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ABSTRACT 

In chapter one, we explain briefly the continuum limit, scaling, and high temper-

ature expansion of critical phenomena, Monte Carlo algorithms and fitting. 

In chapter two, different continuum limits of the Ising model in dimen-

sions (D) 2, 3 and 4 are investigated numerically. The data indicate that triviality 

occurs for D = 4 and fails for D < 4 in each limit. 

In chapter three, a relation between the critical exponents of the leading 

and confluent scaling terms is derived using the finite size scaling argument. We 

also determine the new scaling variable of the 4D Ising model based on a new 

Monte Carlo simulation data. 

In chapter four, a Monte Carlo study of two dimensional diluted Ising 

systems is reported. It is shown that regular dilution does not affect critical expo-

nents, while a random one does, with critical exponents varying continuously with 

impurity concentration. The importance of fluctuations in producing such effects 

is emphasized. 

In chapter five, a different point of view regarding the critical exponent of 

the specific heat of the 3D Ising model is presented. Based on the analysis of high 

temperature expansion, finite size scaling and Monte Carlo data in the symmetric 

phase of the 3D Ising model, it is shown that logarithmic scaling behavior of specific 

heat is more consistent than power scaling behavior. 
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CHAPTER 1 

GENERAL INTRODUCTION AND METHODOLOGY 

1.1 Lattice Model as a Continuum Limit 

With Feynman's path integral quantization, the ¢>4 theory in Euclidean space is 

described by its Schwinger functions, 

Sn(Xo, ... , Xn) =< </>(xo) ... </>(xn) >, (1.1) 

which is averaged with respect to the formal measure 

TireR4 d¢>(x) exp[-SE[¢>(x)], (1.2) 

SE[¢>(x )] = exp {- f ( ~l\7¢>(x)l 2 + ~2 
¢>(x? + ~¢>(x )4

) dx }. (1.3) 

Except for the Gaussian case where ). is zero, this integration is not defined in 

general. The only analytically accessible method is perturbation theory, where 

the Euclidean action is a sum of Gaussian action and a small perturbation. In 

this case, the exponential of the small perturbation can be Taylor expanded, and 

the integration can be done analytically. Since the main contributions to the 

Schwinger function come from the configurations of ¢>( x) which make the Gaussian 

action minimum, and from slight fluctuations around that minimum, the result of 

perturbative calculations can be correct only when the large fluctuations around 

the minimum are suppressed for some physical reasons; the result of perturbation 

theory would not be reliable otherwise. 

One way to define +he integral (1.2) would be by introducing a discrete 

lattice. On a lattice the I.tatter field is defined only on the lattice sites, and 
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fluctuations of the field between adjacent sites will be ignored. In this sense, 

introducing a lattice is equivalent to replacing R 4 in eq(I.2) with aZ\ where a 

is a certain positive number. So it is evident that as the lattice becomes denser 

and denser, meaning that the length between two adjacent sites (a) approaches 

zero, all the configurations of the field contribute to the Schwinger functions: this 

limit will be called the continuum limit. We always consider the physical situation 

where the fields separated by a finite distance are correlated. When a --+ 0, a 

finite distance in physical units is equivalent to an infinite length in the lattice 

unit (in units of a), so that it can be said that the continuum limit is obtained when 

the corresponding lattice model has infinite correlation length (CL). In statistical 

physics at the critical point CL becomes singular, so that the continuum limit of 

a quantum field theory will be obtained as one approaches the critical point of the 

corresponding lattice model. In general, there are two approaches to the critical 

point (or to the critical line): one in the symmetric phase where the symmetry 

of the original system is manifest, the other in the phase where the symmetry is 

spontaneously broken. 

In order to illustrate the relation between a quantum field theory and the 

corresponding statistical model, let us note that after a rescaling ofthe field, 

SE can be rewritten as 

where 

¢ = Const. x ¢, 

¢=~¢ 

).=6).'jK2 

m2 = (1- 2).- 8K)/K 

Here we set a = 1. Now, consider the model in the limit 

>. -+ oo, K fixed. 

(1.4) 

(1.5) 

(1.6) 

(1. 7) 

(1.8) 

(1.9) 
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The factor in the action 1.5 

(1.10) 

vanishes in this limit unless <fn 2 = 1, which means that only <fn = ±1 contribute to 

the Schwinger functions. This shows that the lattice ¢4 theory, in the limit where 

the bare coupling constant becomes very large, is the Ising model whose partition 

function is defined as follows: 

z = L: exp{ -.BO"nO"n+~}. (1.11) 
n,~ 

Here an is a spin on the lattice site n, and it is either 1 or -1. In this parlance, 

it is evident that 2~~: plays the same role as the inverse temperature .8 in the limit 
)..'-+ 00. 

The relation between Ising model and lattice ¢4 is deeper than this. To 

illustrate this point, note that identity [1] 

(1.12) 

where J is any symmetric positive definite matrix, and summation on the repeated 

indices is implied. Thus the generalized partition function of the Ising model in 

the presence of a magnetic field H can be written as: 

(1.13) 

(1.14) 

Making use of 

L: = IJ(2cosh</>i) =Cons. x exp{['ln(cosh</>i)} (1.16) 
.Si i . i 



and 

we obtain 

ex exp (-~H.J:-:1 H·) 4 ' lJ J 

X j D<Pexp{ -<PJi-/<Pi + Hi<Pi + ~ ln[cosh(2Jij<P;)]}. 
' 
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(1.17) 

(1.18) 

(1.19) 

This relation shows that a certain scalar field theory corresponds to the Ising 
model. 

In this dissertation we will focus mainly on the study of the continuum 

limit of the <P4 theory in the limit ). -+ oo, which is equivalent to the study of the 

Ising model. 

1.2 Various Definitions of Physical Quantities 

In many cases, physically interesting quantities are related with the so called con-

nected n-point function, which will be denoted as 

G(xi,···,xn) =< (<P(xi)- < <P(O) >) .. ·(<P(xn)- < <P(O) >) >c, 

and the Fourier conjugate of G(xh x2 ), which will be denoted as 

For the ferromagnetic Ising model with the Hamiltonian 

H =- L UjUj, 
<i,j> 

X= 2: < (uo- < uo > )(ux- < uo >) > c = G(p = 0). 

Using translation invariance, X can be written as 

1 
X = LD ( < S2 > - < S > 2) 

(1.20) 

(1.21) 

(1.22) 

(1.23) 

(1.24) 
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where 

(1.25) 

The above eq(l.24) shows that the magnetic susceptibility is proportional to the 

statistical fluctuations of the total magnetization of the system. In a similar 

way, specific heat per link is proportional to the fluctuations of the energy of 

the system, 

(1.26) 

The fact that these quantities grow to infinity approaching the critical 

point means that in this limit any kind of configuration contributes significantly to 

the evaluation of these quantities. This makes it very difficult to solve critical phe-
nomena using an analytical method such as perturbation theory. In other words, 

the system has too many degrees of freedom to solve it exactly. One breakthrough 

to overcome this difficulty is the so called renormalization group (RG) technique. 

The basic idea of RG is that near the critical point the correlation length diverges 

and the long distance properties of the system are not affected by details at the 

microscopic level. So the details of the microscopic level can be integrated out, 

yielding the reduced correlation length in a new lattice unit. This procedure may 

be called blocking of the lattice. By this procedure, it is obvious that the number 

of degrees of freedom of the system is reduced. Furthermore, the momentum cut-

off of the system is also reduced, which implies that the coupling constants should 

be renormalized. Critical exponents are derived from analyzing how the couplings 

change under this blocking procedure. The problem of the RG is that the handling 

of errors due to blocking is hardly rigorous in most cases. 

At values of f3 different from the critical f3 (denoted by f3c ) the system is 

not infinitely correlated, meaning that G(x1 , x2) decays exponentially. At f3c the 

system is infinitely correlated, meaning that G(xh x2) decays much more weakly 

than the exponential decay. To be more specific, 

G(O, x) ex: e-:r/e if f3 =/= f3c (1 27) 



and 
1 

G(O, X) <X xd-2+'1 if {3 = f3c 

By Fourier transforming both sides of the eq.(1.27) 

l.h.s 

r.h.s 

from which 

16 

(1.28) 

(1.29) 

(1.30) 

(1.31) 

where C is the proportionality constant in eq(l.30). Noting that the renormalized 

mass is defined as the pole of the Fourier conjugate of the two point Green's 

function, one can immediately conclude that the renormalized mass mR is 

1 
ffiR= -. 

~ 
(1.32) 

In the finite system with the linear extension L the linear momentum is quantized, 

Pi = 2 sin( 1rnd L ), (1.33) 

where Pi is the i-th component of p and ni is a non-negative integer. Removing 

the constant C in eq(1.31) we obtain 

(1.34) 

Near the critical point where the correlation length is still finite but large 

enough, various physical quantities scale according to certain scaling functions . At 

f3c it is evident that the two point Green's function has scale invariance. Solving 

the Callan Sym.manzik equation[2) in the deep Euclideen region is known to have 

a certain scale invariance also. Deep Euclidean region refers to the region where 

the mass of the physical system is negligible, and without a mass term any theory 

without a momentum cutoff displays scale invariance. Note that approaching the 

critical point means the mass of the system vanishes. Besides certain exceptions 
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such as the Kosterlitz-Thouless[3) phase transition, it is generally believed that 

any thermodynamic quantity X scales according to the scaling form 

(1.35) 

Here A,B and Care constants, and p and pare the critical exponents for power and 

logarithmic scaling respectively. The correction terms to the leading power scaling 

are called confluent terms. In the discussion of the 3D Ising model the nonanalytic 

confluent term will be discussed further. For x, e and Cv the corresponding 

critical exponents are/, v and a respectively. Thanks to the exact solution of free 

energy of the 2D Ising model [4], the values of ,,.:y, v, ii, a and a are known to be 

4/7, 0, 1, 0, 0 and 1 respectively. For the 4D Ising model, there is general agreement 

that the scaling behavior of x, e and Cv is that of the mean field theory of the 

Ising model with the multiplicative logarithmic correction. This belief is supported 

by the renormalization group equation arguments[5), and was rigorously proved by 

Hara et al [6). Therefore, for the 4D Ising model the values of/, ;y, v, ii and a are 

1, 1/3, 1/2, 1/6 and 0 respectively. 

For the 3D Ising model, it is generally believed that the scaling form does 

not include the logarithmic confluent terms. However, recently the scaling form 

with an additive nonanalytic term 

(1.36) 

has been advocated by certain series expansion experts [7]. It is generally believed 

that with the inclusion of this term the critical exponents satisfy the hyperscaling 

relation 

(1.37) 

where ~ defined later. For a detailed discussion, we will come back to this point 

later, in chapter five of this dissertation. 

For the definition of the renormalized 3-point coupling constant(IR ) and 
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the renormalized 4 point coupling constant(gk ), note that all the connected n-

point Green's functions C'(x11 •.• , xn) (n=3,4, ... ) vanish identically for the non-

interacting theory. Therefore g~ and 9k at zero momentum can be defined as 
follows. 

g~ - L: G(xh ;j;, x3) (LieL)D/2 
Xt,X2,X3 X 

(1.38) 

9k L: G(xt,.;. ,x-t) (LieL)v. (1.39) -
Xt,X2,X3,X-t X 

Note that both g~ and 9k are wave function renormalization independent. They 

are defined at zero total momentum because of the sum over coordinates. Note 

that in the symmetric phase g~ vanishes identically. From this, and using the 

translation invariance, 

<t ( < S4 > ) ( I )D 9R = 3 - < s2 >2 L eL (1.40) 

where S is the sum of all spins over the whole lattice. 

Binder's cumulant U L on a lattice with linear extension L is defined as 

( 
< S4 >) 

UL = 3- < S2 >2 . ( 1.41) 

This quantity plays a very important role in analyzing the finite size scaling, which 

will be discussed in more detail in chapter three. We define 

(1.42) 

and 

IU41 = L: IU-t(O, X2, X3, X-t)l. (1.43) 
X2,X3,X-t 

From these definitions, it is straightforward that in the symmetric phase 

(1.44) 

The critical exponent~ is defined from the scaling behavior of IU-tl· Namely, with 

the definition of t = (f3c - (3) I f3c , 

(1.45) 
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1.3 High Temperature Expansion and its Application to The Critical 
Phenomena 

Analyzing the high temperature or the low temperature expansion of a certain 

statistical model whose rigorous solution is not known has been a very powerful 

method to estimate f3c and various critical exponents. Moreover, new techniques 

for overcoming such problems as the explicit inclusion of confluent singularities into 

methods of series analysis have been developed[7]. Among these various techniques, 

we will describe only two methods which are adequate in relation with the argu-

ments of the o value of the 3D Ising model. For details, consult Guttmann[7](See 

also chapter five of this dissertation). 

Consider the partition function 

Z(/3) = L · · · L exp{/3 L uiui}· (1.46) 
O"N=±l 0"1=±1 <i,j> 

If f3 is sufficiently small, Z(/3) can be expanded in a power series of ;3. First, observe 

that for the Ising variable u, 

exp(f3u) = cosh {3 + u sinh {3. (1.4 7) 

Applying this to eq.(1.46) yields, 

Z (;3) - L · · · L IT (cosh {3 + O"iO"j sinh {3) (1.48) 
O"N=±1 0"1 =±1 <i,j> 

- (cosh f3) 2N L · · · L IT (1 + O"iO"j tanh ;3). (1.49) 
O"N 0"1 <i,j> 

Expanding TI<i,i> (1 + uiui ), it can be expressed as a sum of all the powers of link 

variables over all possible links < i,j > on the lattice. Link variable implies 

the product of two Ising spins O"i and ui associated with the link < i,j >. Since 

L.:r=± 1 = 0, the sum over all the spins which are covered by odd number of links 

should vanish. In addition, no link can be covered more than once. So, all the 

contributions to the partition function come from closed link configurations, and 
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for each link a factor tanh f3 can be attributed. Therefore we get an expression for 

Z(/3): 

Here a 1, a2 and a3 are all the possible number of configurations which consist of 

four closed links, of six closed links, of eight closed links, etc respectively. 

Thus, the general form of the high temperature expansion for a physical 

quantity X will be 

(1.51) 

Given the above series, a useful theorem is that if 

(1.52) 

(so that a ~ A) the series converges for l/31 < A-1 and diverges for l/31 > a-1 . In 

most cases, lim,._oo la,.+Ifa,.l exists and is equal to either a or A, and the theorem 
says that the circle f3 = a-1 = A-1 contains at least one point of singularity . It is 

worth mentioning that there may be more than one singularity on the circle. 

For the study of power scaling form without any nonanalytic confluent 

terms, there is a widely used method of series analysis, which is primarily due to 

Domb and Sykes[8]. This can be proved using Darboux's theorem, which is stated 

in detail in the book by Guttmann[7]. According to this theorem, if a function F 
behaves as 

F(z) ~ A ( 1 - z: ) P + B (1.53) 

as z ~ Zc , then we can write 

00 

F(z) = L a,.z", 
n=O 

(
n + p -1) -n where a,.= A(zc ) n Zc . (1.54) 

The ratio of a,.fa,._ 1 can be written as, 

r n = ~ = _!_ (n + p - 1) ( n -1 ) = _!_ (1 + e..=_!.) . 
a,._ 1 Zc n n + p - 2 Zc n 

(1.55) 
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A plot of rn versus 1/n as n -+ oo yields Zc and p. 

If A and B are entire functions, this method works rather weli. Indeed, in 

this case one can go further and expand A(z) around Zc as 

F(z) "'A ( 1- z: )P {A(zc) + (z- Zc )A'+ O(z- Zc )2
} + B(zc ), (1.56) 

so that 

rn = ~ (1 + p-
1 + c

2 
+ 0(1/n3)) 

Zc n n 
(1.57) 

where c can be related to A, A' and Zc . 

Another ratio method which is important for this dissertation foilows from 

Tauberian theorem, given by Fe1ler[10][7). If a function G(z) behaves like 

(1.58) 

where A and k are constants, one can write 

00 
G(z) = :L anzn (1.59) 

n=O 

with c z p ( z p-1) an"" -[lln _c_l + pln k lln _c_l ). 
~n n+1 n+1 

(1.60) 

Given the series(1.60) with known coefficients an (n=1,2, ... ), a least squares fit 

method can be applied to estimate the best values of Zc , p, k, and the proportion-

ality constant. In chapter five of this thesis this fit will be done for the evaluations 

of the critical exponents of the 3D Ising model. 

1.4 Monte Carlo Simulations 

As stated before, using Feyman's path integral quantization, solving a quantum 

field theoretical model is formally equivalent to solving an equilibrium statistical 

me del on a lattice. However, for a typical statistical model such as the 2D Ising 
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model on the lattice L=20, the total number of configurations will be 2400 , and 

averaging over all these configurations will be impossible for any available com-

puter. Moreover, averaging over all the possible configurations is not necessary to 

calculate an accurate ensemble average (say within a statistical error of .1 percent). 

The idea behind the Monte Carlo method is to generate a sequence of inde-

pendent configurations with the probability of equilibrium distribution exp[ -,8 H (C)] 

so that for a certain thermodynamic quantity A 

1 N J lim N L A(Cn) = dp(C)A(C) 
N-oo n=l 

(1.61) 

dp(C) = exp[-,BH(C)] /Norm, j dp(C) = 1. 

The algorithms we shall consider are such that the probability of having a given 

configuration Cn depends only on Cn-l and not on the previous history of the sys-

tem: sequences generated in this way are usually referred to as Markov chains. A 

Markov chain can be completely described by the transition probability T P( C, C'), 
which defines the probability of having Cn+l = C' if Cn = C. It is obvious that for 

a sensible algorithm, after a finite number of operation of these transitions, any 

allowed C should be generated with a nonzero probability from any C'; this condi-

tion is referred as the ergodicity condition. Another condition which is a sufficient 

condition for a sensible algorithm is the so called detailed balance condition stated 

below: 

TP(C',C)exp[-,BH(C')] = TP(C,C')exp[-,BH(C)]. (1.62) 

With these two conditions it can be easily shown that this transition probability 

satisfies the eq.{l.61 ). To be more specific, let us denote the probability for the 

n-th sequence to be in configuration Cas Pn(C). Then, 

Pn+I(C') = L:TP(C,C')Pn(C). (1.63) 
c 

Summing over C in eq.{l.62) and using EcTP(C,C') = 1, we obtain 

Pn+l(C') = exp[-,BH(C')], (1.64) 
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which shows that n+1 th configuration is generated with the desired equilibrium 
distribution. 

Historically the first algorithm satisfying these two conditions was devel-

oped by Metropolis [11]. The updating prescription is as follows: 

1. Select an arbitrary configuration C with energy H( C) as starting configura-

tion. 

2. Flip spin at one or more site according to some arbitrary rule. Let the new 

configuration be CT and new energy H(CT). 

3. If the H ( CT) has been lowered then this new configuration is accepted. If the 

H( CT) has been increased then the new configuration is accepted with the 

probability exp{ -~H}, where ~H = H(CT)- H(C). 

The problem with the Metropolis algorithm is that when the correlation length 

becomes considerably large the new configuration generated with this algorithm 

is very dependent on the initial configuration. In other words, it does not provide 

well distributed sampling. In order to generate an independent configuration one 

has to repeat this procedure a large numbers of times. ( The number of sweeps to 

get an independent configuration from a given configuration is defined as the auto 

correlation time denoted by Taut·) This phenomena is the so called critical slowing 

down , and because of this slowing down the Metropolise algorithm becomes very 

inefficient for the simulations near the critical point. 

To overcome this problem, a very significant breakthrough was made by 

Swensen and Wang (SW) [13] followed by U.Wolff [14] and A.Sokal et al [15]. To 

show how a cluster type algorithm can be developed, let us consider the partition 

function of the Ising model. Within an overall multiplicative constant, 

z = E exp 13 E (ujO'j- 1) (1.65) 
O'j=±l <i,j> 
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- L: II {(1- p) + ph'uj,O"j} (1.66) 
O"j=±l <i,j> 

- (1 _ p)fHink• L II ( 1 + _P_h'uj,O"j) (1.67) 
{O"i} <i,j> 1 - p 

- (1- p)#link• L: { II + II suj,O"j( 1 ~ n (1.68) 
{O"j} <i,j> <iJ> p 

- (1- p)#link• L L (-P-)k•i ~(k!u). (1.69) 
1-p {O"i} A:;j=O,l 

Here kij 's are bond variables with values 0 and 1 and the bond probability is given 
by 

~(klu) = II(h'k;i,o + h'k;,,th'ui,u) 
ij 

(1.70) 

(1.71) 

Summing over the spins in eq.(1.69), one finds the Fortuin Kasteleyn [16] repre-
sentation in terms of bonds only, 

(1. 72) 

where n(kij) is the number of clusters for bond configuration kij, and an overall 

factor has been omitted. 

SW's algorithm is as follows. 

1. For fixed ui, activate kij independently link by link with probability p x h'uj,O"j 

2. For fixed kij assign a random spin value ±1 to each cluster as a whole. 

It is clear that under this procedure large clusters of spin flip collectively, and there 

is a chance of improving critical slowing down. U.Wolff[14] proposed a variation of 

SW algorithm in the form of one cluster method. His one cluster idea is to build 

only one of the many SW clusters as foll.Jws: 



25 

1. Pick a random site (x 0 ) on the lattice. 

2. Build the cluster C connected to X 0 using the same bond probability as for 

sw. 
3. Flip all spins in C. 

This algorithm also satisfies both ergodicity and the detailed balance condition[14]. 

Moreover, several test runs have been done indicating that one cluster type algo-

rithm has a much shorter Taut than that of SW's for some particular variables. A 

rigorous proof has been made by Sokal et al [17] that any kinds of multi-clusters 

and multigrid algorithms actually undergo the critical slowing down unless the 

critical exponent o of the specific heat is zero. Of course the critical slowing down 

of the multi-clusters and multi-grid is weaker than that of Metropolis. However 

they could not prove this for the one cluster type algorithm. The above facts seem 

to suggest that the one cluster type is more efficient than any other a[~orithm 

known so far. 

Now let us sketch the general methodology and define some terminology 

which will be used throughout this dissertation. 

1. Investigation of the finite size effects of the system with LD: 

It is widely assumed that the effect of finite size is only dependent on the 

ratio f, and there exists a certain value of L (denoted by l) above which 

the measurements of a certain physically well defined quantity yields the 

thermodynamic value of that quantity. In general, the values of L depend 

on the physical quantities under consideration. 

2. Thermalization: 

From a given initial configuration, the system should be allowed to reach the 

equilibrium configurations. By equilibrium configurations, we mean typical 

configurations characteristic of the given temp'!rature. For example, if /3 is 
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very small, then the typical configurations characteristic of that value of f3 
will have very randomly distributed spins over the lattice. So if the initial 

configuration happens to be very ordered then one has to wait until the con-

figuration becomes more disordered before starting the measurements. How 

many sweeps are needed to reach the equilibrium is decided by starting with 

two different initial configurations and by watching when the two measure-

ments start to yield close values. This number will be denoted by NEQ. 

3. Once the thermodynamic ratio and NEQ are determined, then one calculates 

the Taut defined before for each quantity which is supposed to be measured. 

Once Taut is determined the measurements of that particular quantity will 

be per that number of updating clusters. In practice, we binned the clusters 

and took the bin average and the standard deviation for that number of bins. 

From here on, the number of configurations over w~ich the measurements 

are made will be denoted as NM and the numbers of bins will be denoted as 
NBIN. 

To show how well the the one cluster type Monte Carlo simulation works 

, the data obtained for the 2D Ising model is presented in Table(1.1). For the 2D 

Ising model, the exact solution for the free energy in the absence of a magnetic 

field is known from Onsager's work[4). The exact formula for correlation length 

and the value of f3c are also known, namely 
1 e - In coth f3 - 2/3 

f3c - ln v'2 + 1/2 = 0.44069. 

(1.73) 

(1.74) 

Here we fixed the ratio L/{ ~ 6 which is the thermodynamic ratio. For 

each /3, there are four different bins each of which consists of 100,000 x 15 clusters. 

Among them 100,000 measurements were made per every 15 clusters. 

In order to see how accurate the data is, let us compar, our data for { 

with the exact values of eat the points of /3, which are 4.748, 5.932, 6.824, 7.966 , 



27 

9.553, 11.906 and 15.758 respectively up to order of I0-3 • As seen in table (1.1), 
the data obtained here fits the exact values within the statistical error. Our data 
of 9h is consistent with the rigorously proven fact that a nontrivial continuum limit 
for the 2D Ising model exists. In order to see the consistency of our x and Cv, we 
must perform a fit. 

The basic idea of fitting is the same for the linear fit and the nonlin-
ear fit. And for many cases, the non-linear fitting can be modified to be suit-
able to the linear fit. The idea of linear fitting is to fit N numbers of data, say 

(xt, Yt), ... , (xN, YN ), to the function 
M 

y = L aifi(x). (1.75) 
j=l 

Here, the function forms of fi( x) ( i = 1, 2, ... , M) are known; the unknowns are 
coefficients ai (i = 1, 2, ... , M). Note that the coefficients are completely linear. 
Now let us define x2 as 

(1.76) 

Here it is assumed that the data for Yi have Gaussian distribution with the standard 
deviation Uj. Obviously, the best fit will be at the point where x2 is minimized. 

So, it is trivial to solve for the minimum of x2 for the linear fit by solving the linear 
equation, 

By defining a matrix O:kj and a vector f3k by 

the eq.( 1. 77) reduces to the matrix equation 
M 

L O:kjaj = f3k, 
j=l 

(1.77) 

(I. 78) 

(1.79) 

(180) 
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and this form of equation can be easily solved by certain computer programs. To 

calculate the error in the estimation of ai 's note that 

u2( a;) = f: ui2 (aa~) 2 
j=l 8y, 

( 1.81) 

Note that C:Xkj is independent of Yi , so that 

(1.82) 

where Cik is the inverse matrix element of a;k· From these two relations, it is 

trivial to show that 

(1.83) 

Finally, the goodness-of-fit of data to the model must be estimated. With-

out this estimation, we have no indication that the parameters obtained above have 

any meaning at all. This can be done by evaluating the incomplete gamma func-
tion, 

f(a x) 1 100 

Q(a, x) = ' = -- e-tta-ldt(a > 0) . 
f(a) r(a) x 

( 1.84) 

It has the limiting value 

Q(a,O) = 1 and Q(a,oo) = 0, (1.85) 

and is monotonically decreasing with respect to x. In numerical recipes [18] 

GAMMQ(a,x) is the program for the evaluation of Q(a,x). Now we define the 

number of degree of freedom n by 

n = thenumberofdata(N)- thenumberofparameterstofit(M). (1.86) 

Then Q is defined as 

Q = Q(fl/2, x2 /2), (1.87) 

which gives a quantitative measure for the goodness-of-fit of the model. If Q is 
very small for a particular set of data then the possibility is that at least one of 

the following is true; 
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1. The model is wrong. 

2. The CTi are really larger than stated. 

3. The measurements errors are not normally distributed. 

On the other hand if Q turns out to be too close to 1, then the diagnosis for this 

can be either the errors are overestimated than they are or the data are fudged to 
fit the model. 

As stated m the previous section, as {3-+ f3c, the physical quantity X 

behaves asymptotically as 

(1.88) 

From now on, we will call this type of scaling the standard fit. However, a priori 

it is not known from what value of f3 the standard fit yields good results. In order 

to answer this question, we tried to fit the exact data of correlation length at the 

range of {3 given in Table(1.1) to the standard fit. By good is meant that the 

deviations are less than I0-3 so that the error of each point is 5 x 10-4 • Note 

that the data are not normally distributed, so that the value of x2 itself does 

not have any meaning in this case. As the result it gives f3c = .44125(10) and 

11 = 1.04348(1 ). To improve the estimation of f3c and other critical exponents in 

the standard fit one has to go deeper inside the scaling region. 

An improved form of the standard fit is 

(1.89) 

The same data fitting to eq(1.89) gives f3c = .44066(1) and 11 = .99717(1 ), which 

shows a surprising agreement with the true value. From these two examples it is 

obvious that the improved scaling form eq(1.89) yields a better estimate of f3c and 
critical exponents. Let us continue this test for x also. Trying to fit the data in 

Table(1.1) to the standard fit yields f3c = .4404(5) and "'( = 1.737(18). However 
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Table 1.1: A Monte Carlo run for the 2D Ising Model based on the single cluster 
algorithm 

{3 L X { 9h Cv 

.39 30 42.58(.07) • 4.747(.016) 14.4(.2) 0.3815( .0011) 
• 

.40 36 62.54(.43) 5.962(.036) 14.2(.3) 0.4358( .0023) 

.405 40 78.17(.06) 6.787(.033) 14.3(.2) 0.4697( .0017) 

.41 48 102.27(.58) 7.992(.041) 14.3(.2) 0.5062( .0011) 

.415 58 139.12(.49) 9 .499( .037) 14.4(.3) 0.5481{.0055) 

.42 72 201.83(.96) 11. 778( .038) 14.1(.4) 0.6071(.0053) 

.425 100 330.06(1.92) 15.724(.073) 14.4(.4) 0.6759( .0107) 

the improved form of fit eq.(l.89) yields f3c = .4408 and 1 = 1. 789(3). The 

latter result does not mean that, for the case of x, the improved fit does not yield 

better estimate of f3c and critical exponents, but it does mean that in order for 

the improved fit to be effective very good data is needed. Without this, the fit 

tends to be unstable and it is possible to get into false minima. It seems that, in 

general, the result of fit of x gives a better estimate than that of correlation length 

within a same range of the correlation length. Finally, by fixing f3c at the exact 

value the standard fit gives 1 = 1.743(6). 
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CHAPTER 2 

TRIVIALITY PROBLEMS IN QUANTUM FIELD THEORY 

2.1 A Brief History of Triviality Problems 

Historically the triviality problem was first suggested by Landau and co-workers 

[19], who summed the loop diagrams for the photon propagator D 1""(p2 ) of QED 

in the limit of large momentum transfer p2• Using the perturbation theory with 

the Landau gauge they obtained 

0:RD1""(p) = -~(g~~~- P~Pv)d(p2 ,o:R)· 
p 

In this limit d(p2, o:R) has a power series expansion, 

d(p2,o:R) = O:R (1 + o;Jt) + (o;Jt))2 + .. ·) = 
1 
-0:~ 

31r 

(2.90) 

(2.91) 

with, t = ln(p2 /m2 ). From eq.(2.90) and eq.(2.91), it is evident that for some 

finite p2, having the value of m 2exp(37r / o:R), the propagator cannot be defined. 

This pole is the so called Landau ghost, and the existence of this pole means that 

if the perturbative feature is correct even in the nonperturbative regions, the theory 

cannot be defined without a certain momentum cutoff which prohibits the existence 

of this pole. If one wants full considerations of momentum transfer p2 , the only 

way to make sense of eq.(2.90) is O:R = 0. So the theory becomes noninteracting ( 

trivial) with the removal of momentum cutoff. With the definition of f3 function, 

it is straightforward to show that any theory with the perturbative /3 function, 

(2.92) 



with positive valued constant C, leads to the running coupling constant 

9R(O) 
gR(t) = 1- C 9R(O)t' 

so the problem of ghost has again manifested itself. 
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(2.93) 

For ¢4 theory, the perturbative (3 function to the lowest order can be easily 
calculated as 

(2.94) 

So it would be very natural to expect the same behavior as QED. Regarding the 

triviality of ¢4 , it was K.Wilson[20) who, after his renormalization group equation 

calculations, suggested that ¢4 theory is also trivial in dimension 4. 

2.2 The Continuum Limits of the Ising Model 

The triviality of quantum field theories in four dimensions ( 4D) which are not 

asymptotically free in perturbation theory has been advocated for many years now. 

Both theoretical and numerical studies have been concentrated on the >..¢>4 model, 

relevant to the Weinberg-Salam model. Not only is there general agreement that 

the model becomes a free field theory in the continuum limit, but several groups 

have translated that information into upper bounds on the mass of the Higgs 

particle [21]. A different point of view has been expressed by Branchina et al [22], 

who contend that in the phase with spontaneous synunetry breaking, a nontrivial 

continuum limit exists. In this dissertation we will present the results of what we 

believe are the most extensive numerical studies regarding the continuum limit of 

the Ising model in 2D,3D and 4D; they indicate that whereas several nontrivial 

limits can be constructed for D < 4, all continuum limits in 4D are trivial. 

Let us briefly review the issue of triviality. In the Feynman path integral 

approach to quantization, the functional integral is undefined without introducing 

space-time discretization (except for the Gaussian case). Consequently for the 
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>.<jJ4 model, the functional integral is defined via the following expression: 

Z = (;n J.: d,P;) exp{- E aD[~ z (<Po : <P;) 
2 
+ ~

2 

z<P.' + ~ z'.,;;']} (2.95) 

Here A C zD, a is the lattice spacing, m and >. are the bare parameters and z is 

the wave function renormalization. In the usual parlance of particle physics, the 

continuum limit is achieved by letting a -+ 0, while adjusting suitably the bare 

parameters m and >. and the wave function renormalization constant z in such 

a way that the Green's functions of <Pz approach well defined limits. The lattice 

spacing a is not a dimensionless quantity, hence a better specification of the limit 

a -+ 0 is needed. It comes from observing that eq.(2.95) can also be regarded as 

the partition function of a certain lattice model. This model depends upon two 

parameters - the others can be scaled out. In general its truncated correlation 

functions decay exponentially at large (lattice) distances. However for suitably 

chosen values of the two relevant parameters, the correlation length may become 

infinite. This situation could be regarded as having let the lattice spacing go to 

zero, since the correlation length describes the physically meaningful distances. 

Therefore constructing the continuum limit of a quantum field theory is equivalent 

to studying the critical behaviour of a certain statistical mechanics model. We are 

emphasizing this point because most papers on the subject refer to the continuum 

limit as a -+ 0 and in fact a can obviously be scaled away, so it should be regarded 

asl. 

To complete this brief review of the triviality problem, let us assume first 

that the parameters in eq ( 1) are such that < <P > =0 and the correlation length is 

finite. We are interested in the behaviour of the Green's functions of the lattice 

model at distances which are asymptotic in lattice units, yet finite in physical units. 

The central limit theorem guarantees that at such distances the 2n-point (n ~ 2) 

Green's function becomes a sum of products of 2-point functions. Consequently, 

the renormalization group invariant introduced by Binder [12] 

U L( { </J}) = 3 _ L':it ,i2,i3,i4 < </Ji1 </Ji2 </Ji3 </Ji4 > ' (2.96) 
Eithi3,i4 < <Pi1 <Pi2 >< <Pi3 <Pi. > 



34 

must vanish as izr (L-linear size of the lattice) as long as the correlation length eL 
is finite and < <P >=0. Dimensional analysis then suggests that a renormalization 

group invariant which does measure the non-Gaussian character of the continuum 

limit is 

(2.97) 

The quantity 9k plays the role of a renormalized coupling constant at zero momen-

tum and describes the non-Gaussian character of the symmetric, massive phase. 

Namely if, as one adjusts m and >. to approach some critical point, 9k ap-

proaches a nonzero value, then a nontrivial massive, symmetric continuum limit 

exists (according to Newman's theorem[23), the larger point Green's functions are 

also non-Gaussian.) 

Two other continuum limits could be constructed. One could approach 

the critical point from the phase in which < ¢ > is nonzero. For that purpose it 
is convenient to define shifted fields 

(2.98) 

Again the central limit theorem guarantees that UL( { ¢}) vanishes and that 

(2.99) 

exists. The question of triviality concerns the limiting value of 9k as the bare 

parameters are adjusted to reach a critical point from the phase exhibiting symme-

try breaking. In such a phase though, one is not restricted to investigate 2n-point 

couplings and an equally good indicator of triviality is provided by the 3-point 

coupling 

(2.100) 

which should tend to a nonzero value as the critical point is approached, if the 

continuum limit is nontrivial. 
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Finally, one can attempt to construct a massless continuum limit by ad-

justing the bare parameters to some critical value and studying the limiting value 

of g~ and UL({<P}) as L--+ oo (see below). 

In this dissertation we report numerical results on the quantities discussed 

above. However, for computational reasons, we investigated only the Ising model, 

which can be regarded as a certain limiting value of the model defined in eq(1). 

Therefore, we studied only the approach to one particular critical point on the 

critical line of the lattice A<P4 model. It is generally believed that all critical 

points on that line have identical continuum properties, however this fact remains 

unproven. 

Before presenting our results, we would like to recall what is rigorously 

known about the problems we are addressing: 

1. Aizenman [24] proved that for the 2D Ising model, g~ -:/:- 0 

2. Aizenman [24] and Frohlich [25] separately proved that g~ =0 for D > 4. 

3. Aizenman and Graham [26] proved that in 4D g~ =0 if there are logarithmic 

corrections to the mean field divergence of the susceptibility. This fact was 

established by Hara and Tasaki [6] for A sufficiently small. 

4. Gawedzki and Kupianen [27] proved that the massless continuum limit in 4D 
is trivial for A sufficiently small. 

5. A nontrivial continuum limit in 2D and 3D has been constructed [28] but 

not for the Ising model (strong coupling), the case investigated here. 

The numerical study consisted in using the Monte Carlo procedure to 

compute normalized expectation values. We used the Wolff [14] version of the 

Swendsen-Wang [13] cluster method. The number of measurements depended on D 

and L. As an example, for tl e case of 4D, {3 = .1490 and 1=30, We have 5 different 
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bins each of which consisted of 4,500,000 clusters. For thermalization, 100,000 

clusters were generated for each bin. 

We employed always periodic boundary conditions. Consequently, at low 

temperature, the magnetization was defined as the time average value of the ab-

solute magnitude of the lattice spin. This procedure produces the correct mag-

netization provided a sufficiently large lattice is used. We defined the correlation 

length ~L as 

(2.101) 

where 

X - L: < ~o~; >c 
.... 
XEA 

L: < ~o~; >c 
·271" 

X1 e'Txl 
.... 
XEA 

Here x 1 is denoted as the first component of x. 

We define the massless regime as the regime in which ~00 / L > > 1, ~oo > > 
1 with ~L still defined by eq.(2.101). Obviously, at f3c ~L does not represent a true 

correlation length; moreover the limit L --+ oo does not exist(~L increases with 

L). For this massless regime, we continued to monitor 9k as the renormalized 

coupling. It is only this latter function which vanishes in 4D. On the contrary, 

Binder's function UL seems to converge to nonzero values in all D, in agreement 

with certain theoretical predictions [29). Therefore, Binder's function UL seems to 

be a good indicator for signaling critical behaviour but not triviality. (Theoretically 

one could modify the definition of Binder's UL so that it can be used as an indicator 

of the triviality of a massless limit: namely let (3 = f3c and consider an infinite 

lattice, partitioned into blocks of size L. Let OL be the spatial average of Binder's 

function defined for these blocks. Then in 4D this OL will vanish as L goes to oo, 

indicating the Gaussian nature of the massless continuum limit [30).) 

Our numerical findings are reco.-ded in Tables (2.2),(2.3) and (2.4). The 
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Figure 2.1: The behavior of 9k in the symmetric phase of the 4D Ising model. 

figure 2.1 ,2.2 and 2.3 illustrate the the behavior of 9k , of gh and of gk in 4D 
respectively. 

The difference between the scaling behavior of the Ising model in the 
superrenormalizable ca.ses 2D and 3D and the renormalizable ca.se 4D leaves little 
doubt to its trivial continuum limit in 4D. The data also suggests that taking 

different values of L/eL does not affect these conclusions. Also, we note that 
there is a sign change in the four point renormalized coupling in the phase with 

symmetry breaking. The physical meaning of this is unclear, however we have 
verified the correctness of this fact through the low temperature expansion. Of 
course, our data covering only one point of the critical line of the >..4>4 lattice 
model, do not rule out the conjecture by Branchina et al [22] but make it unlikely. 

On the contrary, the data confirm nontriviality in D < 4 and triviality in D=4 in 
every phase of the Ising model. 
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Figure 2.2: The behavior of Bk in the symmetry-broken phase of the 4D Ising 
model. 
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Figure 2.3: The behavior of g~ in the symmetry-broken phase of the 4D Ising 
model. 
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Table 2.2: ~L and 9k in dimensions 2, 3 and 4 in the symmetric phase. In 
2D, we took two different values of L/eL· L/~L'::::. 6 is the limit above which the 
thermodynamic limit is reached. The data in 4D shows 9k drop rapidly as f3c is 
approached. The supposed f3c is 0.1497. 

D {3 {L Lff.L 9k 
.40 5.96(.13) 6.04(.13) 14.0(1.1) 

.41 8.02(.26) 5.99{.19) 14.2( 1.4) 

.42 11.74{.38) 6.13{.20) 14.6{1.8) 

2 .425 15.76(.39) 6.03(.15) 14.2(1.9) 

.40 5.93(.09) 4.05(.6) 12.3(.4) 

.41 7.83(.09) 4.09{.5) 12.3(.4) 

.42 11.63(.16) 4.13{.6) 12.5( .6) 

.425 15.44{.19) 4.08(.5) 12.3( .6) 

.215 4.45{.02) 6.06{.03) 26.4(1.1) 

.217 5.59(.03) 6.08(.04) 26.4(1.4) 

3 .220 10.89(.06) 6.06(.04) 25.1{3.3) 

.2203 12.39(.02) 6.05(.01) 26.2(3.4) 

.2206 14.53{.05) 5.99(.03) 24.1(2.0) 

.1460 3.02(.02) 3.97(.03) 32.0{1.6) 

.1480 4.65(.06) 3.88(.05) 26.5(1.3) 

4 .1490 7.55(.02) 3.97(.02) 22.2(.3) 

.1491 8.13(.06) 4.03(.03) 15.8(2.3) 
-
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Table 2.3: eL, g~ and 9h in dimensions 2, 3 and 4 in the phase with symmetry 
breaking. In each dimension, we took two different values of L/eL; we believe 
that at the larger value the thermodynamic limit bas been reached. In 4D, both 
g~ and 9k drop considerably fast as f3c is approached. Note the sign change in 
9h compared to Yh in the symmetric phase. 

D {3 e L/eL ~ -4 -gR 

.459 2.88(.05) 6.60(.11) 17.1(.3) 454(19) 

.455 3.68(.07) 6.76(.13) 16.9(.4) 438(27) 

2 .425 5.72(.15) 6.65 (.17) 16.8( .4) 432(26) 

.459 4.11(.13) 9.73(.04) 24.6(.5) 1352(78) 

.455 5.36(.05) 9.51(.09) 24.2(.4) 1332(67) 

.450 7.82(.10) 9.85(.10) 23.9(.2) 1349(65) 

.2260 3.22( .01) 4.70(.02) 12.9(.2) 256(14) 

.2235 5. 70(.01) 4.74(.01) 13.2( .4) 286(19) 

3 .2230 6.86(.05) 4.67(.04) 12.7(.3) 260(12) 

.2250 3.62( .01) 7.97(.01) 16.0(.2) 768(19) 

.2240 4.61(.06) 7.81(.2) 16.4(.5) 763(83) 

.2230 6.37(.01) 7.86(.02) 15.6(.7) 753(86) 

.1522 2.53(.04) 4.82(.07) 16.4(.2) 808(29) 

.1506 4.34(.09) 4.84(.1) 12.1(1.2) 436(65) 

.1504 4.97(.04) 4.83{.04) 10.6(.6) 335(72) 

4 .1502 5.90(.08) 5.08(.07) 8.0(.9) 193(59) 

.154 1.70(.01) 7.06(.04) 17.5( .7) 756(15) 

.1522 2.39(.03) 7.11(.09) 13.1{1.4) 444(60) 

.151 3.43(.08) 7.01( .2) 9.8(.9) 221(97) 
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Table 2.4: eL and 9k in dimension 2, 3 and 4 in the massless phase 

D {3 L UL {L Lf{L 9k 
2 ln(¥2+1)/2 25 1.832(1) 22.66(4) 1.10(0) 2.23(1) 

75 1.832(1) 67.64(28) 1.11(1) 2.25(2) 

125 1.833(3) 113.02(54) 1.11(2) 2.24(7) 

3 .22165 32 1.415(1) 20.51(3) 1.56(0) 5.37(1) 

48 1.406(1) 30.73(5) 1.56(0) 5.36(7) 

72 1.389(3) 45.69(7) 1.58(0) 5.44(3) 

4 .1497 20 1.070(3) 13.98(7) 1.43(1) 4.50(5) 

30 1.069(8) 21.68(11) 1.38(1) 3.94(6) 

40 1.080(20) 29.61(28) 1.35(2) 3.66(14) 
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CHAPTER3 

FINITE SIZE SCALING OF THE 4D ISING MODEL 

Finite size scaling(FSS), formulated for the first time in 1971 by Fisher (30) has 

been used in a variety of ways to extrapolate results obtained in a finite system to 

get information appropriate to the infinite system. FSS is especially useful near 

the critical point, since at this point one needs a very large lattice size to reach the 

thermodynamic limit. The basic assumption of FSS is that, if one measure any 

physical quantity on a finite lattice with the linear extension L, then the effects of 

finite size effect only depend on e:. Namely at a temperature t = @~gc, 
PL(t) = f (..b...) 
Poo(t) P eoo (3.102) 

where Poo(t) is the thermodynamic limit of PL(t) and eoo is the bulk correlation 

length at that point. The function fp is unique in the sense that it does not 

depend on the type of the lattice used; it only depends on the quantity P under 

consideration. From the eq.(3.102), it is evident that 

lim fp(x) = 1. 
Z-+00 

(3.103) 

Let us assume that P00 (t) has a power scaling behavior with the critical exponent 

pas t-+ 0, namely 

(3.104) 

At the finite L, PL(t) must be finite even at t = 0, so the singular term t-Pmust 
N ~ N ~ 

be cancelled from f(L" t). Now the power series expansion of f(L" t) arround 

zero should be in the form of 

(3.105) 
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where a1 and a2 are constants depending on P. Now we get the FSS form 

(3.106) 

as t -+ 0 to leading order in t. Note that the fact L < oo and p > 0 are crucial 

to the above argument. However, it is clear that (3.106) is true even for p = 0 by 

noting that any quantity with p = 0 can be written as a ratio of two quantities 

having the same power. The famous example for this is the so called Binder's 

cumulant(UL)[12]. For Ising type spins using a set of rigorous inequalities it can 

be shown that U L defined by 

(3.107) 

satisfies 

(3.108) 

From this inequality, the finite size scaling form 

(3.109) 

follows. This states that, for t "' 0, Binder's cumulant does not depend on L 
unless L is so large that L t t =f: 0. Another important property of U L is that in 

the symmetric phase for sufficiently large L, 

(3.110) 

This relation can be easily proved using Callan-Symmanzik equation which states 

that once the momentum cutoff( A) becomes large enough, the renormalized Green's 

function does not change with the further increment of A. To be more specific 

d~n ~ 0 for sufficiently large A. (3.111) 

So the Callan-Symmanzik equation guarantees that from a certain large L (say L) 
9k becomes thermodynamic. Remembering the relation between U L and 9k in the 

symmetric phase 

(3.112) 
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the relation(3.110) is obvious for L ~ L. These two properties of UL are combined 

to find the critical point of the model. Some direct results of the FSS are at the 

critical point 

(3.113) 

(3.114) 

Even though it had significant successes in describing critical phenomena 

in various systems[63], it was showed by Brezin[33] that in 4D this basic assumption 

is not correct. To be more specific, he could show that for 4D, for the O(N) model, 

in the limit N --+ oo 

(3.115) 

and argued that this behavior would not beN dependent. 

In this dissertation based on Monte Carlo numerical data, we propose and 

determine the correction to the scaling variable. Let us assume that the generalized 

FSS variable is 

x = _£(lnL/1 

~00 
(3.116) 

and that the generalized scaling form of a certain physical quantity P00 (t) is 

(3.117) 

in 4D. This follows from non-rigorous renormalization group arguments [5] and 

was proved rigorously for the correlation length and the magnetic susceptibility by 

Hara et al [6]. Here t is defined as I 0:;;~c I and () is a model dependent universal 

quantity. We denote the critical exponents of the logarithmic correction to the 

leading scaling term by using a tilde; for example, 

(3.118) 

We assume that the finite size effect depends only on the modified scaling variable 

x so that 
PL(t) _ f (- ) 
Poo(t) - p X ' 

(3.119) 
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where PL(t) is the value of the quantity on a finite lattice of linear extension L. 

By defining the rescaled FSS variable x' by 

(3.120) 

eq(3.119) can be written as 

(3.121) 

On a finite lattice there can be no singularity for any values oft, so that as t -+ 0 

the expansion of jp(x' ) must be 

f~(x' ) ~ ap x' P + bp x' P+l + ... (3.122) 

to cancel the leading singularity t-P. Here ap and bp are constants depending only 

on P. To remove the logarithmic singularity the relation 

- pi/ p=-
11 

(3.123) 

must be true. From the above relation it is evident that if the correlation length has 

a multiplicative confluent correction to the leading power scaling, any other quan-

tity whose leading singularity is a power must also have a multiplicative confluent 

correction and vice versa. We stress that the relation(3.123) is model independent. 

Note also that this relation is consistent with the rigorous result [6] (1'=1/3 and 

v=1/6 ). 

Finally we obtain the leading FSS form 

A direct consequense of this is that 

eL(O) ex: L (In L )6 

xL(O) ex: L-rlv(ln Lp61v. 

(3.124) 

(3.125) 

(3.126) 
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Here the magnetic susceptibility and correlation length on finite lattice with linear 

extension L are defined as 

XL - ~~~ < S2 >, S = ~ u:z 
XEA 

(3.127) 

eL -
1 ~X -1 2sin(7r/L) x' (3.128) 

where 

(3.129) 

Here x1 is the first component of x. Motivated by the high temperature ex-

pansion result[34) (f3c =.149709(8)), we investigated FSS behavior of the Binder's 

cumulant(U£)[12] at f3 = .148968, at .1497 and at.148972 to determine f3c pre-

cisely. The results are summarized in Tab.(3.5). At f3 = .1497 a very detailed 

numerical study has been conducted and the results are summarized in Tab.(3.6). 

We conclude that the critical point is .1497(±.00002) and the FSS behavior be-

comes stable from 1=20. These results may be compared with the FSS behavior 

of 2D Ising model (Tab.(3.7)). In 4D, eL(O) is definitely not proportional to Las it 

is in 2D, and xL(O) is not proportional to £-rlv as in 2D. Since the leading critical 

exponents are known for the 4D Ising model (v = 1/2 and 1 = 1), from the FSS 

behavior of eL(O) or XL(O), one can easily determine the value of B by the linear 

least square fit, and since these fits are linear the error estimation can be done 

without any ambiguity(18]. From the eL(O) fit we obtain 8 = .238(.005) and from 

the XL(O) fit we obtain B = .269(.003). These results are shown in figure 3.4 and 

figure 3.5. 

Our estimate seems to show good agreement with the renormalization 

group prediction(B = .25) by Brezin. 

We used the one cluster type Monte Carlo algorithm devised by U.Wolff 

[14], and the pr riodic boundary condition was assumed. For the case of 4D mea-

surements for f1 = .1497, for each L, we had 8 bins each of which consists of .8 
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0.36 

0.34 

0.32 

0.30 

1.0 1.1 1.2 1.3 
ln(ln L) 

Figure 3.4: The eL fit. Here diamonds represent Monte-Carlo data and dotted line 
represents points obtained from the fitting. The value of the slope corresponds to 
(} 
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1.2 

1.1 
• 

1.0 1.1 1.2 1.3 
ln(ln L) 

Figure 3.5: The XL fit. Here diamonds represent Monte-Carlo data and the dotted 
line represents points obtained from the fitting. The value of the slope corresponds 
to 29 
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Table 3.5: UL at three different values of /3. At /3 =.14968 UL decreases with L, 
whereas at {3 =.14972 it increases with L. Note that UL is almost a constant from 
L=20 at {3 =.1497 

L {3 = .14968 {3 = .1497 {3 = .14972 

20 1.013(.002) 1.075(.019) 1.088(. 002) 

25 1.007(.015) 1.071(.012) 1.112(.010) 

30 .953(.031) 1.056( .016) 1.123(.008) 

35 1.055( .046) 1.190( .025) 

million clusters. The first .1 million clusters of each bin were used for the ther-

malization and the averages and error estimation were obtained over these six 
bins. 
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Table 3.6: eL and XL at {3 =.1497. Note that eLl L and XLI L 2 increase uniformly 
as L is incremented. 

L {L {L/L XL XL/L2 

20 13.99(.11) .700(.006) 1201.0(13.1) 3.003( .024) 

25 17.83(.07) .713(.003) 1960. 7(17.2) 3.137(.028) 

30 21.63(.13) .721(.004) 2889.0(24.5) 3.210( .027) 

35 25.62(.35) .732(.010) 4046.3(64.8) 3.303( .053) 

Table 3. 7: The finite size scaling study of the 2D Ising model at {3 = .44069. Here 
eLl L and XL/ Lt are not changed with the variation of L 

L UL {L e/L 
1 

XL XL/L'i 

25 1.832( .001) 22.66(.04) .906(.002) 304.8(1.7) 1.090( .006) 

50 1.830( .002) 44.88(.09) .898(.002) 1021.6(1.4) 1.087( .001) 

75 1.832(.001) 67.64(.28) .902(.004) 2083. 7(2.5) 1.090(.001) 

100 1.830( .006) 90.56(.24) .906(.003) 3448.0(7.3) 1.090( .002) 

125 1.833( .008) 113.02(1.94) .904(.008) 5095.4(15.2) 1.090( .003) 
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CHAPTER 4 

CRITICAL BEHAVIOR OF DILUTED ISING SYSTEMS 

The basic idea of universality [34] is that critical behavior depends only on a 

small number of general features of the Hamiltonian and not on its details. For 

classical ferromagnets, the important features are supposed to be the dimension 

N of the O(N) spin, the dimensionality D of the lattice, the symmetry of the 

interaction (in spin and real space) and its range. As an example, it is known 

that the nearest-neighbor (n.n.) Ising model has the same critical exponents on 

a square (S) or triangular (T) regular lattice. It is therefore understandable that 

the general consensus is that in the 2D n.n. model, critical behavior is unmodified 

by either bond or site dilution [35]. More specifically, suppose that for an S lattice 

the partition function is 

Z {p} = L exp {.8 L PiPiCTiCTj} (4.130) 
tT <iJ>eZ2 

In eq.(l) O'i = ±1 are Ising spins and the site variables Pi take preassigned 

values 0 or 1. If Pi=l at all sites, the system is undiluted. The system could be site 

diluted in a regular or random fashion. For instance, one could prescribe that Pi=l 

at certain sites forming a regular sublattice of Z2 and 1 otherwise. Alternatively, 

Pi could be treated as an independent random variable taking the value 0 (1) 

with probability x (1- x) for some 0 ~ x. Griffith's inequality can be used to 

bound from above the magnetic susceptibility of the diluted system by that of the 

undiluted one. Thus a high temperature phase without long range order (l.r.o.) 

will exists for any dilution. If the dilution is such that a percolating sublatticP (of 

sites where Pi = 1) exists, then a phase with l.r.o. will also exist at suflicit ntly 
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large {3. 

Until 1983 it seems that the general belief was that the phase transition 
occuring in the diluted systems has the same critical features as in the undiluted 
one. Perhaps the statement is easy to accept for the case of uniform dilution, where 
some cases - for instance x = 1/4 - can be analytically related to the undiluted 
one: the system remains an n.n. Ising model, but {3 is renormalized. 

The effect of random dilution is less intuitively clear and two decades ago 
led to some debates [35). The simple minded picture is this: at least for x small, say 
0.1 , one is making some small, randomly placed holes in the lattice. A percolating, 
robust, 2D lattice still exists, on which, in view of universality, one should observe 
the same type of critical behavior as in the undiluted model. This picture was 
made more quantitative by Harris and Lubenski (H-1)[36], who employed the 
renormalization group method of Niemeijer and van Leeuwen [37] to study critical 
behavior in a related spin-glass model. In this model, the randomness is introduced 
by giving each bond a random value, such that the mean is {3, yet small fluctuations 
around the mean are allowed. On a T lattice, H-L showed that the usual Ising 
fixed point is stable under these type of small, random bond modifications. Of 

course, we were discussing a randomly diluted site model, in which the site is 

either occupied or not, which is a large modification, so strictly speaking the H-L 
result does not apply. Yet, it appears that the expectation was that the behavior 

of the critical site diluted model will be the same as of the undiluted one. Two 

Monte Carlo studies claim to have established that fact [38). 

This belief was challenged in 1983 by Dotsenko and Dotsenko [39) who 
claimed that at least for weak bond dilution, critical behaviour does become modi-
fied, but only in a region of 0( exp( -c/ x) ( c > 0, x-the weak concentration of bond 
impurities). This conclusion is supposed to follow from the fact that the contin-

uum limit of the weakly diluted model is a certain 4-fermion interaction model. It 
leads to the surprising result that in some sense the critical diluted model is more 
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ordered than the undiluted one, since it has 1/11=2 (q=O). 

In this dissertation we report the results of a Monte Carlo investigation 
of the site diluted 2D n.n. Ising model. Our indications are that contrary to 

theoretical expectations and previous numerical claims, random dilution does affect 

critical behavior in this 2D system. We find though that the numerical study of the 
randomly diluted system is substantially more delicate than that of the undiluted 
system because of very important finite size effects. 

The numerical investigation was conducted as follows: at a given value 
of /J, we chose a square periodic lattice of size L x L and randomly diluted sites 

with probability x. We then conducted a Monte Carlo study of the ensuing Ising 

system, using the single cluster algorithm [14]. For a given random distribution of 

dilutions, a typical run started with 100,000 thermalization clusters; then followed 

measurements on 200,000 clusters separated by 20 updating clusters. The 200,000 

measurements were separated into 5 bins, which allowed an estimation of the sta-

tistical error. For the magnetic susceptibility and correlation length, we estimated 

this error at less than 1% and 3% respectively; for the case of finite size scaling 

study the estimated errors are less than .5% and 1% respectively. 

To monitor finite size effects, with the same L and /J, we repeated the 

measurements on the different realizations of the random dilution process. By the 

ergodic theorem, in the infinite volume limit, all expectation values of translational 

invariant observables, such as the susceptability, become independent of the real-

ization. Consequently at given /J, one should increase L until different realizations 

of the dilution process produce the same results within the error of each run. It is 

well known that in the undiluted system the thermodynamic limit is reached for 

LIe = 6. To our surprise, in the randomly diluted system, even at a small dilution 

x = 1/9, reaching the thermodynamic limit requires L/e greater than 20. To be 

more specific, the error in each run is substantially smaller than the error produced 

by changing the realization of the diluted lattice(see Tab. (4.8) and Tab. (4.9)). 
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In practice, we usually generated more than 15 different realizations of random 
dilution at each (3 fixing L/e approximately 20, and averages were taken over the 
values of each realization. We define the magnetic susceptibility x as 

1 2 """ x =TAT < s >, s = ~ ux 
XEA 

(4.131) 

and the correlation length eL as 

eL = . --1, 1#0 2sm(7r/L) XI 
(4.132) 

where 

XI= I: (4.133) 
XEA 

Here XI is the first component of x. In Tab. (4.10) and Tab. (4.11) we give the 
results of our measurements for x = 1/9 and x = 1/4 respectively. Besides X 

and e' we measured the specific heat and the four point renormalized coupling 
constant defined as 

g~ 

UL - 3- Eil,i2,i3,if < Uj1Uj2Uj3Ui, > 
Eil,i2,i3,i, < Ujl Uj2 >< Uj3Ui, > 

(4.134) 

(4.135) 

The values of X and e were used to determine critical exponents 1 and v. For 
x = 1/9, we obtain 

1 = 2.02(±.13) and f3c = .5385(±.0025) (4.136) 

from the X fit, and fixing f3c at .5385 v = 1.20(±.11) from thee fit. For X= 1/4, 
we obtain 

1 = 2.82(±.45) and f3c = .792(±.022) (4.137) 

from the X fit, and fixing f3c at .792 v = 1.73(±.35) from thee fit. In all cases 
the x2 per degree of freedom are between .1 and .2, and the fits (especially the x 
fits) are sharp enough to see clear deviation from the undiluted system. 
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Figure 4.6: The x fit for x = 1/9. The slope yields the value of I· 

To test our procedure we repeated the measurements for a lattice in which 
1/9 of the sites were diluted in a regular fashion(see Tab. (4.12)). We obtain 

1 = 1.748(±.017) and f3c = .5438(±.017) ( 4.138) 

from the X fit, and fixing f3c at .5438 v = 1.01(±.01) from thee fit. 

Finally, we present the finite size scaling study results for x = 1/9 at {3 

.5385 (see Tab. ( 4.10)). 

The obtained value of 1 f v from XL fit is 1. 77(±.07), which is consistent 
with our previous results from thermalization data. we believe that this is a clear 
indication that the value of T'J is not zero as claimed by Dotsenko and Dotsenko [39). 
There is little doubt that our data suggest 1 and v are changed from the standard 
Ising values by random dilution, but not by regular dilution. Also, from eL fit we 

obtain eL ex L6 with 8 = .99(±.13), which is consistent with the prediction of finite 

size scaling at critical point. 
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Discussion: 

1. That there is a dramatic difference between a regularly and a randomly 
diluted system can be seen from the following rigorous result, obtained by 
Georgii [40] (see Theorem 3.3): consider a randomly diluted S lattice and 

let x < Xc, with Xc being the critical density above which the sites where 
Pi = 1 cease percolating (for the S lattice Xc ~ .41 [41]). Let i11 be any site 
belonging to the percolating cluster C00 • Then there exists a f3c(x) such that 

for /3 > f3c(x) we have 

(4.139) 

but 
(4.140) 

Obviously in a regularly diluted system, eq( 4.139) would remain true, but 
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eq(4.140) would be false. Indeed, in a randomly diluted system, the prob-

ability to find sites connected to the percolating cluster by arbitrarily long 

and thin chains of occupied sites is nonvanishing. Such sites do not exist in 

regularly diluted systems. 

2. The observation made above underlines the importance of fluctuations in 

understanding randomly diluted systems. Fluctuations were also at the basis 

of a heuristic argument advanced by Harris many years ago [43], according 

to which if the specific heat exponent of the undiluted system a(O) > 0, 
then the randomly diluted system exhibits ordinary Ising behavior only for 

111-l'c (x)l > c x1101
; for /1--+ l'c (x), critical behavior is modified and for 

instance the specific heat does not diverge (remains 0(1/x)). We would like 
to offer a modification of Harris' argument, which leads to a lower bound on 

the critical exponent v(x). We already know from Georgii's result that the 

diluted system undergoes a phase transition. We do not know its order, but 

suppose it were accompanied by a divergent correlation length. In another 

words, assume that there exists a l'c ( x) such that for 6./1 = l'c ( x) - /1 
sufficiently small, 

(4.141) 

Now consider a region of the lattice of linear dimension e. The number 

of diluted sites in such a region is a random variable with mean xeD and 

variance .jx(1- x)eD. H we assume that (at least for x < Xc), f3c (x) is 

a smooth function of x, we can translate the local fluctuations of x into 

local fluctuations of f3c· But the self consistency of the assumption that at 

f3c (x ), e diverges requires that 

Therefore it must be true that 

1 D --<-v(x) 2 

(4.142) 

(4.143) 
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If we further assume the hyperscaling relation 

a= 2- vD (4.144) 

we conclude that 

a~ 0. (4.145) 

Our numerical results for 2D are consistent with these conclusions. 

3. Patrascioiu and Seiler [44] have proposed regarding classical O(N) ferro-

magnets as Ising systems with random couplings. (Of course in that case, 

the randomness corresponds to an annealing process, while until now we 

have discussed only quenched dilution. However, by a novel use of ergod-

icity, Patrascioiu and Seiler showed how to replace the annealed process by 

a quenched one.) The discussion above regarding the effect of the fluctua-

tions can be carried over and we would again expect eq( 4.143) and eq( 4.145 ). 

These expectations do not contradict general beliefs or numerical facts. For 

instance in 2D, the 0(2) model is expected to exhibit the Kosterlitz type of 

critical behavior [3], which corresponds to v = oo. Moreover, there is general 

agreement that the specific heat does not diverge in any O(N) model. We 

would guess that it is actually singular, but with a< 0. 

4. Our results contradict the H-L predictions. The morale is that the true flow 

of the renormalization group is more complicated than it was assumed. In 

the absence of estimation of the truncation error, the renormalization group 

arguments can lead astray (see for instance [45]). 
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Table 4.8: The finite size scaling study at (3 =.420 for x = 1/9. The errors denoted 
here and in Tab. ( 4.9) are solely due to different realizations of impurities. It is clear 
that as L increases the values of standard deviations due to different realizations 
of dilution decrease. However the value of standard deviation is still larger than 
the statistical error for a given realization. 

L X e 9h Cv 

15 16.77(1.17) 2.849(.162) 17.0(1.3) .2556( .0099) 

18 17.55(1.09) 2.937(.134) 17.8(1.4) .2522( .0075) 

21 17. 72( 1.02) 2.967(.108) 18.1(.8) .2514( .0059) 

30 17.86(.54) 2.985( .073) 19.2(1.3) .2499( .0045) 

39 18.13(.74) 3.002(.101) 19.4(2.5) .2507(.0049) 

48 18.31(.53) 3.048(.085) 17.9(6.2) .2517( .0037) 

57 18.03{.38) 2.979(.091) 18.7(3.6) .2495( .0033) 

Table 4.9: The finite size scaling study at (3 =.530 for x = 1/4. Note that the 
values of standard deviation due to different realizations are generally larger than 
those for x = 1/9 

L X e 9h Cv 

10 12.03( 1.83) 2.607(.332) 18.1(3.8) .2200( .0191) 

20 14.50(1.85) 2.868( .255) 23.2(3.1) .2060(.0081) 

30 14.99( 1.38) 2.953(.212) 25.4(4.0) .2069( .0054) 

40 14.99(1.85) 2.969(.222) 26.6(4.4) .2056( .0070) 

50 15.22(.96) 3.000( .249) 27.8(6.4) .2054( .0046) 

60 15.37(.75) 3.019( .133) 29.5(6.6) .2079( .0026) 

70 15.36(.73) 2.999( .142) 27.9(8.0) .2068( .0036) 
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Table 4.10: Results for x = 1/9. Here NB denotes the number of different real-
izations at a given /3. The values of gh_ are larger than those for the undiluted 
system (g~ == 14.2) 

/3 L NB X ~ 9h Cv 

.460 102 18 42.08( 1.05) 4.963(.191) 23.0(6.5) .3330( .004 7) 

.470 120 23 56.43(1.61) 5.959( .278) 20.8(7.1) .3580( .004 7) 

.480 141 25 77.68(2.29) 7.227(.323) 22.6(5.2) .3822( .0034) 

.485 162 14 93.00(3.42) 8.019( .397) 20.1(4.9) .3963( .0055) 

.490 180 14 111.78(2.18) 8.933(.412) 20.7(4.5) .4099( .0053) 

.495 210 12 139.71(2.64) 10.195(.412) 20.8(5.6) .4263( .0034) 

.500 240 16 182.56(8.02) 12.112(.585) 18.5(4.9) .4429( .0060) 

.510 360 18 327.62(9.60) 16.686(.765) 21.0(5.1) .4777(.0117) 

Table 4.11: The results for x = 1/4. From this table the values of 9h obviously 
increase with x. 

/3 L NB X ~ 9h Cv 

.600 100 18 36.04(1.78) 4.985(.362) 26.4(9.1) .2429( .0029) 

.620 118 17 48.38(2.29) 5.993(.237) 27.4(7.0) .2482(.0027) 

.640 148 13 71.36( 4.24) 7.780(.411) 25.3(5.2) .2545( .0050) 

.660 182 15 102.66( 6.56) 9.638(.584) 24.9(3.5) .2586( .0045) 

.680 240 12 163.61(9.59) 12.686(.724) 28.2(6.8) .2600( .0037) 

.700 360 15 288.30(23.60) 17 .835( 1.137) 26.3(6.4) .2626( .0036) 
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Table 4.12: The results for x = 1/4. From this table the values of 9k obviously 
increase with x. 

f3 L NR X ~ 9h Cv 

.600 100 18 36.04( 1. 78) 4.985( .362) 26.4(9.1) .2429( .0029) 

.620 118 17 48.38(2.29) 5.993( .237) 27.4(7.0) .2482( .0027) 

.640 148 13 71.36( 4.24) 7.780(.411) 25.3(5.2) . 2545(. 0050) 

.660 182 15 102.66(6.56) 9 .638( .584) 24.9(3.5) .2586( .0045) 

.680 240 12 163.61(9.59) 12.686(.724) 28.2(6.8) .2600( .0037) 

.700 360 15 288.30(23.60) 17.835(1.137) 26.3(6.4) .2626(.0036) 

Table 4.13: The results for an ordered diluted system with x = 1/9 

!3 L X ~ g~ Cv 

.47 36 33.01(.06) 4.459( .007) 15.3(.5) .3102(.0018) 

.48 51 57.22(.03) 6.219(.019) 15.2(.6) .3675(.0017) 

.50 63 82.07(.05) 7 .680( .020) 15.5(.6) .4032( .0008) 

.51 81 128.44(.50) 10.005(.033) 14.7(.3) .4506( .0008) 

.52 114 238.07(.25) 14.352( .048) 14.4(.6) .5174(.0026) 
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CHAPTER 5 

CRITICAL EXPONENTS OF THE 3D ISING MODEL 

Probably one of the major developments in the study of the critical exponents and 

the critical temperature for the 3D Ising model is the introduction of the non-
analytic confluent term to the usual scaling form. To be more specific, taking the 
example of magnetic susceptibility, the scaling form 

(5.146) 

is replaced with 

(5.14 7) 

Currently there exists no physical explanation for this change. Based an the renor-

malization group equation, the value of () was first evaluated by Le Guillou and 

Zinn Justin [57) to be 

() = .493 ± .007. (5.148) 

However after the HTE analysis of X on a FCC lattice upto the lOth order in 

tanh (3, Camp and Van Dyke[58) concluded that the coefficient b1 was negligible. 

Assuming the absence of this term, Baker analyzed various HTE using pade a.nd 
ratio methods, and evaluated that in 3D 

2~ - Dv -; = -.028 ± .003, (5.149) 

which violates that particular hyperscaling relation. The validity of this hyper-

scaling is related with the triviality of the continuum limit of the corresponding 
statistical model[59), so that the violation of that hyperscaling · ~lation means a 



63 

.a trivial continuum limit of the 3D Ising model. The observation of Camp and 

Van Dyke was refuted later by McKenzie who analyzed the same HTE series up 

to 15th order in tanh ,8, and estimated 

bt = -.052 ± .002. (5.150) 

Nickel[60] showed that 

2~ - Dv - "'f ~ 0 (5.151) 

if the non analytic confluent term is present. After Nickel there were a couple 

of similar calculations on different lattices, however the conclusions were not the 

same in all cases (see Adler[62] for the detailed descriptions). 

The evaluations of various critical exponents and ,Be have been contin-

ued by various groups using various methods. Le Guillou and Zinn-Justin[?] have 

carried out a series analysis using the fifth order e expansion for the critical ex-

ponents. Their estimations are "Y = 1.2390(25), v = .6310, ,Be = .3270 and 
7]=.0375(25 ). Series analysis for the extraction of various critical exponents and 

their derivatives has been improved by incorporating non-analytic confluent cor-

rections to the leading scaling behavior, and by the use of biased inhomogeneous 

differential equations. Guttmann[70], using the method of integral approximants 

obtained ,Be =.221657(7), "'{=1.239(3) and v=.632(3). Nickel and Rehr [51] ana-

lyzed the 21 terms of the high temperature series for x and e on a BCC lattice to 

get "'{=1.237(2) and v=.6300(15). The first detailed finite size scaling study was 

done by Barber et al [54] to get ,Be __:_ .22165 and "Y/v=1.98. Their results have 

been cast into doubt by Parisi and Rapuano [64] and by Bhanot et al [52]. The 

presumed culprit was the random number generator. Recently, Ferrenberg and 

Landau [55] have carried out a high resolution finite size scaling analysis using the 

histogram techniques of Ferrenberg and Swendsen [56] to obtain ,Be =.2216595(26), 

v = .6289(8) and "Y = 1.239(7). Another method for analyzing the critical behavior 

is to numerically determine the partition function and investigate the finite >ize 

scaling of the complex zeros closest to the real temperature axis. This was 1rst 
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done by Bhanot et al [53] yielding the estimate v = .6295(10). Alves et al [57] 
repeated these calculations giving v=.6285(19). Finally, Baillie et al al used the 
Monte Carlo renormalization group (MCRG) techniques to get v=.624(2) and 
7]=.026(3). For a nice summary of all the above results consult the paper of Baillie 

et al al [68]. The advantage of series analysis is that there are no statistical or 
finite size errors. However, in general, it is impossible to determine from what 
point in a series expansion the series become stable. Our data is summarized in 
table (5.14), and the result of the fitting is summarized in table (5.15). The result 
of the investigation of finite size effects is summarized in table (5.16). 

Regarding the value of a, all of the above methods extracted their values 
assuming the validity of hyperscaling 

Dv = 2- a (5.152) 

in the 3D Ising model. This relation is valid for the 2D Ising model and is believed 
to be correct in the 4D Ising model also. For the 3D case, although many believe 

its validity, there is no conclusive data[65]. 

Historically, it was Sykes et al [66] who first estimated the value of a for 
the 3D Ising model (3D IS) based on ratio method analysis of the high temperature 
expansions(HTE) of specific heat on the FCC lattice. Later their HTE of specific 

heat was improved up to v14 ( v = tanh (3) on the FCC lattice [66] and several 
different HTE on the other types of lattices were obtained. It was claimed that all 

of their results were consistent. However, pade analysis of these series expansions 
was not consistent with their results[67]. 

It must be emphasized that in the analysis of HTE and FSS the power 
scaling is preassumed, which means that a priori there is no proof for power scaling 
of the 3D specific heat. Moreover, all the trials to prove or to disprove this hy-
perscaling relation also assume the power scaling behavior of 3DSPH[65]. All the 
estimates of a from the methods stated above lie between .11 and .12 depending 

on various methods[68]. 
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In a certain sense the power scaling of the specific heat for the 3D IS is very 

unusual, since all the other critical exponents of the Ising model such as 'Y and 
v decrease uniformly to their mean field values with the increment of dimension 
from 2 to 4. In 2D it is rigorously proven from the famous solution of Onsager that 

the scaling behavior of the specific heat is proportional to In t (t = I.Bc - .81/ .Be ) 
whereas in 4D, there are several arguments based on the renormalization group 

equation that the leading order of it is proportional to (In t)113 [5). Therefore, the 
the natural estimate of a for the 3DIS is such that the value of a is zero with 

a certain power of the ln t between 1/3 and 1. In this dissertation, we will show 
that indeed this point of view is consistent with the analysis of HTE , of FSS and 

of the data obtained in the symmetric phase of the 3DIS. 

For the HTE analysis of specific heat for the 3DIS, the ratio method as-
suming no nonanalytic confluent correction will be used. Usually this correction 

does not make significant difference in the estimate of the critical exponents of the 

3DIS(less than 3%). Using Darboux's theorem[7] it was shown that if a function 
f( v) behaves like 

( 
v )-Q f(v)-A 1-~ +B (5.153) 

as v --+ Vc , then in the absence of the competing singularities, one can write 
00 

f(v) =I: anv\ (5.154) 
n=O 

where the coefficients {an} satisfy the relation 

(5.155) 

Using eq.(5.155) and the data given in the paper of Sykes et al [66), rn(n = 

9, ... 14) were calculated and the value of Vc , a and the constant C can be 

immediately estimated as .1024, .2623 and -.7838 respectively using the least 
square fit. These results are significantly different from those estimated using other 

methods (here it is between .1 and .125) and from the original estimate by Sykes 
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et al (a =1/8) obtained by fixing the Vc and Cas .10174 and zero respectively. To 
see how well this ratio method works for other quantitites would be interesting. 

From the HTE of X on the FCC lattice[69], the same method with the same range 
of coefficients(from 9 through 14 ) was applied to get Vc = .10173 and 1 = 1.246. 
This result can be compared with the result of McKenzie (vc =.10173(1) and 
/=1.246(5)) who used the Neville table estimates and the result of Guttman[70] 
(vc =.101721=1.2427(17)) who used the differential approximants and included 
the non analytic confluent term in his analysis. 

Assuming the logarithmic scaling behavior 

f ( v) "' lln [ k ( 1 - v: ) ] I a', (5.156) 

another ratio method based on Tauberian theorem for the estimates of expansion 
coefficients can be used. The Tauberian theorem[7] can be directly applied to the 

first derivative of f( v) with respect to v as, 

( 
V ) -1 ( V ) I f'(v)"' 1- ;;:- lln[k 1- ;;:- ]Ia - 1

• (5.157) 

As a result of this theorem the expansion coefficient { bn} off'( v) can be estimated 
as 

bn"' Const {lln~la'-1 + (a'-1)ln (klln~la'-2)}. 
Vc n n + 1 n + 1 

(5.158) 

We define yet another ratio r~ as the ratio of bn and bn-b then again Vc , a' and k 

can be easily estimated to be .10163, .81 and 144 respectively from the given { bn}. 
r~ through d3 were used as the input of the modified least square fit. If the series 
we used is believed to be long enough to give rise to the correct results, from the 

above result it is evident that logarithmic behavior is much more consistent than 
that of power scaling. Else, if the series is too short to get a correct result, then it 

can be said that the power scaling behavior of the 3D specific heat is not supported 

by the current HTE. To our best knowledge there is no longer series, therefore, it is 
not possible to clarify this point. Regarding the 3D FSS, we reexamined the data 

of Barberet al [54]. Their FSS data was obtained for ,8.22165, and we included the 
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data only with L ;::::: 26 in the analysis. Assuming the power scaling of the specific 
heat 

Cv = AL~ +B, (5.159) 

the value of ; is estimated to be .149 (the original estimate by the authors is 

.175), meaning that the corresponding value of a is less than .10 with all the 

currently accepted values of v. Moreover, it can be easily shown that the data fit 

a logarithmic function also with almost the same goodness-of-fit(the values of x2 

are 1.44 and 1.45 respectively). So it seems that the result of FSS study does not 

really support the power scaling behavior of the specific heat in 3D. 

Finally, Monte Carlo simulations have been conducted in the symmetric 

phase of the 3D IS. We used the single cluster type algorithm originated by U .Wolff 

[14], and periodic boundary conditions were assumed. First of all, the finite size 

dependence of magnetic susceptibility (x), lattice correlation length (e) and specific 

heat (Cv) was investigated at a certain value of .8=.210, and the data shows that 

all these quantities reach the thermodynamic limit already at L/e ~ 6. For a given 
value of ,8, the averages were taken over six or seven different bins, and typically a 

bin consists of four or five clusters and one measurement was done per 10 through 

20 updating clusters depending on ,8. As a result, for e the statistical error is less 

than 1% and for the specific heat the statistical error is at most 2%(See Tab(5.14)). 

We tried to fit the specific heat data to 

(5.160) 

while fixing the .Be value between .2216 and .2217 (.Be is believed to be between 

.22165 and .22166 by many authors[68]). The result is surprising since the data 

does not fit, meaning that the fit becomes better and better (the value of x2 become 

smaller and smaller) as the constant B decreases endlessly and at the same time 

a goes to zero. This is also true with any combination of five different data points 

from our seven data points. One might try to fit the data with the inclusion of a 

non analytic confluent term. But as stated before this term does not change the 



68 

values of critical exponents by more than 3 % so that it would not effect our final 

arguments. However these data fit with a logarithmic function 

cl C" = A{ln B(t3c - t3)} (5.161) 

with A~ .124, B ~ 34, o:' ~ .76 while fixing t3c = .221657, or A~ .126, B ~ 35, 

a'~ .75 with fixing t3c = .221652. The value of x2 is about 6. 

Now we discuss an important inequality 

o: ~ 2- Dv (5.162) 

which is proven rigorously by Sokal[71). This inequality shows that for the loga-

rithmic scaling to be correct, the value of v should be at least 2/3 which is larger 

than any estimates based on HTE. However, as stated before a priori it is impos-

sible to know whether the series is long enough to yield an accurate result. Here 

we are talking about a small error typically less than 3%. Therefore, it is not clear 

whether the existence of the additive confluent term is a true one or whether it 

is present simply to compensate the shortness of the series to yield a consistent 

estimate of the critical exponents with the hyperscaling. To increase the length 

of HTE is a very difficult task, therefore, to double the current HTE is almost 

out of the question. However, Monte Carlo simulations in the symmetric phase of 

the 3DIS seem to make it possible to produce accurate enough data to clarify this 

problem. 
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Table 5.14: 3D Ising data in the symmetric phase. All the values are thermody-
narruc. 

!3 L X { Cv 

.217 34 130.59( .48) 5.602( .026) .1979( .0020) 

.218 40 176.41(.42) 6.562(.033) .2155( .0032) 

.219 49 263.56( 1.37) 8.111(.068) .2408( .0011) 

.220 66 473.12(1.63) 10.939( .046) .2798(.0019) 

.2203 75 607.33(1.13) 12.422(.053) .2941( .0021) 

Table 5.15: Finite size effect study at (3 =.210. 

L X { Cv 

12 40.07(.20) 3.024(.010) .1499( .0005) 

15 41.27(.12) 3.064(.010) .1384(.0008) 

18 41.84(.08) 3.085( .007) .1338( .0008) 

21 41.91(.13) 3.093( .012) .1333( .0011) 
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Table 5.16: The result of fitting. Here x~ and x~ represent the value of x2 for the 
x fitting and ~ fitting respectively 

/3 X~ "Y X~ 1/ 

.221645 8.59 1.238 2.44 .639 

.221650 6.62 1.242 2.12 .641 

.221655 5.12 1.245 1.85 .642 

.221660 4.09 1.248 1.59 .644 

.221665 3.51 1.252 1.39 .646 

.221670 3.36 1.255 1.21 .647 

.221675 3.63 1.258 1.06 .649 

.221680 4.32 1.262 .948 .650 

.221685 5.39 1.265 .862 .652 

.221690 6.84 1.268 .805 .654 

.221695 8.67 1.271 .776 .655 

.221700 .775 .657 

.221705 .801 .659 

.221710 .852 .660 
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