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Abstract

Through a survey of data on forward differential cross sec-
tion of various two-body and guasi-two-body hadronic processes
it is pointed out that there exists a kind of geometrical scaling,
which is refered to 2 regularity of the impact parameter ampli-
tude 942(s 8) | where 5 is the impact parameter, 4; is the magni-
tude of the s-channel total helicity flip and e refers to a cer-
tsin reaction. The geometrical scaling which we mean has three
contents; (i) %Vs,b)“yf(&,(bf/ﬁg )b ) for the component which
consists of s-channel background or equivalently Pomeron exchange;
(11) 9% (s, 8) =94, (s, (62/6%)b) for the component which consists
of s-channel resonances and 1s dual to the same ordinary ""Regge®
exchange; (iii) 65./88 = 5%/64, Here, quantities 44 and b, are
characteristic radii of the Pomeron exchange and ¢f the ordinary
"Regge'' exchange, respectively. In particulaer, the forward differ-
ential, elastic and total cross sections of pp, pp and Kb elas-
tic processes are systematically understood by the scaling bf>W§N=

b’f"‘f’/é%" = 1.23.

*) In partizl fulfillment of the requirements for the Ph.D,
degresa,
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§1. Introduction

Several phenomenological modelsl)wq) based on a geometrical
picture of two-component duality5) for two-body and quasi-two-
body scattering of hadrons have yielded good results on a simple
systematic description of forward phenomena, such as dip-bump
structure of elastic and inelastic differentisl cross section
(DCS) and elastic polarization. Fundamental assumptions of these
models are the followings. (i) A zero structure of the imaginary
part of the effective resonancez) amplitude with s-channel total
helicity flin 42 which is dual to ordinery "Regge“*) exchange is
given by a Bessel-like function #J,(84/—¢) ' in accordance with
the assumption that this amplitude is dominated by the most peri-
pheral psrtial waves with {(~kb, where ¢ is the ¢.m. momentum
and 5, is the impact psrameler of the peripheral effective reso-
nance, (ii) The real part oi the above amplitude is related to
its imaginary nart by a Regpe-like (rotating) phase which is ex-
pected from resonance-Reg e duality.*%) (iii) There exists s-
channel background which is dual to Pomeron exchange, of which

amplitude is dominated by low partial waves with <6, ., 1In

¥/ In gener=zl, a ¢-channel exchange dual to the peripheral
resonance may be a combination of Regge pole and other pos-
sible assoclated singularities like Regge cuts., For ianstance,
in the Regreized absorption modell5) the perisherality of
the scattering smplitude is mainly owing to a combined ef-
fect of ordinary Regge pole and Regge cut associated by
Pomeron exchange,

However, the resl part of the ordinary '"Regge' exchanze
armplitude with 42 = O is not given explicitly in Harari's
duel absorption model.l)



addition, this amplitude is predominantly imaginary and appro-
ximately conserves s-channel helicity.6> Although the dip-bump
structure of DC3 and the oscillatory pattern of the polarization
in the forward direction are fairly well understoocd by the above
three features with essentially one parameter A.,l)ﬁ'q) it is
necessary for a description of detailed t¢-dependence of these
forward phenomena to have a knowledge about a more precise form
of the impact paremeter amplitude (Fourier-Bessel transform of
the scattering amplitude).

The purpose of this paper is to investigate a regularity of
the geometrical structure of the impact parameter amplitude for
various two-body and quasi-two-body processes through a survey
of data on forward DCS. As a result, 1t is pointed out that
there is a kind of geometricesl scaling.*)

A content of our geometricsl scaling is mentionedin 92 and

the experimentzl evidences are enumerated in §3., Concluding re-

marks arc given in §4.

*) In general; the geometrical scaling stated here is di fferent
from that of Ref., 7, which is refered to the proportionality
of the slope parameter of DCS and the total cross section of
the elastic processes, In this connection, see Eq.(10). On
the other hand, F. Tekagi has recently discussed another type
of geometriczl scaling which he czlled "“the geometrical scal-~
ing of the first kind" in connection with a generalization of
geomelrical duelity.lg) He called the geometrical scaling

discussed in this paver "the geometrical scaling of the

second kind, "



§2, Geometrical scaling

Let the impact parameter amplitude with helicity flip 42 be

gn(s 8) , which is related to the relevant scattering amplitude

falst) Dby:

Faa(sot)=§" bdbg; (s, 5)7 5 (6a/=2). (1)*)

Consider two reactions « and g. The geometrical scaling we mean
hae three different contents. The first is refered to the s~

channel background or Pomeron term and is represented by:

5.‘9
951(3>5)=K$ﬁ9‘§1(%;;—5)» (2)
d

where by is defined by:
(bé>zc{fowdbb2‘gdl(&' b)l/{fﬁ dbgﬂ(.s', 3R (5)

and K¥ is s provortionality constant which does not depend on 4
but can depend on s in general. By the way, Eq.(2) holds identi-
cally if g4;(s, ) is happened to be the Gaussian distribution
peaked at 6= 0, The second is refered to the impact parameter

amplitudes of reactions @« and # which are dual to the same ¢-

chennel ordinary "Regge" exchange, and is given by:

*) Here, the normalization of the amplitude is Séﬂ=-£%ZHj}ﬂg £ |3,

where ki is the c.m. momentum in the initial state. The
argument ¢’ appeared in the Bessel function is £« tpn .
Throughout this paper the difference between ¢ and ¢ ics

neglected,
Ly



IYd
g (s 8 =K¥gh (oo 55 b)), (4)

where b, is the gquantity which specifies a oscillatory structure
of the scattering amplitude through a Bessel -1like function

N7 a(ba/=)" as is already mentioned before, and K¥ is a pro-
nortionality constant. The last one is a relation which con-

nects the quantities 4; and b, :
5%/ bE =% bE . (5)
The above Bas.{(2) and (4) imply also the scaling between

the relevent scattering amplitudes with respect to ¢-dependence.

Substituting Eqs.(2) and (4) into Eq. (1), we obtein
4 (s 8)=KF eff (s, €2), (6)

where ¢ = (#%/84)* for the Pomeron exchange (s-channel background)
amplitude and E=(6%/5%)* for the ordinary "Regge" exchange (the
effective r@sonancezb amplitude., Therefore, the hypothesis of
the geometricasl scaling mentioned above can be directly compared
with the e¥perimental data. In particular, whea the reactions
a and # are dominated by the same quantum number exchange and

the same 412, DCSs of a and g should satisfy the relation:

D%(s, )= (KPP, ) e DP(s, €1t), (7)

where

[+
D (s, t)=~5§(s‘, ¢). (8)

It should be noted here that, throughout this paper, we consider
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the geometrical scaling between D® and D¢ (or equivalently g%
and gﬁ ) for a common s for convenience. It may be rather an
open guestion what is the best energy variable to be fixed.
However, at such high energies considered in this paper, the
differences arised from the choice of energy variables would
give rise to a minor effect.

In the next section some evidences for the geometrical

scaling represented by Egs.(2), (4) and (5) are enumerated.

§%, Experimental evidences

(a) Comparison of K'p and pp elastic DCS

We assume that the Pomeron exchange amplitude is predomi-
nantly imaginary and the ordinary "Regge' exchange (or equiva-
lently the effective resonance) amplitude is almost real in this
case because K'p and pp channels are exotic, Then, DCS of these
processes may be approximately given by Pomeron exchange alone
for relatively small |¢| region. Thus, these processes may pro-
vide a good test for the geometrical scaling Eq.(2). From Eq.

(7) the following relation is derived:

DXP (s, ¢)  DPP(s, (KN /60y
DX (s, 0) DPP(s, 0) . (9)

The experimental values of both sides of Eq.(9) are plotted in
Fig, 1 by taking (o¥2%5")* = (1.23)2. Data are taken from Ref.
8. The nice fits of these DCSs for ¢ > -1 (GeV/c)2 seem to

verify directly the geometrical scaling for the Pomeron exchange

Pig, 1
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(b) g;(g £=0), 0, (s) and o, (s) of K*pand PP elastic processes
With the same approximation as is done in (a), the follow-

ing relations for the DCS at £=0.(%%(s, £=0) =D(s, 0)), the

elastic cross section ( ¢;(s) ), and the total cross section

(0400 (s)) of these processes are easily derived from Eq.(2) or

Egs. (6) and (7):
DPP(s, 0) =K3( bi‘f"/gﬁ”) DKP (5 0)

: NN _KN_. K%
ot () =Ky(bg /bg )0 ()

(10)
and
PP () =Ky (B 61 K7 (),
From Eq.(10) the value 2% 5% can be estimated by two ways:
s b5 = [ DPP(s 0/ 6h (s)V /] Dﬁ’( 5 0 ),/af?"(s)}j ¥ (11)
and
by ba = (1 (o I aPT (211 e 2N (12)

It is found using the data at p, = 6~15 GeV/cg) that &M/ 4%
is almost energy independent and is sbout 1.24 from Bq.(11) and
1.21 from Eq.(12). These values of b rztio arc consistent with
the value obtained in (a). The proportionality constant K, is

given in term of o, (s) and q,,,(s) by:

_, PP PP ., Xp K .
Kd_{ Uel(d’),/otot(*"),_/{ oe] (‘S\)'/Utot(‘?‘)} - . (1_))

Substituting the experimental data®) into the right hand eide
of Bq.(13), we found that K, is about L.51 and is almost energy

independent,
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(c) The scaling of & and &

Since the Pomeron exchange dominates elastic processes,
the value of 4 can be estimated directly from the slope para-
meter of elastic DCS. On the other hand, the value of 4, 1is
determined by the positions of the cross-over zero and the dip
or the change of slope of elastic pes. 8 1n Taple 1, the
values of 52 and 5, estimated in this way are shown, where the
values of the slope parsmeter are taken from the summary given
in Ref. 7 (the references of data are also listed there) and
those of 4- sre taken from Ref. 4. The relation between 5y and
b, of these elastic processes seems to be consistent with the

geometrical scaling Eq.(5).

Table 1

(d) The scaling of K p, pp and pp elastic DCS

Now we consider the Kfp and pp elastic scattering in addi-
tion to K+p and pp scattering. In the former (K p and pp) re-
actions, the ordinary "Regge! exchange amplitudes is considered
to be complex in contrast to the case of (exotic)Kﬁp and pp re-
actions. Therefore, the DCSs for these four nrocesses may be

written as:g)

DK—E)(.S‘, ¢y~ [PKN(s, ) I

pEP (s, ) [PEN (5, )] +2P Y (5 ). REN s, ¢),

S (14)
DPP(s, t)y= (PM(s, )] %,

DPP( s, ¢y~ [(P™(s, )] +2P" (s, t)-R™(s, ¢),



where R(s, t) 1s the imaginary part of the ordinary Regge ex-
change amplitude with 442=0 of K p and pp elastic scattering.

The geometricel scaling of Egs.(2), (4), and (5) requires that

N

PENCs Y= (K ) ' PR(s, 7Y,

e}

RE¥ (s, )= (K, ) 'R™(s. 70,

(15)

and

e=( M s ENyz - (M p KNy

4

where Kq is the same quantity as K4 appeared in (b). Finally,
pDE? (s ¢) and DXP(s ¢)can be represented by DF(s ¢) and DPP(s, ¢)

using egs. (14) and (15) as:

DXP(s 8y =aD(s, £ 0, (16)
and

DXF( 5 )=ADP (s, € ) +B D (s & )=Ds, € 8], (17)
where

A= (K 6)~* and B=(KzK g*)"'. (18)

Using the best fit value obtained by assuming the functional
form of e**#*r*"  ror DFR,, +) and DPP(s, ¢) in the right hand
sides of Eqs,.(16) and (17), the experimental data of DX?(g )
and DXP (s, t)arc well reproduced by taking 4 = 0,224, B= 0,166
and ~/& = 1,23 as is shown in Fig. 2. The value of 4 is to be
compared with 0,192 which is calculated from Eq, (18) with ~¢ =
1.23 and K, = 1.51 obtained in (b). ©Now, the ratio of the total

5 K"’ .
cross section difference is predicted to be wf&(ﬂ-vfiéﬂh/{amf(&Y—
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°§§(8)1=K;5=*3%?~: 2.85, which is to be compared with the ex-
perimental value of 3.0 # 0.3 obtained in Ref., 10, The consis-
tency of Egs.(16) and (17) verifies the scaling for the imagi -

nary part of the helicity nonflip amplitude of these processes.

Fig., 2

(e)Kp —» =37 and =z¥p— K'3 processes

These processes are related to each other by ¢- cross-
ing (line reversed process). In the Regge pole model with exact
exchange degenerate K* and K™ Regge trajectory the DCSs of these
processes should be equal to each other. Experimentzlly this
equality seems to be broken even at p , ~ 15 GeV/c. From the
view-point of geometrical model this breaking may be due to
the difference of 4 , One way to estimate the velue of 4 1is
to use the empiricel efrfective trajectory as has been done in
Ref., 4, The effective trajectories of K psz 5" znd n'p—k*s*
given in Ref. 11 are a., ()= 0.3 + O0.,4¢ and 0.6 + 1.1¢, res-
pectively, Identifying the ¢ value at a.(#) = O to the first
zero of J (b,~=¢)/b,a/~t , OnE Can obtain.(&f}*fézﬁfﬁr&KE+)”
~ 8/11. According to the geometrical scaling of Lq,(4) this
ratio should correspond to that of the slone parsmeters of
these DCSs, Ixperimentally, the approximate values of the

slope parametersla) °

are 8§ and 9.6 (GeV/c) ~ for K p-r"3" at
Piaw = 16 GeV/c¢ end =ty o, kT3t at p, . = 14 GeV/c, respectively,
and thus consistent with the prediction of the geometrical scal -

ing.
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(f) Six charge exchange processes
We consider the following three pairs of charge exchange

processes.

(A) 7 p — %, ap - x4 ( » exchange)
_ - e

(B) K p—»Kn, K"'P - Koyt ( p-4, exchange)

(C) =z"p — gn, xTp - 24t (4; exchange)

Tt has been remarked that ¢-dependence of forward DCE of each
couples of reactions (4), (B), and (C) are very similar to

each other near pw, ~ & GeV/c.l3> This fact can be interpret-
ed from the viewpoint of the geometrical scaling that the
values of %r for each couples of reactions are approximately
equal to each other. In fact the dips of # p - z°n and = p-»
=4 DCS are found near ¢= -0.55 (GeV/c)® and the dips of = p

3 *
—~zn and = p-z4"" DCS are observed near ¢t = -1.5 GeV/c.lg)’ )

§l, Concluding remarks

We have discussed the phenomenclogical evidence for the
vossible existence of the geometrical scaling ol the impact
parameter amplitudes. In particular, the forward DCSs of Ktp,
pp and pp elastic processes can be understood systematically

. . NN - ; N
by the scaling relation o bEY s B KN~ 1, 03, More precise

¥} Tn our previous paper?4> the value of 4, of = p = 2n pro-
cens was estimated to be 0,7~ 0.8 fm oy examining the
effective trajectory. This valuc is smaller than that of
other inelastic processes.4> Now, the dip of # p — 27 (at
¢ 2:~1.5(GeV/c)2)'can be explained by tsaking 4, ~ 1,1 Im,
but the explenation of the effective trajectory remains

as a2 rather complicated open question,

] ] e



measurements of DCS and polarization as well as quantitative
analyses based on the hypothesis of the geometrical scaling
will provide an extensive test of the empirical regularity of
the geometrical structure of the hadronic processes. For
instance, precise measurements of {DPP(s, £)—DPP(s, e)}, {D5P(s, 2)-

DX (s, ¢)1, and {D*Rs, t-D"P(s, )1 arec useful to verify directly

3
the scaling of R(s, ¢)discussed in (d).

Although the geometrical scaling represented by Eq. (4)
refers to the impact paremeter amplitudes which are dual to
the "same' "Regge' exchange, this kind of scaling may be ex-
tended to that between the vector and the tensor Regge ex-
changes with respect to their imasginary parts for the case
where the exchange degeneracy 1s expected to hold,

The scaling of sy to p ratio may be qualitatively under -
stood from the view-point of the strong absorption modelslB)
with the additional assumption of the geometrical scaling of
the Pomeron exchange amnlitude, since in these models the
veripherality of Im g, (s ¢t) distributed around é~%, ig the
result of the strong absorntion effect due to the Pomeron ex-
change whicil has the interaction radius of b~4, . Kecently
it has been pointed out by Zarmil6) that 5, has different
values for zN , KN and NN scattering while 4, is around 1 fm
commonly for the above three processes, This point of view is
different from that of the scaling of 4 Lo 4 ratio and pro-
bably that of the strong asbsorption models, Of course, we be-
lieve that the view-point of the geometrical scaling discussed
in this paper 1s more preferable to that of Zarmi, and it is

necessary to get more precise experimental data for a decisive
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test.

The possible existence of the geometrical scaling pointed
out in this paper suggests that the impact parameter plays ean
important role for a simple systematic description of hadronic
processes at high energies.

After this work was completed we received a preprint by
S. Otsuki.17) He pointed out and discussed the scaling of %4
to 4 ratio on the basis of a composite model. Their value of
by ratio is similar to that obtained in this paper in the case

of K’ and PP elastic scattering.

The author would like to thank Dr., F, Takagi for stimu-

lating discussions and a careful reading of the manuscript.
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Table caption

Table 1 - Approximate values of the slope parameter e« and 4.
For details see (C),.

Figure captions

Fig. 1 - The left hend side of ©q.(9) (&) and the right hand
side of Eq.(9) with ( s/ s&M: = (1,23%)< (3) at P =
6,8, 12.8 and 14,8 GeV/c. The experimental data are

taken from Ref.8.
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Fig., 2 - The consistency of Eq.(16) and that of Eq.(17). The
experimental points ¢ and ¢ are refered to DK?@;t)

3)

and DX?(5¢) , respectively. The solid curves are
the right hand sides of Egs.(16) and (17) calculated
using the best fit value for DPP(s, ¢) and D™P(s, ¢)

obtainedin Ref.8, 4= 0,224, B= 0.166, and &= 1.23.

Table 1
Slope parameter| Approximate
Elastic Process by b,
((Gev/c) ™2) [ fm)
™ p 7.8
1
z'p 7.4
K'p 7.0
1
K'p 6.0
PP 11.5
- 1.5
Pr 9.5
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