability of having ≤ 4
citations is 59.9%, 53.6%, 51.2%, 47.7% and 86.5%, for theory, experiment, phenomenology,
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Figure 2.3: Array of binned subfield distributions. The plots are normalized and can be interpreted as
probability distributions. Along with the distributions, I have plotted straight lines for the minimally-
and highly cited regime, using the dashing ‘——’ and ‘– – –’ respectively. The slopes of the lines are
plotted along with each subfield.

review, and instrumentation, respectively. These numbers corroborate with the conclusions
drawn from inspecting the plots. The fraction of minimally cited papers is clearly smaller
for the review subfield in comparison to the total data set—but, the effect is not dramatic.
Instrumentation, however, stands out. The probability that an instrumentation paper will
receive ≥ 5 papers is almost 3 times smaller than for the rest of the data set. When we look at
the differences between citation probabilities in theory, experiment, and phenomenology, we
find that they are surprisingly small. The probability of having 0 citations is virtually the same
for theory and experiment and a little lower for phenomenology. Regarding the probability
of having 2, 3, and 4 citations, the theory data is consistently higher than the experiment
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P (k = 0) P (k = 1) P (k = 2) P (k = 3) P (k = 4) P (k ≤ 4)
Theory 0.2884 0.1226 0.0815 0.0590 0.0472 0.5987
Phenomenology 0.2150 0.1103 0.0762 0.0618 0.0488 0.5364
Experiment 0.2677 0.1023 0.0704 0.0518 0.0441 0.5122
Instrumentation 0.6169 0.1206 0.0622 0.0385 0.0267 0.8650
Review Articles 0.2167 0.1038 0.0670 0.0496 0.0403 0.4775

Total 0.2901 0.1171 0.0775 0.0574 0.0458 0.5877

Table 2.2: The probability of a paper in the SPIRES database having k citations for 0 ≤ k ≤ 4
as a function of subfield. The total number of papers in each subfield is: 159,946 (theory), 68,549
(phenomenology), 28,527 (experiment), 19,637 (instrumentation), and 5,058 (review articles). The
‘total’ data entries are obtained directly from the subfield data. The total number of papers in the
data set is 281,717.

and phenomenology data sets—that are almost identical, although the probabilities of having
a minimally cited phenomenology paper is a little higher, than for the experiment data set.
As stated above, the probability of having ≤ 4 citations is 59.9, 53.6, and 51.2 for the three
data sets, respectively. This illustrates the large statistical weight of the first data points;
note, for example, that the medians of these three subfields are 2, 12, 3.17, 3.75 for the
theory, phenomenology, and experiment subfields, respectively. The 3 subfields are explicitly
compared in Figure 2.4.

Table 2.1 allows us to compare properties of the data sets taken as wholes, and we find
that the trends seen in the first 4 citations are supported here. Theory, experiment, and
phenomenology are very close to each other. Taking the entire distribution into account,
the instrumentation and review data set distinguish themselves as having properties that are
quite different from the total data. Recall that a stunning 61% of all instrumentation papers
are un-cited, resulting in a median of 0.81 (!), which is markedly lower than the median of
the entire data set. With regard to the minimally cited end, the review data is reasonably
close to the total set.

Discussing the entire range of citations, we find that our expectations with respect to
the review data were correct. Approximately 14% of review papers have ≥ 50 citations—
compared to 6.2 percent for the total set. The 3% of review papers with ≥ 1000 citations
is also significantly larger than the probability of 0.05% for the complete data set. For
the instrumentation papers, the opposite picture is being drawn. Only 146 of the 19,637
instrumentation papers (≈ 0.7%) have 50 or more citations. No instrumentation papers have
more than 1000 citations4.

In short, instrumentation and review papers, which account for some 9% of the full data
set, clearly follow different citation distributions. This can reflect a different underlying
dynamical picture for citations in these categories; it can also be an indication that review
papers have a higher average quality and instrumentation papers a lower. Whatever the
explanation, these two small categories will be excluded from further consideration. As was
emphasized in Section 1.5, it is clear that any decision to use citation data as a measure of
scientific ‘quality’ should not be made so lightly. Ultimately, however, it must be based on a

4The most cited instrumentation paper has 627 citations. It was written by the CDF Collaboration (227
authors).
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subjective evaluation of the relative quality and importance of papers published in the various
categories.
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Figure 2.4: (Citation probabilities for the categories theory (N), phenomenology (�), and experiment
(�).

2.2.5 Tests?

The homogeneity of the theory, experiment, and phenomenology subfields is supported by the
binned and normalized histograms in figure 2.4. On the logarithmic scales, the three subsets
are virtually indistinguishable over the entire range of 0 to 5000 citations. Given that the
distribution spans almost 8 orders of magnitude, this is a very good agreement. In order
to evaluate whether or not the differences between the 3 remaining subsets are ‘statistically
significant’, one’s first impulse would be to assign errors to each bin proportional to the square
root of the number of papers in each bin and perform a χ2-fit. On second thought, however,
it is clear that this exercise would be meaningless.

The χ2-test is based on the assumption that the data in the various bins is statistically
independent. For the SPIRES data set this assumption can be demonstrated to be false—
a large part of this thesis consists in doing exactly that cf. Chapters 3, 4, 5. However,
merely pointing to an author whose publication record is highly correlated (for the extreme
example in high energy physics, take Edward Witten) is sufficient to show that the data indeed
contains ‘longitudinal’ correlations. Keep in mind that our study of the citation network is
partially motivated by a wish to study scientific excellence. We believe that there is a positive
correlation between the intrinsic quality of a scientific paper and the number of citations
which it receives. Also, we believe that ‘good’ papers are produced by ‘good’ scientists. One
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Figure 2.5: Percentage differences. The x-axis shows number of citations, bin by bin and the y-axis
shows the percentage difference. (a) Theory and Experiment compared. (b) Theory and phenomenol-
ogy subfield data compared. (c) This shows the differences between experiment and phenomenology.

way of quantitatively comparing the data, is to look at the percentage differences between
the data sets. In Figure 2.5, the percentage differences between (a) theory and experiment,
(b) theory and phenomenology, and (c) experiment and phenomenology are plotted. These
plots emphasize the differences we could observe directly in Figure 2.4. Theory and experiment
(Figure 2.5 (a)) are in 20 − 40% disagreement around 20 to 100 citations, corresponding to
the fact that the ‘dent’ in the theory data is not as pronounced as is it in the experiment
and phenomenology data. Also, the disagreement in the data from around 500 citations and
up, visible in Figure 2.4, is clear from these plots—here the disagreement is between 40 and
50%. Almost the same structure is evident, when comparing theory and phenomenology as
it is done in Figure 2.5 (b). In case of the comparison between the phenomenology and
experiment subfields, the agreement is excellent, cf. Figure 2.5 (c). For the first part (0-250
citations) of this figure, the percentage differences are very small (5-15%)—only for the highly
cited papers (1000+) does the disagreement grow to more than 40%.

It is, however, easy to understand the origin of the ‘large’ percentage differences for the
highly cited papers—and, thus, why they are not important. They are due to the large ‘arm’
of the normalization. The citation counts in these bins are small (1− 10 citations), and since
they are divided by the total number of papers in each of the subsets, small fluctuations are
blown out of proportion. This effect also accounts for some of the differences between the
large theory subset and the two smaller subsets.

In summary, it is clear that dividing the data into subfields does reveal differences between
the subfields. On the basis of Figure 2.4 the conclusion is, however, that the consistency of
the theory, phenomenology, and experiment subfields is sufficient for many applications—
one could argue that this is a case of a picture (Figure 2.4) saying more than a thousand
words. In the rest of this chapter, we will be discussing a final data set of 257,022 papers
consisting of the papers from these three subfields; accordingly, the two small fields of review
and instrumentation will be disregarded. The resulting distribution is shown in Figure 2.6.

2.2.6 A Potential Source of Inhomogeneity

So far, the form of the distributions of citations of the different SPIRES subfields have been
checked for homogeneity. But, there is another potential inhomogeneity in the SPIRES
database that should be mentioned here. The distribution of the number of authors who
have written x papers is a monotonically decreasing distribution of x. (As we will see in Sec-
tion 3.3.2, it is actually a power-law distribution.) In the case of the theory subfield, about
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91% of the authors have published less than 20 papers! This is presumably because of the
relatively large number of physicists that leave academic physics just after, or within a few
years of finishing their Ph.D.’s. Now, one could imagine that the citation distribution would
drastically change if ‘minimally publishing’ authors were removed. Exactly how the distri-
bution changes, when the ‘minimally publishing’ authors are removed is discussed in great
detail in Chapters 3 and 4. For now, however, it is sufficient to state that the distribution is
relatively independent of the removal of minimally cited authors—the differences are similar
to those of Figure 2.4; the two power-law structure is intact and the considerations found in
the rest of this section are certainly relevant.

2.3 Form of the Distribution

Resting assured that the bulk of the database is homogeneous, we can take a closer look at
the form of the distribution. It is clear from the figures that the citation distribution is not
described by a single power-law over the entire range of citations. As was stated earlier, it is
well approximated by two independent power-laws: One in the low (k ≤ 50) citations regime,
and one in the highly cited (k ≥ 50) regime , with αlow ≈ 1.20, and αhigh ≈ 2.31. If we
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Figure 2.6: A binned histogram of the total data set without review and instrumentation papers.

set the relative normalization such that the two fits are equal in k = 50, and set the global
normalization such that a total probability of 1 is ensured, the data is reproduced with a
surprisingly high accuracy.

It is natural to expect that the different power-laws are caused by different dynamics in
the two regimes. In the low k regime, the bulk of the papers are ‘dead ’, in the sense that they
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have not been cited in the past year(s); these dead papers will most likely never be cited again.
This dead population constitutes the vast majority of the database. In the minimally cited
regime, there are, of course, also vigorous ‘young’ papers of high quality that are collecting
citations at a steady rate, making their way through the population, waiting to join the highly
cited regime. In the highly cited regime, virtually all papers are ‘alive’, with the oldest of
them collecting citations at a regular basis. The temporal evolution of the database will be
discussed in detail in Chapter 6, when I discuss a new model for the citation network. In
summary: The tail is where the action is.

2.3.1 The Asymptotic Tail

Since one of the major points of interest in this thesis is investigating scientific excellence,
and since I have argued that the highly cited end of the distribution is where the dynamical
papers of high quality are found, it is natural to take a closer look at the asymptotic tail of
the distribution of citations.

In [54], Redner argues that the asymptotic tail of the distribution of citations5 is well
described by a power-law with a slope of −3. To this end, Redner uses a Zipf plot. The Zipf
plot was introduced by Harvard linguistics professor, George Kingsley Zipf [60]6. A Zipf plot
is a plot of the nth most ranked paper versus the number of citations of this paper, Yn. The
most cited paper is assigned rank 1.

The intuitive reason why the Zipf plot is well suited for analyzing the highly cited end of
the distribution, is that it provides a much higher resolution of this part of the plot. On the
log log scale, the Zipf plot places the high citation data in the beginning and, thus, it is not as
compressed as in the plots of P (k) vs. k in Figures 2.2, 2.3, 2.4, and 2.6. Figure 2.7 is a Zipf
plot of the final data set. It is clear from the figure that the asymptotic power-law, 1/k3, that
Redner found is not present in the SPIRES data. On the contrary, Figure 2.7 clearly shows
that the tail of the final data set is not described by any asymptotic power-law. The same
conclusion is clear from Figure 2.6, where the second power-law tracks the data accurately
through four decades, after which the data begins to cut off.

Even though the high citation end of the population is sparsely populated, it is possible
to present quantitative indications of this cut-off. If the power-law from Figure 2.6 was valid
for arbitrarily large k, as proposed by [54], we would expect to find 33 papers with more than
the maximum of 5,242 citations, actually found in the data set. The most cited paper should
have about 55,000 citations. Or, put inversely, if we assume that an asymptotic power-law is
valid, then the probability of drawing 257,022 papers at random from this distribution, with
no paper having more than 5,242 citations is approximately 10−14.

5In [54] papers from Physical Review and from ISI are used to reach this conclusion. See Section 1.3 for
further details.

6Zipf (1902-1950) was one of the first people to recognize the ubiquity of power-laws. The most famous
example of Zipf’s law is the frequency of English words. The second example Zipf included in his book, was
the population of cities (or population of communities). The population of the cities plotted as a function of
rank (the most popular city is ranked number one, etc) is a power-law function with an exponent close to 1.
The income or revenue of a company, as a function of the rank is also an example of the Zipf law (also in Zipf’s
book [60]).
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Figure 2.7: A Zipf plot of the citation distribution. For visual reference a line of slope − 1
2 , correspond-

ing to α = 3, is also plotted.
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Scientific ‘Saints’

There is a simple way to explain the cut-off for the large-k data that seems reasonable for a
data set—like SPIRES—which contains a significant number of truly important papers. It is
a fact that papers of high quality and fundamental importance can literally be ‘canonized’;
fundamental papers can pass into the received wisdom of physics that no longer requires
citation. An everyday example of this is that many high energy physicists publish papers
about ‘Goldstone Bosons’, but only a few feel the need to cite the original papers by neither
Bose nor Goldstone. To state an even stronger example, the attentive reader would surely
stop to consider what special point was being made, when citing Einstein on special relativity
[61]. In the absence of a cut-off, a paper like [61] should have been cited by approximately
55, 000/257, 022 ≈ 21% of the papers in the database—this does not seem unreasonable.

2.4 The Power of Excellence

So far, we have focused on the properties of the SPIRES database, seen as a network. In this
section, I will consider an application of this work; that is, using the SPIRES data to find a
new measure of scientific excellence. The reason this is interesting, will be evident from the
following. This measure, r, quantifies the ‘improbability’ of excellent authors’ citation records
being drawn at random from the citation distribution.

Paper category Citations Probability
Unknown papers 0 0.267
Less known papers 1–9 0.444
Known papers 10–49 0.224
Well-known papers 50–99 0.0380
Famous papers 100–499 0.0250
Renowned papers 500+ 0.00184

Table 2.3: The search option ‘citation summary’ at the SPIRES website returns the number of papers
for a given author in the categories of this table. The probabilities of getting citations in these intervals
are listed in the third column.

The ‘citation summary’ option in the SPIRES database returns the number of papers for
a given author with citations in each of six intervals. These intervals and the probabilities
revealed by our analysis, that papers will fall in these bins, are given in Table 2.3. The
probability, P , that an author’s actual citation record of M papers was obtained from a
random draw on the citation distribution, is readily calculated by multiplying the probabilities
of drawing the author’s number of papers in the different categories, mi, and correcting by
the number of permutations

P = M !
∏

i

pmi
i

mi!
. (2.1)

If a total of M papers were drawn at random on the citation distribution, the most probable
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result, Pmax, would correspond to mi = Mpi papers in each bin. The quantity7

r = − log10(P/Pmax) , (2.2)

is a useful measure of this probability which is relatively independent of the number of bins
chosen. Since r provides completely objective information about the probability of drawing
a given citation record at random, given knowledge of citation patterns in that field; r is
particularly well-suited for comparisons between fields. It is equally meaningful to calculate
r for authors who publish in several fields—this idea is truly novel—never before has any
attempt been made to compare authors across field boundaries.

The careful reader is right in thinking that a caveat should be voiced here. There are
intrinsic problems associated with the leap from the improbability of a given author’s citation
record to drawing conclusions regarding author quality. This leap requires certain assump-
tions which cannot be tested. For example, in order to compare citation records from the
instrumentation category with those in the remainder of our data set, it is necessary to make
some a priori assumption about the relative intrinsic quality of the two data sets. While the
‘democratic’ assumption of equal intrinsic quality is easiest, it may or may not be accurate.
In a Bayesian sense, it is necessary to establish a prior distribution.

2.4.1 Examples of the Application of r

Consider the following two authors in the SPIRES database. Author A has a total of 201
publications with 18, 70, 82, 22, 9, and 0 publications in each of the bins above and an average
of 26 citations per article. Author B has a total of 178 publications with 19, 79, 58, 10, 9, and
3 publications in each bin and an average of 46. A simple calculation reveals that r = 17.8
for Author A and 9.9 for Author B.

The minimum value of r is evidently 0. The maximum value of r, in the current data set,
is found for Author C, who has a total of 252 publications with 5, 25, 47, 37, 102, and 36
publications in each of the bins above and an average of 242 citations per article. This leads
to vastly improbable value of r = 188.4. With a total of 61,062 citations, Author C accounts
for more than 1.5% of all citations in the data set. There are also indications of less favorable
correlations. Author D has a total of 41 publications with 18, 23, 0, 0, 0, and 0 in each of
the bins above and an average of < 1 citation per article. The resulting value of r = 4.43
underscores the fact that an improbable citation record is not necessarily a ‘good’ one. This
is a problem that can be remedied. If information regarding all author publication records
is available, we can construct a much more precise measure of scientific excellence that takes
this effect into account. This is done in Chapter 5.

Given the total population of authors in SPIRES, these numbers offer an objective indi-
cation of the extreme improbability that the citation records of Authors A, B, and C were
drawn at random. These examples are far from exceptional. There are strong correlations in
the citation data and these merit quantitative study. The differences between the Authors A

7Note the interesting connection to information theory; the quantity r can be identified as the relative
entropy d (also known as the Kullback-Liebler distance). The relative entropy is defined for two probability
distributions, {pk} relative to {qk}, as d =

∑
k pk log2(pk/qk). To make the connection to r, simply insert

Equation (2.1) in Equation (2.2), and set qk = pξ
k, where ξ = (mk/pk + 1/(M − 1)) (the change of base of

the log results in a constant factor log2(10)−1). This identification ensures us that r has many important
mathematical properties, for example, it is positive and equals zero if and only if pk = qk, and furthermore, it
is a convex function of pk. More on this interesting subject can be found in [62,63].
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and B can appear surprising at first glance and they emphasize the importance of a priori
criteria.

Although Author B has an average citation rate almost twice that of Author A, his citation
record is more probable by a factor of 108. This is a natural consequence of the power-
law distribution which makes it far more improbable to have 10 papers with 100 citations
each, than one paper with 1000 citations. The question of which of these options is ‘better’
requires a subjective answer, and it is unlikely that any single quantitative measure will satisfy
everyone. Therefore, although the interpretation of non-statistical fluctuations in individual
citation records is subjective, the likely presence of such fluctuations can be identified with
ease and objectivity. The method developed in Chapter 5, will take the structure of author
citation records into account in a much more sophisticated fashion.

Improbable Departments

Calculating r for entire departments is also possible. Physics Department ∆, which includes
Author C, published a total of 1309 papers from 1980 to 2000, distributed with 81, 324,
474, 175, 216, 39 papers in the citation summary bins. This results in a r = 285. Physics
Department Γ, which includes Authors A and B, published a total of 1309 papers during the
same period with 81, 388, 378, 77, 28, 3. This yields the somewhat smaller value of r = 65.9.
Such information can be of practical value since it is seems likely that the ‘most improbable’
departments will have the greatest success in attracting the ‘most improbable’ author.

2.5 Summary

In this section, the homogeneity of the theory, experiment, and phenomenology subfields of
the SPIRES database has been demonstrated. The data is well described by two power-laws;
one for the minimally cited papers and one for the highly cited regime.

Striking features of the data set are the extremely large number of minimally cited papers,
and that a small fraction of the papers account for most of the citations accumulated by the
entire data set—4% of all papers account for 50% of the citations. The well known fact, that
true progress in physics is driven by a few great minds, is documented in the SPIRES database
to an extent that is almost unsettling. The picture that emerges is, thus, a small number of
interesting and significant papers swimming in a sea of ‘dead’ papers. This has the practical
consequence that any study seeking to understand the dynamics of interesting papers will be
forced to discard most papers and accept the greatly increased statistical uncertainties. In
the case of the SPIRES data set, this would amount to roughly 10,000 papers.

It has also been noted that merely considering the distribution of papers is not sufficient
for an in depth understanding of SPIRES. To truly understand the network of scientific
publications and the dynamics of excellence, we need to understand the SPIRES database in
terms of individual authors or, more precisely, their citation records. This point of view makes
the situation described above even more dramatic. Recall that Author C above accounts for
1.5% of all citations in the database, another example is that 7 authors (not necessarily the
highest cited) account for 6% of all citations.

As a preliminary measure of these correlations, the measure of ‘unlikelihood’, r, has been
introduced. Further, this measure offers a tool for comparing citation records in different
fields with a known and controllable bias. We have seen that in spite of it’s virtues, r also
has weaknesses. Some of these, such as the fact that comparisons between fields cannot but
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involve unsupported assumptions and biases; cannot be eliminated. They should be made
visible and discussed. Other problems—for example that ‘improbably’ bad authors, such as
author D in the above, have a high r-value—can be remedied; this is surely a task for the
rest of this thesis. Again, studying the correlations in the database, has a two fold purpose:
To investigate the theoretical properties of a network of authors where a ‘node’ is an author
citation record; and to utilize this knowledge to learn about scientific excellence.
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CHAPTER 3

The Author Level

Including knowledge about the author of every publication adds a new level of complexity
to the network we have been considering in Chapter 2. In the present chapter, we shall
study the structure that emerges when we include this new level in the investigation of the
citation network. We will also discuss the basic statistics and properties of the author network.
From now on, let us use the distinction that the author network refers to the entire network,
including the author information, whereas the paper network refers to the network of papers
discussed in the previous chapter. This augmentation of our knowledge, will set the stage
for a more comprehensive analysis of the database, where we utilize this new knowledge to
understand the longitudinal correlations that authors impose on the paper level.
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b c
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e

time
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b c

d

e

(a) (b)

Figure 3.1: A visualization of the Author network. (a) Displays (a small portion of) the author level
connecting to (an even smaller portion of) the paper level; each author is represented by a ‘◦’ and a
letter from a to e, each paper by a ‘•’. (b) Here, the paper-network from Figure 2.1 has been added
to the picture. This representation provides an excellent illustration of how the author-level induces
correlations on the level of papers; see main text for further details.
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3.1 A New Level of Complexity

One way to visually represent the author network is to use two levels. To gain a deeper
understanding of it, consider Figure 3.1. The (upper) level of authors in Figure 3.1 (a)
connects to the (lower) paper level by means of their publications. Each of the 5 authors
(a− e) have authored a number of publications represented by ‘•’s on the paper level. In
Figure 3.1 (b) the directed network of citations and references between papers that was
discussed in the previous chapter, has been added to the lower level, cf. Figure 2.1.

In analogy to the definition of citations and references from the previous chapter, we define
an author ’s references as the papers listed at the end of all of his papers and correspondingly,
his citation count is the cumulated sum of citations in this entire citation record. This
definition and the two level representation underscores that references and citations between
authors run via the paper network. As an example of this, consider Figure 3.1 (b), where the
dashed line illustrates how author e cites authors b and c via a reference from one of e’s papers
to a (highly cited) paper co-authored by b and c. Sometimes, it is convenient to disregard
the fact that citations between authors run via the network of papers, and collapse the two
levels into one single level of authors citing other authors.

For example, collapsing the network in Figure 3.1 (b) so that only the links between
authors are visible, results in the structure seen in Figure 3.2. This figure, however, represses
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Figure 3.2: A visualization of the author network from Figure 3.1 (b) collapsed into one level of authors
citing authors; each line is labelled by the number of citations it represents, also the thickness of a line
is proportional to the number of citations it represents. Loops signify self citations. This network was
generated using Pajek network visualization software [2].

so much structure that it becomes confusing: Here, a number is affiliated with each edge,
the graph contains loops, etc.—this representation of the network also makes the time-line
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from Figure 3.1 (b) an impossibility. Generally it holds true that the two-level representation
strengthens our intuitions about the structure of the network; it will prove indispensable for
modelling the network structure in Chapters 6 and 7.

3.1.1 Disconnecting the World Wide Web

Previously, we have discussed the similarities between the paper network and the www. The
inclusion of the author level in the considerations, however, reveals that the two networks are
in fact radically different; the internet does not possess any structural property analogous to
the strong correlations that the author level imposes on the network of papers. This fact has
been almost completely ignored in the literature, where the citation network is usually consid-
ered a much simpler network than the www, because of the impossibility of new connections
arising between old vertices, that is, papers in the database suddenly adding new papers to
their list of references [13,14].

3.1.2 Data Structure and Notation

It is clear from the above that access to all reference lists in SPIRES would allow a complete
reconstruction of the author network, and would allow us to calculate any imaginable property
of the web of science. Unfortunately, the data that is publicly available directly from SPIRES,
is not complete. For each paper, only author information, publication year, and total number
of citations is available1, and therefore a complete recreation of the network is impossible at
this point. In this section, let us discuss what data is available, and how it is organized. In
doing this, it is convenient to introduce a bit of notation; this notation will prove its worth
when we begin analyzing more complicated aspects of the data structure.

After the parsing2, the papers written by each author is collected in a list. In this publi-
cation record, each paper is labelled by citation count and year of publication. Accordingly,
let us denote the set of authors

K = {K1,K2, . . . ,Ki, . . . ,KN }, (3.1)

where N is the total number of authors. Each author Ki is a vector

Ki =


i(1)
i(2)

...
i(ni)

 . (3.2)

The elements of Ki, the i(j)’s, are records of the ith author’s individual papers. The i(j)’s
are ordered in time, such that i(1) is author Ki’s first publication, etc. The reason that
these vectors only contain the relative time information, is that we are interested primarily
in exposing the properties of authors; this means that the relative time ordering is more
interesting for our present purposes. Later, we will include the year of publication in the
analysis of the paper distribution, labelling these records with a time-stamp i(j, t)—because

1Naturally, details of where a given paper is published and its title are also included, but that is not of
importance to this investigation.

2The raw data outputted from SPIRES was parsed using a PERL script included in Appendix A.4. For
details on the original data structure and sources of error, cf. also Appendices A.1 and A.2.
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it is natural to expect that, since older papers have had more time to accumulate citations
than newer papers, older papers are generally more cited. This topic is treated explicitly in
Chapter 7, where it is also concluded that this effect is neglible3.

To access the citation counts of the individual papers, i(j), I use the terminology ki(j)

(note that these ki(j)’s are equivalent to the k’s of the previous chapter, the only difference
being the subscript; the subscript indicates that we know which author has published the
paper in question and the time of publication). These primary definitions allow us to express
a number of quantities in a precise form. The total number of citations of the ith author is
the sum of the citation counts,

∑
j ki(j) ≡ mi. Clearly, the dimension, dim(Ki) ≡ ni, is the

number of papers published by the ith author. The reader should note that the fact that
the Ki’s have different dimensions (this simply means that each author has not necessarily
published the same number of papers), means that K is not a matrix, as one would naturally
suspect from equation (3.1), and from the notation in general.

3.2 The Data

With this notation to clarify our thinking, we are equipped to address the actual SPIRES
data. First, however, we need to examine a few complications regarding the data. The first
problem can be easily explained using a familiar example; the co-author network.

3.2.1 Problems

Paper Weights

The author network is closely related to the co-authorship network studied by Newman in
[48, 49, 50]. The co-author network is the network, where a link between two authors arises,
when they have co-authored a paper. Therefore each ‘•’, where two or more lines meet in
Figure 3.1 (a), constitutes a link in this network. If we, for example, begin with author b,
author c is one step away from b in the co-author network, and via c, author a has b-number
2, etc. We know from Section 1.3.1 that the co-author network is a small-world network of
considerable size and complexity, with power-law distributions of the number of authors per
paper. Ordering papers according to authors, as in Equation (3.1), creates an unavoidable
problem with the statistical weight of each paper.

In the paper network, each link between papers is unique: One reference results in one
citation. This is not the case for the author-by-author distribution. The example of a link
between authors in Figure 3.1 (b) shows that each paper is necessarily weighed by the number
of authors. One reference from author e results in two citations—one for both authors b and
c. More generally, one paper with α authors citing one paper with β authors results in αβ
links between authors, and the existence of the co-author network demonstrates the scope
of this problem: If an experiment paper with 1500 authors cites another paper with 1000
authors, we end up with 1,500,000 links between authors stemming from one citation of a
paper4.

3As mentioned earlier, the information on when a given paper i(j) received each of its citations is not
available with the present data—this is unfortunate, since the citation history for a paper is quite an interesting
subject [64]. We will, however, spend a little time on this in Chapter 7, more specifically in Section 7.3.

4This example is exaggerated for more than one reason: For the experimental cooperations, the large groups
of authors are never mentioned explicitly in the SPIRES entry, the names are usually attached in a separate
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To minimize this effect, in the remainder of the paper, when the author level is included
in the description, we shall solely consider the theory subset. As was pointed out earlier,
the theory subset typically has fewer authors per paper than the other SPIRES subfields that
have a substantially higher number of authors, cf. Newman’s results from Section 1.3.1. Later
in this chapter we will investigate the subject in more detail.

The ‘David Gross’-Effect

The next data-related problem, is what we shall call the ‘David Gross’-effect. The name is
due to problems that arose when I tried to find a list of the papers written by this particular
author (who is the director of the Kavli Institute for Theoretical Physics in Santa Barbara).
Intuitively, one would expect the name David Gross5 to be relatively unique.

The first realization in this respect is that searching for ‘D. Gross’ in the database, is too
broad of a search; this is illustrated in Table 3.1. A search for ‘D. Gross’ finds a total of 271
papers. Since we are searching manually, we have an option that can help us refine our search

Number Occurrences Name
1 34 Gross, D
2 1 Gross,D
3 14 Gross, D A
4 55 Gross, D H E
5 65 Gross, D J
6 1 Gross,D J
7 2 Gross, D L
8 1 Gross, Dan A
9 1 Gross, David
10 97 Gross, David J

Total: 271 papers

Table 3.1: Names that pop up when searching SPIRES for D. Gross.

(this is not available when doing automated searches): We can do a so-called name search of
SPIRES, searching for D. Gross in the names section of SPIRES. This yields the response:

(a) Gross, D. H. E. (Hahn-Meitner Inst. & Freie U., Berlin),

(b) Gross, Dan (General Electric),

(c) Gross, David J. (ITP, Santa Barbara),

(d) Gross, Klaus-Dieter (GSI, Darmstadt).

file that is not included directly in the database and, therefore, not parsed by my PERL script; hence these
large cooperations are listed under the name of the group, e.g. ‘Higgs Particle Search Group’. Generally, in
papers with more than 3 authors, only the first author is listed, and the rest are subsumed under the Latin
abbreviation ‘et al.’, meaning ‘and others’. When cleaning up the SPIRES data it is necessary to take this
into consideration, otherwise ‘et al.’ would be categorized as one of the most productive authors of all time.

5Obviously, there is nothing special about David Gross in this respect; any other inconspicuous name could
have been used to the same effect.
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Clearly, our D. Gross, is (c) in this list above; his middle initial allows us to eliminate no. 3, 4, 7,
and 8 from the list in Table 3.1, but it is still possible to attribute the remaining 199 papers
to our David Gross. If we, however, want to be completely certain that we are talking about
the David J. Gross, we can only include no. 10 from Table 3.1, since the names section of
SPIRES is not complete—there may be other D. J. Gross’ out there. Choosing this strategy
assigns only 97 papers to the director of the KITP. The most realistic bid, when including all
of the available information, is including no. 5, 6, and 10 in the search for papers, leaving us
with a list of 163 articles.

In summary, the maximum number of papers we came across for this search is 271 pa-
pers, whereas the minimum is 97 papers. The difference is 174 papers! Including all of the
information available, we find that the true answer lies somewhere approximately in between
these two numbers at 163 papers. The point of this exercise is to illustrate the simple point
that a person’s last name and first initial is not enough to identify a person uniquely. On the
other hand, including all initials, or even spelling out someone’s first name may be too specific
and exclude from the search a large number of papers. This concrete example should also
demonstrate to the reader how profound this effect is, and why taking it into consideration
is important.

Dealing with the ‘David Gross’-Effect

To remedy this problem, we will simply parse the theory subfield data twice. Once where last
name and first initial are used as the criterion for identifying a person as a single author, and
once where last name and all initials are used to distinguish authors. The first method will—
as we have seen in the example above—underestimate the number of authors, and the latter
method will most likely overestimate the number of distinct authors; we can think of this as
an upper and lower bound on the number of authors in the database. When stating results,
the convention ‘‘First Initial’ result (‘All Initials’ result)’ will be used. Regarding plots, the
convention is to plot the results for the lower bound; this is not a problem, since for all
practical purposes, the differences between the upper and lower bound are indistinguishable
on log log scales. Furthermore, it is assumed that the mechanisms behind a given author
including his middle initial or not, etc, are random; therefore, it is assumed that ‘All Initial’
parsing removes random papers from authors’ citation records, whereas the ‘First Initial’
parsing unites citation records of random authors.

3.2.2 Quantitative Comparisons

The data set for the theory subfield consists of a total 44, 397(52, 139) authors. After removing
papers for which no citation data is available and papers with publication dates that fall
outside the time interval 1945−2001, we are left with N = 34, 434(39, 921) authors. A partial
reason for the dramatic drop in the number of authors, when papers with no available citation
information are removed, is the large fraction of authors—some 38(41)%, corresponding to
16, 890(21, 573) people—present in the database, with only one publication before the cleaning
up. The approximately 21% of the total papers with no available citation information are
distributed almost evenly among authors, and this means that for a large number of authors
no citation information is available for their single paper. Accordingly, not only the N/A-
papers, but also their authors are removed from the database. A similar, although not as
pronounced, mechanism is a play for other ‘minimally cited’ authors.
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First Initial All Initials
Total # of Authors 34,434 39,921
Total # of Papers 281,816
Total # of Citations 4,571,192
Ave. # of papers per author, 〈ni〉 8.2 7.2
Ave. # of citations per author, 〈mi〉 133 115
Ave. # of citations per paper, 〈ki(j)〉 16.2

Table 3.2: A summary of the basic statistics for the author network.

The remaining authors have published a total of
∑

i ni = 281, 816 papers (the number of
papers and citations is naturally the same, independently of how they are distributed among
authors, so there is only one result here). We know from Chapter 2 that the number of distinct
papers in the theory subset is 159,946; this number is approximately doubled because of the
co-author effect; in other words, the average number of authors per paper is a little under two
for the theory subfield. As promised, this number is small compared with the average number
taken for SPIRES as a whole. This amounts to an average of 9.0 authors per paper—the
largest collaboration in SPIRES is 1,681(!) authors [49].
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Comparing the paper citation distributions

Figure 3.3: A comparison of the papers in the theory subfield, collected paper-by-paper (F) as was
discussed in great detail in in Chapter 2 and author-by-author(N). The normalized distributions are
virtually indistinguishable.

SPIRES theory has an average of 〈ni〉 ≈ 8.2(7.2) publications per author and the corre-
sponding mean is ñi= 2(2) papers. The data set has received

∑
i mi = 4, 571, 192 citations

from authors in the entire SPIRES database, resulting in an average of 〈mi〉 ≈ 133(115) ci-
tations per author, with a considerably lower mean of m̃i = 8(7) total papers. The average
number of citations per paper 〈ki(j)〉 ≈ 16.2. This value of 〈ki(j)〉 corresponds well with the
corresponding value for the data set counted paper-by-paper. This set of data yielded a value
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of 〈k〉old = 14.77. The basic statistics are summarized in Tables 3.2 and 3.4. As in the previ-
ous chapter, the large factor differences between the means and the medians are indicative of
fat-tailed distributions.

Even though this average number of citations per paper stays relatively constant, regard-
less of the weighing of papers by the number of co-authors, the question remains, however,
whether or not the counting of citations author by author has changed the shape of the dis-
tribution of paper citations. This question is answered in Figure 3.3, where the normalized
distribution of citations, collected paper-by-paper from Chapter 2 (F) is plotted alongside
the corresponding distribution collected author-by-author (N), both are normalized to one.
It turns out that the normalized distributions are virtually indistinguishable—counting pa-
pers author-by-author does not alter the shape of the distribution. This is remarkable and
once again demonstrates the remarkable homogeneity of the SPIRES database; the collabora-
tions in SPIRES span the entire range of citations so evenly that including them is virtually
equivalent to including a multiplicative factor. There is no ‘typical’ co-authored paper.

3.3 The Frequency Distributions

Now that we have established the fact that the distribution of citation remains remarkably
constant, in spite of the weighing of papers by number of authors, it is time to reap the
benefits of counting the papers author-by-author and discover some of the properties of the
authors in SPIRES, taken as a whole. As we will learn in this section, the two (independent)
power-law structure is a common property of all of the distributions we will be considering;
this supports the idea that different dynamics rule the highly- and minimally cited regimes.

3.3.1 Total Citations per Author

Let us begin by discussing the distribution total number of citations per author. This is the
distribution that Laherrere and Sornette investigated for the 1120 most cited physicists in the
interval 1981-1997 [53]. Laherrere and Sornette found this distribution to be described by a
stretched exponential, N(mi) ∼ exp[(mi/m0)β ], with β ≈ 0.3. It is evident from Figure 3.4 (a)
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Figure 3.4: (a) The normalized, binned distribution of total citations per author, mi +1 vs. P (mi +1).
The two straight lines have slopes of β1−500 = 1.24(1.27) and β500−20000 = 2.43(2.42), where P (mi +
1) ∼ (mi + 1)−β . (b) Displays the distribution of percentiles, mi + 1 vs. 1−

∑
P (mi + 1). The most

cited author is cited 61, 062 times in the database.
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that the mi + 1 vs. P (mi + 1) distribution is well described by two power-laws, P (mi + 1) ∼
(mi + 1)−β, β1−500 = 1.24(1.27) and β500−20000 = 2.43(2.42). At the phenomenological level
(which is the level we are primarily working on in this chapter), we are, however, not in
a position to challenge the stretched exponential description suggested by Laherrere and
Sornette; the data is well approximated by a stretched exponential6. In Chapters 6 and
7, Sections 6.3.2 and 7.1, the subject of the functional form of the probability distributions
is discussed on the basis of a theoretical model for SPIRES. For now, let us settle with
establishing the fact that, although there is nothing sacrosanct about the two power-law shape,
the data is reproduced rather faithfully by the two independent power-laws. Furthermore,
this structure is even clearer in the following two plots, and it is—as was the case for the
citation distribution in Chapter 2—natural to expect that the different power-laws are caused
by different dynamics in the two regimes.

Figure 3.4 (b) is included for more utility-minded reasons. The ‘total number of citations’-
distribution allows an author to compare himself directly to the distribution of all authors
in SPIRES; in Figure 3.4 (b), it is easy to read off which percentile one belongs to. For
example, we find that only 8(7) career citations are needed to be in the top 50% of theoretical
high energy physics authors of all time—by definition, this number is also the median of the
total citation distribution. To make the top 10 percent, a career total of 238(195) citations is
needed; making the 99th percentile requires your career total to exceed 2170(1876) citations,
etc.

3.3.2 Papers per Author

The number of papers per author was considered by Newman in connection with his inves-
tigation of the co-author network; these results were summarized in the Introduction. In his
first paper on this subject, Newman hypothesized that this distribution was described by a
power-law with an exponential cut-off that he attributed to the limited time window under
consideration (1995 − 1999) [48]. However, in the next paper on the same subject, in which
the time window was expanded to include the years 1974 − 1999, the following conclusion
was reached: With regard to the SPIRES distribution of papers per author, “neither pure
nor truncated power law fits the data well” [49]. Keeping in mind that the data Newman
considered in his second paper is identical to the data considered here (except that I have
access to the data from before 1974 and up to 2001), it seems clear that Newman is hesitant,
exactly because the data is clearly described by a two power-law structure. This structure is
very clear from Figure 3.5; this is why the data cannot be fitted with neither the pure nor
the truncated power-law.

The slopes of the power-laws P (ni) ∼ n−γ
i for the papers per author distribution are

γ1−50 = 1.47(1.55), and γ50−300 = 3.86(4.23). The reason for the relatively large discrep-
ancy between the slope of the highly publishing authors, when counting ‘first initial’ and
‘all initials’, is that the ‘first initial’-counting creates unnaturally long citation records which
result in less steep slopes, whereas the ‘all initials’-counting divides publication records of
single authors into separate pieces, which in turn result in steeper slopes. The fundamental
two power-law structure remains unaffected, however. Again, it is remarkable that the two
power-law structure seems to remain a common feature of every single aspect of the SPIRES

6Another option that would fit the data well, would be to make a smooth interpolation between the two
power-laws. This, however, would bring nothing new to the analysis; it would only make the analysis a little
less transparent.

Copyright 2003 c© Sune Lehmann 41 Version 3.01, Revised June 30, 2003



3. The Author Level 3.3. The Frequency Distributions

1 2 5 10 20 50 100 200
ni

0.00001

0.0001

0.001

0.01

0.1

P(ni) Total papers per author

g1-50=1.47 (1.55)

g50-300=3.86 (4.23)

Figure 3.5: The normalized frequency distribution of total papers per author, ni vs. P (ni). The
two power-laws plotted along with the data points have slopes of γ1−50 = 1.47(1.55), and γ50−300 =
3.86(4.23), where P (ni) ∼ n−γ

i .

database. The latter power-law must necessarily be steep, since it is only possible for a sci-
entist to produce a finite number of papers in the span of a career. The average number
of papers published per person per year is slightly increasing for SPIRES year by year, and
therefore the 50 < mi < 300 distribution may very well consist mainly of authors that have
already retired.

3.3.3 Average Number of Citations per Paper per Author

The final plot we will be considering in this section, is the distribution of the average number
of citations per paper per author, mi/ni vs. P (mi/ni). This plot is interesting primarily
for its utility. If you are a young author and you want to compare yourself to the rest of
the distribution, the total number of citations is not a good measure, simply because young
authors have not written a lot of papers. Therefore, the distribution of author paper averages
can be useful. This distribution allows any author at any stage in his or her career to compare
himself to the entire population of authors, simply because this distribution connects the
citation-count of that same author directly to the number of papers published by the ith
author. Connecting mi and ni for individual authors, causes the distribution, in Figure 3.6,
to actually contribute information that is not contained in the two previous plots.

This distribution is also described by a double power-law structure, P (mi+1
ni

) ∼ (mi+1
ni

)δ,
with δ1−50 = 1.44(1.45) and δ50−200 = 3.32(3.15) in the low and high average regime, respec-
tively. The reason the slope of the high average regime is steeper for the ‘first initial’ data
is that the ‘David Gross’-effect causes us to cut random papers out of highly cited author’s
citation records. Most of the time, this results in adding another author to the group of
authors with low averages, because cutting out random papers is equivalent to drawing a pa-
per from the paper citation distribution at random: We know that, because of its power-law
structure, it is much more likely to draw a minimally cited paper. This is barely visible on the
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Figure 3.6: (a) The normalized frequency distribution of the average number of citations per paper per
author, (mi + 1)/ni vs. P ([mi + 1]/ni). (b) The corresponding distribution of percentiles, (mi + 1)/ni

vs. 1 −
∑

P ([mi + 1]/ni). The slopes of the two power-laws are δ1−50 = 1.44(1.45) and δ50−200 =
3.32(3.15)

log log plot. Once in a while, however, the same effect can result in extremely high average
author paper citations, because a highly cited paper is drawn at random. For example, the
highest average for the ‘all initials’ data is 982.5 due to the fact that Erick J . Weinberg left
out his middle initial in two of his 81 publications. One of these papers is his most cited
paper with 1963 citations. The other paper is uncited. The average of these two papers is the
before-mentioned 982.5 citations per paper; E. J. Weinberg’s true average is 69 citations per
paper. Because of this effect, Figure 3.6 should be used exhibiting great caution. Many of the
author averages of over 100 citations per paper are due to citation records that are artificially
shortened, like in the example above. Edward Witten, who is the most cited author in the
database has an average of 241 citations per paper.

The dips for non-integer values in the low-average part of the distribution in Figure 3.6 (a)
is due to the large number of authors with only one publication—these comprise 38(41)% of
the papers—and the discrete nature of both the paper- and citation-count. Clearly, these
authors can only have an integer valued average number of citations per paper: Since most
of the authors with only one publication are minimally cited, this boosts the integer valued
averages of 0 and 1 citation and suppresses the corresponding 1/2-integer valued averages.
For the 14(15)% of authors with two publications, we expect the probability of receiving an
average of 1/2 or 3/2 citations per paper to be a little less likely than receiving 0 or 1 citation
on average, due to the power-law distribution of total author citations. As the number of
published papers increases, the discretization effects are suppressed and the average number
of papers per author becomes a ‘continuous’ variable.

3.4 The Scientific Staff

From Figure 3.5, we know that the number of papers per author decays as a power-law
P (ni) ∼ n−γ

i with γ1−50 = 1.47(1.55) for 1 − 50 publications and γ50−300 = 3.86(4.23) for
50 − 300 publications. This means that the vast majority of authors in SPIRES have only
published a small number of papers before leaving high energy physics. It is only natural that
many authors leave SPIRES; some move on to other branches of physics, or leave academic
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Minimum # of # of authors % of total population % of total citations
author publications First Initial All Initials First Initial All Initials First Initial All Initials

1 34, 434 39, 921 100 100 100 100
5 11, 633 12, 010 34 30 94 92
10 7, 015 6, 637 20 17 88 86
15 4, 990 4, 832 14 11 83 80
20 3, 799 3, 643 11 9 77 74
25 2, 983 2, 809 9 7 72 69
50 1, 063 966 3 2 49 46

Table 3.3: The number of authors remaining in SPIRES as the author’s minimum number of papers
per author increases. The percentage of total citations generated by this population is also included;
a minimal fraction of all authors generate a majority of the citations.

physics altogether to pursue other careers. This is due to the simple fact that every professor
has many Ph.D. students, but (on average) only one of these students get to fill his position.
We are interested in scientific excellence, so it is interesting to find out what happens to the
distributions of citations, when authors with just a few publications are removed. In Table
3.3 we explicitly see the sizes of the remaining author populations, as authors with less than
5, 10, 15, 20, 25, and 50 papers, are removed from the network. These numbers should remind
us that we are dealing with a power-law distribution that has a very steep slope from 50
through 300 papers.

3.4.1 The Drop in Total Citations

First, let us consider the effect on the distribution of the total number of citations per author.
The resulting distribution is displayed in Figure 3.7 and explicit percentages are displayed
in Table 3.3. The entire distribution (the red dots) is normalized to one; the remaining
distributions are normalized by the same factor, so that it is easy to see exactly from which
part of the distribution, authors are removed—these, however, can no longer be regarded as
probability distributions.

In removing the minimally publishing authors, we ‘hollow out’ the minimally cited end
of the author spectrum, in such a way that the remaining distributions develop peaks that
are different from mi = 0. The exact location of these peaks depend upon how many papers
are removed, and are clearly visible from the graph. On the more qualitative side, the mean
climbs from 133(115) for ni ≥ 1 to 1108(1123) for ni ≥ 25, and the median rises from 8(7)
to 518(528) for these populations. To understand why the ‘First Initial’-results are higher
than the ‘All Initial’-results when including the entire population and the other way around
after ‘pruning’ the distribution so that it contains only the Scientific Staff, we once again
have to turn to the ‘David Gross’-effect for an explanation. The ‘First Initial’ counting
finds fewer authors, and since the number of citations is constant, this results in a higher
average value. How does this change when authors are removed? Well, since the ‘All Initials’
counting finds a higher number of authors, and because these authors have shorter publication
records, a greater number of these authors are removed; this mechanism is clear from Table
3.3. Many of these discarded authors are based on random clippings from the remaining
authors’ (long) publication records—but since these clippings correspond to a random draw
from the distribution of blue dots in Figure 3.8 (b), a majority these papers are minimally
cited. Accordingly, the remaining authors have a higher average number of citations than the
‘First Initial’-group that has no ‘clippings’.
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Figure 3.7: The change of the distribution of total author citations (red dots), as authors with less than
5 (orange), 10 (yellow), 15 (green), 20 (turquoise) 25 (blue), and 50 (purple) citations are removed
from the database. The total distribution has global normalization 1.

Getting back to the distribution of total citations, there is nothing unexpected about
the minimally cited part of the distribution, being hollowed out; authors with only a few
publications are less likely to receive many total citations. Naively, we would expect that
not being cited is an attributing reason for authors to leave academic physics, but even if
the average number of citations for the ‘minimally publishing’ authors were the same as for
the rest of the population, an author with 4 publications would have a hard time competing
with an author with 40 publications. More qualitative statistics regarding this distribution
are summarized in Table 3.4, in the Summary.

The only vaguely surprising fact about Figure 3.7 is that it reveals that SPIRES actually
contains authors with 25 or more publications and a total of 0 citations. One author, 0,
with 52 publications has a career total of only 4 citations. In the context of the Power of
Excellence defined in Section 2.4, drawing these people at random on the citation distribution
is immensely improbable. For author 0, we find r = 20.6, with r defined as in Equation (2.2).
This again emphasizes the need to refine the concept of the Power of Excellence, if we do not
want the name of this measure to contrast the content.

3.4.2 The Paper Citation Distribution

The changes in the distribution of citations of publications when ‘minimally publishing’ au-
thors are removed, offer more of a surprise. In Figure 3.8, the changes in the distribution of
citations per paper (red) are plotted as authors with 5 (orange), 10 (yellow), 15 (green),
20 (turquoise), 25 (blue), and 50 (purple) publications are removed from the database.
Figure 3.8 (a) shows the change of the distribution of paper citation, as larger and larger
parts of the author distribution are removed; here, only the total distribution is normalized
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Figure 3.8: The change of the distribution of paper citations (red dots), as authors with less than
5 (orange), 10 (yellow), 15 (green), 20 (turquoise), 25 (blue), and 50 (purple) citations are removed
from the database. In (a) the distribution including all the authors is normalized to one, the other
distributions are normalized by the same factor. In (b) the global normalization of each distribution
is 1.

to one—the same strategy as in Figure 3.7. This figure is interesting because the distribu-
tion of paper citations is remarkably constant when compared to the significant drop—the
‘hollowing out’—of the low-cited part of the distribution of total citations, as the minimally
publishing authors are removed. There is a little more of a ‘drop-off’ for the minimally cited
papers, than for the highly cited papers, but it is clear to see that papers are removed from
the entire range of the distribution of paper citations.

The distributions displayed in Figure 3.8 (b) are the same, but in this figure, each sub-
distribution is normalized to one. This version of the plot demonstrates that the probability
distribution ‘tips over’, when the ‘minimally publishing’ authors are removed: While the
probability remains constant at around 7.5 citations per paper, the probability of drawing
minimally cited papers falls off, and the probability of finding papers with many citations
grows proportionally higher. The change for this distribution is far less drastic than the
change for the Total citations distribution; this is reflected in the changes in the mean and
median, that grow from 〈ki(j)(ni ≥ 1)〉 = 16.2 to 〈ki(j)(ni ≥ 25)〉 = 21.9, and k̃i(j)(ni ≥
1) = 3 to k̃i(j)(ni ≥ 25) = 5. Further quantitative results can be found in Table 3.4. The
main conclusion we can draw from the above, is that authors who are an integral part of
academic physics, i.e. authors with long publication records, still publish a majority of un-
and minimally-cited papers. By extension, we can also conclude that the authors with only
a few publications publish highly cited papers. It is interesting to investigate this topic in
further detail.

In Figure 3.9, the distributions of minimally publishing authors that are removed from
Figure 3.8, are displayed. The power-law behavior is present once again, and we notice quite
a few highly cited papers are amongst these author’s publications. How is this possible? It
seems counter-intuitive that it is possible for a person, who only publishes once in SPIRES,
to write a ‘best-selling’ paper. The most convincing answer to this question points to the
fact that most authors who publish in SPIRES do not write their first papers alone; they
collaborate with their advisors or other experienced scientists. In a collaboration between
an experienced scientist and a young Ph.D. student, it is likely that the ‘properties’ of the
experienced scientist is reflected in their joint paper, since the more experienced scientist is
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Figure 3.9: The distribution of the authors that are removed in Figure 3.8. In this figure, the color
coding scheme is a little different. The distribution of citations in papers from authors with only one
publication is plotted in red. The less than 5 publications distribution is in orange, the less than 10
is red, etc. In (a) the normalization is set to constant so that the global normalization of the entire
population is 1. As usual, (b) displays the same distributions, but this time the normalization of each
distribution is set to 1.

not interested in jeopardizing his reputation by letting a young (potentially insane) Ph.D.
student publish a paper in his name, without thorough supervision, and therefore has a
profound influence on final outcome of the paper.

No matter what influences the distribution of ‘minimally citing’ authors, it interesting
that the quality of papers published by this group of authors is relatively high. Let us
make the distinction that people with more than 25 publications are considered the ‘Scientific
Staff’. The number 25 seems reasonable, since it is possible to generate a citation record of
approximately this size as a Ph.D. and post. doc. without ever finding a job in high energy
physics. On the other hand, people with more than this number of publications most probably
have acquired some sort of some permanent job in the world of high energy physics. Thus, an
extremely interesting question for the rest of this thesis is: ‘What qualities7 sets the Scientific
Staff apart from the rest of the database?’.

A first stab at answering this question has already been taken. Figure 3.7 is not very
interesting in this respect; it is clear that all other things being even, authors with many papers
will receive more citations than authors with few citations. However, Figure 3.8, is worth
noticing because in this figure, an explicit connection is created between the number of papers
per author and the distribution of paper citations; we explicitly get to see the distribution of
citations of papers written by the Scientific Staff compared to the total distribution. In the
following—Figure 3.9—we also get an explicit look at the paper citation distribution of the
authors with only a few publications. The lesson we can learn from these two figures is that
although the Scientific Staff is clearly more cited than the ‘minimally publishing’ authors,
the latter population still does remarkably well, and it includes the author of several highly
cited papers. A more quantitative comparison of the two populations can be found in the
summary, cf. Table 3.4.

7Obviously, one quality that sets these authors apart from the rest of the population of authors is that they
publish more papers, but the question remains: Why do they publish more papers? Are they more persistent,
are they luckier, or do they simply write better papers?
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3.4.3 Average Number of Citations per Paper per Author

The properties of authors as a function of their citation record, are made even more explicit
in Figure 3.10, where the changes in the distribution of author’s average number of citations
(mi/ni) is displayed as ‘minimally publishing’ authors are removed. Here the tendency is clear.
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Figure 3.10: The change of the distribution of the average number of citations per paper per author
(ACPA; red dots), as authors with less than 5 (orange), 10 (yellow), 15 (green), 20 (turquoise) 25
(blue), and 50 (purple) citations are removed from the database. The total distribution has global
normalization one.

A large fraction of the authors with low average paper citations are also ‘minimally publishing’:
When the length of the publication record and the total number of citations for individual
authors is taken into consideration, we explicitly see that the minimally publishing authors
are mainly removed from the low-average part of the distribution. Again, this is confirmed by
the explicit numbers for the mean and median, cf. Table 3.4. For the distributions of authors
with 10 or more publications, we even see the population developing non-zero peaks.

In this figure, another effect is also at play; namely that many of the authors with ‘un-
naturally’ high averages are removed. This is due to the fact that the problem with acciden-
tally cutting out short bits of highly cited authors’ citation records, as a result of the ‘David
Gross’-effect, is (partially) removed. Because we are removing the shorter publication records.
For example the two papers in which Erick J. Weinberg forgot to sign his middle initial, have
been removed from the distribution. This effect actually makes the impact on the mean num-
ber of the average number of citations per paper per author a little less pronounced. It grows
from 〈mi

ni
(ni ≥ 1)〉 = 8.5(8.6) to 〈mi

ni
(ni ≥ 25)〉 = 18.8. The impact on the median is less

sensitive to this effect, climbing from m̃i/ni(n≥1) = 3.0(3.0) to m̃i/ni(n≥25) = 12.2(12.5).
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3.5 Summary

The first important result of this chapter is that to understand the structure of the author
network, it is convenient to think about it in terms of two interacting levels: A level of authors
and a level of papers, where the paper level is exactly the network, we discussed in Chapter
2. We saw how the citations and references between authors run via their papers.

We then proceeded to find that there are two intrinsic problems in counting papers author
by author: One is that counting papers this way, weighs papers by their number of co-authors,
both for the incoming and outbound distributions. To limit this effect, we only consider
the theory subset of SPIRES, because this set typically has fewer authors (on average 1.8,
compared to 9 for SPIRES as a whole) per paper than the rest of the database. When
comparing the distributions of citations of the papers in the theory subset, counted as in
the previous chapter and counted author by author, we found that these were—when each
normalized to 1—indistinguishable, for all practical purposes. In other words, there is no
‘typical collaboration’ that tweaks the distribution; SPIRES is so homogeneous that weighing
the papers by number of co-authors does not pose a problem. The other problem is what
we called the ‘David Gross’-effect. This name is used to point to the problem that counting
authors by last name and first initial alone, tends to underestimate the number of authors in
the database, while counting authors by last name and all initials tends to overestimate the
number of distinct authors in the database. We solved this latter problem by simply including
both counts, using them as a lower and upper bound.

With the information on authors in SPIRES in hand, we began utilizing this new knowl-
edge to plot the distributions of total author citations, total author publications, and average
number of citations per paper per author. All three of these distributions were described by
the double power-law structure that we already know from the distribution of paper citations,
albeit, here, with different slopes. It is interesting in itself, to know the shape of these distri-
butions, but these are also useful tools for determining the quality of authors in the database.
Among the remarkable results from this part of the chapter, we found that 8(7) career publi-
cations is sufficient to reach the top 50 of all time authors in SPIRES. A depressing 18(19)%
of all authors in SPIRES have got zero citations; clearly these kinds of statistics are due to
the large number of authors with only a few publications: The mean number of publications
in the theory subfield is 8.2(7.2) papers per author, but the median number of papers is mere
2(2) papers per author.

Considerations along these lines led us to introduce the concept of the ‘Scientific Staff’.
This group consists of the people who have published more than 25 papers; we began inves-
tigating what happens to the network, when these authors are removed from the database.
The main conclusion, with regard to this data, is that even though the authors with only a
few publications are not at all as highly cited as the Scientific Staff, on average, their paper
citations still follow the independent power-laws, P (ki(j)) ∼ k−αsci

i(j) , with αsci,low = 1.16(1.15)
and αsci,high = 2.88(2.87), and that there are highly cited authors amongst them—this is
underscored be the flatter slopes of the power-laws. Conversely, we find that even though the
Scientific Staff do better than the ‘minimally publishing’8 authors on average, the distribution
of their publications still follow a power-law P (ki(j)) ∼ k−αmin

i(j) , with αmin,low = 1.49(1.48) and
αmin,high = 3.06(2.99); this steeper slope corroborates with the evidence from the mean and
median values in Table 3.4. In conclusion, even the Scientific Staff publish a (vast) majority

8In this instance, by ‘minimally publishing’, the authors with less than 25 papers are used as an example.
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The Scientific Staff
ni ≥ 1 ni ≥ 25 ni ≥ 50

Total Mean 〈mi〉 133 (115) 1108 (1123) 2106 (2178)
Total Median m̃i 8 (7) 518 (528) 1236 (1238)

PC Mean 〈ki(j)〉 16.2 21.9 26.4
PC Median k̃i(j) 3 5 6

ACPA Mean 〈mi
ni
〉 8.5 (8.6) 18.8 (19.4) 24.4 (25.4)

ACPA Median m̃i/ni 3.0 (3.0) 12.2 (12.5) 16.4 (17.2)
The ‘minimally publishing’ distributions

ni = 1 ni < 25 ni < 50
Total Mean 〈mi〉 6 (6) 40 (38) 70 (63)

Total Median m̃i 1 (1) 6 (5) 7 (6)
PC Mean 〈ki(j)〉 6.0 9.7 11.8

PC Median k̃i(j) 1 2 3
ACPA Mean 〈mi

ni
〉 6.1 (6.3) 7.5 (7.8) 8.0 (8.2)

ACPA Median m̃i/ni 1.0 (1.0) 2.5 (2.5) 3.0 (2.9)

Table 3.4: Reducing the author population: Overview of important quantitative results, i.e. the mean
and median for the Total, the Paper Citation (PC), and the Average Citations per Paper per Author
(ACPA) Distribution.

of minimally cited papers.
Thus, the (depressing) conclusion of the previous chapter is amply confirmed: the progress

of science is truly driven by the work of a few excellent authors. Three (two) percent of the
authors in the database are responsible for generating 49(46)% of the citations. Note that
this result is radically stronger, than the corresponding conclusion from the previous chapter:
That 4 percent of papers in the database produce 50 percent of the citations, is the weaker
conclusion because we now know that even the members of Scientific Staff publish a majority
of unknown papers! These conclusions are highly interesting and in the following Chapter, we
will proceed to illuminate the same problem from a slightly different angle, viz. by considering
the author citation histories.

Copyright 2003 c© Sune Lehmann 50 Version 3.01, Revised June 30, 2003



CHAPTER 4

Author Citation Histories

In the sociological literature concerning citations1, the way in which a paper accumulates
citations is denoted a paper’s citation history. This information is not available for the papers
in SPIRES, but moving up one level in the hierarchy of the network, we find something
even better. The citation records of each author, the Ki’s, are—by construction—author
citation histories; the chronologically ordered record of a given author’s publications and
their citations.

Our investigation in Chapter 3 led us to single out two populations of authors in SPIRES:
The Scientific Staff and the ‘minimally publishing’ population. In the theoretical investigation
focusing on ‘SPIRES: the complex network’, these two populations are equally interesting and
should both be included in the analysis; recall that what makes scale-free networks scale free, is
the overwhelming number of nodes with a low number of in- and outbound links, and the small
number of highly connected network ‘hubs’. But when we turn to the more utility-minded
use of SPIRES—the investigation of scientific excellence—the difference between these two
populations becomes much more interesting. When a physics department is out to employ a
new researcher, it is not interesting to compare him to the entire population of physicists. This
is perhaps the most important realization from the previous two chapters: The Scientific Staff
is a small, dynamical part of a network swamped by an overwhelming majority of exanimate
authors and papers. It is far more interesting to compare the prospective co-workers to the
Scientific Staff of physics faculties all over the world. This chapter will focus on the more
utility-minded aspects of the analysis of SPIRES. We will find that the concept of the author
citation history can be used to argue that a minimum of 25 published papers is a good criterion
for separating the Scientific Staff from the remaining authors in SPIRES.

4.1 Average Citation Histories

The author citation history offers a novel incision in the citation distribution. Let us take
a look at what happens, when we compare first publications to first publications, second

1Cf. Vlachý for an introduction to ‘scientometrics’ [64]. This review paper also contains a comprehensive
list of references.
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publications to second publications, etc; we are going to investigate the properties of the
ki(1), ki(2), . . . distributions. In the process of studying these paper-by-paper distributions, we
will come across several surprising conclusions.

4.1.1 Plotting the Different Averages

The first step in this direction is to take a look at the average number of citations, paper by
paper; 〈ki(1)〉, 〈ki(2)〉, . . ., where these averages are defined as2:

〈ki(λ)〉 ≡
∑

j kj(λ)

N (λ)
, λ = 1, 2, 3, . . . ,max(ni). (4.1)

The notation N (λ) is simply shorthand for the number of authors with citation records of
length λ or greater, N(ni ≥ λ). Note that, by this definition, authors with only one publication
are not included in the λ ≥ 2 averages, etc. We know from Chapter 3 that N (λ) is a rapidly
decaying function of λ: The corresponding un-cumulated probability distribution is displayed
in Figure 3.5.

Getting back to the subject at hand, the 〈ki(λ)〉’s plotted against λ are displayed in Figure
4.1. Recall that the distribution of publications per author, is characterized by a two power-
law structure. The presence, in Figure 3.5, of the second—and very steep—power-law that
sets in at around λ = 60 is also visible in Figure 4.1, where fluctuations begin to dominate
the average values for λ ≥ 60. Beyond this point, the average value of the λth paper is highly
sensitive to whether or not a single author’s λth paper is highly cited; this is simply because
of the relatively small number of papers involved in each average.

The primary aim of this chapter is to illuminate the differences between the Scientific
Staff and the ‘minimally publishing’ authors. So far, we have used the convention that the
database should be divided around authors with 25 publications. It seems clear that authors
with 25+ publications should be considered full-fledged members of the Scientific Staff—with
this number of publications, an author has had some sort of career in high energy physics and
should be included in the considerations. However, deciding exactly who else to include under
the label, ‘the Scientific Staff’—and who to exclude is a difficult matter: There are authors
in the minimally publishing sub-population who publish highly cited papers; this distribution
also follows a power-law, etc. In the minimally cited part of the distribution there are, of
course, also talented young authors, making their way through their first publications. To

2A few remarks on the choice of notation and language are necessary here. The word ‘population’ and
‘sample’ have different uses in the literature, cf. [62]. In this thesis the word ‘population’ is used to described
the total population of authors in SPIRES, and not a more abstract space. Because the statistical quantities
mean, median, variance, etc, of a sample by definition are unbiased estimators of the population ditto, the
word ‘sub-population’ will be used rather than the word ‘sample’, when we discriminate, in the following,
between authors with different numbers of publications—because, as we shall see, these quantities for the
sub-population of authors with more than 25 publications, are not unbiased estimators of the corresponding
population measures. Whether or not we are discussing properties of a population or of a sample, also makes a
difference notation-wise. The average of a population quantity is sometimes called the expectation value of that
quantity and denoted 〈·〉, whereas the notation for the sample average is a bar over the quantity in question;
for example, the average of the random variable x, is denoted x̄. Usually the mean, variance, etc, for the entire
population are set en Greek letters, e.g. µ, σ, etc, and the corresponding quantities for a sample are typeset
using Latin letters: m, s, etc. In this thesis, we will primarily be considering populations and sub-populations
and therefore use the ‘population’-convention of Greek letters everywhere. For a further discussion, the reader
is referred to [62].
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Figure 4.1: This plot is the average-number-of-citations history, that is, the average number of citations
for the λth publication, 〈ki(λ)〉, plotted against λ. The longest list of publications, max(ni), is 302
papers.

determine whether or not more authors should be included in the Scientific Staff, we will
focus the analysis on the authors with 0 ≤ λ ≤ 25 papers.
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Figure 4.2: Clearly, the interesting part of Figure 4.1 is the first 25 publications. (a) This figure
displays the first 25 elements of Figure 4.1, and (b) shows the corresponding distribution for authors
with more than 25 publications. This second distribution is remarkably constant! Also: the scales on
the y-axes of the two figures are different.

Because of the power-law nature of the paper-per-author distribution, and seeing as we
are looking at average values, discussing this group of authors results in the added bonus of
working with statistically significant material; again, cf. the fluctuations in Figure 4.1. The

Copyright 2003 c© Sune Lehmann 53 Version 3.01, Revised June 30, 2003



4. Author Citation Histories 4.1. Average Citation Histories

sizes of the groups of scientists with λ ≥ 1, 5, 10, 15, 20, 25, 50 publications is available in Table
3.3.

In Figure 4.2 (a), the first 25 averages from Figure 4.1 are plotted as a bar chart. There is
nothing surprising about this figure. When we take all of the available authors into consider-
ation, we find that the average number of citations for first publications is 〈ki(1)〉 = 8.6(8.7),
and that the average of the λth paper grows steadily throughout the first 25 publications,
where it seems to level out at around 22-23 citations per publication. This suspicion is con-
firmed in Figure 4.1, where it is clear that this trend continues up to around 60 publications.
After this point fluctuations begin to dominate—although the average is still roughly centered
around 20 citations.

The big surprise, however, comes from Figure 4.2 (b). Here, I have plotted the average
number of citation histories, for authors with more than 25 publications. In other words, the
modified averages:

〈ki(λ)〉(25) ≡
∑

j k
(25)
j(λ)

N (25)
; λ = 1, 2, 3, . . . , 25, (4.2)

where the superscripted ‘(25)’ signals that we are only considering authors with 25 or more
publications. For λ > 25, we simply define 〈ki(λ>25)〉(25) ≡ 〈ki(λ)〉. These averages are
extremely interesting because, for the Scientific Staff, they are remarkably constant over
their first publications. The average of the columns in Figure 4.1 (b) (

∑25
λ=1〈ki(λ)〉(25)/25)

is 21.8(22.5) citations—with standard deviation 1.7 (2.0). This number corresponds extraor-
dinarily well with the average number of citations per paper for authors with more than 25
publications 〈ki(j)〉(25) ≈ 21.9(22.8). The correspondence is remarkable. It appears that the
average number of citations per paper, is constant throughout publication histories for au-
thors with long publication records. In other words, we have discovered one important aspect
in which the Scientific Staff stands apart from the remaining distribution. On average, their
first papers are as good as any paper they will ever publish; when we take Figure 4.1 into
consideration, we can state this more generally: Each paper published by a member of the
Scientific Staff (on average) has a high and constant level of quality. In this respect, the
approximately 8.7 (7.0)% the authors in the database, who publish more than or equal to 25
papers, have properties that differ radically from the properties of the database as a whole
(34, 434(39, 921) authors).

4.1.2 Drawing the Line

Thus, a hypothesis is beginning to take form: The people we have denoted the Scientific Staff
are exactly the people who publish papers of high quality from day one, and who continue to
publish papers of constant, high quality. If this hypothesis is at least roughly correct (which
is what will be argued in the following), then an indication that 25 papers is a sensible cut,
stems from the fact that the average of the columns in Figure 4.2 (b) is virtually identical
to the average number of citations per paper for the total distribution of papers, written by
authors with more than 25 career publications.

Generalizing this idea, we can present a more quantitative argument for why the cut should
not be 10, 15, or 20 publications. If we assume that the Scientific Staff produces papers of a
constant quality, then the difference

h(Λ) ≡ 〈ki(j)〉(Λ) − Λ−1
Λ∑

λ=1

〈ki(λ)〉(Λ), (4.3)
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is an informative quantity. The two terms on the rhs. express properties of the Λ+ sub-
populations, and compares the average of the total sub-population to the average of the first
Λ distributions. Thus Equation (4.3) should approach zero, as Λ approaches the ‘correct’ size
for the Scientific Staff. Of course this criterion is merely a rule of thumb, and it only makes
sense under the assumption that the average number of citations of the λth publication, is
constant for the Scientific Staff.

50 100 150 200
Λ

-2

2

4

6

h(Λ)

Figure 4.3: The difference h(Λ)—defined in Equation (4.3)—plotted against Λ, in the range 1 ≤ Λ ≤
200. This difference is 0 for Λ = 26(27), after which it continues to drop to -2, where it remains
roughly constant.

In Figure 4.3 the difference h(Λ), defined in Equation (4.3), is plotted for 1 ≤ Λ ≤ 200. For
Λ = max(ni) we have that h(Λ) = 0, since in this case, the two terms on the rhs. in Equation
(4.3) become identical. This, however, is of periphery importance since the criterion begins
to lose its meaning for large values of λ: The average number of citations per publication,
for authors with publication records of more than 200 publications, is highly dependent upon
properties of the individual authors—simply because there are only 15(11) authors with more
than 200 publications in the database. The difference h(Λ) vanishes for Λ = 26(27), and
then continues to drop off (!), assuming a roughly constant value of −2. This means that our
assumption regarding constant quality is not entirely correct; the balance between the two
terms shifts in the interval 25 . Λ . 50. That the balance between these two terms ‘tips over’,
indicates that many authors with more than 50 publications actually publish some of their
best work early in their career. Although not entirely correct, the hypothesis of a relatively
constant quality work by the Scientific Staff is, however, still supported by Figure 4.3—a
difference of merely two papers on average, still reflects to a rather constant average level of
quality.

In summary, 25 publications is a reasonable place to draw the line between the Scientific
Staff and the remaining sub-population of authors. The interval from 25 to 50 in Figure 4.3 is
rather interesting: If the cut was made at an even higher number of publications, the average
number of citations for the λth paper would not be as constant; we would see higher averages
for the early work by this remaining, elite group. Placing a cut at around 50 citations, is not
in our best interest. The authors that are removed from the database, if this interval is not
included, may not have exactly the same citation patterns as the 50+ authors, but they are
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full-fledged members of SPIRES nonetheless, and should not merely be regarded as ‘noise’,
swamping the Scientific Staff.

Histories
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Figure 4.4: The evolution from Figure 4.2 (a) to (b). The z-axis is the average number of citations,
paper-by-paper, 〈ki(λ)〉(Λ). Recall that Λ signals the minimum length of the publication record of the
authors involved in the average. The x-axis keeps track of Λ; and the y-axis displays λ, the publication
number in question.

Another way to think about what happens as the population of authors is restricted, is
displayed in Figure 4.4. This figure illustrates the evolution from Figure 4.2 (a) to (b), as Λ
grows from 1 to 25. The considerations from above are confirmed: As Λ grows, the average
number of publications grows steadily until reaching the constant level from Figure 4.2 (b).
There are no surprises here.

4.2 Total Distribution Histories

So far all that we can say is, of course, that the Scientific Staff have a constant, and markedly
higher average number of citations per publication for their first publications, than the total
population of the database. We would like to say something stronger than this; we have no
a priori reasons to suspect that the ki(1)-distribution looks anything like the distribution of
second- or 25th papers; the investigation in Chapter 3, however, leads us to expect to see the
seemingly ubiquitous power-laws.

4.2.1 Unfolding the Averages

The most intuitive thing to do, in order to get started, is to simply take a look at the
distributions of citations for the λth paper—since these are precursory to the averages. These
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are plotted in Figure 4.5.3
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Figure 4.5: The averages from Figure 4.2 ‘unfolded’ so that the entire distribution that resulted in
each average is visible. The red distributions are small λ’s and the blue distributions are for λ closer to
25. Thus, in (a) we see the distribution of first, second and so forth papers for the entire distributions.
In (b) the corresponding distributions are plotted for the 25+ data. Each distribution is normalized
to one and plotted on log log scales.

Unfortunately, this figure is too complex to extract any precise information from. It is clear
that ‘unfolding’ the averages from Figure 4.2 results in 25 reasonably similar distributions.
But, when it comes to pin-pointing any specific differences amongst these, we are at a loss.
Each and every distribution looks the same plotted on the double-log scales. Displaying these
3D structures on the 2D surface of a piece of paper, is problematic. Again, it is a testament
of the enormous homogeneity of SPIRES that the same two power-law structure is visible
in the author distribution histories, both for the database as a whole and for the Scientific
Staff. The fact that most publications are quickly forgotten, is truly an integral part of the
dynamics of science: Even the best of scientists publish a majority of papers that are virtually
forgotten the minute they are published.

In Figure 4.6 (a), we explicitly see the difference between the citation probability distri-
butions for the first paper of every author in the database and the same distribution for the
twenty-fifth paper by the 25+ authors. The probability of receiving 1000+ citations is about
an order of magnitude higher for a member of the Scientific Staff, than for the database taken
as a whole, but the differences between these two distributions are not dramatic. Although
we have not previously discussed the author distribution histories, last chapter’s discussion of
the distribution of paper citations, as authors were removed (cf. Figures 3.8 and 3.9) should
have prepared us for what we are seeing here.

Thus, Figure 4.6 is one possible way of clarifying what is going on in Figure 4.5. In this
particular 2D representation, the 1st and 25th paper distributions have been plotted on the

3To do these two plots, the distributions are placed in a 25 × 25 matrix—this means that the data point
corresponding to the most cited paper in the 25th paper distribution, is not visible in Figure 4.5.
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Figure 4.6: The first (red, N) and twenty-fifth (blue, F) distribution from Figure 4.5. All four
distributions are normalized to one. In (b), the similarity between the distributions of first and
twenty-fifth publication for authors with more than 25 publications, is remarkable. The graphs are
plotted on double log scales.

same graph, since they are the two distributions in each of the subplots in Figure 4.5, that
intuitively are most different. In the analysis above, we have already taken advantage of the
fact that it is far easier to locate differences between the distributions in this, much simpler,
representation of the data.

Again, it is the (b)-part of the figure in question that is the most interesting. The first
and twenty-fifth paper distribution are amazingly alike for the Scientific Staff. The likeness
between the two distributions in Figure 4.6 (b) is uncanny. This figure also gives us a direct
look at just how remarkably homogeneous Scientific Staff is. The data collapse is massive:
When it comes to the distribution of citations of individual papers for the Scientific Staff, it
appears that it is not a problem to lump all of the data into one distribution, simply because
of the tremendous homogeneity of this group of authors.

4.2.2 Percentiles

We know from Figure 4.5 that all of the histories of distributions of citation look amazingly
alike, no matter which sub-population of authors we discuss. Therefore, Figure 4.6 is a reason-
able way to begin to form an impression of the change of the distribution of authors, restricted
to the Scientific Staff. There is, however, another way of projecting the 3D information from
Figure 4.5 onto a 2D plot that allows us observe the structure of each paper distribution much
more clearly and explicitly. This is done in Figure 4.7.

Here, instead of plotting the entire distributions, notable percentiles for each λ have been
used to reduce the 3D info. The number of publications needed for an author’s λth publication
to be in the 50th (purple, N), 90th (green, �), 95th (blue, F), and 99th (red, �) percentile is
plotted versus λ. Again, the familiar pattern emerges: In the (a)-part of the figure, there is a
constant growth as λ increases from 1 to 25. The number of publications needed to be part
of each percentile, are much lower than for the Scientific Staff (the scales on the y-axes are
different in these two sub-figures). For λ = 25, the two plots merge (by definition). Naturally
the figures for the 99th percentile are somewhat fluctuating for both groups of authors.

Our hypothesis that, for the Scientific Staff, the distributions are remarkably uniform
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Figure 4.7: The number of citations that an author’s λth publication needs in order to be part of the
50th (purple, N), 90th (green, �), 95th (blue, F), and 99th (red, �) percentile. The (a)-part of the
figure corresponds to the other (a)-parts in this chapter and displays the data for the first 25 papers,
where all possible authors are included. Figure 4.7 (b), shows the information for the 25+ authors.
The reader should note that the scales on the y-axes are different.

throughout the first 25 publications is confirmed in Figure 4.7 (b). This figure also strengthens
the credibility of the hypothesis of an almost constant quality of publications for the Scientific
Staff. However, there should sound a caveat lector here: We know that h(Λ)  −2 for long
publication records. This means that authors with more than 50 publications, on average have
received more citations for their earlier work. The reason we cannot see this imbalance directly
in the data, is that the work of authors with fewer (25-50) papers is included in the paper-
by-paper averages for these values of λ. In essence, this ‘waters out’ the highly successful
early/middle years of the authors with 50+ publications. This results in the remarkably
constant averages we see for the 1 < λ < 60 part of Figure 4.1; and in the similar probability
distribution for each of these λs. That the speculation on the ‘watering out’ is true, is verified
in the last plot, Figure 4.8, of this chapter. This figure is similar to Figure 4.7 (b), except
here the data for the 50+ sub-population is displayed. From this figure, it is clear that this
group of established authors actually were (somewhat) more cited in their early careers.

4.3 Summary

In this chapter, the concept of author citation histories was introduced. We used this concept
to argue two things. Firstly, that the average quality (ability to attract citations) of publica-
tions by the Scientific Staff, is roughly constant starting with their very first publications by
and throughout their careers. Secondly, using this fact as a criterion, we found that 25 pub-
lications was actually a reasonable place to draw the line between the ‘minimally publishing’
population and the Scientific Staff.

More concretely, we made this distinction on the basis of the average author citation his-
tories, that is, the average value of all first papers, the average value of all second papers, etc.,
and comparing these to the average of the total distribution of authors with less than a given
number of publications, cf. Equation (4.3). We then proceeded to expand our attention to the
history of entire distributions, i.e. we still compared first publications to first publications,
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Figure 4.8: The percentiles for the 50+ author sub-population. The legend is identical to the one in
Figure 4.7. This group of authors have high citation rates for their early papers (5 ≤ λ ≤ 30 papers).
This higher rate of publication is also reflected in higher averages, 〈ki(λ)〉(50).

etc. As expected, these distributions of paper citations were all described by the familiar
two power-law structure. The distribution history approach re-verified the homogeneous na-
ture of the group of authors with 25+ publications. Especially the impressive resemblance
between the distributions of 1st and 25th publications for this group of authors, in Figure
4.6 (b), is convincing. The next point of action was to discuss the same subject once again
but, this time, on the basis of the number of papers needed to belong to selected percentiles.
Comparing the ‘histories’ of the percentiles in Figure 4.7 reconfirmed the homogeneity of the
Scientific Staff.

However, further investigations resulted in discovery a slight inhomogeneity—hidden as
a ‘longitudinal’ correlation within the Scientific Staff. With Figure 4.8, we realized that
the citation records of the 50+ authors were not entirely as homogeneous (although still
homogeneous) as we expected: It turns out that the authors with 50+ publications actually
did a little better4, citation wise, in their early publications than in their later years. This
inhomogeneity does not alter the fact that the Scientific Staff, i.e. the authors with more than
25 publications, are a remarkably homogeneous group within SPIRES.

That the authors of the Scientific Staff share the remarkable property that the citation
distributions of their first publications are virtually identical to the distributions of citations
in their later work, allows us to draw a very interesting conclusion. Using statistical methods,
we can utilize this property of the Scientific Staff, taken as a whole, to make predictions as
to how well young authors, with only a few publications, are likely to do in the future!

4Or rather, they did extremely well, cf. the spikes for λ = 12, 17, in Figure 4.8, and the number of citations
needed to belong to some of the more exclusive percentiles (95th and 99th) in this figure, compared to the
same numbers in Figure 4.7.
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CHAPTER 5

Principal Component Analysis

In the previous chapters, we have spent a great deal of time and energy on isolating the group
of authors in SPIRES that we have named ‘the Scientific Staff’. We know now that these
authors are the backbone of SPIRES—2, 983(2, 809) people who are responsible for around
half of the citations generated in theoretical high energy physics since 1945. These are the
people whom the universities have granted a desk, pen and paper, and maybe even access to
a personal computer; in other words, these are the people who occupy positions at physics
departments around the world. Therefore, the Scientific Staff is the group of people we want
to compare ourselves and new authors to.

In the previous chapters, we have slowly introduced the notion of so-called longitudinal
correlations in SPIRES. For instance, these correlations are the reason that we did not use
χ2-tests, when comparing the subfield data in Chapter 2. The assumption for the χ2-test to
be meaningful is that the data placed in each bin is statically independent. However, we know
that it is not—there are correlations among the bins, simply because some authors are more
cited than others. These correlations across the bins—hence the expression ‘longitudinal’—
are also the reason that defining the Power of Excellence, in Section 2.4, was a meaningful
enterprize.

In the context of the longitudinal correlations, it is clear that the Scientific Staff is much
more interesting than the ‘minimally publishing’ authors—because, considering the extreme
case, there cannot be any correlations associated with authors with only one paper. Further-
more, because the ‘minimally publishing’ population vastly outnumbers the Scientific Staff
in the database, their inclusion in any investigation of the correlations in the data, would
‘swamp’ any interesting discoveries that we could make about the Scientific Staff. Therefore,
we will only be concerned with the Scientific Staff in this chapter.

We are going to use the multivariate statistical method of principal component analysis
(PCA) to examine the longitudinal correlations of the Scientific Staff. Put differently, we will
investigate SPIRES to find out what ‘types’ of authors are to be found within the ranks of the
Scientific Staff. This will enable us to solve some of the problems with the Power of Excellence;
recall, for example, that some authors who are ‘aggressively inept’, such as the author 0,
from Section 3.4, manages to be more ‘improbable’ than many accomplished authors. This
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particular author has published more than 50 papers with only 4 total citations, which has
resulted in a higher Power of Excellence than most authors in the population. Obviously, an
analysis based on a more complicated concept, such as PCA, is not as intuitively appealing
as the simple probabilistic measure of the ‘improbability’ of authors from Chapter 1, but it
gets the job done.

5.1 Preliminaries

First, let us review a few key concepts necessary to understand the method of principal
components.

5.1.1 Multivariate Statistics

The first point of order is a quick brush-up on some key concepts from multivariate statistics.
I assume that the reader is familiar with univariate statistics. We start out with a set of p
measurements on each of N distinct objects (in our case authors). If we let yij denote the
original measurements, such that y1k is the measurement of the kth author’s first parameter,
and the the same author’s citation count in the next bin is y2k citations , etc; we can organize
our data in a ‘measurement matrix’, Y = (yij)p×N , where the information about the kth
author is listed in the column-vector,

yk =


y1k

y2k
...

ypk

 . (5.1)

Now, let us define yj to be a stochastic variable defined on the ensemble of the measurements
in the jth row-vector (yj1, yj2, . . . , yjN ). The average of yj is denoted µj (mean of citation
counts in the jth bin). To keep things compact, we can write these population1 means in a
column-vector µ = (µ1, µ2, . . . , µp)′. Similarly, the variance of the measurements in the jth
bin is given by σ2

j = 〈(yj − µj)2〉, where the average runs over all elements of yj .
However, if we consider the fact that the different yj ’s come together as a group in a

stochastic vector variable, y, we must consider the fact that there might be relationships
among the yj ’s described by joint probability distributions. A measure of how two stochastic
variables vary together is the covariance. The covariance between yj and yk is defined as

σjk = 〈(yj − µj)(yk − µk)〉, (5.2)

where this average runs over all possible pairs of values that yj and yk may take on together.
Let us inspect Equation (5.2) to gain a little intuition about the concept of covariance. Since
the covariance is defined as the average of the product of the deviations of yj and yk from
their respective means, we have that if ‘large’ (as in larger than the mean) values of yj and yk

tend to happen together (or similarly for ‘small’ values, i.e. smaller than the mean), the two
deviations (yj − µj) and (yk − µk) will be positive (and in the ‘smaller’ case, both negative)
at the same time, so that the product is positive, which will make the average in Equation

1For conventions regarding the use of the terms ‘population’ and ‘sample’—and on notation related to the
statistical analysis in general, the reader is referred to Footnote 2 in Chapter 4.
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(5.2) positive. A similar argument can convince us that if ‘large’ values of yj tend to coincide
with ‘small’ values of yk, then the covariance will be negative. Finally, if the two variables
in question are truly unrelated, the products in Equation (5.2) will tend to cancel out when
averaged over the entire population (obviously σjk = 0 is a necessary condition for the the
two variables to be uncorrelated, not a sufficient one). In summary, the quantity ‘covariance’
can intuitively be considered a measure of how associated the values of yj are with yk’s.

The information from these individual covariances is usually gathered in a symmetric p×p
matrix called the covariance matrix :

Σ =


σ2

1 σ12 · · · σ1p

σ12 σ2
2 · · · σ2p

...
...

. . .
...

σ1p σ2p · · · σ2
p

 . (5.3)

It is sometimes informative to separate the ‘spread’ contained in the variances from the
‘association’. To accomplish this, we can define a special measure of association that takes
into account that different elements of y may vary differently on their own. This population
correlation coefficient is defined as ρjk = σjk/(

√
σ2

j

√
σ2

k). In this definition, note that
√

σ2
j =

σj is the standard deviation of measurements in the jth bin, and correspondingly for yk. Thus,
ρjk scales the information on association in the covariance in accordance with the magnitude
of variation in each variable. With the correlation coefficient, we can think about associations
among variables measured on different scales. This information is usually summarized in a
matrix, called the correlation matrix, or Γ, that is organized analogously to the covariance
matrix. Finally, note that knowledge of the variances and Γ, is equivalent to knowledge of
Σ, the covariance matrix. The subject of multivariate statistics is reviewed comprehensively
in [65,66].

5.1.2 Matrix Algebra

The next point of order stems from matrix algebra, and is due to the fact that the method
of principal components is based on a classic result from this field that a (p × p) square,
symmetric, nonsingular matrix (e.g. the covariance matrix), can be reduced to a diagonal
matrix Λ by pre- and postmultiplying it with the orthonormal matrix U , such that

U ′ΣU = Λ, (5.4)

where the diagonal elements of Λ, λ1, λ2, . . . , λp are the eigenvalues of Σ, and the columns
of U , u1,u2, . . . ,up are the eigenvectors of Σ. Proof and a more mathematically pleasing
formulation of this theorem can be found in any book on matrix algebra, or in [62].

Geometrically, one can think of the procedure of diagonalizing a matrix (in this case Σ),
as a principal axis rotation of the original coordinate axes yj about their means µj . The
elements of the eigenvectors are precisely the direction cosines of the new axes related to the
old.

5.2 The Method of Principal Components

With these preliminaries out of the way, we are now ready to discuss the theory of PCA.
For a more comprehensive review, the reader is referred to the literature, cf. [65, 66, 67]. In
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all simplicity, PCA is a multivariate technique in which a number of correlated variables
are transformed (linearly) to a set of uncorrelated variables whose variances are as large as
possible.

The starting point is the covariance matrix, Σ. We use the principal axis transformation
described in Section 5.1.2, to transform our p correlated variables y1, y2, . . . , yp into p new
uncorrelated variables z1, z2, . . . zp. Now, it can be shown that the axis along which the
variance is maximal, is the eigenvector u1 of the the matrix equation

Σu1 = λ1u1, (5.5)

where λ1 is the largest eigenvalue of Σ, and the variance along the new axis. The second
eigenvector is defined as the one with the second largest eigenvalue (and thus the second
largest variance); sorted after descending size of eigenvalue, the other principal axes and
eigenvectors obey similar equations. We find that the matrix U of all eigenvectors forms
a new set of orthogonal axes that are ideally suited for a description of our data set. We
can think of the process of finding the new variables, as translating the origin of the original
coordinate system to µ and then rotating the coordinate axes until they pass through the
directions of maximum variance. We end up with the transformation:

z = U ′[y − µ], (5.6)

where y is the measurement variable and µ is the means; both are p × 1 vectors. We call
the transformed variables the principal components (PC’s) of y. Clearly, the ith principal
component is given by

zi = u′i[y − µ], (5.7)

and has mean zero and its variance is the ith eigenvalue, λi. Making a final distinction, we
shall call the transformed variables for PC’s and the individual transformed observations of
authors, the zk’s for z-scores2.

5.2.1 Conservation of Variability

One important goal of multivariate analysis is to be able to summarize results about the
entire multivariate distribution with a few generalized measures. One way of generalizing the
variance into include only one number, is to consider the sum of the variances of variables,

Tr(Σ) = σ2
1 + σ2

2 + · · ·+ σ2
p. (5.8)

Notice that since we know from linear algebra that the trace is invariant under change of basis,
we have that Tr(Σ) = Tr(Λ), which means that the sum in Equation (5.8) is a preserved
quantity under the principal axis rotation.

This is an important result because it shows that the eigenvalues (that are the variances of
the principal components) may be treated as variance components. Further, the ratio of each
characteristic root to the total will indicate the proportion of the total variability accounted
for by the individual PC’s. This result will prove its worth in the following: If the main
variance of the data set lies in a small dimensional space (the first few eigenvalues), then
one can gain a great deal of understanding of the data from the projection onto the first

2The use of the word ‘score’ has its genesis in psychology and education where PCA analysis is often applied.
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few eigenvectors alone. This property is a primary reason why the principal components are
interesting variables, and why the set of uncorrelated variables can be considered ‘smaller’.
This subject will be discussed in further detail in Section 5.3.4. Now, let us stop ‘beating
around the bush’ and use the SPIRES data to illustrate and exemplify these and further
properties of PCA.

5.3 The SPIRES Covariance Matrix

5.3.1 Finding the Right Bins

Before we can get started with the PCA, we need to set up a covariance matrix based on the
SPIRES data. With regard to the SPIRES database, we are interested in the longitudinal
correlations in the paper citation distribution. We want to know how the papers of individual
authors are correlated across the distribution of citations. To use a concrete example, take
bins from the ‘search summary’ in Section 2.4 and distribute each author’s papers in these
to produce the yk’s. Gathering this information for the entire Scientific Staff, allows us to
compute a 6× 6 covariance matrix3.

Σtest =



117. 38.9 34.7 11.3 13.7 2.19
38.9 153. 59.1 4.12 −1.32 −0.495
34.7 59.1 134. 32.7 25.8 2.31
11.3 4.12 32.7 16.0 13.5 1.58
13.7 −1.32 25.8 13.5 20.7 3.02
2.19 −0.495 2.31 1.58 3.02 0.886
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Figure 5.1: The covariance matrix for the Scientific Staff with bins defined by the ‘search summary’
option on the SPIRES webpage. In (a) the covariance matrix is written out explicitly, and in (b),
it is visualized as a bar chart, where the height of the bars signify the size of the σjk’s. In this
visual representation, the sizes of the covariances ‘jump out’ of the page. To optimize the amount of
significant information conveyed to the reader, only the ‘First Initial (FI)’-data is used in this figure.

This 6× 6 matrix is written out in Figure 5.1. As an added bonus, Figure 5.1 illustrates
the problem with using the SPIRES bins for the PCA analysis. The more devoted readers
probably recall that the reason we used the SPIRES ‘search summary’ bins, was that this
information is readily available for every author in SPIRES. From the SPIRES website, this
information can be obtained by the touch of a button. Hence, given the probabilities for
having papers in each bin, revealed by the analysis in Chapter 2, Table 2.3 (or, in the case of

3The ‘search summary’ categories and corresponding probabilities for the Scientific Staff, are listed here
in the format: ‘Category (bin-interval): ‘First Initial’-probability [‘All Initials’-probability] ’. Unknown papers
(0): 250 [0.248], Less known papers (1–9): 0.385 [0.378], Known papers (10–49): 0.269 [0.274], Well-known
papers (50–99): 0.025 [0.0544], Famous papers (100–499): 0.043 [0.0420], Renowned papers (500+): 0.00359
[0.00383]. The probabilities listed in Table 2.3 are for the entire distribution, without the weighing of papers
due to counting author-by-author. Therefore, they are different from the corresponding probabilities for the
Scientific Staff.
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the Scientific Staff, in Footnote 3), anyone can calculate their own—or anyone else’s—Power
of Excellence.

The problem with the SPIRES bins is that the 2nd and 3rd bins are too large. These two
bins span the interval 1− 49 papers, containing some 65.4(65.2)% of papers produced by the
Scientific Staff. Having only two bins in this highly interesting middle interval—interesting
because it contains papers of high quality, papers that are not exactly classics, but surely
papers that are useful to other scientists—is surely too little. As promised, this is clear from
Figure 5.1, where the variances of these two bins completely dominate the covariance matrix.
To solve this problem, we are going to have to give up the advantage that came from everyone
being able to calculate their own Power of Excellence4, simply by using the ‘search summary’
option at the SPIRES website and define a set of new bins. Before we move on, observe that
another point is being made in Figure 5.1, viz. that the visual representation of the covariance
matrix, along with the considerations in Section 5.1.1, gives us a very intuitive grasp of the
correlations in the data.

Getting back to the subject of choosing the right bins: We want to find just the right
number, so that no structure eludes us—all the while, we do not want too many bins, since
choosing too many bins tends to chop up the picture; resulting in unwanted noise. A promising
line of attack derives from the investigation of the Scientific Staff in Chapter 4, since we know
that the number of citations needed for a paper by the Scientific Staff, to belong to selected
percentiles is remarkably constant throughout their publication records. With these bins, we
also have complete control of how much data goes in each bin. However, ‘complete control’ is
putting it too strongly—we have to accept the fact that citations come in whole numbers—
thus, bins containing some of the prevalent citation-numbers (k < 20) cannot by expected
to make up ‘nice’ fractions of the database. Therefore, in Table 5.1 both the intended and
actual percentiles are listed.

Bin Within this Citations in each bin Actual percentile
number percentile (intended) FI AI FI AI

1 0th–25th 0 0 0.0th–25.0th 0.0th–24.8th
2 25th–50th 1–4 1–4 25.0th–48.9th 24.8th–48.0th
3 50th–75th 5–16 5–17 48.9th–74.3rd 48.0th–74.6th
4 75th–90th 17–47 18–49 74.3rd–90.0th 74.6th–90.0th
5 90th–95th 48–88 50–91 90.0th–95.0th 90.0th–95.0th
6 95th–99th 89–271 92–279 95.0th–99.0th 95.0th–99.0th
7 99th–100th 272– 280– 99.0th–100th 99.0th-100th

Table 5.1: The list of the number of citations needed for a paper to lie within each percentile range,
both intended percentiles and actual percentiles. The binsizes of both ‘First Initial (FI)’ and ‘All
Initials (AI)’ are listed.

With these new bins, we are ready to calculate the final covariance matrix for SPIRES;
we simply take the publication record of each author in the Scientific Staff and distribute his
papers in the bins defined in Table 5.1. This results in the measurement matrix Y final, and

4The terribly interested reader can, of course, still diagonalize the matrix in Figure 5.1 and use the ‘citation
summary’ option from the SPIRES website to find his own citation information, and go about determining his
own z-scores in this fashion.
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using Equation (5.2), we find

Σf =



117. 25.2 24.8 22.8 10.5 12.4 5.10
25.2 73.0 41.9 9.57 −1.17 −3.03 −1.23
24.8 41.9 76.1 43.5 13.1 8.35 1.51
22.8 9.57 43.5 60.2 22.1 19.4 5.20
10.5 −1.17 13.1 22.1 14.1 11.8 3.69
12.4 −3.03 8.35 19.4 11.8 17.1 5.94
5.10 −1.23 1.51 5.20 3.69 5.94 3.83


; µf =



12.6
12.1
12.8
7.90
2.54
2.02
.506


, (5.9)

which is the covariance matrix and the means that we will work with in the following. Note
that the sum of the elements in µf add up to the average number of publications per author,
〈ni〉(25) ≈ 50.5, and that these are distributed according to the probabilities given in Table
5.1; this is as is it should be. In the interpretation of this matrix, only the numbers for the
‘First Initial’ parsing will be used explicitly as well as in the plot. The reason for this is to
keep things as simple as possible; the PCA analysis demands display of quite a few tables of
numbers as it is, and the ‘All Initials’-counting does not add anything qualitative (cf. Table
5.1) to the picture that is being drawn from the FI data; hence this extra data set is not
included in the remainder of this chapter.

5.3.2 Interpreting Σf

First of all, let us consider the information available from simply inspecting the covariance
matrix. The covariance matrix is the starting point for many multivariate statistical methods
and contains a great deal of information about the system in question. In Figure 5.2 (a), the
covariance matrix from Equation (5.9) is plotted, and in Figure 5.2 (b), the corresponding
correlation matrix, Γf . The covariance matrix verifies that the data truly does contain lon-
gitudinal correlations, since most off-diagonal elements are non-zero. Apart from this näıve
observation, the first thing one notices is that the variances of the first 3 bins dominate the
picture. Because all authors publish a majority of papers that end up in these bins, it is
natural to expect the variances of these bins to be rather large. In the correlation matrix,
each entry is scaled in accordance with the magnitude of variation in each variable, so the
diagonal of this matrix ρjj = 1.

When we turn to the covariances between the different bins, we notice that the 0-citations
bin has a high, positive correlation with every other bin; the correlation matrix shows that
the size of the association is also noticeably constant. This indicates that all authors in
SPIRES, no matter how excellent they are, write a remarkable fraction of un-cited papers.
The covariance matrix contains almost no negative entries, but the second bin, containing
papers with 1 − 4 citations, is actually negatively correlated with bin number 5, 6, and 7.
This means that authors producing papers that end up in the second bin, generally do poorly,
when it comes to writing papers in the higher percentiles—and the other way around.

Aside from these two exceptions, the general rule is that bins are correlated most with the
bins immediately next to them. This simply means that authors that tend to publish many
papers in one bin also tend to publish quite a few papers that end up in the neighboring bins,
and conversely that if authors’ contributions in a certain bin is below the mean, this also
tends to be the case in the neighboring bin. This mechanism is, of course, also intuitively
appealing. An author who exclusively publishes papers that end up in bin number one and
four is not likely.
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Figure 5.2: The covariance matrix for the bins defined in Table 5.1 and the data for the Scientific
Staff.

u1 u2 u3 u4 u5 u6 u7 Eigenvalue Explained by λi Cumulative
0.605 0.785 0.0490 0.120 0.0370 0.00416 0.00615 λ1 = 175 48.5% 48.5%
0.396 -0.273 0.703 -0.518 0.0702 0.0291 0.00243 λ2 = 84.5 23.4% 72.0%
0.526 -0.485 0.00372 0.618 -0.327 -0.0154 0.00357 λ3 = 69.4 19.2% 91.2%
0.402 -0.267 -0.554 -0.232 0.606 -0.193 -0.0334 λ4 = 17.8 4.94% 96.2%
0.145 -0.0482 -0.298 -0.250 -0.214 0.875 -0.118 λ5 = 9.18 2.54% 98.7%
0.129 0.0135 -0.312 -0.432 -0.613 -0.339 0.456 λ6 = 3.21 0.892% 99.6%
0.0396 0.0264 -0.0982 -0.180 -0.313 -0.286 -0.881 λ7 = 1.41 0.391% 100%

Table 5.2: The eigenvectors and eigenvalues of Σf . The ui are plotted in Figure 5.3. These vectors
compose an orthonormal set; the first element of each eigenvector is positive by (my) convention.

5.3.3 Diagonalizing the Covariance Matrix

The picture formed from these very general remarks becomes a good deal clearer, when we
diagonalize the covariance matrix. We know that the eigenvectors of Σf are the uncorrelated
axes of rotation that maximize the variance. As such, we can give them a very intuitive
meaning. These eigenvectors can be interpreted as the ‘archetypes’ of authors in the database,
and are listed in Table 5.2. In Figure 5.3, a graphical representation of the eigenvectors of
Σf is plotted.

The first eigenvector (or eigenauthor, if one were so inclined) u1, has only positive coeffi-
cients that reflect the shape of the distribution of paper citations—the percentage of papers
in each bin; there is about 25% of the data in each of the first 3 bins, and 15% in bin number
four. In the last three bins there are about 5%, 4%, and 1% of the data. This vector explains
48.5% of the total variability. The next eigenvector u2, explaining some 23.4% of the total
variability, is an excited mode—separating the 0-cited bin from the rest of the database. An
author with a large positive load on this vector has a large fraction of zero-cited papers,
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Figure 5.3: The eigenvectors of Σf . In (a), u1 is plotted with the x-axis enumerating the entries 1− 7
in the vector, and the y-axis displays the numerical value of the u1i-entry. In (b) u2 is plotted, and
so forth for the remaining eigenvectors. These vectors are normalized to one, and by convention, the
value of the first entry is chosen to be positive.
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while a negative load here would reflect doing rather nicely in the mid-bins. The third PC
(19.2%) represents another contrast, dividing the database around the third bin (containing
the 5 − 16 citation papers)—low-cited papers (0 − 4 citations) on one side and highly cited
papers (17−kmax) on the other. The weight of the bins closest to the dividing one is greater.
The pattern in the following eigenvectors is more unclear, except for u7; there is no doubt
that a negative load on this vector signals that the author in question is doing very well
indeed. That the latter bins generally are a little confusing (would you want a positive or
negative load on eigenvector number 4,5,6?) and seem to provide very little information, is
to be expected; why this is so will be explained in the following section.

5.3.4 Knowing When to Quit

In Section 5.2.1 we touched on the subject of PCA’s ability to reduce the number of variables
in a data set from p to k < p dimensions. Considering the extreme case, if one had a 25-
variable problem, and the first three PC’s accounted for 96% of the variability of the data,
it would be tempting to use just those three and ignore the remaining 22 that account for
the remaining 4%. However, what is k? The larger k, the better the fit of the PCA model,
and the smaller, the simpler the model will be. Connecting to our own data the question
becomes, how many of the p = 7 eigenvectors are needed to determine the character of an
author in SPIRES? A large number of criteria have been designed to isolate the right value
of k, cf. [67]. Here, we will keep it simple.

The most primitive rule is called the 90% rule and it simply states that you should keep
enough eigenvalues (and corresponding PC’s) to explain between approximately 90% of the
variability of the data. Turning to Table 5.2, it seems we should keep k = 3 eigenvalues, since
these 3 eigenvalues explain a little more than 91% of the variability in the data. Another test,
is a widely used graphical technique called the ‘scree test’. The scree test consists of plotting
the size of the eigenvalues against their number.

1 2 3 4 5 6 7
Eigenvalue number

25

50

75

100

125

150

175

Eigenvalue

Figure 5.4: A Scree plot; the values of the eigenvalues of the covariance matrix are plotted on the
ordinate and the number of the eigenvalue is plotted on the abscissa. Note that the last four roots are
much smaller than the rest and lie nearly on a straight line.

Scree is the rubble at the bottom of a cliff, and in this case it refers to the eigenvalues
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that may be discarded. In Figure 5.4, we see that the sizes of the eigenvalues drop off rather
rapidly at first, and the flatten out. This image looks a little like a cliff. The scree test tells
us to keep the cliff and discard the scree, except for the first in the ’flat’ part of the plot.
In this case the pronounced cliff is the first three eigenvalues, and the scree are the last four
ditto. Thus, this test recommends that we use k = 4 eigenvalues in our further analysis.

A last criterion says that we should keep the components with sound subject matter
interpretations. This very sensible advice will be followed closely in the following. We will
focus our attention on the first three or four eigenvalues, but keep an eye out for sound subject
matter interpretations. Take for example the u7 eigenvector—as was mentioned earlier, there
is no doubt that a large negative load on this vector is positive for an author, since this reflects
highly cited papers in that author’s citation record.

5.3.5 Residual Analysis

To illuminate this line of thought a little further, a few remarks on residual analysis are in
order. One of the primary uses of PCA is quality control. In the context quality control, the
word ‘quality’ means keeping within some well-defined norm. Therefore, PCA is helpful when
it comes to detecting the so called outliers—objects that lie outside the defined norm. In the
following I will outline the idea behind residual analysis, but not go into any details on how
the actual quantities involved are calculated, since these tend to become technical and are
basically uninteresting in this context. The interested reader is referred to Appendix B.1 for
a review of the concrete modus operandi.

Two different types of outliers are usually distinguished between, viz. Type A and Type
B. Type A are the ‘boring outliers’ that generally stick out from the distribution one wishes
to assume; these outliers are interesting in their own right because they are the ‘extreme’
authors in SPIRES, but they are boring in the sense that they would be identified as outliers
whether or not PCA had been employed; they could have been picked up by other multivariate
techniques. These outliers are, however, also picked up by the PCA analysis. The Type
B outlier, is a wholly different type of outlier that is not detected by other multivariate
techniques; these outliers are the authors whose observation vectors cannot be appropriately
described by the subset of PC’s one choses to use. The residual analysis is based on the
following considerations.

If we retain all the PC’s, we can express our original variables in terms of the PC’s by
inverting Equation (5.6). We find that

y = µ + Uz, (5.10)

but clearly, this is only an exact representation of y if all the PC’s are used. If k < p PC’s
are used, only an estimate ŷ of y is produced, namely

ŷ = µ + Ũ z̃, (5.11)

where Ũ is now a p× k matrix and z̃ is a k × 1 vector. We can rewrite Equation (5.11) as

y = µ + Ũ z̃ + (y − ŷ). (5.12)

Here, the first term on the rhs. represents the contribution of the multivariate mean, the
second term the contribution from the PC’s, and the final term represents the amount that
is unexplained by the model; the residual. This third term gives us an estimate of whether
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or not a particular observation vector is adequately described by the subset of PC’s that we
have chosen to use. Residual analysis is based on analyzing the Q-statistic, given by the sum
of squares of the residuals:

Q = (y − ŷ)′(y − ŷ). (5.13)

This represents the sum of squares of the distance of y − ŷ, from the k-dimensional space,
that the PCA model defines. The Q-statistic is the starting point for the residual analysis,
where the idea more or less is testing whether or not the Q-value is larger or smaller than a
given measure; this is not the place for the details of the concrete procedure, since these tend
to become rather technical, and the interested reader is once again referred to Appendix B.1,
where the actual method is described.

The interesting conclusion of this argument, is a rather unusual one. In analyzing excel-
lence in SPIRES, we are uninterested in the norm. We are actually interested in the exact
opposite: the truly excellent authors are the outliers, and thus a ‘reverse’ quality control of
the database will help isolate the best authors with ease. Thus in the continued analysis of
SPIRES, the lesson to bring along is that even though the first three eigenvectors are enough
for most purposes, we cannot ignore the latter ones. Screening authors from a sample of
applicants, using residual analysis, can be used to locate interesting authors for employment.
Further, screening is necessary in order to isolate the authors, for whom the description pro-
vided by the first few eigenvectors simply is not sufficient. Now, let us leave this tangent and
return to the main investigation.

5.4 An Example

Let us put all of the above together in a concrete example. This example will illustrate the
use of PCA, focusing its use as an augmentation of the measure of excellence, r, from Section
2.4, Equation (2.2). Thus, we dig up the authors A, B, C, from Chapter 2, and author 0,
whom we found in Section 3.4.1 (this author takes the place of author D). These authors have
totals of 201, 178, 252, and 52 publications, respectively. In Table 5.3 the measurements and
z-scores for these four authors are listed. The z-scores are found using Equation (5.6).

Citation counts z-scores
yA yB yC y0 zA zB zC z0

18 19 5 48 60.5 51.9 27.9 7.64
35 51 13 4 -38.8 -31.0 -16.1 38.4
60 49 19 0 -18.4 7.46 -55.4 1.81
57 37 38 0 -1.18 -8.78 -56.2 3.97
21 9 35 0 7.79 2.34 -56.4 2.08
9 8 75 0 4.14 -2.67 -21.2 0.235
1 5 67 0 -0.819 -2.71 -30.2 0.241

Table 5.3: Measurement vectors and z-scores for the test-authors from Chapter 2.

We found that the authors A, B, C, and 0 had values of r = 17.8, 9.8, 188.4, and 20.6
respectively5. These authors were chosen carefully to illuminate some problems with the

5These values change to r = 12.8, 6.1, 151.5, 22.0, if they are drawn on the distribution of citations of papers
by the Scientific Staff and the bins given in Table 5.1, cf. also the probabilities given in Footnote 3 in this
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Power of Excellence.
The first problem concerns the difference between authors A and B. Author A has a much

higher value of r than author B—author B is more probable by a factor of 108—even though,
inspecting their citation counts in Table 5.3, can convince us that author B has written more
top-cited papers, has a higher average number of citations per paper, and has more total
career citations than author A. This is simply a consequence of the power-law nature of the
paper citation distribution, a distribution where 10 papers with 100 citations is vastly less
probable than one paper with 1000 citations. Using PCA, this difference between the two
authors is illustrated by the different sign on their respective loads, on the third characteristic
vector. Both authors have a relatively large load on u1, and similarly a negative load on u2,
the eigenvector that separates the 0-cited bin from the middle ones. Of course, it is still a
subjective judgment whether one prefers one or the other type of author; some would say the
greater accomplishment was writing the one paper with 1000 citations, whereas others would
appreciate the author that steadily keeps publishing papers that accumulates high, but not
exceptionally high, numbers of citations. However, with the PCA analysis, we can distinguish
between these two kinds of authors with ease.

The next problem with the r, defined in Section 2.4, concerns the ‘improbably bad’ authors
whose r-values in some cases are higher than for ‘good’ authors. The extreme example
is author 0, who is more ‘improbable’ than both authors A and B, whom we know are
accomplished authors in SPIRES. A mere glance at z0, however, can convince us that this
author cannot hide from the conclusions of the principal component analysis. The most
revealing factor is 0’s large positive load on the zero-citation vector, u2, that instantaneously
reveals that although this author is very improbable, he is not someone anyone would want
as a part of their research group (. . . unless he had an extremely pleasant personality).

Author C is the most remarkable author in SPIRES. His merits are listed in Chapter 2
and they are truly amazing. Had we only retained the first 3 PC’s, we might not have noticed
anything unusual about this author; his z-scores for these first PC’s are not unusual compared
to authors A’s and B’s. This is a good example of where the residual analysis from Section
5.3.5 enters the picture. Screening the authors A through 0 immediately alerts us that we
should pay special attention to author C, and not only rely on the information contained in
the first eigenvectors. In Summary, the PCA is an ideal tool for studying authors in SPIRES
and combined with the Power of Excellence, we are equipped to handle and competently
analyze scientific excellence in the SPIRES database.

5.5 Summary

The method of PCA dates back to the 1930’s, cf. the pioneering paper by Hotelling [68].
In the time between then and now a myriad of refinements, conventions, new measures, etc,
have sprung to life. These are interesting in and of themselves, and the interested reader is
referred to Jackson’s book for a view of the entire subject [67]. In this chapter, the method of
PCA has been cut down to the bare essentials. This has been done deliberately to spare the
reader from the tedious details of the concrete evaluation, locking the focus onto the ideas

chapter. That these authors are less ‘improbable’ compared to the members of the Scientific Staff, is not
surprising. The reason that author 0 is more improbable here, is that it is of course even more improbable
receive this few citations in comparison to the scientific staff. Furthermore, the change of the bin sizes does not
help either; the second bin has been subdivided, which makes this author even more improbably unsuccessful.
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and mechanics of the method.
After going over the preliminary theory and reviewing the concepts behind the method,

a couple of problems with the choice of bin sizes was cleared out of the way, so that we were
able to establish the final covariance matrix and diagonalize it. The eigenvectors showed us
the archetypical authors in SPIRES. The primary point of our interest in PCA, however, is
to apply the method as an aid in the investigation of excellence; in this respect there were
two uses for the analysis.

The first one was as a ‘reverse’ quality control to help us pinpoint interesting authors;
the authors that are outliers from the norm, and whom we want to pay special attention to.
The second—and in the context of this thesis as a whole—a very important one, was the use
of PCA for classifying excellence. We saw (using four concrete examples) that PCA can be
used as an augmentation of the Power of Excellence; illuminating some of the dark points
that a one-number representation, such as r, of a complex entity, such as scientific excellence,
must necessarily have. Finally, the residual analysis helped us isolate the authors that are
too unique for a wholesale explanation.
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CHAPTER 6

A Model for SPIRES

It is now time to change course. We have taken the statistical analysis of the SPIRES data
far, and gained an enormous amount of knowledge about the database. While focusing on the
data in the investigation of scientific excellence, it has become apparent that the distinction
made by Feynman in the Introduction, does not form a water tight barrier—in the process
of generating ‘useful’ results, we have made quite a few new discoveries by applying a host of
tools from statistical physics.

At this point, it is time to approach the data from a different angle, namely by modelling
the citation network and investigating whether we can create a model of the citation process
that can illuminate something about the internal dynamics of the SPIRES database; this is
the method often used in the physics of complex system, cf. the analysis of the paper by
Bak, Tang, and Wiesenfeld [5]. In the Introduction, we have discussed some of the earliest
attempts to model the structure of complex networks, the random graph and the Watts-
Strogatz model (Section 1.1.2). In this chapter, we shall proceed to study in some detail the
Growing Network model, first proposed by Barabási and Albert. After an introduction to
this model, analyzing its properties from different standpoints, a modified version designed
specifically for the SPIRES database is presented. But let us not get ahead of ourselves, so
without further ado. . .

6.1 Introduction to the Growing Network Model

At this point, the mindful reader should be well aware that many complex networks and,
in particular, the distribution of citations in the SPIRES database, have power-law degree
distributions. Both the random graph and the WS model have Poissonian degree distributions
and even though the WS model seems to mimic the structure of human social relations fairly
well the model suffers one major drawback; we need a model-network that mimics the scale
free power-law behavior seen in many real-world networks.

To obtain this result, we have to change our focus a little bit, and this is exactly what
Barabási and Albert did [4]. Instead of focusing on recreating network topology these au-
thors focus on modelling network dynamics, anticipating that if the correct dynamics were
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pinpointed, the topology would follow. In doing this, they (independently) rediscovered a
special case of model proposed by Simon [69,70].
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Figure 6.1: An illustration of the evolution of the simplest case of the Growing Network. Nodes are
added one at a time and each newly added node links to a node already present in the system. In this
representation each node is labelled by the time s it was added to the network. Node 11 is being added
and 12 is waiting to come into existence. This is signified by their color. The degrees are the number
of arrows impinging on each node. Here, the notion of a directed network has also been introduced.
The arrows point both ways, but solid arrowheads signify outgoing links, whereas the drawn arrows
are the incoming edges. In this simple version every node has only one outgoing edge (except the very
first node), node 1 has in-degree 5, node 2 has in-degree 3, etc. Note also that 1 is the ancestor of 6,
and 9 is the descendant of 2.

The Growing networks (GN) model that Barabási and Albert proposed is based on two
fundamental mechanisms, growth and preferential attachment.

• Growth. Setting up the model consists of starting out with an initial number of nodes
m0. At each time step a new node with m ≤ m0 edges are added that link to nodes
already present in the system.

• Preferential attachment. The probability Π[k(s, t)] that, at time step t, a new node
attaches to a node at site s already present in the system is proportional to the number
of edges of that node, k(s, t), at time t; in other words Π[k(s, t)] = k(s, t)/

∫ t
0 du k(u, t).

The nodes are named according to the moment they were added to the system, thus
the first node is k(1, t) the second k(2, t)1, etc.

Clearly, after t time steps this model has t + m0 vertices, and mt edges. So far the model is
undirected, that is, an edge connects two nodes and contributes to the degree of both nodes,
thus there are 2mt node endpoints. The GN model is easy to implement and numerical runs
shows that it evolves into a scale free state where the distribution of node degrees follows a
power-law of slope γmodel = 3, cf. Figure 6.2. All in all, this looks like a good starting point
for creating a model for the complex network of scientific publications.

1I am using a notation that is slightly different from Barabási and Albert’s.
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Figure 6.2: Degree distribution of the scale-free model, with N = m0 + t = 300, 000 and m0 = m = 1
(circles), m0 = m = 3 (squares), m0 = m = 5 (diamonds) and m0 = m = 7 (triangles). The slope of
the dashed line is = 2.9.

Several analytical approaches can be utilized to find an analytical solution for this model.
As each of these have strengths and weaknesses, I will briefly outline them in the following.

6.1.1 Continuum Solution

Perhaps the most intuitive analytical solution for the GN model was proposed by Barabási
and Albert [4,35], and was first coined the mean field approach by its inventors. I will briefly
run through it here. The continuum approach focuses on the time dependence of the degree
k(s, t) of a given node at site s in our network. This approach is only ‘mean field’ in the sense
that k is treated as a continuous real variable, which means that Π(k(s)) can be interpreted
as a continuous rate of change. This approximation also means that the continuum solution
is only valid in the k � 1 regime2.

The degree k(s, t) changes when a new node is added and links to a node at the sth site.
The probability of this process is clearly Π(k(s)), thus

∂k(s, t)
∂t

= mΠ(k) = m
k(s, t)∫ t

0 du k(u, t)
. (6.1)

2To keep this approach very intuitive, I am following Barabási and Albert rather closely. In Section 6.1.3,
the master equation approach is employed to illuminate this line of attack further.
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The integral
∫ t
0 du k(u, t) is simply the number of edge endpoints and it runs over all nodes in

the system, thus it is equal to 2mt. The interesting limit is t →∞ where the initial conditions
are unimportant, so we can simply write

∂k(s, t)
∂t

=
k(s, t)

2t
. (6.2)

Equation (6.2) is a first order linear homogeneous DE that can be trivially solved using
separation of variables, using the initial condition that k(t, t) = m (each node has m edges at
its introduction) to find

k(s, t) = m

(
t

s

) 1
2

, (6.3)

which allows us to see that the k(s, t)’s all evolve in the same way following a power-law with
slope 1/2. This means that the vertices that have the most connections are those that have
been added at the early stages at the network.

We want to find an explicit expression for the probability distribution, P (k). One way to
reach this goal is to begin with the probability P (k(s, t) < k) that k(s, t) is smaller than a
given k at time t. Inserting Equation (6.3) in this probability, and solving for s = s(k, t), we
see that this is P (s > tm2/k2). Since the new nodes are added at equal time intervals, the
probability density of s is flat, P (s) = 1/(m0 + t). Using these results we find

P (k(s, t) > k) = 1− P (s ≤ tm2/k2) = 1− 1
t + m0

tm2

k2
(6.4)

Equation (6.4) is precisely the cumulated distribution, so the well known probability distri-
bution P (k) can be found by differentiating,

P (k) =
∂P (k(s, t) < k)

∂k
=

2m2t

t + m0
k−3, (6.5)

and in the t → ∞ (large network) limit that we are interested in, we find the very simple
result

P (k) ∼ 2m2k−3, (6.6)

where γ = 3 as predicted by the numerical runs of the model. Note that in this simple
version of the GN model, the slope of the power-law, γ, is independent of m, as was also
indicated by our initial runs, m only causes a displacement of the y intercept. This solution
is useful for ‘quick n’ dirty’ results because of its intuitive appeal and ease of calculations.
The continuum solution suffers from the drawback that much of the interesting structure in
the citation distribution is found for small k (the sea of dead papers), where this solution is
not necessarily valid. This problem is remedied in the next analytical approach.

6.1.2 The Rate Equation Approach

This approach was proposed by Krapivsky, Redner, and Leyvraz [42] and uses the concept
of a rate equation. The utility of the rate equation in non-equilibrium statistical physics has
been demonstrated for a diverse range of phenomena, such as aggregation [71], coarsening [72]
and epitaxial surface growth [73].
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Here, the focus is on the average number of nodes, Nk(t) with k edges at time t. In the
simplest case (m = m0 = 1)3, the change of Nk(t) when a new node is added, can be expressed
as

dNk

dt
=

(k − 1)Nk−1 − kNk

M1
+ δ1k, M1 =

∑
k

kNk. (6.7)

The first term on the right hand side accounts for processes where a node with (k − 1) edges
is connected to the new node, increasing Nk by one. By definition there are Nk−1 nodes
with (k − 1) edges, and according to the model the rate at which these processes occur is
proportional to (k− 1)Nk−1. The M1 ensures the correct normalization. The second term on
the right plays a similar role, accounting for the loss that occurs when a node with k edges
is connected to the new node, causing a loss in Nk with probability kNk/M1. Third term on
the right is a kronecker δ-function that accounts for the addition of new nodes.

The terminology M1 is used because the sum
∑

k kNk is (obviously) identical to the first
moment of the Nk(t) distribution, which can be found using the general identity

Ṁn =
d
dt

∑
k

knNk =
∑

k

kn dNk

dt
, (6.8)

where the last derivative is given directly by equation (6.7). This sum can easily be written out
and be evaluated explicitly, yielding Ṁ1 = 2 that can be integrated to find M1(t) = M1(0)+2t.
We should have anticipated this result, since the ‘physical’ interpretation of the first moment is
exactly that it corresponds to the number of link endpoints; it is the same sum we encountered
in equation (6.1). Again, we are interested in the asymptotic (t →∞) regime, where the initial
conditions are irrelevant. Hence, we can insert M1 = 2t into Equations (6.7) and solve the
first order non-homogeneous differential equation that arises. This can be mechanically solved
to yield N1 = 2t/3. Inserting this result N2 equation, produces another DE that can be solved
to find N2 = t/6, the structure of which reveals that all Nk’s depend linearly on time. Thus
we can substitute Nk(t) = P (k)t into (6.7), and with a minimum of algebraic manipulations,
we find

P (k) = P (k − 1)
k − 1
k + 2

. (6.9)

This equation can be solved for P (k) by realizing that

P (k) = P (1)
k∏

i=2

i− 1
i + 2

= n1
3!

k(k + 1)(k + 2)
=

4
k(k + 1)(k + 2)

, (6.10)

where most of the terms in the product cancel out, resulting in a very simple expression
for the degree distribution. This result is valid for all k in the large t limit, and should be
compared to Equation (6.6), where we have an agreement. It is straight forward to show that
this power is also independent of the number of links added.

6.1.3 Master Equation

Yet another approach is the master equation approach suggested by Dorogovtsev, Mendes,
and Samukhin [43]. Here, the probability p(k, s, t) that at time t, a node introduced at time

3Which is what is solved in [42].
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s has degree k. The master equation for the simple version of the GN model becomes.

p(k, s, t + 1) =
k − 1

2t
p(k − 1, s, t) +

(
1− k

2t

)
p(k, s, t). (6.11)

This should remind the reader of equation (6.7) and indeed, solving the master equation
results in the recursion relation (6.9). The master equation and the rate equation approaches
are equivalent in this respect [13], and for calculating the scaling behavior of the degree
distributions, they can be used interchangeably.

Obviously, the master equation contains more information than the corresponding rate
equation. The master equation resolves nodes, not only—as it is the case for the rate equation
approach—by their degrees k, but also by the time s they were added to the system. In other
words, the master equation also gives us information on the age distribution. This trait,
however, makes many exact calculations using the master equation more involved and less
transparent than the corresponding calculation using the rate equation, and the reader will
be spared the complicated solution of the GN model here (the solution can be found in [43]).

The master equation has other virtues, as it turns out; it elegantly illuminates many
aspects of the continuum approach [74], and in this section, we will use some of the results
found here to understand exactly the mechanics of the continuous approach. We will also
discuss an important (and general) relation between the exponents of the degree distribution
(γ) and the average degree (β), cf. equation (6.22) [14,74].

In equation (6.11), we have the same conventions for t and s as in the continuous approach,
that is, t = 1, 2, 3, . . . and s = 0, 1, 2, . . . , t. Thus in the simplest imaginable version, at time
t = 1, we have a pair of connected nodes at s = 0 and 1, so that our initial condition is
p(k, s = 0, t = 1) = δk1 and the boundary condition is accordingly p(k, s = t, t = 1) = δk1.
Now, we can rewrite equation (6.11) to yield

2t[p(k, s, t + 1)− p(k, s, t)] = (k − 1)p(k − 1, s, t)− kp(k, s, t). (6.12)

Going to the continuous limit in k and t, and transforming the difference equation (6.12) into
a differential equation gives us

2t
∂p(k, s, t)

∂t
= −∂[kp(k, s, t)]

∂k
. (6.13)

The next step is to introduce the average degree of an individual node, k̄(s, t) as

k̄(s, t) =
∞∑

k=1

kp(k, s, t) =
∫ ∞

0
dk kp(k, s, t), (6.14)

which is the logical definition, since p(k, s, t) is the probability that the individual node has
k edges. Now, if we apply

∫∞
0 dk k to equation (6.13), it is easy to find

∂k̄(s, t)
∂t

=
k̄(s, t)

2t
=

k̄(s, t)∫ t
0 du k̄(u, t)

(6.15)

where the lhs. is trivial and the rhs. is found simply by integrating by parts. This equation
should remind the reader of equation (6.2), since they are identical. The only difference is
that we now possess a new understanding of the content of considering k(s, t) a ‘continuous’
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variable, as it was loosely stated above; the definition is given in equation (6.14). The bar
over the k(s, t) reminds us of our newfound knowledge. The reader should note that the
recognition that equation (6.15) stems from the continuum limit of the master equation is
exactly why solving this equation is now called the continuum solution and not the ‘mean
field’ solution as it was first labelled by Barabási and Albert. As we know, equation (6.15)
can be solved to yield the result that P (k) ∼ k−γ , γ = 3.

Having reached this result, let us back up a little, and rewrite equation (6.13) in a more
‘agreeable’ form

∂[kp(k, s, t)]
∂ln

√
t

+
∂[kp(k, s, t)]

∂ln k
= 0. (6.16)

This differential equation is solved by any function h(k, s, t) of the form h(ln k− ln
√

t+K(s)),
where K(s) is some function of s. Because of the discreteness of the model etc, we choose the
solution kp(k, s, t) = δ(ln k−ln

√
t/s+C), where C is a constant. Using well-known properties

of the δ-function and combining this solution with the boundary condition, p(k, t, t) = δk,1,
yields

p(k, s, t) = δ(k −
√

t

s
) (6.17)

that the transition to the continuous limit leads to a δ-function form of the degree distributions
of the individual nodes4. More generally, passing to the continuous limits of k and t, only
demanding that k̄(s, t) is a solution to an equation ‘similar’ to (6.15), the general result
is [14,74]

p(k, s, t) = δ(k − k̄(s, t)). (6.18)

From now on, we can think of this result as the continuum approximation, since equation
(6.18) allows us to derive any result for any model in the continuum solution context. For
instance, knowledge of p(k, s, t) allows one to find the total degree distribution for the entire
network P (k, t) = 1/(t+1)

∑t
s=0 P (k, s, t), where the stationary distribution is found by once

again taking the continuous limit

P (k) = P (k, t →∞) = lim
t→∞

1
t

∫ t

0
ds p(k, s, t), (6.19)

and, letting t → ∞, assuming that a stationary distribution exists (we know that it does).
This again provides us with the familiar result for P (k).

At this point, we are ready to formulate a more general result for the continuous approach,
namely that a knowledge of the average degree of nodes, k̄(s, t) allows us to find the total
degree distribution P (k, t). The general relation is motivated by the following considerations.
Let us think of k̄(s, t) as a solution to an equation ‘similar’ to equation (6.15), we have that

P (k, t) =
1
t

∫ t

0
ds δ(k − k̄(s, t)) (6.20)

=
[
∂k̄(s, t)

∂s

]−1
∣∣∣∣∣
s=s(k,t)

(6.21)

4Note that this result has a quite different form compared to the result obtained using the master equation
without going to the continuous limit. Using the exact master equation, we would have found that p(k, s, t) =√

s/t exp(−k
√

s/t), in the scaling limit (k, s, t large, and s � t, and k
√

s/t fixed). This exponential cutoff is
interesting in itself, as it reveals information about the finite size effects of these models that will be discussed
in some detail later. Here, it is sufficient to note that the δ-function form works effectively for both scale free
and exponentially decaying networks cf. [14,74]
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where the integral i performed via a change of variables that yields the second equality, and
where s = s(k, t) is a solution of the equation k = k̄(s, t). Assuming that P (k) ∼ k−γ and
k̄(s, t) ∼ s−β, we find that s ∼ k−(1/β). Using equation (6.21), we find that k−γ = ∂k/∂s ∼
k−(1+1/β). Thus we see that the relationship between β and γ can be described by

1 = β(γ − 1). (6.22)

In general, for linearly growing networks, we know that if we assume that P (k) is sta-
tionary and follows a power-law, P (k) ∼ k−γ , and that k̄(s, t) ∼ s−β i.e. that these func-
tion exhibit scaling behavior (in the scaling regime, that is), then equation 6.22 is valid:
It follows from equation (6.19) that for the distribution to be stationary, we must have
p(k, s, t) = ρ(k, s/t). Further, we have that the single node probabilities must be normalized,
such that

∫∞
0 dkp(k, s, t) = 1. Inserting ρ(k, s/t) into this equation, we get

∫∞
0 dkρ(k, x) = 1.

For this definite integral over k to be independent of x, we find that ρ(k, x) must be of the
form ρ(k, x) = f(x)g(kf(x)), where f(x) and g(x) are arbitrary functions.

Next, we employ the scaling assumption for k̄(s, t). From this and the definition of the
average degree in equation (6.14), we get

∫∞
0 dkkρ(k, x) ∼ x−β; and substituting our newly

found expression for ρ(k, x) into this relation, we learn f(x) ∼ xβ, using a variation of the
argument above (for the definite integral over k to scale as x−β , this constraint is impinged
on f(x)). Naturally, we can set f(x) = xβ, absorbing constants in the scaling function, g(x).
This yields the scaling form of degree distributions of individual vertices

p(k, s, t) =
(s

t

)β
g[k

(s

t

)β
]. (6.23)

The scaling function depends on the model that is under consideration; in footnote 4 the
exact p(k, s, t) is stated for the simplest formulation of the GN model.

Taking the final step, we now use the assumed scaling of P (k) that
∫∞
0 dxρ(k, x) = k−γ ,

using the result in equation (6.23), and the rapid convergence5 of ρ(k, x) for large x to yield
the relation that γ = 1 + 1/β, which is exactly the content of equation (6.22). Deriving this
last result no approximations have been made, and within the assumptions, the relation (6.22)
is universal.

6.2 Limiting Cases

Since we are going to work with the GN model, it is instructive to take the model apart
to study what happens when we remove either element of the model, i.e. the preferential
attachment or the growth characteristics. What are the minimum requirements for the model
to display scale free characteristics. I will work in the continuum framework due to the
transparency of the calculations—it is not difficult to find the following results using the rate
or master equation.

6.2.1 No Preferential Attachment

First, let us discuss what happens when there is growth but no preferential attachment. A
new node connects to the nodes already present in the system with equal probability, that

5The general form of g(x) for a generalized version of the GN model, derived using the master equation,
can be found in [43]. For an example, cf. footnote 4.
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is, Π(k̄(s)) = 1/(m0 + t − 1), (with all variables defined as in Section 6.1.1) thus Π(k̄(s))
is independent of k̄(s). We can insert this result in equation (6.1) to find the differential
equation

∂k̄(s)
∂t

= mΠ(k̄(s)) =
1

m0 + t− 1
. (6.24)

Solving for k̄(s) with the initial condition that every node has m edges when introduced,
k̄(s = t, t) = m, we find that k̄(s, t) follows a logarithmic time dependence

k̄(s, t) = m(ln
(

m0 + t− 1
m0 + s− 1

)
+ 1). (6.25)

Using the familiar technique, we find that in the t →∞ limit

P (k) =
e

m
exp

(
− k

m

)
, (6.26)

and hereby concluding that removing the preferential attachment from the model eliminates
the scale free feature of the GN model. That this is indeed the case is also clear from numerical
runs.

6.2.2 No Growth

Now, what happens if we eliminate the growth feature and keep the preferential attachment.
Our diminished model begins with N nodes and no edges. At each time step we randomly
select a vertex and connect it with probability Π(k̄(s)) = k̄(s)/

∫ t
0 duk̄(u) to vertex s in

the system. We use the same method above. This time, the rate of change of the time
evolution of the node degrees has two terms. Firstly, we have the random selection of a link
Πrand(k̄(s)) = 1/N (N is the system size), and secondly the probability that the randomly
chosen node connects to a given node Π(k̄(s)) = k̄(s)/

∫ t
0 duk̄(u). Since every edge links to

two nodes, we have that
∫ t
0 duk̄(u) = 2t. Thus,

∂k̄(s)
∂t

= Πrand(k̄(s)) + c Π(k̄(s)) =
1
N

+
N

N − 1
ki

2t
, (6.27)

where c = N/(N − 1) originates from the fact that we exclude from the summation the
possibility that edges can originate and terminate in the same node. Equation (6.27) is a
differential equation that is solved using standard methods to have the form:

k̄(s, t) =
2(N − 1)
N(N − 1)

t + CtN/2(N+1). (6.28)

Since for every interesting model we have that N � 1, which implies that we can approximate
k̄(s) with

k̄(s, t) ≈ 2
N

t + Ct1/2. (6.29)

In the previous cases, we have determined the constant C from the initial condition k̄(s =
t, t) = m—that every node at its introduction has m edges. Clearly, no new nodes are
introduced in this amputated model. In this model, we can think of the time tsel when node
s is selected for the first time, changing its degree from 0 to 1. Equation (6.28) is only valid
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for t > tsel and all nodes will not start following this dynamic until after t & N . We find C
from the condition that

∫ t
0 duk̄(u) = 2t, which implies that C = 0.

The result of the above investigation is, that after a time of t ≈ N , the degree of the
individual nodes increases linearly with time. Thus, after a transient period where we expect
dynamics ‘similar to the model that includes growth’—in the sense that picking a ‘virgin node’
corresponds to adding a node to the system—we expect to see a degree distribution that is
Gaussian around a mean value. This conclusion is amply supported by numerical runs. In
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Figure 6.3: The degree distribution of the ‘no growth’ model for N = 10, 000 and t = N (circles),
t = 5N (squares), and t = 40N (diamonds). After [35].

figure 6.3 (a), we explicitly see how the distribution looks like a power-law for t . N and
continuously changes into a Gaussian distribution for t →∞.

Thus it seems clear, that both the growth element and the preferential attachment is
needed to recreate the scale free behavior that is seen in the citation distribution.

6.2.3 Finite Size Effects

The last aspect of the model that we shall study here, originates from the fact that a computer
model (and real networks) always has a finite size. We are already aware that for low k-
values, we have not yet entered the scaling regime and we must use the rate- or master
equation approach to get reliable results; this region is very susceptible to changes in the
initial conditions.

As to the other end of the distribution, the degree of the most popular node or, equiva-
lently, the ‘cut-off’ of the power-law can be determined from the extreme statistics criterion∑

k>kmax
Nk = 1, that is, one node in the network lies in the range (kmax,∞). In the contin-
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uous approximation this criterion becomes

t

∫ ∞

kmax

dkP (k) = 1, (6.30)

and we find that for P (k) = k−γ this yields the cut-off

kmax ∼ t
1

γ−1 , (6.31)

cf. also [75].

6.3 A Simple Model for SPIRES

After this compilation of the most important of the GN, we are going to change this model
into a first order approximation of the citation network in SPIRES. Obviously, this model
only operates on the paper-level; it does not take the level of authors into account.

The first thing we have to realize is that we need to make our model directed. Scientific
papers have outgoing edges (references) and incoming edges (citations). The information we
have about the SPIRES database is the number of inbound edges for each paper, thus this
is the distribution we would like to model. Because scientific papers are published on paper,
the out-bound degree distribution is frozen once and for all, when the paper is published
(reference lists of published papers do not change). This aspect facilitates modelling, since
we do not have to take into account internal rewiring of links, as it is the case for the internet
and many other shape-shifting networks, cf. Chapter 3 for a further discussion.

The simple model is defined as follows:

• Growth. We start out with m0 nodes. At each time step a new paper is introduced.
Each new node comes with one citation to give it a non-zero probability of being cited
in the following time steps. Each new node has a reference list of m papers that are
already present in the model.

• Preferential attachment. The probability that the sth paper is cited (i.e. that the paper
is present in the reference list of a new paper) depends on the in-degree of node s,
k(s, t). In other words: Π(k(s)) = k(s)η/

∑
u k(u)η,6 where room has been allowed for

the preferential attachment to be non-linear, since there is no a priori reason for the
preferential attachment to depend linearly on k(s).

As we shall see in the following, this model recreates the data with surprising accuracy. In
spite of the overwhelming activity in the field of complex systems, this model has actually
not been solved in the literature. This is due to an amusing misunderstanding—in the first
papers on the subject [4, 35], Barabási showed that if the number of in- and out-bound edges
is equal, the slope of the distribution of edges generated by the GN model, is independent
of the number of edges, m. This result is correct, cf. Equation (6.6), but as a result of this
almost7 everyone—including Barabási’s group—have assumed that the slope of the degree
distribution is independent of m and used the convention m = 1 everywhere. However, this
result is true if, and only if, the number of in-bound edges equals the number of out-bound
edges, cf. Equation (6.34). Therefore, the model shown here is original (although not all that
creative).

6In the continuous approximation this sum is substituted by an integral.
7Loading papers with a number of ‘ghost’ citations is considered in [43], but in this paper, the non-linear

preferential attachment (the η-coefficient) is not included.
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6.3.1 Numerical Results

In Figure 6.4 the data for the theory subfield of the SPIRES database is compared to the
in-degree distribution resulting from a run of the model described in the previous section.
In the model, the size of the reference list of each new paper has been set to m=14 (this
corresponds to the mean value of citations in SPIRES) and the preferential attachment has
been raised to the power γ = 4/5. The agreement is excellent, and in the following, we shall
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Figure 6.4: (a) Displays an ‘atomic’ histogram of the the citation distribution for the theory data
(159,946 papers). (b) Is the GN model with a sub-linear preferential attachment, γ = 4/5. This
version has 200,000 papers and the average number of citations per paper is 14.

see how this model can be solved analytically to find out what mechanisms are responsible
for this amazing agreement between model and data.

6.3.2 Analytical Results

Warming Up

First, let’s use the continuum approach to form a rough picture of what happens when we
change the way the links are added, keeping γ = 1 for now. The integral over all nodes
(number of node endpoints) is

∫ t
0 duk̄(u) = (m+1)t. This results in the differential equation

∂k̄(s, t)
∂t

=
mk̄(s, t)
(m + 1)t

(6.32)

that can be solved with an initial condition analogous to Barabási and Albert’s that k(t, t) = 1,
that is each node has one incoming link at its introduction. We find that

k̄(s, t) =
(

t

s

) m
m+1

, (6.33)

where we see that the growth rate of the individual nodes do depend on the number of
references in each papers reference list, and that asymptotically for m →∞ we have a linear
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growth for the degree of the individual nodes. Using equation (6.21), we find an explicit
expression for the inbound degree distribution. We find that

Pdirected(k) ∼ k−γ , γ =
2m + 1

m
(6.34)

in the limit t −→ ∞. Unlike what is the case for the GN model, the slope of the power-law
in our citation model does depend on the number of references in each paper’s reference list
(m). For m = 1 the citation model coincides with the GN model, and has slope γ = 3, but
for increasing m the citation model has a slope that converges to γ → 2 for m →∞; the slope
of the power-law is thus bounded by γ ∈ ]2; 3]. The SPIRES database has an average of 14
citations per paper which results in a slope of γSPIRES = 29/14 ≈ 2.07, which is very close
to the power that is empirically found in the high citation regime.

To investigate what happens in the small k regime, we switch to the rate equation ap-
proach, for which it is also possible to take into account the non-linearity in the preferential
attachment. The rate equation for the citation model becomes

dNk

dt
= m

(k − 1)ηNk−1 − kηNk

Mη
+ δ1k. Mη =

∑
j

jηNj . (6.35)

This equation is completely analogous to equation (6.7), and each term on the lhs. have the
same function as in the simple case—here the possibility of adding m edges at each time step
and the non-linear attachment kernel have been included.

Another important difference is the directed link addition, which plays a big role in the
normalization (Mη). Since it will prove useful in the following, we start out by finding the
first two moments (M0 and M1) of the distribution. The moments coincide with the Mη’s for
integer η.

Using equation (6.8), we can do the sums explicitly to find that for Ṁ0, the terms in the
rightmost sum of equation (6.8) cancel out, except for the last (loss) term in the sum that is
zero per definition (there are no nodes with N + 1 links), and the kronecker delta, resulting
in Ṁ0 = 1. This can be integrated to yield M0 = M0(0) + t, or simply the total number of
nodes in the system—this was to be expected; the definition of the 0th moment is just that.

The first moment is found in a similar fashion: We can either explicitly do the last sum
in equation (6.8) to find that most terms cancel and leave us with Ṁ1 = (1 + m), which
can be integrated to find M1 = M1(0) + (1 + m)t, or we can simply realize that the first
moment is the number of edge endpoints in the distribution, as we have already discussed
when solving equation (6.32). The number of edge endpoints must clearly grow as (1 + m)t,
since m out-going links are added at each time step and each paper comes with one citation.
Doing the sums explicitly, however, gives us one important piece of information. The higher
moments do depend on η, as does the total degree distribution. For the two first moments,
we have the simple result that they are independent of η and they grow linearly with time.

Motivated by Figure 6.4, we embark on solving the sub-linear case, i.e. equation (6.35)
with 0 ≤ η ≤ 1. Again, it is instructive to solve the two limiting cases, η = 1 and η = 0. In the
case η = 1 the solution corresponds to the solution of equation (6.7) with the two differences
that M1 = (1+m)t (directed link addition) and that each paper can have m references. Thus,
we can solve equations (6.35) for the first Nk’s. In most interesting limit, t → ∞, we find
that N1 = (1 + m)t/(1 + 2m) and N2 = m(m + 1)t/(1 + m(5 + 6m)), etc. The structure of
this last solution also shows that the the Nk’s are linear in time, that is, Nk = P (k)t, a result
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we can insert in (6.35) with η = 0. So for k > 1 a little rewriting yields

P (k) = P (k − 1)
k − 1

k + m+1
m

, (6.36)

a result that should be compared to equation (6.9); these two coincide for m = 1, where
the two models are identical. Equation (6.36) can be solved with initial condition P (1) =
(m + 1)/(2m + 1) so that we get a closed form expression for P (k),

P (k) =
m + 1
2m + 1

Γ(k)Γ(2m+1
m + 1))

Γ(2m+1
m + k)

. (6.37)

This solution is analogous to equation (6.10), only we lose a lot of simplicity because of the
non-integer nature of the fractions—they fail to cancel out. In the case where m is equal to
one, this reduces to equation (6.10) and in the case m →∞, the equation (6.37) simplifies to

P (k) =
1

k(k + 1)
. (6.38)

Thus we find the same limiting behavior as we did in equation (6.33); this was to be expected
and supports the correctness of both approaches. Using Stirling’s formula to approximate the
Γ-functions, we find that

P (k) ∼ k−γ , γ =
2m + 1

m
, (6.39)

which is exactly the result we found using the continuum approach (equation (6.33)).
In the other limiting case η = 0, we find that, using our previous results M0 = t and

Nk(t) = P (k)t in equation (6.35), we find a well known recursion

P (k) = P (k − 1)
1

1 + m
, (6.40)

which if solved with initial condition P (1) = 1/(m + 1) gives us an exponentially decaying
distribution, P (k) = (m + 1)−k. This is (not surprisingly) the same result we found for the
model with no preferential attachment, since setting η = 0 corresponds exactly to eliminating
the preferential attachment. Hence we expect that the solution we find for general η will
allow us to tune the model from a power-law behavior for η = 1 to an exponential decay for
η = 0. In the case of the pure power-law, increasing m allows us to tune the power anywhere
between γ = 2 and γ = 3 for m = 1 and m →∞, respectively. In the case of the exponential,
increasing m makes the exponential decay faster.

Solving for the Citation Model

Now, we are able to put all of this knowledge together and solve for the model with directed
link addition of m references, and 0 < η < 1. Much of the work has already been done. First
of all, let’s put the previous work on the moments to use, by noticing that M0 ≤ Mη ≤ M1.
Now, since M0 = t and and M1 = (m + 1)t, we have that

Mη = µ(η)t, 1 ≤ µ ≤ m + 1 (6.41)
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where µ is still undetermined. We plug this into equation (6.35). It is straightforward to
verify that the linear time-dependence Nk(t) = P (k)t is still valid; substituting this result
into equation (6.35), very little rewriting yields the recursion relation

P (k) = nk−1
m(k − 1)η

(µ + mkη)
. (6.42)

The initial condition n1 = µ/(µ + m) is trivial to find after these considerations, simply by
inserting our assumptions into equation (6.35). Solving to find P (k) is a little more involved,
but the same idea as in equations (6.10) and (6.37) is employed:

P (k) =
m(k − 1)η

(µ + mkη)
P (k − 1) (6.43a)

=
(

m(k − 1)η

µ + mkη

) (
m(k − 2)η

µ + m(k − 1)η

) (
m(k − 3)η

µ + m(k − 2)η

)
· · ·P (1) (6.43b)

= mk−1
k−1∏
i=1

iη
(

1
µ + mkη

) (
1

µ + m(k − 1)η

)
· · ·

(
µ

µ + m

)
(6.43c)

= µmk−1
k−1∏
i=1

iη
k∏

j=1

1
jη

(
1

µj−η + m

)
(6.43d)

=
µ

m
k−η

k∏
j=1

(
µ

mjη
+ 1

)−1

. (6.43e)

In equation (6.43c) the initial condition is inserted and in equation (6.43d), the first product
cancels out with part of the second, simplifying the expression. This is a closed form expression
for the solution of the citation model, valid for all k.

Still, the product in equation (6.43e) does not have a great deal of intuitive appeal, it
would be instructive to have a functional expression that could help us understand what
is going on in figure 6.4, to understand the change from the power-law distribution to the
exponential. To this end, I rewrite the product in equation (6.43e) as an exponential of the
logarithm of the product, the product can now be turned into a sum; and in the continuum
limit (t → ∞), this sum can be treated as an integral that can be solved by expanding the
logarithm. In other words

P (k) =
µ

mkη
exp

ln
k∏

j=1

(
µ

mjη
+ 1

)−1
 (6.44a)

≈ µ

mkη
exp

{∫ k

1
− ln

( µ

mk′η
+ 1

)
dk′

}
(6.44b)

?
≈ µ

mkη
exp

{∫ k

1
−

(
µ

mk′η
− µ2

2(mk′)2η
+ · · ·

)
dk′

}
. (6.44c)

For this expansion in (6.44c) to be valid, we have to make sure that µ/mkη ≤ 1. To this
end, we have to investigate µ(η)’s dependence on η. In equation (6.41), µ(η) is defined as
µ = Mη/t; using this and equation (6.43e), we can find the following implicit relation for µ,

m =
∑
k≥1

kη

µ
P (k) =

∞∑
k=1

k∏
j=1

(
µ

mjη
+ 1

)−1

. (6.45)
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This equation is difficult to analyze, and except for the limiting cases we have already discussed
(η = 0, 1 where µ = 1,m+1, respectively) it is (to my knowledge) impossible to extract explicit
information about the dependence of µ on η. We can, however, do a numerical simulation
(see figure 6.5) and visually confirm that µ varies smoothly between 1 and m+1 as η changes
from 0 to 1. Using figure 6.5 we can convince ourselves that for 0 < η ≤ 1 and k > 2, the
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Figure 6.5: The dependence of µ on η for m=1. The dashed line is 2γ . If we choose k ≥ 2 the fraction
µ/mkγ is always less than or equal to one.

expansion in equation (6.44c) is allowable, if the integral runs from 2 to k, and we end up
with the following expression for P (k):

P (k) w
µ

µ + m
k−η exp

{
− µ

m

k1−η − 21−η

1− η

}
, (6.46)

where only the first term of the sum inside the integral in equation (6.44c) was used. The
k = 1 term in the sum (integral) over k results in the constant µ/(µ + m) that is included in
the normalization. For small η, it is relevant to include more terms from the expansion of the
log in the integral in equation (6.44c).

Now, we can explicitly see that figure 6.4 (b) can be described as a stretched exponential.
Furthermore it is clear that for η close to one (0.8 . η . 1), P (k) varies very weakly with
η, and it is hard to distinguish between a power-law and a stretched exponential (eq. (6.46))
for k < e1/(1−η).

This conundrum has been frequently encountered in the literature. In the case of distribu-
tions of citations, [53] found the distribution of citations of scientists to be a stretched expo-
nential, whereas it was argued in [54] that the citation distribution of papers was described by
an asymptotic power-law. The same data was attempted fitted to a curve ∼ (ki + const)−α in
a later paper [55]. In a more general arena, Newman describes the distribution of the number
of collaborators per publication in different databases (amongst these, SPIRES) as a stretched
exponential [48], but having acquired more statistical material, the very same distribution is
tentatively described as two power-laws [49] (after inspiration from [76]).
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Figure 6.6: Comparing model and data. (a) The analytical solution of the citation model (red line) and
data from the theory subfield (data points). The dashed line is the approximation (equation (6.46)).
(b) Comparing the analytical solution of the citation model to an actual run. The data points are
binned results of the data in Figure 6.4 (b). The red line is the solution and the dashed line is the
approximation.

6.4 Discussion

With these analytical insights we can return to the data and compare model and solution
to the real data. As was foreshadowed in Figure 6.4, the agreement is near perfect. Figure
6.6 (a) is a comparison of the simple model and the data from the theory subset; (b) is testing
the analytical solution of the simple model versus an actual run of the model—it is clear
that the analytical solution is correct and valid for all k, this is an impressive agreement
between data and model, but as we have discussed above, and as we investigate further in the
following, there is good reason to believe that this amazing correspondence is not necessarily
an indication of a model that captures the structure of the citation network.

The numerics above show beyond a doubt that the simple model for the citation network
is very close to the data. It is thus natural to expect that the simple model actually does
capture important elements of how data is cited; that it does capture something universal.
There are things that speak to its advantage—it is true that papers are added one by one, and
that there certainly is a mechanism that makes papers that are already cited, more attractive
for new papers to cite, but there is also a plethora of problems connected to this model. These
will be discussed in the following.

6.4.1 Longitudinal Structure

We have spent all of the previous chapter, Chapter 5 unveiling the longitudinal correlations
in the SPIRES data: some authors have citation records that are very unlikely to find in a
random draw on the distribution. Clearly, the simple citation model does not contain these
correlations, simply because we have not put them there. There are no authors in this model,
only papers. Perhaps the most important step to take in modelling the citation distribution
is to add a level of authors to the model so that our data acquires internal structure. This
significant aspect will be discussed in Section 7.4.
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6.4.2 The Age Distribution

Another problem with the simple model, is that older papers are more likely to have many
citations, cf. the distribution of ages discussed in Section 6.1.3. The direct connection between
degree and age is contradicted by the behavior of authors in SPIRES. New papers often rapidly
(in the span of 3-4 years or so) acquire a massive amount of citations; they are, in other words,
able to compete with the older papers in the distribution—this is not the case for the GN
model. Here, all of the highly cited papers are also very old, which is a problem that needs
to be addressed.

6.4.3 Measuring Preferential Attachment

Another problem relates to the nature of the preferential attachment. In the simple model, we
have adjusted the preferential attachment to fit the SPIRES database. It is, in fact, possible
to measure the nature of the preferential attachment [76,77,78].

The way one goes about measuring the preferential attachment is the following: Consider
a network, for which we have information about the order in which each node and edge joins
the system8. Measuring Π(k(s)) is simply keeping track of how the degree of an existing node
with k(s) edges grows as new nodes join the system9. There is a problem, however; we have
that Π(k(s)) = k(s)η/

∑
s k(s)η = c(t)k(s)η, and it is the case that the normalization c(t)

depends on the time at which a given node joins the system. Clearly this results in biases
when measuring which old node the new nodes link to, in terms of the degree of the old nodes.
The simplest way to avoid this problem is to study the attachment of new nodes in a short
time frame.

Accordingly, let us call all nodes that exist in the system for T0 nodes, and select another
group of nodes that are added between T1 and T1 + ∆T (T1 nodes), where ∆T � T1 and
T1 > T0. Now, the remaining job is simply to record the degree ki of the T0 node to which the
new node links. The Π(k(s), T0, T1) function that we are looking for is simply the normalized
histogram that states the number of edges acquired by the T0 vertices with degree k(s). The
trick is that if the growing network develops into a stationary state (or, equivalently, if we
look at small time intervals) then Π(k(s), T0, T1) is independent of T0 and T1, and we are then
left with the preferential attachment function Π(k(s)).

Because of the need to study short time intervals, it is often practical to study the cumu-
lated distribution χ(k(s)) that is proportional to k(s)η+1. In [77] the preferential attachment
of several systems is measured following the procedure described above. Amongst these is
data from Physical Review Letters. The nodes (1736 papers) for this investigation are papers
published in 1988 and the links (83,252) are the citations that these papers have received, T0

is chosen to be 1989. Determining η for T1, for 1989-1999, the value 〈η〉 = 0.95± 0.1 is found.
Clearly this value disagrees with the η ≈ 3/4 value that arises from fitting the analytical
solution to the data for the theory subset.

It is not clear that the results from the small number of highly cited papers from PRL
(average number of citations for the 1736 papers in question is circa 48 citations), but the
result of measuring Π(ki) for a network of citations seems to indicate that another model is

8Unfortunately, this information is not available for the SPIRES database. It is theoretically possible to
extract this information. To measure the preferential attachment for the SPIRES database is certainly an
exciting project for the future.

9Note on notation. In this section, we are not making the continuous approximation and, therefore, there
is no need for using the ‘average’ degree, k̄(s, t).
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needed. Of course, the ideal solution would be to explicitly measure ΠSPIRES(k(s)), but that
is not possible from the publicly accessible data.

6.4.4 The Cut-off(s)

Yet another problem, is of a different character: It occurs because of the cut-offs described
earlier. First, the actual data from SPIRES has a cutoff which is discussed in Chapter 2.
There is little doubt that this cut-off is a real mechanism in the SPIRES database—the idea
was that ‘nobody quotes Einstein or Goldstone’. Secondly, as we have discussed earlier in this
chapter, for η close to one, it is hard to distinguish the distribution created by our version of
the GN model from a power-law for k, in the range that we are looking at. Let us quantify
this a little. In the arguments leading to equation (6.31), we see that any model must have a
cut-off, and in equation (6.31), we have calculated this cut-off for η = 1. Using the criterion
in equation (6.30) on the distribution in equation (6.46) (resulting from 0 > η > 1), we find
that

kmax ∼

{
(ln t)

1
1−η , for 0 > η > 1;

t
1

1−γ , asymptotically linear.
(6.47)

We can use this estimate for the cut-off to test the fit generated by our model. We have
t = 159, 946 and η = 0.75, using equation (6.47), we find that kmax ∼ 21, 000. This, however,
is a crude approximation. Using arguments similar to those of Section 2.3.1, drawing from
the probability distribution defined by Equation (6.46), we would expect to find a little less
than 1 paper with more than 5, 242 citations, if this distribution applied to arbitrarily large k;
with a data set of 159, 946 papers, we would expect the maximally cited paper to have about
4,700 citations. This fidelity to the data is alluring, but with the data available to us at the
moment, the conclusion we arrive at is that it is impossible to draw any decisive conclusions
regarding the nature of the preferential attachment. We have to look for other arguments.

6.5 Summary

In this chapter we have turned away from the data-centered investigation from the previous
chapters, and begun to look at possible models for generating some of the features seen
in the SPIRES database. To make the transition as smooth as possible, I have chosen to
give a thorough and pedagogical introduction to the GN model, in which three different
analytical approaches were reviewed to explain the data produced by the model: The Mean
Field approach, the Rate Equation, and the Master Equation. Each of these lines of attack
have strengths and weaknesses, which were pointed out. Also, limiting cases of the model were
outlined, in which either of the two elements of the model, growth and preferential attachment,
were removed; finally, we discussed other details about the makeup of the outputted data.
The next step consisted in proposing—and solving—our own little modification of the GN
model, especially designed for SPIRES. This model is original work, exclusively found in this
thesis, the model fits the SPIRES data remarkably well.

Finally, the subject of whether or not any deep conclusions regarding the dynamics of
SPIRES could be drawn from the model’s amazing fit to the actual data was touched upon.
In discussing this subject, a few problems with the model were listed. The first important
problem stems from the fact that the simple model presented here lacks the longitudinal
correlations we have spent Chapter 5 analyzing; that this structure is missing informs us that
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this model is still far removed from SPIRES. The second important problem is derived from
the fact that the age of a given node is closely related to the degree of that node (cf. the
discussion towards the end of Section 6.1.3)—this picture is vastly different from SPIRES,
where it is not the case that the oldest papers possess all of the incoming links. The third
problem that was raised, was that recent measurements of the preferential attachment in
another set of citation data, seems to indicate that the model we set up to fit SPIRES, may
be wrong, since the value of the parameter η used in our model, has a different value than the
value measured in the data from Physical Review Letters. The next problem we discussed,
has a slightly different character, viz. that the data available to us from SPIRES does not
allow us to draw any definite conclusions with respect to the size of the parameter η, in our
model.

The next chapter is going to continue in the same direction as this chapter, only that
we are going to be a little more constructive. Instead of just pointing to problems with the
model, we will begin to see what happens to the model, when we modify it to be more realistic.
The first part of this chapter will mainly be a review of existing work, but rather exciting
nonetheless, and in the latter part look at the possibilities of including the author-level in the
description.
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CHAPTER 7

Modelling and the Real World

In the previous chapter, the GN model was scrutinized from many different angles. In the
present chapter, we are going to benefit from this intimate knowledge of the GN model, and
begin to think about how we can change the simple version into a more realistic model of
SPIRES. The chapter begins with a continuation of the discussion of the cut-off, this time
seen from a new angle.

We then review a few minor objections to the model and the possible modifications of the
model that can be implemented in order to take these objections into account. The subjects
are initial attractiveness of nodes, edge redirection, and ageing. None of these models are
original; they are, however, interesting from a theoretical point of view, and as such well
worth our while. The most interesting of these discussions, is the one on ageing. This is
partially due to the fact that the inclusion of gradual ageing in the model pushes it to the
verge of being analytically intractable. Further, as we have discussed in some length earlier,
it is the case for the GN model that the nodes with the most citations are also the oldest
(recall, that in the model k(s, t) ∼ (s/t)−β , β = m/(m + 1), in the simple case, η = 1), but
surely age has an effect on nodes: In the case of citation data, we know from experience that
some papers age gracefully, and indeed keep picking up citations, but surely age takes its toll
on other papers, leaving them stagnant or ‘dead’ with a static number of citations.

The second part of the chapter regards a more fundamental change of the GN model, in
which we consider a population of authors publishing papers, and where the probability of
being cited is determined by the number of citations by the paper’s author rather than by
the number of citations of the paper itself.

7.1 Initial Attractiveness

The primary virtue of the simple SPIRES model from Chapter 6, is that it results in power-
laws (at least for η = 1) and even when it does not (η < 1) it results in stretched exponentials;
the criticisms in the concluding sections of last chapter, should have convinced us not to be too
awe-stricken by the model’s truly fantastic reproduction of the degree distribution of papers
in SPIRES. In the context of modelling real citation networks, the exponential cut-off of the
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power-law seems to be a valuable trait, since many real networks with close-to-power-law
shapes, still appear a little curved just before their power-law stops, either because of a finite
size effect1 or because of other cut-off mechanisms, cf. Sections 6.2.3 and 6.4.4. The following
discussion will add yet another argument to this discussion.

We can think of the parameter η as a way of tuning the preferential attachment. Say we
have the probabilities pk ∼ 1 and qk ∼ k, the Π(k(s)) ∼ k(s)η model makes a geometrical
interpolation from pk to qk by creating new probabilities

p1−η
k qη

k . (7.1)

This interpolation leads to the stretched exponentials described above. Instead of this geo-
metrical interpolation, we could just as easily make an arithmetical interpolation, with new
probabilities that are proportional to

(1− ν)pk + νqk. (7.2)

In practice, this transition can be realized simply via loading each paper with w citations
instead of just one, as we have previously done2. These ‘ghost’ citations can be subtracted
later, but in the present context, they serve as a way of increasing the initial attractiveness
of the nodes. After the calculations, we can simply let these ghosts disappear back into
nothing. In the limit ν → ∞, we know that the distribution is described by exponential
decay, cf. Equation (6.26), since all preferential attachment has been eliminated from the
system. Now, let us investigate what happens in between.

We have that Π(k(s)) ∼ k(s) + w. For a rough estimate of the asymptotic behavior, we
can use Barabási’s method. Solving the DE

∂k̄(s, t)
∂t

=
mk̄(s, t)
(m + w)t

, (7.3)

with the now obvious initial condition k̄(t, t) = w, we find that

k̄(s, t) = w

(
t

s

)β

, β =
m

m + w
. (7.4)

We can use Equation (6.21) to directly estimate P (k), resulting in

P (k) =
[
t
∂k̄(s, t)

∂s

]−1 ∣∣∣∣
s=s(k,t)

=
w1/β

β
k−γ ; γ =

1
β

+ 1 =
w + 2m

m
, (7.5)

where s = s(k, t) is the solution of Equation (7.4). Thus, the asymptotic power-law can be
tuned to any value γ ∈ [2,∞[.

1For example, this must be the case for the co-author network. This network has a physical limit to the
number of collaborators that a given author can have, since only so many papers can be written within a
lifetime

2This calculation was first performed in [43], using the master equation approach (this paper is also an
excellent illustration of how ‘involved’ the calculations become, when using the master equation without going
to the continuous limit). The calculations found here were performed independently hereof, using the rate
equation, and were inspired by discussions with A. D. Jackson.
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To become acquainted with the exact form of the solution in the low k regime, we have
to resort to the rate equation. We proceed as we have done quite a few times in the previous
chapter, to find the following recursion relation

P (k) = P (k − 1)
m(k + w − 1)

m + w + w(k + w)
, (7.6)

which along with the initial condition that P (w) = (m+w)/(m+w +2mw), yields the exact
expression for the degree distribution

P (k) =
(m + w)Γ(3 + w + w

m)Γ(w + k)
(1 + m + w + 2mw)Γ(w + 1)Γ(2 + w + w

m + k)
, (7.7)

reinsuring us that we indeed have an asymptotic power-law with the slope predicted in Equa-
tion (7.4). It is interesting to note that the arithmetical interpolation results in power-laws
for any finite value of w, and yields an exponential only in the case w → ∞. In the case of
the geometrical interpolation, we have the relation that we only find power-laws for η = 1
and stretched exponentials in all other cases. This suggests that these limits are (at least
somewhat) non-trivial, and it would be interesting to study this in more detail.

Plotting Equation (7.7) against the data from the theory subfield, makes another highly
interesting point regarding the subject of the cut-off that was touched upon earlier (cf. Sections
6.2.3 and 6.4.4). Thus, this calculation further strengthens the argument that because of the
cut-off in the SPIRES data, it is impossible to distinguish between a model that has an
exponential cut-off and a model, such as this one, that results in an asymptotic power-law.
As demonstrated in Chapter 2, our data is of a much higher quality than the ISI and PRD
data sets, discussed in [54]. But it seems that even with access to the highly homogeneous
SPIRES database, the ‘scientific saint’ cut-off mechanism still leaves room for speculation as
to the topology of the citation distribution. Arguments regarding the ‘microscopic’ citation
mechanisms will have to be made before any model of the citation network based on the data
presently available, can be taken seriously. For further input on this discussion, the reader
should also recall Section 2.3.1.

7.2 Edge Redirection

The next step in adapting the GN model to the real world stems from taking human laziness
and vanity into account. In an amusing paper, entitled Read before you cite! [79], Simkin and
Roychowdhury have developed a method to estimate how many papers, in a given paper’s
reference list, the author(s) have actually read. Citing Freud (!), they connect scientific
misprints to freudian slips and find that an alarming number of misprints in scientific papers
are identical: Take a 4-digit page number with one digit misprinted. There are 104 possible
misprints, which makes the probability of a repeat misprint 10−4. Since the probability of
coincidental misprints is so small, it is natural for Simkin and Roychowdhury to conclude that
misprints are due to copying someone else’s misprint, without reading the paper in question.
They argue that it is, of course, possible to actually read a paper and proceed to copy the
bibliographic entry from some unreliable source, but the authors claim that this is highly
unlikely because of the following mechanism: If someone has gotten a hold of the original
paper from a faulty reference list, then they are likely to have encountered problems with
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Figure 7.1: Comparing Equation (7.7) and data from the theory subfield. The data is represented
using dots, whereas the dashed line is given by equation (7.7). The values of m and w are set to 15
and 9, respectively, this corresponds to an asymptotic power-law with slope γB = 2.6

finding the right paper, and therefore noticed the misprint and corrected it in their own
reference list.

This is not the place to go into the details of their investigation. It is sufficient to merely
state that Simkin and Roychowdhury conclude that approximately only 20% of papers, in
a given reference list, have actually been read by the author. Whether or not this number
is correct can be debated, but it raises an important issue, namely the influence of edge re-
direction on the citation distribution. Even though Simkin and Roychowdhury may have
overestimated the number of unread papers in science, it is beyond questioning that—at a
certain level—they have revealed an important detail about citation networks. When writing
a paper, one cites a number of papers that have been studied with various degrees of intensity.
Furthermore, one is also likely to include a couple of important papers from the reference list
of these papers; in summary, many citations appear via sloppily copying from other people’s
reference lists. We can think of this as rewiring links in the network.

The effects of re-wiring links was investigated in [75]. A simple model of rewiring is the
following: We only discuss the in-degree distribution, and at each time step, a new node n
is added to the system and an earlier node x is selected uniformly as a possible target for
attachment. With probability 1 − r, a link from n to x appears, and with probability r the
link is redirected to the ancestor node of x, that is the node that x links to y. This process
is illustrated in Figure 7.2.

Let us set up the rate equations for the redirection network. According to the rules defined
above, we find that the degree distribution Nk(t), evolves by the equations

dNk

dt
=

1− r

M0
[Nk−1 −Nk] +

r

M0
[(k − 2)Nk−1 − (k − 1)Nk] + δ1k. (7.8)

For redirection probability r = 0 we are left with the GN model without any preferential
attachment3, (the uniform selection of x). The two rightmost terms account for the redirection

3Had we chosen to select the target node preferentially rather than uniformly, this model simply collapses
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Figure 7.2: The processes in the redirection network. The new node n selects a target node x. With
probability 1− r, n links to x (dashed arrow) and with probability r, it links to the ancestor of x, y
(thick arrow). From [75].

process. The first of these is the gain term: Since the first node was selected uniformly, if
redirection indeed does occur, then the probability that a node with k − 1 pre-existing links
receives the new redirected edge is proportional to k−2, the number of pre-existing incoming
links. The argument for the loss term (the next term to the right) is analogous. Equation
(7.8) applies to all k ≥ 1.

Now, we can rewrite Equation (7.8) so that it reduces to the original rate equation with
a preferential attachment Π(k) ∼ Ak, where Ak = r[(k − 1) + (1 − r)/r]. Scaling out the
factor r, we find that Ak can be reduced to Ak = k + w, where w = 1/r − 2. In other
words, the redirection is equivalent to adding initial attractiveness, which is exactly the case
we have solved above (Section 7.1). For r = 1/11 we find w = 9, which fits the data quite
well, cf. Figure 7.1. Note, however, that r = 1/11 is a rather small probability for redirection,
since Simkin and Roychowdhury estimated it to be about 80%. On the other hand, the model
presented here is crude and only intended to explain some of the basic mechanisms of edge
redirections.

7.3 Ageing

7.3.1 Measuring Ageing in SPIRES

In order to measure explicit ageing in SPIRES, one needs to know when individual papers
received their citations. Unfortunately, this information is not available in the data from
SPIRES. However, in 1999 Benny Lautrup was working on a project on the ageing of papers,
which I am using here (this is still work in progress [80]). In Figure 7.3, we see the result of
Prof. Lautrup’s investigations. The age of papers is measured relative to 1999, so a paper
published in 1999 has age 1, a paper published in 1995 has age 5, etc. A ‘live paper’ is
defined as a paper that was cited in 1999,4 and the figure shows the fraction of live papers
compared to the number of papers published in the same year. There are, however, further

to the regular GN network, with the only difference that Π(k(s)) ∼ k − 1.
4This seems to be a reasonable assumption. If a paper has not been cited for the last 12 months, it is not

likely that it will be cited again.
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Figure 7.3: The fraction of live papers. The age of papers is measured relative to 1999, so a paper
published in 1999 has age 1, a paper published in 1995 has age 5, etc. A ‘live paper’ is defined as a
paper that was cited in 1999, and the figure shows the fraction of live papers compared to the number
of papers published in the same year. The error bars are the square roots of the paper count.

complications: There is a significant bump around 1974, when SPIRES began collecting
papers systematically. It is relatively easy to understand the nature of this bump; before
1974, not all papers were collected. It was only the ones that the Stanford librarians found
interesting, since they were inclined to collect what they considered ‘important’ papers, it is
only natural that a higher fraction of the papers from before 1974 are still ‘live’, cf. Section
1.4. After 1974, as we know, the collection of papers is more complete, and almost every
paper in high energy physics was added to the SPIRES database. My observations in the
following is based on the 1974+ population.

The important thing here is that this histogram can be interpreted as an indication that
the popularity of papers seems to fall off; that we don’t cite as many old papers. If we assume
a priori that the quality of cited papers is approximately the same year after year5, then,
after 1974, an ageing of papers is exactly what we see in the figure. Even though there is a
steady drop in the live fraction year by year, the older population is an indication that some
papers indeed have very long life spans; these are the classics.

Since these are not my own data, I will not investigate this highly interesting subject any
further, at least empirically. This, however, constitutes solid proof that the real network of
scientific communications displays ageing. Let us investigate the consequences for the GN
model.

7.3.2 Analytical Results

Treating explicit ageing in networks analytically was done by Dorogovtsev and Mendes [81].
In the following, let us review the most important calculations in a pedagogical manner, since
the results here are very interesting and important. It is clear from our intuitions and from

5This is another reasonable assumption, since there is no reason to believe (most older men would probably
debate this, but I strongly suspect that this is a mistake) that there should be a drop in IQ over time.
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the data (cf. Section 7.3.1), that including ageing is an important step towards adapting the
citation network to the real world.
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Figure 7.4: The degree distribution for different values of the ageing exponent. Curve a, α = 0; curve
b, α = 0.25; curve c, α = 0.50; curve d α = 0.75. It is clear that the number of highly connected nodes
are reduced as it is expected. Also, the data still follows asymptotic power-laws. From [81].

.

So, what happens if the probability for a new node to connect to a node, already in
the system, depends—not only on the degree of the old node—but was also proportional
to the power of its age, τ−α? Let us just solve for the simplest imaginable case where
each paper comes with one citation, since these results are easily generalized to m papers.
In Figure 7.4, numerical runs of this model are presented. This calculation is exceedingly
comprehensive in the exact version, so let us only regard the scaling and proceed in the
continuous approximation. The introduction of ageing leads to the differential equation:

∂k̄(s, t)
∂t

=
k̄(s, t)(t− s)−α∫ t

0 duk̄(u, t)(t− u)−α
(7.9)

that we solve with the initial condition k̄(t, t) = 1. To solve this equation, we look for a
solution of the scaling form, that is

k̄(s, t) ≡ κ(s/t), s/t ≡ ξ. (7.10)

Inserting this into Equation (7.9) and rewriting it a little, we can find

−ξ(1− ξ)α d lnκ(ξ)
dξ

=
{∫ 1

0
dζκ(ζ)(1− ζ)−α

}−1

≡ β, (7.11)

where the initial condition becomes κ(1) = 1. Here, β is a constant that is still unknown, but
will turn out to be the exponent of the average degree, k̄(s, t). We know from earlier, that∫ t
0 dkk̄(s, t) = 2t and, using Equation (7.10), this transforms into

∫ 1
0 dζκ(ζ) = 2. The solution
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to Equation (7.11) is found simply by integrating over ξ to find

κ(ξ) = C exp
(
−β

∫
dξ

ξ(1− ξ)α

)
, (7.12)

where C is a constant. The solution of the indefinite integral in Equation (7.12) can be
expressed via special functions to yield∫

dξ

ξ(1− ξ)α
= ln ξ + α 3F2

[
1, 1, 1 + α

2, 2
; ξ

]
. (7.13)

Here, 3F2() is the generalized hypergeometric function, cf. Appendix B.2 and [62]. We can use
the boundary condition κ(1) = 1 to determine the constant C and find the final expression
for κ(ξ), we have that

κ(ξ) = ξ−β

C︷ ︸︸ ︷
exp[−β(γEM + Ψ(1− α))] exp[−βα 3F2(1, 1, 1 + α; 2, 2; ξ)]. (7.14)

In the normalization, γEM is the Euler-Mascheroni constant, γEM ≈ 0.57721566490153286 . . .,
and Ψ() is the digamma function [62]. That β is indeed the exponent of k̄(s, t), can be seen
from the fact that κ(ξ) ∼ ξ−β for ξ → 0 (for t � s); in the scaling regime. Finding an
explicit expression for β is not easy, but by substituting the solution for κ(ξ), from Equation
(7.14), into the differential equation (equation (7.11)), we can find the following transcendental
expression for β (we could have used

∫ 1
0 dζκ(ζ) = 2 to find an equivalent expression)

β−1 = e−β(γEM+Ψ(1−α))

∫ 1

0
dζ

exp[−βαζ 3F2(1, 1, 1 + α; 2, 2; ζ)]
ζβ(1− ζ)α

, (7.15)

from which we can analyze the properties of the network with ageing. The solution of Equation
(7.15) is plotted in Figure 7.5 (a). Before we begin considering equation (7.15), the reader
should note the relationship β(γ − 1) = 1 from equation (6.22). The general nature of this
relation makes it valid also in the case of ageing, so we can directly extract information on
the scaling properties of the degree distribution from β. In Figure 7.5 (b), the dependence of
γ on α is plotted.

Equation (7.15) has a solution in the range −∞ < α < 1. It is possible to find explicit
expressions for β(α) and γ(α) in a couple of simple cases. For α → 1, we find that

β ∼= c(1− α), γ ∼=
1

c(1− α)
; (7.16)

here, the relation 3F2(1, 1, 2; 2, 2; ζ) = − ln(1 − ζ)/ζ was used, and the constant c =
0.8064659942 . . . is the solution of the implicit relation 1+1/c = exp(c). In the limit α → −∞,
we find that

β → 1 and γ → 2. (7.17)

Thus we have that the ranges of the exponents are 0 < β < 1 and 2 < γ < ∞.
In summary, the main results of the investigation of the GN model with the inclusion of

gradual ageing of the sites (the factor τα) are: Both simulations and the continuum solution
show that the network exhibits power-law behavior in the case α < 1. The results for the
exponents of the degree distribution P (k, t) ∼ k−γ and the average degree k̄(s, t) ∼ s−β were
determined analytically (Equation (7.15)); we also discussed some of the limits of α, where
reasonably simple expressions for β(α) and γ(α) could be found.
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Figure 7.5: (a) The solution of Equation (7.15) (line). The points originate from the numerical
simulation. The inset shows the same solution for a larger range of α values, −5 < α < 1. (b) The
solution of equation (7.15) (line) in terms of γ, see the main text for details. The points are the results
of simulations. Again, the inset shows the same solution for a larger range of α values, −5 < α < 1.
From [81].

7.4 An Author Model

In this final section we are going to discuss an obvious modification of the GN model, in
which we let the preferential attachment depend on the citations of the author of a given
paper, rather than on the citations of the paper itself. This is a reasonable assumption,
when we consider aspects of the mentality of the citation network: First of all because there
is a tendency to pay more attention to papers written by ‘big names’ within the subfield
one works and, second of all, because ‘big names’ have a way of showing up on the list of
references of most papers. This is not only because people have actually used their work, but
also because these ‘big names’ on a list of references, by some psychological mechanism, seem
to give credibility to the paper in question (something like “. . . author 0 doesn’t seem to be
all that bright, but if he is doing the same stuff as author C, he’s gotta be doing something
right. . . ”).

7.4.1 Defining the Author Model

At a first sight, letting the author citations supply the preferential attachment sounds like a
promising augmentation of the GN model—and easy to implement. The notation introduced
in Section 3.1.2 is ideally suited to describe this model, so we will use it here. We start out by
defining N authors, Ki(t), and define the model using the same two elements that we know
from the GN model:

• Growth. We initialize the model by letting the first m0 authors publish a paper with one
citation each (their initial attractiveness). Author Km0+1 then proceeds to publish his
first paper, km0+1,(1)—each new paper has one citation to begin with (again to supply
the initial attraction). This paper refers to m ≤ m0 papers already present in the
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database, etc: At each time step, a new author publishes a paper that links to m papers
in the database. Thus, during the first N − m0 time steps, the model is identical to
the GN model, but after N + 1−m0 time steps, author K1 publishes his second paper
k1(2), etc.

• Preferential attachment. The probability Π(ka(b)(t)) that, at time step t, a new node
attaches to a node at site a(b) (the bth paper by the ath author) is proportional to
the total number of publications by author Ka(t), that is, the sum of citations of
his publications,

∑
b ka(b)(t) = na(t). The nature of the preferential attachment thus

becomes:
Π[ka(b)(t)] = m

na(t)∑
c nc

. (7.18)

Now, let us investigate where this model takes us.

7.4.2 Results

The results from a numerical run with N = 1000 authors with 15 publications each, and each
publication distributing 10 references. The resulting paper citation distribution is plotted
in Figure 7.6. This figure immediately leads our thoughts to Figure 6.3. Also, this ‘atomic
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Figure 7.6: An ‘atomic histogram’ plot of the degree distribution for the author-level GN model.

histogram’ immediately puts us on track of the problem with this model. The level of authors
is identical to the ‘no growth’ version of the GN network that we discussed in Section 6.2.2;
therefore, the results found there (Equation (6.29)) can, of course, be directly transferred to
this case. With the preferential attachment governed by a Gaussian distribution, we find the
same distribution of paper citations. This is what we see in Figure 7.6.

The idea of adding a level of authors to the model is sound, but new attempts to model
SPIRES are going to have to produce an author population with publication lengths approxi-
mately described by the distribution number of papers per author seen in Figure 3.5—instead
of all authors having the same number of publications as it is the case for this model. One
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idea could be to simply remove and add one author from a random site once in a while; this
would keep the power-law distribution from saturating and turning into a Gaussian. We will,
however, not investigate this model further, but the concept of including a level of authors,
of course, provides an interesting starting point for further modelling.

7.5 Summary

We began this chapter, where the previous one left off—with a discussion of the nature of
the preferential attachment in the GN model. Instead of tuning the probability of citation
with the η-parameter, we chose to tune the preferential attachment in a different manner,
viz. by loading each paper with a number of ‘ghost’ citations—to add initial attractiveness.
There were two lessons to learn here: Firstly, that the model modified in this fashion results
in power-law degree distributions for any finite number of initial ‘ghost’ citations, and not
the stretched exponentials we know from Chapter 6. Secondly, and more importantly, we
realized that on the basis of the SPIRES data, we cannot make any decisive conclusions on
the asymptotic shape of the paper citation distribution; the SPIRES data is well described
by both power-law and stretched exponential models.

After this, we proceeded to discuss edge redirection, inspired by [79]. Using the rate equa-
tion, we found that a network with redirection of links is equivalent to a network, where each
paper is loaded with an initial number of papers—thus connecting to the ‘initial attractiveness’
solved immediately above.

The next subject was the ageing of papers. The discussion here, was motivated by a plot
of the ‘live’ papers in SPIRES, which clearly indicated that papers in SPIRES age gradually.
We were able to draw this conclusion, because the fraction of ‘live’ papers is a monotonically
decaying function of the age (after 1974). This motivated a pedagogical6 review of the effects
of including gradual ageing in the network model, first presented in [81]. Using tools from the
continuous approximation (derived in Section 6.1.3)—and refreshing our knowledge of special
functions—we found an explicit expression for the two exponents β and γ, characterizing the
GN network.

Finally, we considered the effect of letting the preferential attachment in the GN model be
governed, not by the number of citations but, by the number of citations of a level of authors
of the papers in the database. We learned, however, that this level of authors is an exact
representation of the ‘no growth’ version of the GN network, discussed in Section 6.2.2. The
idea of adding a level of authors in order to create longitudinal correlations in the model is
an extremely interesting (and easy7) starting point for further modelling.

6At least far more pedagogical than the original paper, cf. [81].
7Admittedly, I began working with this model at an unreasonably late stage in the writing of this thesis;

therefore, the results are not at all as impressive as they easily could have been.
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CHAPTER 8

Concluding Scientific Postscript

So where are we now? After more than a hundred pages of LATEX-output, close to 150 distinct
Mathematica notebooks, around a thousand lines of MatLab and Perl code, endless sub-
directories of graphics output, various versions of raw data from SPIRES, and bulk data
output from various models and simulations. With all of this adding up to some 400+ MB
of hard disk space, and an unhealthy amount of man-hours, what lessons have we learned?

This question is answered in the beginning of this thesis; the reader who needs a brief
answer to this question can simply flip back to the Abstract, where the main conclusions are
summarized rather succinctly. In this concluding postscript, I am going to consider a slightly
different question, namely: Where will we go from here?

8.1 Future Directions

In this thesis, I have done my best to disguise the fact that the investigation of SPIRES is
very much a work in progress. Much more than a closed work, this thesis is a snapshot of
an ongoing investigation, and writing it has been a necessary—and at most times somewhat
tedious—break away from what is truly important: The fascinating study of principles of
order emerging from behind a veil of complexity; away from using the tools of physics to
explore the world around us. In the following, I will point in some of the directions the
continued unveiling of the SPIRES network are likely to take us.

8.1.1 More Data

As was made clear in Section 3.1.2, the data from SPIRES is not complete. We lack access
to when and from whom a given paper’s citations came. One of the first orders of business
in the continued investigation, is to get a hold of all of the reference lists of all papers in
SPIRES (this is virtually tantamount to downloading the entire database). The new data
will enable the calculation of every conceivable quantity of interest in the network, e.g. path
lengths, out-bound degree structure, etc; we will be in possession of an exact representation
of the network of references in high energy physics.
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8.1.2 Temporal Aspects

The acquisition of more data will enable us to initiate work with the temporal evolution of
the database. This aspect of SPIRES has been suppressed in the work so far. We will be
able to ‘build’ SPIRES from ‘paper one’ and watch it grow: What is the structure—both
temporally and ‘spatially’ that emerges for the paper network—for the author network? How
do the different distributions of authors, papers, author paper averages, etc, evolve in time?
These are all interesting questions that it will be inspiring to answer.

Another interesting venue in this respect, is the study of the time evolution of the prin-
cipal components and the Power of Excellence for authors in general—refining the quest to
pinpoint excellence early in the careers of authors; recall that this subject was touched upon
in Chapter 4.

8.1.3 Paper Citation Histories

Within the question of the temporal evolution of SPIRES, we find yet another quantity
of interest. The typical ways in which papers are cited. Intuitively, we expect that there
are several types of papers; the ‘canonized’ papers that stop being cited because of their
acceptance in another realm beyond this one; the classics that continue to harvest citations,
but are not quite ‘canonized’, the papers that are heavily cited initially, but are replaced by
more general results after a while, etc. So far our only results are the (somewhat meager)
ones found in Section 7.3.

A way to make quantitative investigations of how papers age, is by performing PCA on
the paper histories. This course of action will allow us to determine exactly the archetypes of
papers’ evolution in time.

8.1.4 Refining the Model(s)

There is two approaches to modelling. The type we have used here is based on setting up a
simple minimalistic model, trying to capture the essential mechanisms of a system. The idea
is to use the model to investigate the structure of the system in question. If the output of
the model resembles the actual system, we usually assume that we understand the system.
This is the modelling approach used in the physics of complex systems, cf. Chapter 1. There
is no doubt that our ability to choose which generic mechanisms to include in this type of
modelling, of the citation network, can benefit from seeing the network grow ‘from paper
one’, as described above. Further, in Chapters 6 and 7 there are many suggestions to other
improvements that can be added to a new model—this is one of the main directions to take
in the project of analyzing SPIRES.

The other approach to modelling is the one that is used in models for the climate, or for
modelling something that has any kind of practical use (e.g. the dissipation of heat in some
part of a new car engine). With the information on the temporal evolution of SPIRES, we
will be able to enter this new modelling terrain; to create models that imitate every aspect
of SPIRES, rather than trying to generate the right network structure. We will be able to
create very precise models that will be able to generate more data, predict how the structure
of the citation network changes in time, etc.
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8.1.5 Down the Rabbit Hole

A completely different direction to take this project, is to cross the field boundaries and
present the results found in the preceding chapters to sociologists and anthropologists—to
open the door to a more qualitative analysis based on their theorists and theories. As I have
pointed out earlier, these sciences are often based on qualitative investigations and not on
statistically significant sets of data.

The results provided here, will surely fuel discussions within these fields; many of the
concepts—for example the author citation histories, modelling, or the concept of the Scientific
Staff—are new in these fields and will hopefully change them completely. As to the existing
concepts, for example the paper citation histories, ‘socio-scientists’ in the humanities have
already shown a considerable interest in attaining real data on the subject. Some of my ideas
along these lines are described in Section 8.1.3. In initiating such a cooperation, we leave
behind the solid ground that the method of physics provides us with; however, the enterprize
of leaving the solid ground behind is not necessarily uninteresting—just ask Alice1.

♥

1Although eccentric, the Red Queen appears to be an interesting acquaintance.
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APPENDIX A

The Data

A.1 The Acquisition of Data

The data used in this Cand. Scient. Thesis was collected on August 14th 2002 by the author
from the SPIRES hep mirror at the university of Durham1. The information on collecting
data is placed in this appendix, because we believe it to be of relatively little interest to the
general reader. We have supplied detailed information on the subject of gathering information
for completeness and in order to facilitate recreating results in this paper.

A.1.1 Navigating in SPIRES

SPIRES is first and foremost a programming language that was written in order to create
and search databases, cf. Section 1.4. The commands used in the following are all explained
in detail in the SPIRES manual [82].

The Durham server was accessed via a telnet connection established by the freeware
program putty.exe. One enters the SPIRES database by entering spires at the prompt,
and the hep database is selected by typing select hep. The SPIRES database is divided into
six sub-groups that are accessed by applying the search modifiers (to set the search modifiers
one has to type set sea mod [modifier ] at the prompt):

• Theory: and ps T not ps E

• Phenomenology: and ps T, E

• Experiment: and ps E not ps T

• Instrumentation: and ps I

• Review: and ps R

• Published: and ps published

1Further information is available at http://www.dur.ac.uk/.

111

http://www.dur.ac.uk/


A. The Data A.1. The Acquisition of Data

1945 – 79 1980 – 89 1990 – 94 1995 - 99 2000 – 02 Sum
Total 68,848 133,280 94,173 117,876 87,354 501,531
Theory 29,130 65,332 43,904 45,268 25778 210,412
Phenomenology 9,209 16,098 13,574 27,374 17,850 84,105
Experiment 10,794 15,346 8,823 10,643 9,200 54,806
Instrumentation 6,873 10,903 8,981 9,926 4,695 41,405
Review 1,393 3,741 2,212 2,268 1,255 13,081
Test 57,399 111,447 77,494 95,479 59,778 403,809
Discrepancy 11,449 21,833 16,679 22,397 27,576 97,722
Discr. % 16.6 16.4 17.7 19.9 31.6 19.5

Table A.1: The data categorized according to the searches in the Durham database. The first column
contains the different categories that the database can be divided into. The next five columns are
the different time intervals that the database was divided into and the final column is the sum of the
numbers in the previous five columns, thus representing the total number of papers in each category.
The row labelled ‘Test’ is the sum of the number of papers in the sub categories within each time
period. Ideally this number should correspond to the number of papers in the ‘Total’ category, but as
it is apparent from the table, this is not the case. The discrepancy is listed below, both as the number
of papers that are missing, and in percent of the total number of papers in each time period.

The SPIRES programming language is designed to find single papers and thus it requires a bit
of ingenuity to read out the entire database. The ”date added”(date-added) command makes
it possible to select the entire database, simply by choosing the entire lifespan of SPIRES, as
the dates in between which the paper one is looking for is added. In practice, we divided the
database into 5 time periods of approximately equal byte-size, since this drastically reduces
the search time. Furthermore, it is necessary to set the system up to do big searches using
the command set big search.

A.1.2 Retrieving the Data

The next task one has consider, is to set up SPIRES to output citation information. One
way to do this is via the output format citation, which is set by typing set for citation.
Then all there is left to do is to type the type command to output the data. The data is
output on the telnet prompt, which I saved using putty.exe’s logging function.

The data on the 30 different searches is summarized in Table A.1, and an example of the
data acquisition can be found in Appendix A.1. Finally, the raw data is cleaned using simple
Perl programs. A generic example of one of these can be found in Appendix A.3.

A.1.3 Problems Regarding the Quality of the Data

It is clear from Table A.1 that the SPIRES system is less than perfect. Applying the search
modifiers leaves out a number of papers that are not included in any of the sub categories.
There is a significant discrepancy between the sum of the papers in the subgroups and the
total number of papers reported by SPIRES – including the entire database, 19.5 percent of
the entries in the database do not belong to any of the five sub categories.

Random samples of these papers indicate that these extra records refer to papers that
have later been either removed or relocated. On account of this, we define the SPIRES hep
database as the sum of papers in the sub categories, thus reducing the database to 403.805
papers.
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Cited Uncited N/A Sum
Theory 113,818 46,128 50,424 210,360
Phenomenology 53,811 14,738 15,516 84,065
Experiment 20,890 7,637 26,236 54,763
Instrumentation 7,523 12,114 21,748 41,385
Review 3,813 1,096 5,813 10,871
Total 200004 81713 119,837 401,444

Table A.2: The final data. This table contains the data after the PERL parsing. Note that a few of
the papers (2365) ‘disappear’ in the process of parsing the data, cf. the final column of Table A.1.
The ‘N/A’ column refers to papers that are non–journal papers for which no citation information is
avaiable i.e. conference proceedings and the like. The ‘Total’ row is obtained directly from the subfield
data.

Another problem is that a small fraction of the data (≈ 0.6%) is output in some way
erroneously, such that the PERL script is unable to extract the citation information. The
differences are displayed in the final columns of Tables A.1 and A.2.

It is also apparent from Table A.2 that a significant fraction of the papers are non–journal
papers (conference proceedings, preprints, etc.), i.e. no citation information is available. Thus,
we are left with a total of 281,717 papers (i.e. roughly 56% of the SPIRES database) for which
both citation information and subfield designations are available. This data is what is referred
to when we speak of the SPIRES hep database.

A.2 An Example of a Typical Run

The following is an example of how the data from the durham SPIRES hep mirror was
collected. The example chosen is a search of Review papers added before 1980.

SunOS 5.6

login: lehrmann Password: Last login: Wed Aug 14 20:32:45 from
pc138.valkendorf

Sun Microsystems Inc. SunOS 5.6 Generic August 1997

> spires

Loading module: spirest

Loading completed: 868352 bytes.

-Welcome to SPIRES 00.07

-> set big sea 10000k
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-> sel hep

-Command logging in effect for this subfile

-> set sea mod and ps R

-> find da before 1980

-Result: 1393 DOCUMENTS

->set for citation

-> type

Warning: the citation search should be used and interpreted with
great care. At present, the source for the citation list in the
HEP database is only the preprints received by the SLAC Library,
and not the (unpreprinted) journal articles. Citations of a paper
during the months it was circulated as a preprint may also be
lost, because only references to journal articles and
e-print-archives papers are indexed. Still, the citation index in
HEP (SPIRES-SLAC) is formed from an impressive number of sources.
For example, in 1994, the citation lists were collected from
10,000 preprints.

1) Jean-Loup Gervais, A. Neveu, INTRODUCTION.
Published in Phys.Rept.23:240-244,1976.

Cited 28 times. To get the listing use: FIN C PRPLC,C23,240

...

A.3 A Perl Program

This appendix contains an example of one of the simple PERL programs used to clean up the
data outputted from spires, cf. Appendices A.1 and A.2.

open INPUT,"<review.spires";

open OUTPUT,">review.dat";

while(<INPUT>)

{
next unless m/Cited/;
split;
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print OUTPUT $_[1],"\n";
}

close OUTPUT;

This particular piece of code, when executed, reads out the number of citations of each
cited paper in the file containing the raw information on the Review subgroup.

A.4 Longitudinal Cleaning

The longitudinal data is obtained from the data acquired in appendix A.1, using a slightly
more complicated PERL script to parse the data2:

#!/usr/local/bin/perl -w

$#ARGV==1 || die "usage: $0 infile outfile\n";

#initiatations of database

%authors = ();

%articles = ();

$article_no = 0;

%carticle = ();

$carticle = ""; $ctitle = ""; $fnames = ""; $surnames = "";

$no_more_authors = 0; @array = ();

open (INFILE, "<$ARGV[0]") || die("Can’t open $ARGV[0]: $!");

@lines = <INFILE>;

foreach $line (@lines) {

# first article

if ($article_no == 0) {

if ($line =~ /^\d+[\)|A-Z]/) {

# initiations

$carticle = $line;

$ctitle = "";

$article_no++;

$no_more_authors = 0;

}

}

elsif ($line =~ /^\d+[\)|A-Z]/) {

# print "Match $line\n";

$carticle =~ s/[ ]*$//;

@array = split(/\n|,/,$carticle);

$carticle{’authors’} = ();

$carticle{’title’} = "";

# # if you had a unique number. # $array[0] =~

/(\d+)[\)|A-Z]/; # $cnumber = $1;

for ($i=0;$i<=$#array;$i++) {

if ($array[$i] =~ /[A-Z]{2,}/) {

$no_more_authors = 1;

}

if ($array[$i] =~ /([A-Z]+[\w\s\.\-]+)\s([\w+|\-]+[a-z]+)$/ && !$no_more_authors) {

$fnames = $1;

2I am thankful to Jens Munk for his hours of help on writing this rather complicated bit of code.
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$surnames = $2;

$fnames =~ s/[a-z\.\s\-]//g;

push @{$carticle{’authors’}}, "$surnames $fnames";

}

elsif ($array[$i] =~ /([A-Z]+[\w\s\.\-]+)\s([\w-]+\l)\set\sal\.$/ && !$no_more_authors) {

$fnames = $1;

$surnames = $2;

$fnames =~ s/[a-z\.\s\-]//g;

push @{$carticle{’authors’}}, "$surnames $fnames";

}

if ($array[$i] =~ /Cited\s(\d+)|(N\/A)|(This\swork)/) {

# |( no citatio) matched af $2

if ($1) {

$carticle{’quotations’} = $1;

}

elsif ($2) {

$carticle{’quotations’} = 0;

}

else {

$carticle{’quotations’} = ’’;

}

}

}

if ($carticle =~ /([A-Z]{1}[A-Z\s,\:\+\-\=0-9]+\.)/) {

# ret 2 til 1

$ctitle = "$1";

$ctitle =~ s/\s{2,}/ /;

$carticle{’title’} = $ctitle;

}

else {

$carticle{’title’} = ’Problems identifying title’;

}

# actions - create database

foreach $author (@{$carticle{’authors’}}) {

if ($authors{"$author"}{’quotations’}) {

push @{$authors{"$author"}{’quotations’}}, $carticle{’quotations’};

push @{$authors{"$author"}{’articles’}}, $carticle{’title’};

}

else {

$authors{"$author"}{’quotations’} = [$carticle{’quotations’}];

$authors{"$author"}{’articles’}= [$carticle{’title’}];

}

}

if (!$articles{"$carticle{’title’}"}) {

$articles{"$carticle{’title’}"}{’authors’} = "@{$carticle{’authors’}}";

}

# initiations

$no_more_authors = 0;

$carticle = "$line";

$ctitle = "";

$article_no++;

}

else {

$carticle .= $line;

}

if ($article_no == 20) {

# exit;

}

} close(INFILE);

# Here you can modify the output written to the output file

# e.g. if you are a windows person, you can make a csv file.
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open (OUTFILE, ">$ARGV[1]") || die("Can’t open $ARGV[1]: $!");

foreach $author (sort (keys %authors)) {

print OUTFILE qq($author @{$authors{"$author"}{’quotations’}}\n);

} print OUTFILE "End authors\n";

# There are still titles that are matched wrong (only names). You

# can correct it if you feel like #print OUTFILE

"-------------------------------------\n";

#foreach $article (sort (keys %articles)) {

# print OUTFILE qq($article

$articles{"$article"}{’authors’}\n); #} close (OUTFILE);

This script collects papers, written by the same author into strings, that contain the year the
paper was written and the number of citations acquired by the particular paper. It is possible
to specify whether one wants to sort authors after last name only, or after initials and last
name.
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APPENDIX B

Miscellanea

B.1 Residual Analysis

The Q-Statistic, defined in Section 5.3.5 is defined as the sum of squares of the residuals:

Q = (y − ŷ)′(y − ŷ). (B.1)

This represents the sum of squares of the distance of y− ŷ from the k-dimensional space that
the PCA model defines. To obtain an upper limit for Q, let:

θα =
p∑

i=k+1

λα
i , α = 1, 2, 3, (B.2)

and
h0 = 1− 2θ1θ2

3θ2
2

. (B.3)

Then the quantity

c = θ1

[(
Q
θ1

)
− θ2h0(h0−1)

θ2
1

− 1
]

h0

√
2θ2

(B.4)

is approximately normally distributed with zero mean and unit variance. On the contrary,
the critical value for Q is

Qα = θ1

(
cαh0

√
2θ2

θ1
+

θ2h0(h0 − 1)
θ2
1

+ 1
)1/h0

, (B.5)

where cα is the normal deviate cutting off an area of α under the the upper tail of the
distribution, if h0 is positive, and under the lower tail, if it is negative. This distribution
holds whether or not all of the significant components and even if non-significant ones are
employed. Values of Q that are higher than Qα (for a given α that we choose) are an indication
that a data-vector cannot be adequately represented by a k component model. This appendix
draws heavily on [67].
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B.2 Special Functions

The generalized hypergeometric function is given by a Hypergeometric Series, i.e. , a series
for which the ratio of successive terms can be written

ak+1

ak
=

P (k)
Q(k)

=
(k + a1)(k + a2) · · · (k + ap)

(k + b1)(k + b2) · · · (k + bq)(k + 1)
x. (B.6)

(The factor of (k + 1) in the denominator is present for historical reasons.) The resulting
generalized hypergeometric function is written:∑

k=0

akx
k = pFq

[
a1, a2, · · · , ap

b1, b2, · · · , bq
;x

]
(B.7)

=
∞∑

k=0

(a1)k(a2)k · · · (ap)k

(b1)kb(b2)k · · · (bq)k

xk

k!
, (B.8)

where (a)k is the Pochhammer Symbol,

(a)k ≡
Γ(a + k)

Γ(a)
= a(a + 1) · · · (a + k − 1). (B.9)

If the argument, x = 1, then the function is abbreviated to

pFq

[
a1, a2 . . . , ap

b1, b2, . . . , bq

]
≡ pFq

[
a1, a2 . . . , ap

b1, b2, . . . , bq
;x

]
. (B.10)

2F1(a, b; c; z) is ‘the’ Hypergeometric Function, and 1F1(a; b; z) ≡ M(z) is the Confluent
Hypergeometric Function. A plethora of information on the hypergeometric function and
other special functions can be found on the www, cf. [62]. My main source on identities
between special functions and non-trivial integrals has been MathWorld and the excellent
program Mathematica.
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