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Abstract

Using the combined CLEO-II and CLEO-ILV data sets of 9.1 fb~ ! at the Y(45),
we measure properties of ¢ mesons produced from decays of the B meson. (“B”
denotes any of BY, B~, B, or B% and “y” denotes either J/1(1S) or 1(25).)

First, we measure the inclusive branching fractions B(B — X)), where X is
any final state. This requires subtracting the contribution of ¢(1S) produced in
continuum (non-BB) processes. We also derive B(B — v (direct)X) by subtracting
the contributions of ¥(15) with intermediate parents 1(2S) or x.. Our branching
fraction results are consistent with and significantly improve upon previous CLEO
measurements, and are competitive with recent measurements from BaBar.

Second, we obtain momentum distributions for 1(1S) and (2S) produced di-
rectly from B decays. The momentum distributions are corrected for measurement
smearing, detection efficiency, and continuum (15) production. The results do not
support recent speculations of a narrow bump at py15) ~ 500 MeV.

Third, the v dilepton decay modes are used to measure «, the parameter describ-
ing the average polarization of directly produced . We obtain ayng) = —0.30 £
0.07 £ 0.04 and ay(25) = —0.457022 4 0.04, where the first error is statistical and the
second error is systematic; these results rule out the Color Evaporation Model of v
production. Our measurements of « are the first to include only the i which are
produced directly from B decays.

The polarization and momentum spectrum measurements have the potential to
shed light on the nonperturbative parameters of Non-Relativistic QCD (NRQCD),
the effective field theory which provides the current theoretical understanding of the
production and decay of heavy quarkonium. However, the extraction of these param-

eters is currently limited by theoretical uncertainties.
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The experimental results presented in this thesis are also described in an internal
note for CLEO collaborators, CBX 01-49 [72], and will be submitted to a journal for
publication in February 2002.
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Chapter 1

Theoretical Background

1.1 Motivation

The Standard Model is comprised of Quantum Chromodynamics (QCD), based on
the gauge group SU(3), and the SU(2)xU(1) standard electroweak model. Together
these theories describe three of the four fundamental forces and have enjoyed phenom-
enal success. At the time of this writing, experimental efforts to measure processes
disallowed by the Standard Model invariably result in upper limits, while precision
measurements of fundamental parameters invariably match Standard Model calcula-
tions to high precision — often to three, four, even eight (in the case of the anomalous
magnetic moment of the electron) digits.

The field of B physics is now at a point where experimental sensitivity is fast
approaching the range in which non-Standard Model effects have a reasonable chance
of being observed. The observation of b — sy at CLEO, the measurements of sin 2/
at BaBar and Belle, and the prospect of much greater experimental sensitivities at
future experiments such as BTeV and LHC-B, all are motivated by a desire to search
for inconsistencies in the Standard Model which would provide insight on what lies
beyond.

As measurements become increasingly precise, the unfortunate fact that b quarks
are only observed as color-neutral bound states takes on greater importance. While

calculable in principle from full QCD, a fully quantitative understanding of nonper-
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turbative gluons has proven to be difficult to attain. Current theoretical technologies
consist of effective field theories (HQET, ChPT, NRQCD), lattice QCD and QCD
sum rules, and process-specific models (Isgur-Wise, BSW, ACCMM.) Calculations
based on the first two categories are preferable because the degree to which they
differ from full QCD is, in principle, calculable. Unfortunately, these approaches are
only applicable to a subset of the measurable properties of B decays; they do not
apply to a large class of phenomena, for example, exclusive hadronic weak decays.
This thesis is a study of the inclusive decay B — %X, where 1 refers to ei-
ther the J/¢(15) or ¢(2S), and X is any final state. Experimentally, we measure
the inclusive branching fraction, momentum distribution, and polarization of the 1.
Phenomenologically, the decay b — X is calculable in the non-relativistic QCD
(NRQCD) effective field theory framework. By comparing measurement to theory we
can provide constraints on the NRQCD matrix elements, which apply universally to

all methods of ¥ production.

1.2 Hadronic B Decays

This section is intended to be a brief review. For further reading, Ref. [2] provides

comprehensive details.

1.2.1 Weak Decay

Decays of the B meson are governed by the weak charged current:

g
Looc=—""T=J,WH# h.c. 1.1
cc 52 " (+h.c.) (1.1)

where W# is the W-boson field, and the left-handed fermion fields, represented by

four-component Dirac bispinors, couple via the current

€r, _ dL
Jt = (7. 7, 77)%(1—75)</JL) + (@ e tn) v (1 —1s) VCKM(ZL> (1.2)
TL L
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with the mass and weak eigenstates of flavor related by the unitary matrix Vog e

Vid Vus Vb

Veku = Via Ves Vi (1.3)
Viae Vis Vi

1 X X

A1 (1.4)
AN 1

Q

The approximation shown in Equation 1.4, where A = sinfc = 0.22, is useful in
understanding the intergenerational coupling strength (suppressed by A\? or A for b
decays, thus explaining the relatively long B lifetime) but ignores the complex phases
in the CKM which lead, for example, to CP violation.

The quark level process behind B — ¢ X is b — c¢q, (where ¢ € {s,d}), which
proceeds primarily through the “tree” Feynman diagram in Figure 1.1(a). The matrix

element is given by

v

9 ghv — ptp
g My 1=
M = 8 Ve Vg [€yu(1 = 75)0] D —m2 [@7,(1 = 5)c] (1.5)
~ ,%,_/ — —_——
CKM b—cW M—’W w W —tcq

where the operators b, ¢, and ¢ annihilate a quark (or create an antiquark) of the
specified flavor, and p* is the 4-momentum of the W propagator.
The kinematics of b — ¢W constrain p* ~ m? << m,. Since p*/m?, << 1, we

may expand the denominator of the W propagator term to obtain

9 ¥ p
=1— b 1-— 1+ —+—F+... 1.6
M=% o Vo =0 = (14 2+ 2o} g
N~~~ CKM b—)cW W—)cq ~ ~
w w
2 GF
The leading factor of is the Fermi decay constant —. So, when ignoring
SmW V2
2
(@ p_2 terms, Equation 1.6 is the effective four-fermion interaction, depicted in
myy
Figure 1.1(b) and defined by the following effective Hamiltonian:
Gr o
Hetr = 75 VenVeg[eru (1 — 75)b[gy* (1 — 75 )] (1.7)



q q

Figure 1.1: The dominant tree-level production mechanism for b — c¢q, where ¢ is
either s or d. (a) Left: full theory, with W propagator. (b) Right: the effective
four-quark interaction.

Explicitly adding the color indices to the quark creation and annihilation operators

in Equation 1.7 yields

Hepr = %VcbVCZQ2 (1.8)
where
Q2 = [Gvu(1 — 75)bil[g;7" (1 — ¥5)c4] (1.9)

where i, j € {1,2,3}. The W propagator carries no color charge, so the quarks that
it produces (¢q) have the same color index. If we naively assume that production of
a 1 bound state occurs only if the ¢ and ¢ are created in a color singlet state (i = j),
then there is a suppression factor of 3, relative to decays in which the W quark pair
hadronizes (no restrictions on i or j.) This is why b — v production is said to be

“color-suppressed.”

1.2.2 Inclusion of Gluons

Up to now the dynamical role of gluons has been ignored. We now include hard
(short-distance) gluons with energies in the range O(Mp) < E, < O(Myy ), where the
lower limit must be greater than Agcp ~ 500 MeV in order to enable a perturbative

solution, and the upper limit exists because we use the 4-fermion vertex. When
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Figure 1.2: Examples of gluonic interactions which modify the tree-level effective
four-quark interaction.

including these gluons, the effective Hamiltonian becomes
Gr

He = —=

"=e

where a new operator 1, includes diagrams (such as the ones in Figure 1.2) in which

VcbVZZ(CIQl + C5Q2) (1.10)

hard gluons mix the color indices:

Q1 = [Gvu(1 — 75)b5][7" (1 — ) cil, (1.11)

and C7 and (5, the Wilson coefficients, encode all of the short-distance physics,
including hard gluons.
Since we are interested in v production, we choose an operator basis which sepa-

rates the c¢ color singlet and c¢¢ color octet contributions, as follows:
1
Quy = 3len —)clfay"(L —s)0] (1.12)
Qe = [l —5)Aacl[@r (1 — v5)Aab)] (1.13)

where A, are the Gell-Mann matrices. Using Fierz identities to express (1) and Qs

in terms of @1 and @ (of Eqn. 1.10) yields [4]

Gr .
Hepp = E‘/cb‘/;q[c(1)Q(1)+C(s)Q(8)] (1.14)
C(l) = 3C1 + Cq (1.15)
Cey = 20, (1.16)



uef 4

Figure 1.3: Penguin diagrams contributing b — c¢q, where g is either s or d. (a) Left:
QCD penguin diagram. (b) Center, Right: Electroweak penguin diagrams.

1.2.3 Penguin Diagrams

The b — ccq transition may also occur by the “penguin” diagrams shown in Fig-
ure 1.3. While not listed here, Ref. [2] defines the 4-fermion operators Q3 ... Qs for
gluonic penguins and @7 ...Q1o for the electroweak penguins, which enter into the
effective Hamiltonian with corresponding Wilson coefficients Cs ... Cy. Penguin de-
cays are sensitive to non-Standard Model particles in the loop and are also important
in studying CP violation in B decays; however, their contribution to the inclusive

b — X rate is very small relative to the tree diagram and is therefore ignorable.

1.2.4 Operator Product Expansion

The process used to obtain Equation 1.10 illustrates the Operator Product Ex-
pansion (“OPE”) technique [5], in which the amplitude of a general process, such as

a weak decay, may be written as
A= (Hepp) = 3 Cil@i) (1.17)

where (); is a series of local operators, and C; are the Wilson coefficients that describe
their coupling strength.
Equation 1.17 effectively separates the problem into short-distance (C;) and long-

distance (Q;) effects. The Wilson coefficients C; contain all the short-distance strong-
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interaction physics. Because of asymptotic freedom, these coefficients may be pertur-
batively calculated. The long-distance matrix elements (Q);) include the effects of soft
(long-distance) gluons; they must be experimentally determined, since they cannot
be calculated in perturbation theory.

The boundary between “long” and “short” is given by the distance 1/u. Clearly,
the numerical values of C; and (Q;) both depend on the particular choice of the QCD
renormalization scale y. However, the final physical result, A (of Equation 1.17),

must not depend on .

1.2.5 Numerical Values of the Wilson Coefficients

Although the Wilson coefficients C; are calculable, the answer to the natural
question “what are their values?” is complicated. The summary below emphasizes
the factors that influence the numerical values of C;; for a thorough theoretical review,
see Ref. [2].

When calculating C; in QCD perturbation theory, terms of the form In(My /u)
appear, which render the expansion invalid. Use of the Renormalization Group [6]
corrects this problem by modifying the perturbation theory, so that the leading or-
der (LO), or leading-logarithm approximation (LLA), solution to C; is obtained by
summing terms of the form [ag(u) In(My /u)]™ over all n € {0,...,00}. Similarly,
the next-to-leading order (NLO) or next-to-leading order logarithmic approximation
(NLLA) solution is a sum of terms of the form ag(u) [as(p) In(My /p)]™. In order
for these series to converge, ag(u) must be sufficiently small, i.e., u > O(1 GeV).

In calculating these coefficients it is more natural to work in the orthogonal op-

Q1+ Q-
2

for Cy = Cy £ Cy, to LO, is [2]

erator basis Q1 = [7]. The renormalization group (RG)-improved solution

(£N—1)

9
laS(MW)] NQIN—2f)

0= ast

(1.18)

where N is the number of quark colors and f is the number of quark flavors. For B
decays, N = 3 and f = 5; choosing uy = Mg = 5.28 GeV, and using the PDG 1999
average values for ag [8] we obtain ag(My) ~ 0.121, as(Mp) ~ 0.211, C_ ~ 1.34,
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C, =~ 0.86, which by definition yield C; ~ —0.24 and Cs = 1.1. Substituting this
into Equations 1.15 and 1.16 yields

04  and (1.19)

9 9
2R

22  (LO, p = Mpg) (1.20)

which shows that the weak decay b — c¢q favors color-octet production of the c¢ pair.
We note that the small value of C(yy = 3C + Cs comes about because the opposite
signs of C; and Cs cause a partial cancellation.

There are four factors which affect the numerical values of the Wilson coefficients:
1. the renormalization scale y;

2. choice of renormalization scheme (for NLO calculations);

3. LO or NLO;

4. the value of ag(My).

The sensitivity of the coefficients to these factors can be drastic for coefficients such
as C(y, which are small and result from a subtraction; A comparison of the relative
effects of these factors can be gained by examining values of the coefficients which
are listed in Ref. [2].

Factor (1), p, has a larger effect on the coefficients than any other factor. For
example, C/i{ (1 = 4.0 GeV) = 0.23 while Cf;{(u = 8.0 GeV) = 0.47. The variation
is less severe for the NLO calculations, on the order of 30% for p ranging from 4.0 to
8.0 GeV.

Factor (2), the renormalization scheme, affects the coefficient values at the NLO
level. Two possible choices are known as “naive dimensional regularization” (NDR)
and the 't Hooft-Veltman scheme (HV) [9]. The two differ by 10-20% in C(y), with
closer agreement at higher pu.

Factor (3) is the degree of precision of the calculation; of course NNLO preferable
to NLO, which is better than LO. As there are no full NNLO calculations currently

available for b — 1, we will prefer the more recent calculations that go to NLO.
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As far as the difference between LO and NLO in the Wilson coefficients, it was
mentioned above that the NLO result has the benefit of being less dependent on the
renormalization scale u. The NLO calculations lead to a larger value of C(y) relative
to the LO results by factors of 1.3-2.2, depending on the renormalization scheme and
u. Again, at higher values of y, the agreement between LO and NLO results is closer.

Factor (4), the overall “normalization” of ag, is given by current knowledge of
ags(Myz), or the related quantity A% [10]. This factor is therefore driven by exper-
imental error. The PDG 2001 values as(Mz) = 0.1181 %+ 0.002, or AL = 208*%3
MeV are sufficiently precise to cause only small variations in Cyy: 2-8% for LO and
1-3% for NLO!, with the higher variations coming from low p.

To summarize, for b — c¢q decays, the largest factor affecting the values of Wilson
coefficients is the renormalization scale . The lower the value of u, the larger the
difference caused by varying the other factors of LO/NLO, renormalization scale, and
as(My).

However, the sensitivity of the Wilson coefficients to the four factors is highly
dependent on the particular coefficient under consideration. For example, the rate of
suppression of color singlet ¢¢ production, relative to color octet production, is found

to be

8

(1.21)
9—30 for NLO

lC(S)r { 21— 117 for LO
where the variation is overwhelmingly due to varying u between 4 GeV and 8 GeV.
However, applying the same analysis to the coefficient Cy results in values of 1.085 —
1.137 for LO and 1.046 — 1.104 for NLO — a maximum variation of only 9%.

As mentioned previously, the numerical value of y is completely arbitrary (when

within a sensible range); however, predictions of physical rates, which have the

form 3° C;(Q;), must not depend on . Therefore, when studying the long-distance

LAt the time of publication of Ref. [2], the world average was A% = 225 + 85 MeV; this paper
lists values of C; and Cs for A% = 140, 225, and 310 MeV. The observation Cn(A% =225 MeV)
= [Cn(A% =140 MeV) + Cn(A% =310 MeV)]/2 at the few percent level, justified the use of
linear interpolation to estimate CH(A% =208 MeV). The uncertainty in C,, due to uncertainty in
A% was estimated as C, (A% =208 MeV ) — Cn(A% =225 MeV).
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hadronic matrix elements ((Q);), one must specify the renormalization scale y to draw
quantitatively meaningful conclusions.

To this point, we have considered the effective low-energy Hamiltonian for the
b — ccs transition, Equation 1.14. This equation includes the contribution of hard
gluons via the Wilson coefficients C(;) and C(g), where the 1 and 8 refer to color singlet
and color octet production of the c¢ pair. The effective Hamiltonian is an example of
the Operator Product Expansion technique, Equation 1.17.

Although it separates the ¢¢ production into color singlet and color octet com-
ponents, Equation 1.14 falls short of making predictions that can be compared to
experiment, because it does not describe the hadronization of the c¢¢ into the experi-
mentally observed 1 bound state.

As of this writing, the Non-Relativistic QCD (NRQCD) framework provides the
most accurate and theoretically reliable understanding of the seemingly simple tran-
sition ¢¢ — 1. Before reviewing its main ideas, we take a short detour to briefly
discuss the two models which preceded it, the Color Singlet Model (CSM) and Color
Evaporation Model (CEM).

1.3 Pre-NRQCD Models

1.3.1 Color Singlet Model

In the CSM, % is produced only when by c¢ pairs are produced with zero relative
velocity in a color singlet state. Long-distance gluons are assumed to have no effect
on either the color or angular momentum quantum numbers of the c¢¢ pair. These
simplifying assumptions have two major implications. First, the production rate of
b — 1 is directly related to that of b — cc(1), which is calculable in perturbation
theory. Second, the type of charmonium produced (J/, 1, xc1, etc.) is determined
completely by the angular momentum quantum numbers of the original c¢ pair.

A longstanding theoretical problem for the CSM was first reported in 1980 [11]:
the NLO solution for P-wave charmonium exhibited infrared divergence. Twelve years

later, Bodwin et al. [4] solved the problem by including color octet terms.
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Figure 1.4: CDF experimental evidence ruling out the Color Singlet Model. The
figure and its caption are taken from Ref. [13]: “The differential cross section times
branching ratio B(y — ptu~) for [n¥| < 0.6 for prompt 1 mesons. The vertical
error bars are the statistical and the Pr-dependent systematic uncertainties, added in
quadrature. Circles: J/1; triangles: 1(2S). The lines are the theoretical expectations
based on the color singlet model.”

Solid experimental evidence disfavoring the CSM was reported in 1992; CDF [12]
observed production cross sections for prompt 1 (1S) and ¥ (25) at large p that were
significantly higher than predicted by the CSM. A subsequent CDF analysis [13] made
use of a silicon vertex detector to veto v that were produced from b decays; again

they observed a a large excess (~ 50x) in the production rate of direct 1/(2S) relative
to the CSM.

NRQCD was able to accommodate the excess in prompt 1(1S) and ¢(2S5) produc-
tion at CDF; some of the more accurate extractions of the matrix element (Og(3S;))

are derived from the CDF results. NRQCD also predicts that the polarization of
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¥ (2S) should become increasingly transverse as pr increases [14]. Recent measure-
ments from CDF [15], however, showed the opposite trend in central values, although

with large errors.

1.3.2 Color Evaporation Model

The CEM [16] postulates that the exchange of soft gluons dominates the char-
monium production process. The color and spin states of the ¢¢ pair at the time of
creation therefore “evaporate” and have no effect on the state of the charmonium
that eventually results. Another consequence of this postulate is that the production
of charmonium states will occur in fixed ratios that are completely independent of
the c¢ production mechanism. The role of kinematical variables in determining the
production ratios of charmonium states is therefore ignored [17], placing the CEM on
less firm theoretical ground than the CSM.

The CEM predicts that production of the x.; system will universally occur in

the ratios xe2:Xc1:Xeo = 5:3:1 (that is, proportional to 2J + 1.) A recent CLEO
['(B — xeo(direct)X)
['(B — xe(direct) X)

measurement [18] of < 0.44 at 95% C.L., effectively rules out
the CEM.

The CEM also makes a prediction that a measurement made in this thesis can
cleanly test; namely, that charmonium mesons will be produced with no net polar-

ization.

1.4 NRQCD

1.4.1 Motivation

In 1995, the pioneering work of Bodwin, Braaten, and Lepage [19] applied the
effective field theory of Non-Relativistic QCD (NRQCD) to derive a rigorous OPE
for the decay and production of heavy quarkonium. Just as we would expect for an
OPE (Equation 1.17), NRQCD factorizes b — 1 production into a short-distance

part, calculable in perturbation theory in powers of ag, and a nonperturbative long-
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distance part. Additionally, NRQCD expands the long-distance part into a series in
v2, where v is the typical velocity of the ¢ quark inside the v/ bound state. Therefore a
hierarchy of long-distance matrix elements is established in powers of v; consequently,
one may consider only the leading-order v® terms (minimal NRQCD) or also add the
contributions of the v® terms (the “v®-improved” corrections). The situation with
the long-distance part of the OPE therefore becomes analogous to that of the short-
distance part, in which one may calculate the Wilson coefficients to LO or NLO.

NRQCD can in principle be made to yield identical predictions to full QCD, to
any desired accuracy, by keeping the terms in the double-infinite expansion up to a
sufficiently high power of v, then tuning the resulting input parameters (the number of
which scales with the number of powers in the v?" series) to match the full theory. The
CSM and CEM, on the other hand, are models which make plausible approximations
which are designed to simplify calculations, but at the price of dispensing with QCD.
The NRQCD approach allows for the possibility that soft gluons will change the spin
and color states of the originally produced c¢ pair, and allows for much subtlety in
describing the effects of these soft gluons.

In this section we first describe the ideas behind NRQCD, then show how the CEM
and CSM may be derived from it. Like the first section, this is a brief summary; for

more details, there exist numerous excellent review articles and conference papers [14]

[17] [20] [21] [22] [23)].

1.4.2 The NRQCD Lagrangian

The average velocity v of the c¢¢ quarks in a i bound state, where this velocity
is measured in the center-of-mass frame of the quarks, may be estimated from quark
potential models [24] as v? ~ 0.3 for charmonium and v? ~ 0.1 for bottomonium.
These values are confirmed by lattice QCD calculations [25]. A back-of-the-envelope
calculation to explain this follows: ¢ quarks in a color singlet state that are sufficiently
close to each other will experience an attractive, Coulombic color force, thus enabling
an analogy to atomic physics [14]: the kinetic energy of the quarks is analogous to the

Rydberg energy, which determines the energy level spacings of excited atomic states.
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This leads to M.v? & Mys) — Myas) ~ My, — Myas) = 500 MeV, or v* ~ 0.3.

The hierarchy of energy scales in charmonium is then
AQC’D ~ MCU2 < M. < M, (122)

Agep is the the energy scale of nonperturbative QCD, M,v? is the scale of the char-
monium mass structure, M.v is the inverse of the typical size of the charmonium
bound state, and M, sets the energy scale for c¢¢ creation. This hierarchy also holds,
and is even more differentiated for the bb system, but is invalid for s5. In NRQCD the
division between “long” and “short” distances in the OPE occurs at a renormalization
scale A, which is chosen to be between M. v and M,.

For the “high” energy scale of O(M.), NRQCD dispenses with the usual 4-
component Dirac spinor for the ¢ quark field, replacing it with two 2-component
Pauli spinors: 1, which annihilates a ¢ quark; and x, which creates a ¢ (it is a some-
what confusing coincidence that v and x are also the names of certain charmonium
mesons). Since v is small, they are treated nonrelativistically, in a Schrédinger field
theory. The energy scales of order M. v and smaller are governed by the full QCD
Lagrangian. This energy scale division is accomplished by setting a ultraviolet mo-
mentum cutoff A (same as the renormalization scale), which excludes the existence
of relativistic ¢ quarks in the theory.

By requiring that SU(3) gauge symmetry, rotational symmetry, C symmetry, P
symmetry, and heavy-quark phase symmetry apply to the above fields, the technique
of effective field theory [26] yields the “minimal NRQCD” Lagrangian [19]

Loinimat = Liight + Lheavy (1.23)
Liight = —%tr GuG"™ +> qilq (1.24)
Lheay = ¥’ (iDt + %) ¥+ x' (iDt — %) X (1.25)
where
D* = 9* +igAH (1.26)
AR = (¢, A¥) (1.27)

g = Viras (1.28)
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and G*” is the gluon field strength tensor.
Going beyond the minimal Lagrangian requires the addition of correction terms

dL, the most significant of which are bilinear in the heavy quark fields [19]:

Limproved = Luminimal + Lbitinear (1.29)
Lbitinear = 85\143 [T (D?)%) — xT(D?)%y]
85\242 ['(D-gE - gE-D)¢ + x'(D- gE — gE - D)x]
8;‘}2 [ (iD x gE — gE x iD) - 0¢) + X' (4D x gE — gE x iD) - ox]
;—;4[1/1*(93 -0) = x'(gB - o)x] (1.30)

where the chromoelectric and chromomagnetic field operators are denoted by

E = G" (1.31)
) 1 .. .
B' = §€”kG]k. (1.32)

One powerful feature of NRQCD is that an estimate of the magnitude of every
operator which appears in the heavy-quark Lagrangian (ag, ¢, x, Dy, D, gE, ¢B, g¢,
and gA) may be calculated in powers of M and v. Applying this “power counting”
technique shows that each term in Lyeqyy (Equation 1.25) is of order M 405, whereas
the terms of Lyjinear (Equation 1.30) are of order M*v?. Since the volume of the
1 meson scales as 1/(Mv)?, [ Lpeanyd®z scales as Mv? and [ Lojjineard®s scales as
Mwv*. Comparing these factors, we see that the Lyijineqr provides an O(v?) correction
to the minimal NRQCD Lagrangian. In fact, Lyiiineqsr contains all of the order Muv*
terms [19]. Further correction terms (of order Mv®, Mv®, etc.) may be added to the
NRQCD Lagrangian, thus enabling calculations made in NRQCD to match those of
full QCD to any desired order of accuracy in v [27].

The minimal NRQCD Lagrangian (Equation 1.23) is symmetric in heavy-quark
spin, and therefore predicts, for example, a mass degeneracy in the 3S; and 1S
charmonium states (which is incorrect: myns) — my,, = 117 £ 2 MeV [10].) The
bilinear correction term (Equation 1.30) includes terms with the Pauli spin matrices,

o, which split this degeneracy.
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A number of phenomenological input parameters remain which must be tuned to
match full QCD. For minimal NRQCD, the parameters M and g require tuning; in
the v2-improved theory, the dimensionless parameters c;, co, c3, and ¢, also must be
tuned. Although calculable in principle from perturbation theory, current efforts to
determine these parameters rely on a combination of the perturbative and nonper-
turbative matching techniques [20].

Once the tuned parameters are obtained, lattice simulations of NRQCD provide
useful tests of the nonrelativistic approximation and the validity of the power counting
rules. Lattice calculations of the v%-improved Lagrangian, Eqn. 1.29, reproduce the
mass spectrum of experimentally observed charmonium states (11Sp, 1351, 235, 23 1%,
23 Py, and 23 P,) with relative errors of ~ 10% (approximately v*) for spin-independent
splittings, and ~ 30% (approximately v?) for spin-dependent splittings [25]. That
the errors correspond with powers of v? is predicted by the power-counting rules of
NRQCD. Further supporting evidence is found by analyzing the bottomonium system
in a similar way [28]; the spectroscopic accuracy of the lattice calculation (using the
same Lagrangian) is significantly better than the charmonium case, corresponding to

the fact that v? is lower for Y by about a factor of 3.

1.4.3 Factorization Formula for Inclusive ¢y Production

Using the NRQCD Lagrangian, Bodwin, Braaten, and Lepage [19] obtain rig-
orous factorization formulas for the inclusive annihilation decay rates and inclusive
production rates of heavy quarkonium. The formulas follow the general form of the
OPE (Equation 1.17); the long-distance matrix elements are expressed in terms of
the NRQCD heavy-quark creation and annihilation operators i) and y, sandwiched
in between (H| and |H) (annihilation), or (0| and |0) (production), where H is the
bound-state charmonium hadron. Since this thesis is concerned only with studying
properties of ¥ production, the reader interested in the details of NRQCD’s treatment
of 1) decay may refer to the previously mentioned review articles for details. Like-
wise, many details involved in the derivation of the inclusive production factorization

formula are omitted here, and we simply quote the result [19]:
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Fu(A)

o(H) = ZMdn_4<0\Of(A)\0> (1.33)
oF = x'Kup(ahan)y'Kix (1.34)
ayay = YN |HX)(HX]| (1.35)

n & J(PTP)) (1.36)

In Eqn. 1.33, o is the cross-section for i — f, where the initial state ¢ is anything,
and the final state f consists of the charmonium bound state H, plus any other
particles X. The sum is over every possible state n (Eqn. 1.36) of color, spin, and
angular momentum in which the ¢¢ emerges after being created and interacting with
hard gluons. The F,, are dimensionless short-distance coefficients, analogous to the
Wilson coefficients. A is the factorization scale. (0|OX(A)|0) is the probability that
a c¢ quark pair in the n color-spin state will eventually transform into a charmonium
bound state H, with the possible assistance of soft gluons.

This equation exhibits all of the OPE characteristics: the scale A separates the
problem into short- and long-distance factors, each of which is dependent on A in
such a way that the product, being a physical observable, is independent of A; the
short-distance coefficients F;, are calculable in QCD perturbation theory; the nonper-
turbative long-distance coefficients describe the contributions of soft gluons.

This formula applies to all mechanisms of 1 production, and that the particular
details of the production are encoded in the short-distance coefficients F},; therefore
the long-distance matrix elements (0|OH (A)|0) are universal and may be constrained
using data from experiments which create 1 in very different environments.

In Eqn. 1.34, the factors K,, and K, are combinations of Gell-Mann matrices, Pauli
spin matrices, and polynomials in the covariant derivative D¥, such that |cc(n)) =
K x|0). Here the operators y and 1T create the quarks, and the K, manipulates
their quantum state n. Table 1.1 lists the definitions of the production operators of
leading and relative-v? orders.

In Eqn. 1.35, the operator ay destroys a quarkonium H that exists at any time

following the creation of the c¢ pair. Therefore the string of operators in Equation
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Order c¢ Color Singlet c¢ Color Octet

in v | Oper. K o4 Oper. K o4
v® 1O1(1So) 1 1 Os(*Sy) A? A?
v 1O1(35) ot ot Os(351) ot ot
vt O P) 3D —iD' |Os('P1) 4D —4 DX
v® OCR) _ﬁgD o —7_D o |Os(CR) —#D co )\ —7—D o)\’
v* |O1(CP) —55D x o —;5D x o |0s(*P) 55D x o\ Q&D X o\
v |01(CPRy) —iDlgd)  —iDCg) |O4(3Py) —iDlgi)e  —iDCgd))\e
v® | Pi("So) 7 7 (=3D)% | Ps('So) 7N 73 (—3D)?A?
v® | P1(3S)) %0" %cﬂ'(—%D)2 Ps(351) %0")\“ %ai(—%D)z)\a

Table 1.1: NRQCD charmonium production operators, from Ref. [19]. The most
important operators (those of order v® and v®) are listed. The second and fifth
columns list the operator being defined; the definition is given by Equation 1.34, with
factors IC,, and K, defined in columns 3, 4, 6, and 7. The P operators are secondary
operators of higher order in v? relative to the O operators.

1.34 is proportional to the probability that the c¢¢ state will eventually become the

charmonium state H.

1.4.4 Power Counting for State Transitions

Through power counting, NRQCD provides a qualitative picture of the relative
probability for a given c¢ state to materialize into a bound-state charmonium H. As
an example, consider 1(15), the 3S; state. A c¢ pair which emerges from the processes
of creation and hard gluon exchange in the ;(35;) state will naively have a relatively
high probability of hadronizing as a 1(1.5), as its color-spin quantum numbers match
those of the 9(15).

A ce pair which enters the long-distance realm in the g(35;) state, however, is in
a color octet state, and therefore will need to emit or absorb at least one soft gluon
in order to become a singlet ¢(15) state. Since gluons carry one unit of angular
momentum, gluon exchange must change the spin state of the c¢¢ pair. Furthermore,

the fact that soft gluon exchange is required to obtain a color-singlet ¢¢ must somehow
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affect the probability of hadronization.

Both of these points are addressed in NRQCD, which identifies two types of glu-
onic transitions which change the quantum state n [20]. “Electric” transitions are
dominated by very soft dynamical gluons, satisfy the selection rules AL = +1 and
AS = 0, and occur with a probability of order v?. “Magnetic” transitions are domi-
nated by dynamical gluons with momenta of order Mv, satisfy selection rules AL =0
and AS = +£1, and occur with a probability of order v®. Both transitions change color
octet states in to color singlet states and vice versa.

Therefore, by a series of these two types of gluonic transitions, any cc state can be-
come any charmonium state H, regardless of the similarity or dissimilarity between
the color-spin quantum numbers of the ¢¢ and H. In NRQCD, the power count-
ing rules enable one to rank the c¢ states in order of their likelihood of eventually

hadronizing as a given charmonium H.

1.4.5 Inclusive b — ¥ X Production

The weak decay formalism of b — c¢s of the previous section may be combined
with the NRQCD formalism of this section, to obtain an expression for the inclusive

production rate for b — ¢¥(mS)X, where m € {1, 2}:
I'(b—1(mS)X) =Y K,(0|0¥™)|0) (1.37)

This infinite sum is a double expansion in ag and v?. To date, the most complete
calculations [29] calculate the K, to NLO. The long-distance terms in this calculation
include the dominant color-singlet (ce);(35;) term, as well as terms of relative order

v* from color-octet ¢c states:

F(b — @b(mS)X) = K1(351) <01(351)>
+ K3(°S1) (05 (*S1)) + K3 (PPr) (Os (P Pr)) + Ks('P1) (Os(' P1)) - (1.38)
K, is the probability that the b — c¢s transition will produce the c¢ pair with

a small relative velocity and in the n color-angular momentum state. The definition

of the previously discussed Wilson coefficients C(;y and Cig) [see Eqns. 1.14, 1.21]
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is identical to this, except that there are no requirements on the relative velocity
or angular momentum of the c¢¢ pair. It should not be surprising, then, that the
coefficients Kg(*S1), Kg(*P;), and Kg(*Py) are all comparable to C,, and similarly,
K,(*S1) ~ Cfy. Qualitatively, Eqn. 1.38 shows that b — 1 production comes from
a color singlet part which is enhanced in long-distance hadronization probability but
suppressed in production rate; and a color octet part which is enhanced in production
rate but suppressed in the long-distance hadronization probability.

As an aside, the CSM holds that soft gluons do not play a part in changing the
quantum state n of c¢¢ pairs. Therefore the CSM version of Eqn. 1.38 is obtained by
dropping all terms in the infinite sum except for first term, K;(35;) (O, (35))).

Before discussing the current state of knowledge of each term in Eqn. 1.38, we
will briefly discuss the final missing link needed to relate theory to experiment. The
discussion up to now has considered b — X, whereas experiments can observe only
B — ¢ X. The fact that the b quark is itself in a bound state B meson must be

considered.

1.5 Effects of B Hadronization

The B meson, where “B” in this thesis refers to the BT, B~, B°, or B’ mesons,
consists of a bound state of a heavy b quark (antiquark) and a light u or d antiquark
(quark). The B meson may be visualized as a heavy b quark surrounded by an
amorphous, complicated, and continuously changing cloud of light quarks and gluons.

Just as NRQCD expands the small parameter v in a power series, another effective
field theory called Heavy Quark Effective Theory (HQET) employs an expansion in
the parameter 1/my, exploiting the fact that the b quark mass is about an order
of magnitude larger than the scale of perturbative QCD, Agcp. The literature on
HQET is possibly even more voluminous than that of NRQCD; an oft-cited review
article [30] provides more details than are summarized here.

In the limit 1/m; — 0, i.e. to leading order in HQET, the decay of a b quark inside
a B meson will be identical to the decay of a free b quark. In this limit, the decay

width for all b hadrons will be identical. This approximation is justified at about
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the 30% level, which is the range of experimentally measured lifetimes of the B*,
B°, B,, and A, hadrons. Including the next-to-leading-order terms of HQET would
yield corrections that quantify the difference between b and B decay, thus treating
rigorously the Fermi motion of the b quark in the B meson.

An often-used alternative to the HQET formalism is to model the Fermi motion of
the b quark in the B meson with the ACCMM model [31]. In this model, the meson’s
light quarks and gluons are replaced by a single spectator quark of mass m, with a
Gaussian momentum distribution, the width of which is characterized by the Fermi
momentum pr. Given these two parameters, conservation of energy and momentum

then uniquely determine the distribution of the b quark’s “floating mass.”

1.6 B —YX

1.6.1 Outline: State of Current Calculations

It should be clear at this point that strong interactions render the decay B — X
highly nontrivial to quantitatively describe. Nevertheless, the introduction of the
NRQCD formalism in 1995 unleashed a large theoretical effort to calculate predictions
of 1 production and decay in a diverse array of processes. This section summarizes
the recent theoretical results for B — 1 X, which make predictions of the B — ¥ X
inclusive branching fraction (Sec. 1.6.2), the momentum distribution of ¢ created
from B decays (Sec. 1.6.3), and the polarization of ¢ created from B decays (Sec.
1.6.5). Regardless of what is being predicted, the calculations may be categorized in

how they handle the following three issues:

e Precision of short-distance coefficients (order in ag) (Sec. 1.2)

— 1: LO, or LLA
— 2: NLO, or NLLA

e Number of long-distance matrix elements (LDME’s) (order in v?) (Sec. 1.4)
— 1 (CSM): leading color-singlet only (Sec. 1.3.1)
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— 4: leading color-singlet and color-octet

— 8: leading and derivative color-singlet and color-octet
e Handling of the b quark within the B meson (Sec. 1.5)

— 0: Treat b quark as being free
— 1: Model b quark Fermi motion with ACCMM model

— 2: Include first correction term from HQET expansion

When discussing predictions in the following sections, we will use the notation
(x,y, 2) to describe the level of precision of a given publication, where each of the
numbers is taken from the above list. For example, (1,4, 1) will mean that a prediction
is leading-order in ag, sums over 4 long-distance matrix elements, and models the b
quark Fermi motion in the ACCMM model. Historically, successive papers improve
the level of precision, but the older papers are still useful, since examining the change
introduced by going to the next level of accuracy gives some indication of the level of

confidence to attribute to the current state-of-the-art calculations.

1.6.2 Inclusive Branching Fraction

Ko et al. [32] provided a (1,3,0) analysis soon after the NRQCD paper was pub-
lished. In 1997, Beneke, Maltoni, and Rothstein [29] extended the analysis to (2,4,0),
pointing out that the large sensitivity of the Wilson coefficient C(;y to the renormal-
ization scale necessitated a NLO(«ag) calculation. This calculation also showed that
the color-singlet 3S; term K;(35)(O1(3S1)) contributes negatively to the decay rate
at NLO. This was patched up by including some, but not all, NNLO correction terms.
The fact that the LO, NLO, and quasi-NNLO calculations of K;(3S;) are positive,
negative, and positive, respectively, are a sure sign that the true value of this coeffi-
cient is near zero — in other words, the short-distance production of color-singlet c¢
pairs in b — ccs is very highly suppressed. The latest results, published in 2000 by

Ma [33] (2,4,2), derive correction terms resulting from the b quark Fermi motion.
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The expression for the inclusive branching fraction is [33]

B(B — %X) = 0.00073(0,(®S1))

+0.19(05(*S1)) + 0.33(Os(*Sp)) + 07'3;1((’)8(3%)) (1.39)
ApB(B — ¢X) = —0.00068(0;(*S})) c
0.05

—0.07({0s(*S1)) — 0.03(O0s(*Sy)) — (O3(°PRy)) (1.40)

2
c

where AgB(B — 1X) denotes the correction to the branching fraction introduced
by the NLO HQET correction. Note that these equations follow the form of Eqn.
1.37. All of the LDME’s (O) are in units of GeV3. We now discuss each of the above

terms, in order.

First Term, (O;(35;)): The long-distance matrix element (O; (3S;)) is the only one
that is calculable directly from the NRQCD heavy quark radial wavefunction [34]:

9|R(0)|? { 1.16 GeV®  for 1(15) (1.41)

0.(35))) = -
O =5 0.76 GeV®  for (25)

With this expression for (O;(3S1)), we may now obtain the CSM prediction for the
inclusive branching ratio. Substituting the above result into Eqn. 1.39, and dropping
all of the other (color octet) terms, we obtain Begy (B — %(15)X) = 0.08% and
Besu (B — %(25)X) = 0.06%. This contrasts with measurements from a previous
CLEO analysis [35]:

B(B — (15)X) = (0.80+£0.08)%  and
B(B — 1$(25)X) = (0.34+0.05)%. (1.42)

Therefore the CSM predicts inclusive branching fractions that are a factor of 6-10

smaller than experimentally observed.

Second Term, (Og(*S1)):  The color-octet matrix element (Og(*S;)) is extracted
from analyses of 1 transverse momentum distributions at the Tevatron. The extrac-

tion used in Refs. [29] and [33], for example, is taken from [36]; here, the first error
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is the statistical (experimental) error, and the second error is due to varying the

renormalization and factorization scales p:

(1.06 & 0.1475%) x 1072 GeV?®  for (19)

1.43
(0.44 £0.08%333) x 1072 GeV?  for ¥(25) (1.43)

(0s(*S1)) = {
Unfortunately, in the dozen or so extractions of this matrix element that have been
carried out to date, the variation in results is rather large. A recent review article

[23] summarizes all of the extractions with a range of possible values:

(0.3 ~2.0) x 1072 GeV?* for 9(15)

1.44
(0.1 ~1.0) x 1072 GeV® for ¢(2S) (144

(0s(°81)) = {

We may now calculate the contribution to the inclusive branching fraction from
the color-octet mechanism B — (c€)s(®S1)X — 9 X. Substituting Eqn. 1.44 into
Eqn. 1.39, we obtain branching fraction contributions of (0.06 — 0.38)% from B —
(c€)s(®S1)X — 9(18)X and (0.02 — 0.19)% from B — (c€)s(®S1)X — ¢(29)X.
This particular color octet mechanism contributes significantly to the total inclusive

branching fraction, although the errors are very large.

Third and Fourth Terms, (Og(*Sp)) and (Og(*P,)): The remaining terms in
Eqn. 1.44 involve the less-well-known matrix elements (Og('Sp)) and (Os(*F)). By
substituting Eqns. 1.41 and 1.43 into Eqn. 1.44, and setting the sum equal to the
1995 CLEO measurements (Eqn. 1.42) as well as the matrix element values in Eqns.
1.41 and 1.43 to obtain an expression for a combination of (Og(1Sy)) and (Os(*P,)),
thus providing a constraint on these matrix elements. The factor of 10 uncertainty
in (Og(351)), however, results in a prediction for these matrix elements of a similar

accuracy.

Outlook Presently, the theoretical uncertainties in extracting values of the hadronic
matrix elements (O) are much larger than the experimental uncertainties. Because
of this, the improved measurements of B(B — 1 X) that are presented in this thesis,
although useful in reducing the errors of other measurements that depend on them,

are not likely to improve the current understanding of these matrix elements.
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1.6.3 Momentum Distribution

A full prediction of the 1) momentum distribution needs to incorporate two effects
which smear the ¥ momentum. First is the Fermi motion of the b quark in the B
meson, for which the smearing is of order Agep [37]. Second is the exchange of soft
gluons, which is required for the hadronization of color-octet c¢; the soft gluons carry
momenta of order Mv? ~ Agcp. Although the NRQCD LDME’s incorporate the
role of soft gluons in hadronization, the inclusion of soft gluon kinematics is “usually

a higher-order effect in the non-relativistic expansion” [38].

In 1997 Palmer, Paschos, and Soldan [37] (1,4,1) made a first attempt to fit the
spectrum. This study only includes smearing due to Fermi motion. The calculated
momentum distribution which best matches the 1995 CLEO data [35] corresponds to

a Fermi momentum of 570 MeV.

Most recently, Beneke, Schuler, and Wolf [38] (1,4,1) model both smearing effects.
The soft-gluon contributions are modeled with an Gaussian energy distribution ansatz
inspired from the ACCMM model [31]. The soft-gluon coupling strength in the ansatz
is tailored for each angular momentum and color state, based on the necessary electric
and magnetic gluon transitions needed to reach the {(3S;) state. The ACCMM model
is applied to simulate the Fermi motion of the b quark; however, it is asserted that

the ACCMM model fails for the two-body decays B — K.

The result is a series of py distributions, as a function of pg, A, and n. Here pF is
the Fermi momentum, A is the mean energy of soft gluons, and
n € {s(*So), s(®?P), s(3S1)} is the quantum state of the generated cc. The cal-
culated distributions are compared to the measured p,(1S) distribution from CLEO
[35], excluding the contribution of the B — ¢ K™) decays. The best fits are ob-
served with A = 300739, MeV, pr ~ 300 MeV, and a roughly equal mixture of c¢
states n. The result for A is in excellent agreement with the NRQCD scaling rules,
A ~ ma? ~ Agep (cf. Eqn. 1.22). Although the fit results for the mixture of
n could conceivably be used to determine the LDME’s (Og(1Sy)), (Os(3Py)), and

(Og(3S1)), these extractions are not reported.
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Outlook The measurements of the vy momentum distributions presented in this
thesis are based on higher statistics and correct for detector measurement smearing,
compared to the previous CLEO measurement [35]. An improved measurement may
make it possible to better determine the NRQCD long-distance color octet matrix
elements.

In a development completely unrelated to NRQCD, a recent paper [39] speculates
that an narrow enhancement in the pys) distribution at about 0.5 GeV would possi-
bly be a signature of the triple-charm decay B — 1(15)D=. A faint hint of a bump is
exhibited in measurements of CLEO [35] and Belle [40], although the statistics make
this far from clear. Recent results from BaBar [41] show no evidence of the bump.

The results from this thesis should help to settle the matter.

1.6.4 Review: Polarization Definitions

Before summarizing the calculations for 1 polarization, we will define the helicity

angle 0 and the polarization parameters o and I'y/T".

Helicity Angle

Given the decay chain B — ¥ X, ¢ — £*¢~, the helicity angle 6 is defined as the
angle formed by a daughter lepton in the 9 rest frame, and the direction of the v in
the B rest frame.

If the ® is produced in a helicity 41 state (transverse polarization), then the

resulting angular distribution of daughter leptons is given by

1dI'(cos f)
I' dcosf

whereas the distribution of leptons from a helicity-zero (longitudinally polarized)

oo 0] = S0 o (.15

1S

ar 0
LI D [ s e 0)] = 30— cost) (146)

Here I is the decay width. The normalization factors are chosen so that integrating

the above equations in cos(f) over [—1, +1] yields 1. Also, note that because the cos? §
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term cannot distinguish between the angles # and (0 + ), experimentally either the

£t or £~ may be used to determine the helicity angle.

Average Polarization

The average polarization of a population of v is quantified as follows. Let Ny, N,
and N_ to be the number of ¢ produced with helicity 0, +1, and —1. Experimentally,
we cannot distinguish helicity +1 from helicity —1; what we can measure is the sum

of the two,

N, = N, +N_ (1.47)
N

Il

No+ N. (1.48)

The angular distribution for all NV events is:

1 dr

; T dcos(d) v =t (0)] = ’ [(N + 2Np) + (N — 2Ng) cos? 0] (1.49)

8
3 Ny —2N,
= Z(NL+2N)) [14+ "0 0520 (150
g (N + O)<+Ni+2NOCOS >( )
3
= —— (1 20)N 1.51
2(04_1_3)( + acos”0) ( )

where the polarization parameter « is defined as

Ny +N_—2N, _Ni—2N,

= 1.52
N_|_+N_+2N() N:t+2N0 ( )

o=

To determine the polarization and size of the entire sample, it is sufficient to
measure either the pair of variables (/Ng, Ny), or the pair (N, «). Transforming from
the (N, Ny ) basis to the (N, «) basis is described by the above equations (1.48) and
(1.52). The inverse transformation, from (N, «) to (Ny, Ni), can be derived from

these two equations:

l—«o
Ny = N 1.53
0 <a+3> ( )
a+1
Ny = 2 N 1.54
* (a+3> ( )
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An alternate parameterization of polarization for the 1) population is the fraction

of 1) which are longitudinally polarized.

' No Ny

= =" 1.55
r N  Ni+ N ( )
The relations between the two parameterizations are
FL 11—«
— = 1.56
r 3+« ( )
'z 4
whence A? = 61 a)2( ) (1.57)
1-3 (5
and o = = ) (1.58)
1+ (%)
4 .
whence Aa = BTy (A?> (1.59)

Table 1.2 summarizes the above discussion.

a |T'/T| Polarization |Helicity State(s)|Angular Distribution
+1| 0 | Transverse +, — 1+ cos?6

0 |+1/3| Unpolarized +,—,0 1

—1| +1 |Longitudinal 0 1 —cos?0

Table 1.2: Parameters describing the average polarization of a population of 7). The
cases of complete spin alignment (transverse, longitudinal) and random spin align-
ment (unpolarized) are shown.

1.6.5 Polarization

In the CSM, in the limit my = m, = m, = 0, the decay rates I' for the three 1
helicity states are given by [42]

My (18) 2
' /Ty = 2 (7) 1.60
/To mp (1.60)
r, = 0 (1.61)
9T m>2 —m?
=« L+l L) i (1.62)

I, +T_+2G mias) + Mp
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Equation 1.61 comes about because in the decay b — ¢, the massless ¢ quark must
have helicity +1/2; this forces the helicity states of the spin-1 9 to be either 0 or —1.

Table 1.3 lists predictions for a5y and ay(eg) for several values of m,.

my (GeV)| 4.1 44 47 50 5.3
sy |-0.27 -0.34 -0.39 -0.45 -0.49
Opasy |-0.11 -0.18 -0.24 -0.30 -0.35

Table 1.3: Predictions for « in the CSM.

The effect of B meson effects on the b quark was examined by Palmer et al. [43]
(0,4,1), which combine CSM predictions with two different B meson models (the
inclusive parton and ACCMM models), resulting in predictions for au1g) which are
listed in Table 1.4. The variation in « gives a qualitative estimate of the effect of B

hadron effects on the polarization.

e, = 0.004 ¢, = 0.006 ¢, = 0.008 ¢, = 0.010
-0.40 -0.38 -0.37 -0.36
by = 0.3 by = 0.4 by = 0.5 by = 0.55
-0.42 -0.41 -0.39 -0.38

Table 1.4: Predictions for «, from [43]. ¢, is the parameter of the Peterson [44]
distribution function. p; is the Fermi momentum.

Fleming et al. [45] (1,4,0), calculating short-distance coefficients to LO, obtain

o —0.39(01(351)) — 17(Os(3S1)) + 52(Os 3 Py))/m? (1.63)
(O1(351)) + 44(0s(351)) + 211{O0s(3Py)) /m? + 61{Os(1S))) '

which, for then-current ranges of LDME’s, lead to the predictions in Table 1.5.

my (GeV) 11 14 47 5.0 5.3
ayas)  |-0.12, -0.01] [-0.28, +:0.05] [-0.33, +:0.05] [-0.41, -0.01] [-0.48, -0.10]

Table 1.5: Predictions for o from NRQCD calculations. my, is the b quark mass.

Ma [46] (1,8,0) carries out the LO calculation to 4 additional LDME’s and finds

that the correction obtained, relative to the above results, is up to 70 ~ 80% for
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some matrix elements, concluding that any (1,4,0) predictions such as Table 1.5 are

therefore unreliable.

Prospects None of the calculations have yet to express o to NLO in «ag. Once
such calculations are available, our measurement of the polarization parameter « is
expected to provide useful constraints on the NRQCD LDME’s. In the meantime,
the CEM, although already disallowed by measurements of B — x production (see
Section 1.3.2), makes a clean prediction of o = 0, against which we may compare our

results.
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Chapter 2

Experimental Apparatus

2.1 CESR

2.1.1 Historical Background: 1977-1980

The Cornell Electron Storage Ring, or CESR, began operation in 1979. It is
capable of delivering electron-positron collisions at a center-of-mass energy of between
9 and 11 GeV. Collisions occur at a precisely determined location, around which the
multipurpose detector CLEO I was built. In 1977, the year when construction of
CESR began, a fixed-target experiment at Fermilab [47] reported an observation of
a narrow resonance in the hadronic cross-section, the Y(15), which was immediately
interpreted as a quarkonium state made of a new, third-generation quark: beauty
(or bottom), b. Three years later, the first two publications [1] to emerge from the
CESR/CLEO partnership reported observations of the T resonances, including a first
observation of Y(4S5). Figure 2.2 shows the results of these energy scans.

Even with statistics that now seem miniscule, it was clear that the measured
width of the Y (4S5) was substantially larger than the widths of the lower resonances,
signifying that this resonance had a large enough energy to allow decays that were
disfavored in the others. Furthermore, by examining the the Fox-Wolfram moment
R2, a dimensionless, rotationally invariant measure of the degree to which the decay

products uniformly cover 4x, the decay products of hadronic events created at the

31



0140501-011

Figure 2.1: Aerial view diagram of CESR and CLEO, to scale. CESR is represented
by the line which passes through CLEO. Also shown are the outer walls of Wilson
Lab (the building which houses CLEO) and the cross tunnel providing a shortcut to
the North area, with its experimental hall (unused since 1989). Not shown are the
Cornell athletic fields and the several stories of soil which separate them from the
tunnel.
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Figure 2.2: Energy scan results from the first two CLEO publications, circa 1980 [1].
Left: The T(1S), Y(2S), and Y(3S5) resonances. Right, above: first observation of
Y (4S5). Right, below: same as above, keeping only “spherical” events with R2 < 0.3.
Horizontal axes: E¢yy, in GeV. Vertical axes: cross-section, in nb.

Y (4S) were observed to be, on average, more “spherical” than events observed when
the beam energy was below the resonance. These observations established the Y (45)
as the lowest-energy beautyonium resonance with sufficient energy to decay into two
mesons, each containing a beauty quark (or antiquark).

The benefits of running at the Y(4S) for studying beauty physics were immedi-
ately clear. The reaction ete™ — Y(45) — BB created “clean” events in which all
decay products were attributable to a B meson. Furthermore, energy and momen-
tum conservation impose very powerful constraints on the reconstruction of exclusive
decays, and increase the power of the R2 variable to distinguish between BB events

and “continuum” events, i.e. ete™ — uu, dd, s5, or cc.

2.1.2 CESR Operation

Figure 2.3 is a diagram showing the main components of the CESR/CLEOQ system.

During a data-taking run, the positron beam is filled first. Electrons are emitted
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from a cathode, formed into bunches, and are accelerated by the linac; halfway down,
at 150 MeV, they encounter a fixed tungsten target. In the shower that ensues, the
small fraction of the particles that are positrons are magnetically selected and injected
into the synchrotron. After about 4,000 revolutions around the ring, the positrons are
accelerated to their final energy of 5.29 GeV, then transferred via the west transfer
line into CESR. This entire process is repeated 60 times per second until the positron
beam reaches the desired current. Filling the positron beam from scratch takes on
the order of 5 minutes.

The electron beam is then injected by the same method except without the fixed
tungsten target; electrons traverse the full length of the linac and are injected into
the synchrotron, and subsequently CESR, in the opposite direction as the positrons.
Injection of the electron beam requires less than a minute.

Synchrotron radiation is a major effect. The energy lost to synchrotron radiation
per e* per revolution is about 1.2 MeV, or 0.02% of its energy. The radiated energy
is replenished with 4 RF cavities located around the ring. (In 1997 the first of two
500 MHz superconducting cavities was installed; the second was installed in 1999,
after CLEO II was decommissioned.) Synchrotron radiation, while undesirable to the
high-energy physicist due to electricity expense and physics backgrounds, is highly
valuable for X-ray diffraction studies. The research facility known as CHESS, the
Cornell High-Energy Synchrotron Source, maintains two target areas at the kinks in
the southern part of the ring (see Figure 2.1) where the mean energy per photon is
the greatest.

Collisions at the IP occur as soon as the electron and positron beams are fully
injected into CESR. The beams collide for about an hour, at which point the electron
and positron beams are replenished with additional current. Figure 2.4 shows a recent
example of a “perfect day” of running, in which the luminosities stay consistently high

(1 x 10%cm™2s71) and there is no downtime due to lost beams.
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O BUNCH OF ELECTRONS

Figure 2.3: Main components of CESR and CLEO.

2.1.3 CESR Luminosity

The b quark in B mesons most often decays in a cascade of weak decays to ¢ and
subsequently d or s, along with the creation of two virtual W’s which typically be-
come charged pions, kaons, or lepton-neutrino pairs. The ¢ quark, which hadronizes
as a D or charmonium state will only be measured in certain signature decay modes
with branching fractions on the order of 1-10%. Therefore, any detailed investigation
of beauty physics requires a large number of decays to study. This number is directly
proportional to the integrated luminosity delivered to the detector. In the 20 years
since CESR started running at the Y (4S), a myriad of improvements in beam tech-
niques and hardware upgrades has led to an exponential increase in the instantaneous
luminosity (see Figure 2.5.) The long-term success of CESR has enabled CLEO to
make precision measurements of B decays, such as the ones presented in this thesis.

Until 1994, the positron and electron currents in CESR were both distributed in
9 “bunches” spaced equally around the ring. In 1994 the crossing angle scheme [48]
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Figure 2.5: Peak instantaneous luminosity of CESR, 1980-2000.
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was implemented. This required the installation of electrostatic separators, which
manipulate the horizontal position of both beams; as shown in Figure 2.6, the sep-
arators modify the orbits of the beam, thus avoiding parasitic crossing points. Fur-
thermore, during the final approach to the IP, the beams were steered in at an angle
of 2 mrad off of horizontal. Consequently, the Y (4S) rest frame became slightly
boosted (5 = 0.004) relative to the lab frame. This enabled an upgrade of the 9
bunches around the ring to 9 “trains” of bunches, each train consisting of 5 neigh-
boring buckets, 14 ns apart. Each of the 45 buckets in the bunch trains may be
filled with particles, thus increasing the maximum sustainable beam current. CESR
first demonstrated this “multi-bunch running” with 9 trains, 2 bunches per train (or,
“9 x 2”7 running) with an inter-bunch spacing of 42 ns. Soon, records for beam cur-
rent and instantaneous luminosity were broken. Later, CESR moved up to a 9 x 3
bunch configuration. Figure 2.6 shows the time elapsed between the beam-crossing
signal (or, to be precise, the train-crossing signal) and hits from charged particles
on the CLEO time-of-flight system. Clear peaks are seen for each of the 21 filled
buckets. Track-fitting requires knowledge of which bunch caused a given event; the
author has written a “bunch-finder,” described later, which uses CLEO time-of-flight

information for this purpose.

The distribution of points in space at which electron-positron collisions occur is
directly related to the profile of the beams. At CLEO the distribution of electrons
and positrons in a given bucket is roughly Gaussian in all dimensions. The beam size'
at the interaction point was recently measured by Cinabro et al. [49] by relating the
beam parameters to the dimensions of the luminous region, as determined from tracks
in the CLEO data. They observe o, = 6.9+2.8 ym, 0, = 0.5 mm, and o, = 1.93+0.02
cm. Here, z is the direction of the positron beam, y is up, and z is radially outward,
i.e. away from the center of the ring. These measurements agree well with lattice
calculations, modified by previously observed effects such as the dynamic beta effect
[50] and beam-beam focusing. Given these beam size measurements, the electron and

positron bunches may be visualized as long, thin, and very flat ribbons.

lgiven by v/eB*, where € is the beam emittance and 3* is the betatron function
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Figure 2.6: Left: Manipulation of the horizontal beam position in CESR to enable
a crossing angle, and therefore multibunch trains, at the interaction point. Right:
Observation of 9 train, 3 bunch running by the CLEO time-of-flight scintillators.
Vertical axis: events. Left axis: train number. Right axis: ¢t7or in nanoseconds.

2.2 CLEO

2.2.1 Overview

The data analyzed in this thesis was taken from the CLEO II (1989-1995) and
CLEO IL.V (1995-1999) experiments. CLEO II was designed to measure both charged
and neutral particles with high efficiency and accuracy, covering over 95% of 4.
Figures 2.7, 2.8, and 2.9 point out the major components of the detector. In 1995
the innermost detector (PTL, or Precision Tracking Layer) was removed and a 3-
layer Silicon Vertex Detector was installed in its place, marking the beginning of the
CLEO ILV years. Table 2.1 shows the integrated luminosity observed by the two
experiments.

The sections that follow describe in overview the components of CLEO II(.V),
starting from the elements closest to the interaction point and proceeding radially

outward. For more information, Ref. [51] describes CLEO II in great detail.
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Figure 2.9: CLEO II quarter-detector cutaway view. The SVX replaces the PTL in
CLEO IL.V.

2.2.2 Tracking

In CLEO II, three concentric proportional wire chambers, all in a 1.5 T magnetic
field, are used together to measure the 3-vector momentum of charged tracks. The
r-¢ components of momentum are measured from the curvature of tracks. The z
component of momentum is measured from cathode pads attached to the cylindrical
surfaces of the outer two detectors, and stereo angle wires in the outermost detector
(again, z is the direction of the positron beam). The main detector also provides
particle ID information by measuring dF/dz. CLEO IL.V uses the two outer wire
chambers of CLEO II, but replaced the innermost wire chamber with a Silicon Vertex

Detector.

PTL; Beampipe (CLEO II)

The Precision Tracking Layer (PTL) directly surrounds the beampipe and consists
of 6 sets of 64 tubes, the dimensions and arrangement of which are depicted in Figure

2.10. The distance between the inner and outer walls is just over an inch. The tubes
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[ Ldt (fb™1) BB Events
Detector |On-Resonance Continuum| (109)

CLEO II 3.1 1.6 3.3
CLEO II.V 6.0 2.8 6.4
Total 9.1 4.4 9.7

Table 2.1: CLEO data sets used in this analysis. “On-Resonance” refers to data
taken at a center-of-mass energy of 10.580 GeV, at which ete™ — T(4S) is a possible
decay. The center-of-mass energy is lowered for “Continuum” running, in which
Y (4S) production does not occur.

+ Sense Wire
QO Field Tube

<A
[SATACA

Figure 2.10: Precision Tracking Layer (PT). CLEO II only.

are made of aluminized mylar and are electrically grounded, while the axial sense
wires, centered within each tube, are held at a positive high voltage. The tubes were
filled with argon-ethane (50-50) until 1992, when a switch was made to dimethyl ether
for its lower drift velocity. The half-cell shift in ¢ of adjacent layers not only allows
for maximally efficient use of space, but also avoids possible ambiguity in ¢ when
fitting a track to a series of isochrones. This detector only measures the transverse

component of momentum, as all wires are parallel to the beamline.

The 35mm radius beampipe for CLEO II is made of 0.5 mm thick beryllium. A

25 pm silver coating on the inside mitigates backgrounds from synchrotron radiation.
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SVX; Beampipe (CLEO IL.V)

Replacing the PTL with the CLEO II.V SVX| a three-layer double-sided silicon
detector, resulted in a twofold improvement in the r¢ impact parameter resolution,
and a tenfold improvement for z (see Figure 2.11.) This gave CLEO the ability to

reconstruct secondary decay vertices of, for example, boosted charm mesons.

The beampipe in CLEO II.V had much more stringent design constraints than
that of CLEO II. The readout electronics of the SVX generated about 100 W of heat,
and radiation studies of the CAMEX readout chips showed that extra shielding was
required. The CLEO II.V beampipe has two beryllium walls of 0.25 mm thickness
with a 0.5 mm gap through which cooling water flows. The radiation dose to the

SVX is reduced by the use of masks and an elaborate sliding-shield mechanism.

The change in IR-region materials between CLEO II and CLEO IL.V affects the
probability of multiple scattering and external Bremsstrahlung emission. Since this
analysis depends on the Monte Carlo simulation for detection efficiencies, when gen-

erating Monte Carlo events we have generated them in the correct dataset ratios, not
only between CLEO II and CLEO II.V but also in the datasets within each.

VD

The intermediate Vertex Detector extends from 8.1 cm to 16.4 cm radially. 800
sense wires are arranged in 10 layers; 2272 field wires form hexagonal cells around
the sense wires, as shown in Figure 2.12. The wires are parallel to the beamline;
however, the sense wires, which are made of nickel plated Cr-alloy, have sufficient
resistivity to enable a z measurement by comparing the measured currents at both
sides of the wire. Cathode strips, attached to the cylindrical surfaces of the drift
chamber, attract and detect induced charges from electron avalanches on the sense
wires nearest to them. These strips are segmented in z, as shown in Figure 2.12. The

gas used is a 50-50 argon-ethane mixture.
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Figure 2.11: Left: The CLEO IL.V Silicon Vertex Detector (SVX). Right: SVX
resolution for tracks, as a function of the angle between the track and the plane

perpendicular to the beamline.
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Figure 2.12: The inner two tracking layers of CLEO II: PTL and VD.
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DR

The Drift Chamber extends from 19 c¢cm to 91 c¢m, and uses 12,240 sense wires
and 36,240 field wires arranged in a 51-layer pattern. The DR uses cathode pads in a
similar manner as the VD (see Figure 2.13). Eleven of the 51 layers include a stereo
angle of between 4 and 7 degrees (the angle increases with radius), resulting in p,
information.

In CLEO II an 50-50 argon-ethane gas mixture was used. In CLEO ILV this
changed to 60-40 helium-propane. The modification led to a reduction in multiple
scattering and a simplification of the the isochrone shape at the outer part of the cell,
which in turn led to an increase in the charge collection efficiency.

When reconstructing leptons from the decay B — 1 — £/, we consider leptons
ranging from about 0.6 — 2.4 GeV. Results for tracking parameter resolutions [52]
[53], for tracks generated in this momentum region, generated perpendicularly to the

beampipe, are listed in Table 2.2:

Tracking Error | CLEO II CLEO IL.V
0
P %) 05-07 05-06
p

oy (mrad) |0.6—-2.0 0.7—25
op (mrad) [25—-4.1 1.3-—28
Ogy (pm) |50—120 25—70
0, (um) 1000 40 — 80

Table 2.2: Errors on track parameters for the momentum region 0.6 — 2.4 GeV, for
tracks perpendicular to the beamline.

2.2.3 Time of Flight Counters

Surrounding the tracking devices are fast plastic scintillators which serve as event
triggers and particle ID devices. The barrel and endcap counters are depicted at the
top and left of Figure 2.15; 64 long thin scintillators are arranged in a barrel shape
around the DR, and 28 wedge-shaped scintillators cover each endcap region of the

detector. Photomultiplier tubes are connected to the light pipes.

45



....... cecece-eie.0.q. a5 ps
TilaTelalilililiIiIiiileg
R R S D
SeeneItItItItItIieel a8
R SRR S s
ol oo e e e et el ol b, 46
Lesereenert e e e, a5
R R R LR R R R EE R R RN
Tilelereereese e lalll 43
Llelileteteteiena il o
Titaletelililiiiiiiiia
SR S R
d Wires
€0 Sense Wires
Sense Wires
Cathodes
er Shell
er Shell
Aluminum
Skin (1/4")

Aluminum
Endplates
and Rings

Inner Cathode Pads
Outer Cathod Pads

Figure 2.13: Main Drift Chamber (DR) wire configuration and cathode strip locations.

46



15

=
(@)
\

dE/dx (KeV/cm)

0.0 0.5 1.0 15
Momentum (GeV/c)

Figure 2.14: Measured dFE /dx and predicted curves for each particle species.

47



For each scintillator, the readout electronics measure the time elapsed between
the CESR beam crossing signal and a detected light signature. In the case of the
barrel scintillators, the difference in timing between the east and the west side provide
information in where the scintillation occurs in z. Since, for a given track momentum,
the velocity of the track depends on its mass, the Time-of-Flight measurement can
provide particle ID information as long as the TOF hit corresponds to a unique track.

Use of the TOF as particle ID gives results that are shown in Figure 2.15.

2.2.4 Time of Flight Bunchfinder

As discussed previously, part of CESR’s luminosity upgrade program was to in-
troduce a beam crossing angle, thus enabling “multibunch” running. In this scenario,
CESR fills nine “trains” of electrons and positrons, each train containing five buckets
spaced 14 ns apart, with an actual bunch in any or all of the train buckets. Only one
crossing signal is given for the entire train. This raises a problem for the tracking
algorithm, which must know which bunch the event came from in order to establish
a correct base time. Otherwise, the track fitter attempts to fit to isochrones that are
too large or small, resulting in poor fits.

A contribution by the author to CLEO II was to write, calibrate, and maintain
the “Time-of-Flight Bunchfinder,” or TFBN, an algorithm which utilizes information
from each TOF hit in a given event to determine the bunch from which the event
occurred. The raw material for making the decision is shown in the top of Figure
2.16, which shows the aggregate distributions for many events of double-bunch data.

Given an event, TFBN loops through every TOF hit. Based on the pulse height
of the hit, endcap/barrel, east-west timing correlation information (for barrel hits),
and event trigger type, an appropriate lookup table is called which then assigns
appropriate weight to the hit based on whether the measurement of the time supports
any or all of the allowed bunch answers. The algorithm not only reports a bunch
prediction with 100% efficiency, but also reports the amount of TOF evidence and the
solidarity of that evidence as well. In accuracy studies of the algorithm, an accuracy

rate of 99.45% with 100% efficiency was found for hadronic events. Bhabha and p
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measurements, double-bunch data. x and y axes are times reported by the east and
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pair events, used for calibration, yielded 99.74% and 99.63% accuracy, respectively,
with high efficiency. CLEO II.V relied exclusively on the TOF bunchfinder for on-line
data acquisition. The bunchfinder was used until the TOF system was removed from
CLEO II to make room for new RICH particle ID hardware for CLEO III.

2.2.5 Crystal Calorimeter

The crystal calorimeter (CC) is an array of 7800 thallium doped CsI crystals.
Each crystal is approximately 5 cm X 5 ¢cm x 30 cm, but in order to gain maximum
coverage of 47, 25 different shapes of crystals were fabricated. Figure 2.17 shows
barrel and endcap crystal configurations.

Incident e* or 7 on a crystal will pair-produce and undergo Bremsstrahlung; the
resulting shower of numerous, low-energy e* and « produces a flash of light in the
crystal, the intensity of which is related to the energy of the original particle. Showers
from e* or v will typically be localized, i.e. not spread over a large region of crystals.

The CC measures these particles with a high degree of precision in energy and angle.
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Incident x* will pass through the crystal, leaving only ionization of about 200 MeV
in the crystal. This fact is used in our v analysis to increase the detection efficiency
in the ¢y — pp mode. Hadrons, too, will leave ionization in the crystal; however,
since the length of the crystals is approximately the same as the hadronic interaction
length, the probability of a hadronic interaction is significant. Hadronic interactions
will often cause the production of other hadrons, in unpredictable directions; often
these secondary hadrons also deposit energy in nearby crystals. In general, hadronic

showers cover a larger area of crystals than do electromagnetic showers.

Our analysis uses shower reconstruction in searching for x.; — %(1S5)y. From
Monte Carlo, the spectrum of +y in this decay ranges from 240 — 600 MeV. The energy
and angular resolution of the CC is given generally in [51]; for light in the wavelength
range we are interested in, the resolutions are listed in Table 2.3. The relatively
poor performance of the endcap is because of extra detector material (preamps, DR

endplate) separating the endcap crystals from the IP (see Figure 2.9).

Tracking Error| Barrel  Endcap
0F
5 (%) 23-29 29-36

oy (mrad) |5.5— 7.6 12.1 — 14.9
op (mrad) [44—-6.1 74-85

m
m

Table 2.3: Errors on shower parameters for v in the energy range 240 — 600 MeV.

2.2.6 Magnet

The superconducting niobium solenoid carries a current of 3300 A and requires
liquid helium for cooling. The 1.5 T magnetic field produced is uniform to within
0.2% in over 95% of the drift chamber volume. An iron yoke, 1 foot thick, is used to

complete the magnetic field loop.
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Figure 2.17: Crystal Calorimeter: Barrel and Endcap.

2.2.7 Muon Detectors

Of the observable particles, muons have the unique ability to penetrate through
several feet of iron with significant probability. By placing iron between the interac-
tion point and charged particle detectors, we hope that the charged particles that are
detected are indeed muons. CLEO has three sets of “superlayer” detectors, which
are embedded behind 3, 5, and 7 hadronic interaction lengths of iron (assuming a
§ = m/2 particle.) Each superlayer is made of three layers of proportional drift cells,
shown in Figure 2.18. Each of the 8 counters includes an anode wire in the center,
operates with the same gas as the DR (argon-ethane in CLEO II, helium-propane in
CLEO IL.V), and is coated with graphite on 3 sides to provide an electrical ground.
The coordinate perpendicular to the wires is measured by the use of external copper
pickup strips. Because of space limitations, the muon detector coverage, 85% of 4,
is less than that of the other CLEO detectors.

Selection of muon candidates at CLEO using the muon detectors is practically
limited to one of three cuts. The CLEO variable DPTHMU, computed for every charged

track, is the number of hadronic interaction lengths of steel that the track punched
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through. Cuts of DPTHMU > 3, 5, or 7 are the standard cuts, in decreasing order of
efficiency and hadronic punch-through rate. Our analysis combines pairs of oppositely
charged muons and fits the resulting invariant mass peak at M(J/v); hadrons that
punch through will not peak in this invariant mass and therefore are not a concern.
Maximizing efficiency, however, is crucial in a precision measurement like this one.
From the lower plots of Figure 2.18 we see that even the loose requirement of DPTHMU >
3 leads to a loss of all muons softer than 0.9 GeV in the barrel and 1.5 GeV in the
endcap. The cuts used in the analysis require DPTHMU > 3 in the barrel region but

loosen the endcap requirements in order to increase the detection efficiency.
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Figure 2.18: Muon detectors at CLEQO. Upper Left: cross section of a single detector
layer. Upper Right: a superlayer (3 layers). Lower Left: efficiencies of the three
standard CLEO cuts for muons, in the barrel region. Lower Right: endcap region.
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Chapter 3

Experimental Techniques for

Charmonium Measurement

3.1 Obstacles to Theoretically Relevant Measure-

ments

The theoretical framework that was discussed in Chapter 1 makes predictions for
the inclusive branching fraction, momentum distribution, and polarization of ¢/ which
are produced directly from B mesons. Measurement of these very basic properties of
1 mesons might appear at first to be a simple matter. However, there are subtleties
which must be accounted for in order to obtain measurements that measure exactly

what theory predicts. These potential pitfalls are discussed in this section.

3.1.1 Reference Frames: B vs. Laboratory

There are two inertial reference frames relevant to our measurement. One is the
reference frame in which the B meson (which subsequently decays to )X ) has zero
momentum. We refer to this as the “B frame.” The second is the CLEO lab frame,

or “Y(4S5) frame,” in which the the YT (4S) (which subsequently decays into BB) is
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created with zero momentum'. We note that the relation between these two reference

frames is different for every event.

Ideally, we wish to measure the momentum of the v in the B frame, as this is
the relevant frame for theoretical calculations?. We now catalog some ways in which
attempts might be made to determine the direction of this boost. We cannot recon-
struct the entire B decay chain as this is an inclusive measurement. Reconstructing
the other B in the event would lead to an unacceptable loss in efficiency due to the
small branching fraction of exclusive B decay modes. If we could reconstruct the
decay vertex of the 1 as well as that of the interaction point, this would give us the
direction of the initially produced B. However, 8 of the B is approximately 0.06, so
that Sycr(B™T) = 30um, which is significantly less than the best-case track impact pa-
rameter resolution of the CLEO ILV SVX [54]: § = 6,4, ®6, > 19um @ 42um = 46pum
(see Figure 2.11).

Since it is the best we can do, our measurements of p,, and cos @ (the helicity angle
of the 1, as defined in Sec. 1.6.4) are made in the lab frame. However, by definition,
measurement of the helicity angle 8, requires knowledge of pfg (or more precisely,

the direction of ﬁg)?’. Since we can only measure pﬁgb, our calculation of 6, which

substitutes pl® for p}}, is incorrect. We will use 6'“ to denote the (smeared) helicity

angle thus obtained. We will refer to this phenomenon, which causes pf;}b #* pf; and

”

glab £ @, as “B-frame smearing.” The effect of B-frame smearing on the quantities
py and 6 are shown in Figure 3.1.

Theoretical predictions for the 1 momentum distribution are made in the in the b
frame, but our measurement is in the Y(4S) frame. The transformation between these

frames must be done in order to make comparisons between theory and experiment.

'For most of the data, this is not exactly true, due to the CESR crossing angle scheme, as
discussed in Section 2.1.3. However, the boost of the Y(4S) (8 = 0.004) is small relative to the
boost of the B mesons which the Y (4S5) decays into (8 & 0.06), making the former boost negligible.

2 Actually, the frame in which the b quark is at rest is the ideal reference frame; however, properties
of the b are not directly measurable by experiment. The b frame and B frame are not trivially related,
as discussed in Section 1.5. Therefore the normal procedure is for the phenomenologists to adjust
their b-frame predictions to the B frame, instead of experimentalists attempting to extract b-frame
results from B frame measurements.

3When it is important to be explicit about the reference frame, we will use pﬁ and pi;}b to refer
to the ¢ momentum in the B frame or lab frame, respectively.
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One approach is to “smear” the b-frame model predictions into the B or T(4S) frames.
This is precisely what is done in the momentum spectrum predictions [37] [38] that
were summarized in Section 1.6.3.

The other approach is to attempt to recover the pf distribution from the measured
pigb distribution. We are indeed able to perform this deconvolution, but only when
the bin size is significantly larger than the smearing width. Because of the coarse
binning required to do this (see Fig. 3.1, upper right plot), we will not present results
of it. Our final results for the momentum spectrum are presented in the Y (4S) frame.

As far as the polarization measurement is concerned, the lower right plot of Figure
3.1 is much less of a problem than it might first appear to be. This is because
our method of measuring the polarization, described later, compensates for the 6
mismeasurement in a simple and elegant manner which does not require that we
attempt to deconvolve 6 from #'e.

For the remainder of this thesis, references to momentum and the helicity angle 6

will refer to measurements made in the lab frame, unless explicitly specified otherwise.

3.1.2 Mismeasurement due to Bremsstrahlung and Detector

Resolution

There is no such thing as a perfect detector; every measurement of every quantity
will have an error associated with it that is intrinsic to the process of measurement.
Figure 3.2 shows Monte Carlo simulations of the reconstructed ¢(1S) momentum
compared against the the generated momentum, where both momenta are in the lab
frame. We will use the phrase “measurement smearing” to describe the difference
between the generated and reconstructed 1y momenta.

The difference in resolution between the electron and muon decay modes is pri-
marily due to Bremsstrahlung. In the di-electron mode, relative to the di-muon mode,
there is a greater probability that we will fail to detect and add Bremsstrahlung pho-
tons to the 1 candidate’s four-vector, thus leading to the familiar radiative tail as
well as a widening of the signal peak, in invariant mass. If, for example, we require

¥(1S) — ete” candidates to have an invariant mass within 36 MeV ( 20) of the
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nominal mass, thus excluding events in the radiative tail, the momentum resolution
o improves from 38 MeV (see Figure 3.2, lower left plot) to 15 MeV.

The final step of our ©» momentum measurement, which will be discussed in detail
in Section 4.4, is to recover the generated 1 distribution from the measurement-
smeared 1 distribution. Our procedure for measuring the polarization automatically
takes care of measurement smearing in the same manner as it does for B-frame

smearing.

3.1.3 Intermediate Parents

We are interested in measuring only those ¢ which are produced directly from B
mesons. This requirement necessitates extra efforts in the case of 1(15), but not for
$(29).

Table 3.1 lists every mode in which a 1(1S) can be be produced from a beauty
meson B.* There are several modes in which the t(15) is produced via an “inter-
mediate parent,” which we define as a particle, produced by the B, which in turn
produces the ¥(15); e.g. Xco; Xe1s Xe2, and 1(25). The last section of the table lists
the two modes in which we detect the 1 (1S).

The goal is to obtain measurements of momentum distribution and polarization for
those 1(1S) that are the direct daughters of the B. To do this we must first examine
the sample of 1(1S) without regard to whether or not there is an intermediate parent,
i.e. the “inclusive” 1(1S). We must then correct this inclusive sample for those 1(1.5)
(the “feed-down”) which have intermediate parents. Of the several ¢(15) feed-down
modes, we explicitly reconstruct two: (2S) — ¥(1S)rT7n~ and x. — ¥(15)y. In
the case of 1(2S) — ¥ (1S)m°7°, we assume that the ¢(15) from this decay will
have the same momentum distribution and polarization as the ¥(1S5) from ¥(2S) —
Y(1S)ntw—. We will discuss this assumption in further detail in subsequent sections.
As for the four decay chains involving an intermediate ¢ (2S) with relatively small
branching fractions (we will refer to these as the “miscellaneous” feed-down modes),

we use a Monte Carlo simulation of these decays to obtain the momentum distribution

4«B” denotes the admixture of B®, B, B, and B~ produced from decays of the YT (495)).
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| Mode | B(10?) | Measure? |
| B— ¢(15)X | 11.5+0.6 | Yes |
B — 9(15)(direct) X 8.0+ 0.8 |No - correct inclusive
B = xaX = ($(1S)7)X 1.15 4+ 0.20 Yes

B = %(29)X — ((18)r+a)X 1.22 4+ 0.20 Yes

B — 9(25)X — (v(18)m%7%) X 0.714+0.12 | No - use ¥(1S)n*

B — ¢(25)X — (v (15)n)X 0.08 £0.02 | No - MC simulation
B = ¢¥(25)X = (xe27)X — (¥(15)yy)X |0.037 £ 0.007 | No - MC simulation
B = ¢(29)X — (v (18)7%) X 0.003 + 0.001 | No - MC simulation
B — (25X — (x«07)X — (¥(15)yy)X | 0.002 + 0.001 | No - MC simulation
Sum of the above: 11.24+0.9

Reconstruction Modes:

(18) = ete 50.3 £ 1.0 Yes

W(1S) — ptu- 58.8 + 1.0 Yes

Table 3.1: B — X — 9¢(1S5): Every non-upper-limit decay chain from the 2001 PDG
[10]. The last column shows whether or not we directly measure the contribution of
¥ (15) from a particular channel. If the answer is “No,” then the method by which
we deduce the momentum distribution of (15) from that particular channel is also

listed.

of the 1(15) created from these decays.

Table 3.2 shows the known decay chains which produce a 9(2S5) from Y(4S). In

contrast to the case with 1(1S), the situation here is much simpler as there there is

no “feed-down.”

dilepton modes.

We reconstruct the ¢(2S5) via the ¥(1S)7t7~ mode as well as the

| Mode | BF (107%) | Measure? |
| B— ¢(295)X | 3505 | Yes |
Reconstruction Modes:
¥(2S) > Yv(AS)rTn™ - T wtr | 41.1+£3.3 Yes
¥(2S) = ete” 7.9+0.5 Yes
¥(2S) = ptp~ 1244 Yes

Table 3.2: B — X — ¢(2S5): Every non-upper-limit decay chain from the 2001 PDG

[10].
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3.2 Charmonium Reconstruction: Overview

We detect both the ¢(15) and 9(2S) in the ¢» — ¢¢ dilepton channel, which offers
a clean experimental signature for both the invariant mass and helicity of ¢ candi-
dates. The ¥(15) and ¥ (2S) mesons decay primarily into hadronic states; however,
the knowledge of the branching fractions involved is relatively poor, the signal-to-
background level for multibody hadronic final states is high, and the helicity infor-
mation of the parent v is obscured.

Determining the number of ¢ which come directly from B decays requires several
steps. We first reconstruct the 1) candidates in the on-resonance data, obtaining a v
yield from fitting invariant mass peaks. We do the same procedure for off-resonance
data. Subtracting the latter, properly scaled, from the former, we obtain a yield of
1 which occur from Y(4S) decays. By assuming that Y(4S) — BB = 100%, as is
standard for “admixture” analyses [10], we conclude that every 1 from Y (4S) also
came from a B. In this vein we note that a recent BaBar measurement [55] reports
B(Y(4S) — ¥ X) < 4.3 x 10~* at 90% C.L.

In the case of ¢(15), we combine the reconstructed ¢ (15) candidates with other
particles in the event to determine if the (1S) had an intermediate parent. We
add the four-momenta of vy candidates to that of the ¢(15) candidates to look for
the intermediate parent y.i; similarly, we add the four-momenta of observed 77~
candidates to the ¢(15) four-momentum to look for the intermediate parent (25).
We note that this process will not identify 100% of the (1S) with intermediate
parents due to inefficiency in finding the extra particles. We also note that we must
have branching fraction information for the intermediate parent particles. These
issues are taken care of in the analysis.

This leads to three sets of 1(1S) candidates. First, is the “inclusive” set, in
which no attempt is made to ascertain the immediate parent of the 1) candidate. The
other two sets are subsets of the “inclusive” set in which the ¢ candidate is also an

daughter-of-an-intermediate-state candidate.

e “(15) inclusive”: ¥(15) — £~
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e “Y(15) from 1(25)”: ¥(2S) = Y(1S)rTn~ = LT 77~
o “P(1S) from xe1”: Y(1S)y — LT~y

As for the ¥(2S), there is no feed-down to worry about; however, we reconstruct

it in two different final states:
e “)(2S) via dileptons”: ¥(2S) — £1¢~
e “Y(2S) via Yr”: P(2S) - Y(1S)ntrT = LTt

The “(2S) via ¥rnn” mode is the identical set of events as the “i(15) from
¥(25)” mode. The reason for the semantic difference is that when we say “i(15)
from 1 (2S5),” we are interested in the properties (momentum, polarization) of the
¥ (15); adding particles to this 1(1.5) to form a 1(2S5) is done only to see if the (1.5)
had an intermediate parent. In contrast, when we say “®(2S) via ¢Ynm,” we are
interested in the properties of the 1(25). In this case the polarization of the 1(25)
cannot be easily determined from examining the decay products ym7. So, this mode

is not included in the 1(25S) polarization measurement.

3.3 Bremsstrahlung Recovery

In the decay 1 — ¢4~ either or both of the final state particles may emit
Bremsstrahlung radiation. “Internal” Bremsstrahlung is due to the acceleration ex-
perienced by an electron when it is first created, while “external” Bremsstrahlung
comes about due to the electron’s passage through matter in the detector. The v
decays we reconstruct are therefore better described as 1) — £ ()¢~ (y). If the four-
momenta of Bremsstrahlung photons is ignored, then the invariant mass of the £/~
will be lower than the nominal mass M. The problem is much worse for the electron
mode than it is for the muon mode, because the lower mass of the electron increases
the probably of Bremsstrahlung emission.

The rest of this Section is a summary of the findings from a study of Bremsstrahlung

photon recovery at CLEO; more details may be found in Ref. [56].
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At CLEO, most of the matter encountered by the daughter leptons is concentrated
in the beampipe and SVX, both of which are located near the interaction point (IP).
The spatial difference is small enough that internal and external Bremsstrahlung may
be treated identically.

In the case of ¥ — £*(v)¢~ (), almost all Bremsstrahlung photons are emitted
within a narrow (5 degree) cone around the momentum vector (at the IP) of the
emitting electron. By searching for showers in the crystal calorimeter within this
cone that are not are not associated with charged tracks, we identify and add up to
one shower per electron track to the ¢ candidate four-momentum. The increase in
efficiency by doing so is on the order of 25%.

In the case of 9p — u* ()~ (7y), the probability of Bremsstrahlung photon emission
is lower; when photons are emitted, they are far less collinear with the IP muon
momentum. Attempting the above technique with a correspondingly larger cone
results in a large increase in the number of wrongly identified photons. Photon

recovery is therefore not used for the ¥ — pu + p~ case.

3.4 Selection Criteria

The general motivation behind the v selection criteria is to maximize the ¥ de-
tection efficiency. Lepton identification cuts are loose, and no part of the detector
geometry is excluded. These cuts are similar to those used in other CLEO charmo-

nium analyses [56].

3.4.1 Dataset

We use the full datasets collected by the CLEO II and CLEO I1.V detectors. Most
CESR running occurs at a center-of-mass beam energy of myg), or 10.580 GeV; at
this energy, hadrons are created via ete™ — bb in addition to ete~™ — ¢g, where
q € {u,d,c,s}. One-third of the luminosity is devoted to “continuum” data-taking,
where the beam energy is tuned to about 10.550 GeV, thus excluding production of
the Y(4S). Many B analyses have significant backgrounds from ete™ — ¢g events; the
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purpose of obtaining the continuum dataset is to subtract the contribution (properly

scaled for luminosity and energy scale) of efe~ — ¢g from the on-resonance data.
For CLEO II data, the integrated luminosity of the data is 3.137 fb~! on-resonance

and 1.608 fb~! continuum; for CLEO I1.V, 6.029 fb~! on-resonance and 2.944 fb—!

continuum are analyzed.

3.4.2 Events

Events must be deemed to be a hadronic event by the CLEO event classifier.
Over 99.8% efficient for BB events [57], it requires that at least 3 charged tracks are
observed, that the detected energy of all tracks and showers must be greater than
20% of the beam energy, and that either at least 5 charged tracks are observed, or
the total energy deposited in the crystal calorimeter is more than 15% of the beam
energy.

Additionally, we require that the ratio of the second to zeroth Fox-Wolfram mo-
ments [58] R2GL5 be less than 0.5 (thus selecting events in which the energy is more

spherically distributed), and that at least 4 tracks are observed.

3.4.3 Tracks

Many of the tracking cuts are fairly typical for CLEO analyses. The common
criteria for all tracks, along with specific requirements for e* and 7% candidates, are
listed in Table 3.3.

Electron ID information is reported for each track in the continuous variable
R2ELEC. Based on information from the crystal calorimeter, dE/dx, tracking, and
time-of-flight systems, R2ELEC is designed to give a log-likelihood probability that the
track in question is an electron. Of the tracks that satisfy the requirement R2ELEC >
3, for example, approximately one track out of every 10® will not be an electron.
Our requirement of R2ELEC > 0 is therefore loose relative to the cut used in most

CLEO analyses (R2ELEC > 3), and is designed to maximize the detection efficiency

SUppercase TYPE font will be used to denote standard CLEQ analysis variables. Lowercase type
font will denote variables defined specifically for this analysis.
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of electrons. We can afford to allow a higher percentage of “fake” electrons, since
we reconstruct ¢ candidates by combining pairs of oppositely charged electrons.
candidates reconstructed from one or two hadrons that happen to pass the electron-
ID cuts will not peak in m,. The same logic leads to our choosing loose muon-ID

requirements in the interest of maximizing detection efficiency.

The selection criteria which categorize the muon candidates into three “tiers” are
listed in Table 3.4. The primary variable for muon identification is DPTHMU, which is
the number of nuclear interaction lengths of iron traversed by a track before being
detected by one of the muon detectors. The first layer of iron, beyond which lie the
first set of muon detectors, is 3 interaction lengths thick, so the loosest cut possible
for muon detection is 3. Tracks which pass this cut are called “first-tier” muon

candidates.

As the tracks become more parallel to the beamline, they must traverse more
material before even reaching the iron, as shown in Figures 2.8 and 2.9. This effec-
tively increases the minimum momentum that muon candidates must have to punch
through the iron. We therefore define “second-tier” muons as being charged tracks
that go in the direction of the endcap muon chamber, do not have enough momentum
to be likely to punch through, and leave a minimum ionizing shower in the crystal
calorimeter. Similarly, “third-tier” muons are tracks leaving a minimum ionizing
shower in the calorimeter and point to the extreme endcap region where there is no

muon chamber coverage.

3.4.4 Calorimeter Showers

Showers in the crystal calorimeter are used for three purposes: 1) identify
Bremsstrahlung photons, 2) identify showers consistent with a minimum ionizing par-
ticle (muon), and 3) identify photons from the x. — %(15)y decay. Requirements
for each type of shower are listed in Table 3.5.
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3.4.5 o — (0"

In the ¥y — e (y)e™ () mode, the v candidates must be Bremsstrahlung Showers
as defined in Table 3.5. Furthermore, they must lie within a 5-degree cone of either of
the e tracks. If more than one shower is within this cone, then the shower lying in the
smaller cone is chosen. No one shower may be added twice, even if it meets the above
conditions for both electron tracks. The net result is that 0, 1, or 2 Bremsstrahlung

photons are added to 7 candidate four-momentum.

In the v — p*p~ mode, at least one of the muon candidates must be a first-
tier muon candidate as defined in Table 3.4. Both must be either first-, second-, or

third-tier muon candidates.

3.4.6 (2S) = (1S)nrtn™

We impose a cut on the invariant mass of the ¢(1S) candidate -50 MeV <
M (y)€ (7)) — Myas) < +25 MeV. This includes the signal peak in the distri-
bution of M (£ ()¢~ (7)) but does not include the radiative tail. Excluding the latter
results in a loss of efficiency, but is offset by the more accurate measurement of the

1 four-momentum and an increase in the signal-to-background ratio.

The distribution of M (7"7~) does not follow three-body phase space but peaks
towards higher M (7*7~), as observed by the MARK III collaboration in 1992 [59].
We impose a cut of M (777~) > 0.45 GeV, which has a signal efficiency of about 85%,
and significantly reduces combinatoric background from pairs of soft pions. Figure 3.3

contrasts the 3-body phase space distribution to the MARK III observed distribution.

When searching for a signal in this decay mode we plot the mass difference be-
tween the 1(25) and ¢(15) candidates: (Mysy — Myas)) — or, to be more precise,
(Mt (- (a+a- — Mot (y)6-())- Doing so partially discounts any mismeasurement of

the 1(15) candidate and therefore narrows the signal.
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3.4.7 xa — Y(15)y

This mode is treated similarly to the (2S5) — ¢¥(1S)rTn~ search mode: we
accept ¥(1S5) candidates within [—50 MeV, +25 MeV] of the nominal ¢(1S) mass,
and plot the mass difference (M, — Myg)) = (Mg+(1)e- (1) — Me+(1)e- (7)) to search
for x. candidates.

The photon candidate must satisfy the “Isolated Shower” cuts of Table 3.5, and
must be detected in the “Good Barrel” region of the detector. Finally, the shower
must pass a 7° veto; namely, the two-photon invariant mass of the candidate shower,
combined with any other “Isolated Shower” in the same event, must not be within

[—30, +20] of the nominal 7° mass.

3.5 Data Yields

The results of applying the selection criteria to the combined CLEO II and CLEO
I1.V dataset are shown in Figure 3.4 (on-resonance), Figure 3.5 (continuum), and Ta-
ble 3.6. Raw (uncorrected) yields are obtained by fitting the mass plots with a signal
lineshape and cubic polynomial background. The details of the fitting procedure will
be described later.

The purpose of this exercise is to obtain an estimate of the yield in the entire
dataset; this indicates how well we might be able to measure the momentum distri-
bution and polarization, both of which will require us to divide the dataset into many
partitions, and then fit for the yield of ¢ in each partition.

For the momentum distribution, we will partition the dataset into bins of py
and obtain a yield from fitting the mass peak in each partition. The momentum
distribution is then a plot of the yields in each partition. Similarly, to measure
the polarization, we will simply define the partitions differently — namely, in cosf —
and again fit the mass peaks in each partition. Plotting the yield as a function of
cos f results in an angular distribution. By comparing the observed distribution to
simulations of longitudinally polarized ¢ and transversely polarized v, we obtain the

average polarization of 1 in the data.

66



In the continuum data, the yields of ¥(2S) and feed-down (15) are consistent
with zero, so we will proceed assuming that their effect in this analysis is negligible. In
the inclusive 1(1S) mode, we observe a small but significant signal. The analyses will
use these events to correct for the contribution of non-bb events in the on-resonance

data.

3.6 Signal Monte Carlo

In order to estimate the detection efficiency and determine signal lineshapes as
a function of ¥y momentum and helicity, we rely on a Monte Carlo simulation of
Y(4S) decays and their observation by the CLEO detector. Two programs are used
to generate simulated data files, which are of the same file format as the real data,
and are processed through the same reconstruction code as the data.

The first program is called QQ; it uses a random number generator to select a
complete decay chain of the YT (4S), down to the stable particles that are detected. A
lookup table contains the definitions of the particles, their spins and masses, branching
fractions, and probability of internal Bremsstrahlung, all of which define the kinemat-
ics of the decays. Fragmentation processes cannot be handled with a lookup table, so
for this the CERN program JETSET [60] is used. The end result is a list of particles
with explicitly listed 4-momenta, creation coordinates, and decay coordinates.

This particle list is an input to the second program, CLEOG, which simulates the
CLEO detector response to particles and generates simulated data files of the same
format as the real data. The GEANT [61] package from CERN is used for the detector
response, modelling a large number of physics processes such as dF/dx loss, external
Bremsstrahlung, electromagnetic showers in the crystals, multiple scattering of tracks,
penetration of charged particles through iron, etc. Detector noise is also modeled, as
are the decays of “long-lived” particles such as muons and kaons.

Over the approximately ten years in which CLEO II and CLEO ILV collected
data, the detector went through many changes, major and minor. Some changes had
important implications for the detector response. For example, the introduction of

the SVX added significant amounts of material to the detector, thus increasing the
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probabilities of Bremsstrahlung and multiple scattering near the IP. Other examples
of changes were the changing of the drift chamber gas to helium-propane (implications
for tracking and dE/dz) and the switch to multibunch running (introducing a tiny
boost to the Y (4S5) in the lab frame). All of these changes, and many more, have been
incorporated into the CLEO version of GEANT. For this analysis, we have taken care
to generate CLEO II and CLEO II.V events in the same ratio as the luminosities of
these data sets. In fact, we generate events in the same ratios of the “sub-datasets”
within CLEO II and CLEO IL.V, known within CLEO as the 4s2-G (II) and 4sH-T
(IL.V) datasets.

In order to obtain information about the specific decays that we reconstruct, we
generate “Signal” Monte Carlo in these decay modes. This is done by “loading the
dice” used by QQ to force the “produced” Y (4S) to decay in a manner in which we
prescribe. There are eight sets of signal Monte Carlo that are crucial to this analysis:
4 for each of the search modes, times 2 for each spin-alignment state of the 1. All
of the signal Monte Carlo begins with the decay efe™ — Y(4S) — BB. We allow
either the B or the B (50-50 probability) to decay via the standard QQ lookup table.
The other B in the event decays is forced to decay in one of four ways, enumerated

below:

e “Y(15) direct”: B — ¥(15)X.
e “Y(15) from ¥ (2S5), or ¥(2S) via yYrrn”: B — ¥(25)X, ¥(2S) —» v (1S)m+ 7.
® “770(15) fI‘OIIl Xcl”: B — Xcha Xecl — 10(15)7

e “(2S) via dileptons”: B — 1(25)X.

For each of these decay modes, we generate two separate sets of Monte Carlo

events, based on the helicity state of the 1):
e H=0 (ora=—1)

e H=+1 (or a=+1)
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In the dilepton decays, the 1(1S) and ¥ (2S) decay to both lepton species equally.
In the above, “X” refers to any number of states, whose composition and relative
probability are given by the standard QQ lookup table. (If X is a spin-one particle,
for example, K*, then its helicity is defined with the correct correlation, with respect
to the helicity of the .)

In the case of ¥(25) — ¥(1S)n "7, the CLEO Monte Carlo generates the events
in 3-body phase space. However, it is known from Mark III measurements [59] that the
observed distribution of M (7nt7~) peaks strongly towards higher M (77 ™), relative
to phase space. The phenomenological formula for the observed distribution is given
in [62] and is used to “pare down” the CLEO Monte Carlo to the observed distribution
via the rejection method. (See Figure 3.3.)
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Variable Criteria Description of Cut/Variable
All Tracks
DREDGE =0 cuts tracks with noise hits
ZESCAPE =0 require tracks with sufficient z information
KINCD € {0,—2} ensure well-measured tracks
TRKMAN >0 ensure 1-to-1 mapping of logical to physical tracks
|DBCD | < 0.003 max. r — ¢ impact parameter (m), with respect to
primary vertex
|ZOCD-ZVPTX| < 0.025 z-distance between track and primary vertex (m);
applies only if primary vertex in z is determined by
2 or more tracks with an error of less than 0.010 m
| ZOCD | < 0.05  z-distance between track and expected IP (m); ap-
plies only if the above cut does not apply
ABSMOM < 5.3  track momentum (GeV)
Electron Candidates
R2ELEC > 0.0 CLEO electron ID variable; wuses calorimeter,
dE /dz, tracking, time-of-flight information; about
90 — 95% efficient for e* from 1
ABSMOM > 0.6  track momentum (GeV)
num_good_tng 5 Number of tracks in event satisfying the TRKMAN and
KINCD cuts listed above
Pion Candidates
| DBCD | < 0.005 maximum r — ¢ impact parameter (m)
R2ELEC < 3.0 CLEOQ electron ID variable, as above; rejects tracks
with an extremely high probability of being an e*
DPTHMU < 5.0 # of nuclear interaction lengths of iron traversed by
a track before being detected by the muon detectors
| SGPIDI| < 3.0 normalized difference between measured dE/dx and

that expected for a pion (in o); applies only if the
quality of dF /dx info is good

Table 3.3: Selection criteria for charged tracks.
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Variable Criteria Description of Variable

Tier-1 Muon Candidates

DPTHMU > 3.0 number of nuclear interaction lengths of iron tra-
versed by a track before being detected by the
CLEO muon detectors

Tier-2 Muon Candidates

|CZCD| € [0.707,0.85] cosine of the angle formed between the track and
the beamline
ABSMOM € [1.0,1.8]  track momentum (GeV)
muon_shower =1 Track is matched with a minimum-ionizing shower

in the calorimeter

Tier-3 Muon Candidates

|CZCD| > 0.85 cosine of the angle formed between the track and
the beamline
muon_shower =1 Track is matched with a minimum-ionizing shower

in the calorimeter

Table 3.4: Selection criteria for muon candidates.

71




Variable Criteria Description of Variable
Bremsstrahlung Showers
EBUMP > 0.010 shower energy (GeV)
NBCREG =1 number of showers in a connected region
ANGBT > 20.0 angle between shower and closest track (degrees)
“Muon” Showers
EBUMP € [0.160,0.300] shower energy (GeV)
NBCREG =1 number of showers in a connected region
E925 > 92501 energy deposited in a 3 x 3 array of crystals, di-
vided by the energy in the 5 x 5 array that sur-
rounds it; 92501 is a cut value with ~ 99% effi-
ciency for true photons
Isolated Showers
EBUMP > 0.030 shower energy (GeV), for |cos@| > 0.707 region
only (“Good Barrel”)
> 0.050 for |cos@| < 0.707 region only (“Bad Bar-
rel”,” Endcap”)
IBSTOP =0 reject possible shower fragments
NBCREG =1 number of showers in a connected region
E925U > (0.98 - 92501 “unfolded” E925
ANGBT > 20.0 angle between shower and closest track (degrees)
RMO > 0.50 ratio of second moments in # and ¢
CRMASS < 0.09 mass of connected region

Table 3.5: Selection criteria for calorimeter showers. Regarding E925: the cone angle
defined by the IP and a 3 x 3 block of crystals is typically ~ 4 degrees; for a 5 x 5
block, ~ 7 degrees.

Observed Yield, Data
Search Mode Decay Chain On-Resonance | Continuum
“p(15) inclusive” $(18) = 0¥~ 16478 + 166 142 £ 31
“p(1S) from xe1” Xe1 — ¥(18)y 689 + 46 247
“h(1S) from ¥(2S)” | 1(25) — »(1S)r+a~ | 703+ 37 8+5
“p(2S) via Yrr” ¥(2S) — £t¢ wtr~ | same as above | same as above
“h(2S) via dileptons” | 1(25) — £+¢- 639 + 48 15+ 18

Table 3.6: Yields for each measured decay mode, CLEO II and CLEO II.V data. The
yields are not corrected for detection efficiency and include both electron and muon

modes.
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W(1S) -1 B-Frame Smearing
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Figure 3.1: Effects of B-frame Smearing. Monte Carlo events, ¢(15) — ¢/, generator-
level momenta. Top: Box plots of B-frame versus lab-frame momentum. The vertical
axis shows —p so that the similarity between the plot and the identity matrix is
evident. The left plot uses the standard bin width of 100 MeV; the right plot uses
a coarse bin width (400 MeV) which reduces the bin migration to the 1-bin level.
Bottom Left: Momentum resolution. The normalization is such that the sum over
all bins yields 1. Bottom Right: Smearing in cosfyns) as a function of py(1S5).
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P(1S) - 1"1: Measurement Smearing
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Figure 3.2: Effects of Measurement Smearing. Tagged signal Monte Carlo events,
¥(1S) — £¢. Top: Box plots of generated versus observed momentum. The vertical
axis shows —p so that the similarity between the plot and the identity matrix is
evident. Bottom: Momentum resolution. The normalization is such that the sum
over all bins yields 1.
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Figure 3.3: M(nt7n~) in the decay 1(2S) — ¢(1S)r*n~. The upper curve shows
the output of CLEO Monte Carlo, which is 3-body phase space. The lower curve is
given by a formula in Ref. [62], which matches the observed spectrum from MARK
IIT [59]. Monte Carlo events are originally generated with the distribution shown by
the upper curve; we use an event rejection method to obtain the distribution shown
by the lower curve.
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Figure 3.4: The four search modes for the sum of CLEO II and CLEO IL.V on-
resonance data. All ¢ helicity angles; both v dilepton decay modes (e and pu).
pw(lS) < 2.0 GeV. p¢(25) < 1.6 GeV.
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Figure 3.5: The four search modes for the sum of CLEO II and CLEO II.V continuum
data. All ¢ helicity angles; both 1 dilepton decay modes (e and p). py(1S) < 2.0
GeV. py(25) < 1.6 GeV.
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Chapter 4

Measurements of v Momentum
Distributions and Inclusive

Branching Fractions

4.1 Analysis

4.1.1 Analysis Overview

The basic steps in measuring the ©) momentum spectrum are to partition the data
into momentum bins, fit the mass peaks in each partition, then correct each yield for
detection efficiency.

First, we obtain signal lineshapes from tagged Monte Carlo, which are used to
parametrize the signal in fitting both the Monte Carlo and the data. Including the
systematic error studies and the polarization measurement, these analyses required on
the order of 10* fits of mass peaks. An automated system of plot-fitting was developed
which mechanized the process while monitoring the quality of each individual fit.

In the ¥ (1S) mode, we must subtract the momentum distributions from the two
feed-down modes as well as the distribution of continuum ¢ (1S). In the case of 1(15)
from (2S), we only measure one of the modes in which this occurs; Monte Carlo

and isospin arguments give us the momentum distributions of the modes that we do

78



not measure.

The efficiency is measured as a function of 1y momentum; the data is corrected
bin-by-bin for efficiency before being added together to give us the inclusive yield,
which becomes the inclusive branching fraction.

In order to estimate systematic errors, we repeat the momentum spectrum mea-
surement 19 times for ¢(15) and 16 times for ¢)(25), each time activating a “knob”
which modifies an assumption or procedure. Measuring the deviation from the stan-
dard procedure caused by the knobs gives a measure of systematic error, both sep-
arately for each bin in momentum, as well as for the inclusive yield. Since our
measurements rely on the Monte Carlo for absolute efficiencies, many of the knobs
test the Monte Carlo at this level.

The efficiency is defined in such a way as to enable a later disentanglement of
the measurement smearing from the observed momentum distribution. We present a
general result which states that any detector measurement matrix may be expressed
as a product of two detectors, one which measures perfectly but inefficiently and the
other which measures inaccurately but with perfect efficiency.

Our final results are inclusive branching fractions for the B — ¢(15)X, B —
¥(25)X, and B — x X modes, and momentum distributions of ¥(15) and (25)
produced directly from B decays. The momentum distributions are corrected for
feed-down, continuum (1S), and measurement smearing.

Finally, we find that the CLEO Monte Carlo generates momentum distributions
that are differ substantially from the data in the modes involving (2S) or x.-
We employ a “trim” program to force the MC distributions to match those of the
data, since incorrect momentum distributions in the MC could bias the polarization

measurement, described in the next chapter.

4.1.2 Signal Lineshapes

In order to accurately measure the number of events in the signal region, we
require a parametrization of the signal lineshapes. We define 36 (4 x 3 x 3) partitions,

and obtain a signal lineshape for each from the signal Monte Carlo. The partition
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divisions are defined as follows:
e Search mode (4):

1S

inclusive”

)

— “p(1S) from x”

— “p(1S) from ¥(2S)” (or “¥(2S) via Yrn”)
)

2S5) via dileptons”
e Dilepton mode lepton species (3):

— electrons: ¥(15) [or ¥(25)] — et (y)e ()
— muons: ¥ (1S) [or ¥(25)] = pTu~

— both: ¢(1S) [or 1(25)] = e (y)e™(v) or pp~
e py (measured momentum) (3):

— “low”: 0.0 GeV< pyas) < 0.8 GeV, 0.0 GeV< pyas) < 0.7 GeV
— “mid”: 0.8 GeV< Py(18) <14 GeV, 0.7 GeV< DPryp(25) < 1.1 GeV
— “high”: 1.4 GeV< pys) < 2.0 GeV, 1.1 GeV< pyas) < 1.6 GeV

Even though every event in the signal MC contains a signal decay chain, tracks
and showers from the decay of the other B in the event will appear as combinatoric
background in the invariant mass plots. In order to remove these backgrounds from
the signal lineshapes, we use CLEO tagging routines to link measured tracks and
showers to particles as generated in the Monte Carlo. The following final state parti-
cles were checked by the tagger: the two charged tracks used to form ¢(15) and v(25)
dilepton candidates, all four charged tracks in the final state of (25) — ¥(1S)r 7™,
and the photon candidate in x4 — 9(1S)y. Showers that are added to electron
candidates as Bremsstrahlung photons, however, are not checked by the tagger. The
performance of the tagger is illustrated by Figure 4.1, which shows the invariant-mass
distributions of signal Monte Carlo events of each of the four search modes, separated

into background and signal components.
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Signal lineshapes were taken from an equally-weighted mix of the helicity 0 and
helicity £1 sets, making the overall polarization of the sample « = —1/3. Any
inaccuracy in this assumption will have little effect on the lineshapes, as they have
little dependence on the polarization of the .

We propagate the statistical errors on the lineshapes into the statistical errors in
the mass fits. This is technically incorrect because errors due to lack of Monte Carlo
statistics should be counted as systematic error. However, the statistical error of the
lineshapes is nearly negligible when compared to the statistical errors of the mass fits

in the data; in the end it makes no difference on our results.

4.1.3 Invariant Mass Fits

We now divide the data and signal Monte Carlo datasets into partitions and
fit each invariant mass distribution to obtain v yields. There are a total of 522
[2x 3% (204 19+ 16+ 16 + 16))] mass plots to consider. The partition divisions are

defined as follows:

e Data source (2):

— Signal MC (a = —1/3; same source as lineshapes)

— CLEO II and II.V on-resonant data
e Dilepton mode lepton species (3):

— electrons: 9(1S) [or ¥(25)] = e*(v)e™ ()

— muons: ¥(LS) [or 9(25)] = pFu”

— both: ¢(1S) [or 9(25)] = e*(v)e (7) or p*p-
e Search mode (5):

— “t)(185) inclusive”

— “¢(1S) from X1

— “h(18) from (2S)”
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— “(2S) via Yrn”

— “)(2S5) via dileptons”
e py (measured momentum) (16 ~ 20 per search mode):

— “(1S) inclusive”: 20 bins, 0.0 to 2.0 GeV

— “(1S5) from x.,”: 19 bins, 0.0 to 1.9 GeV

_ “¢
— “»(25) via dileptons”: 16 bins, 0.0 to 1.6 GeV

(15)
(15)

— “4p(1S) from 1(2S)”: 16 bins, 0.0 to 1.6 GeV
(25) via ¢mm”: 16 bins, 0.0 to 1.6 GeV
(25)

100 MeV binsize

There are 40 additional invariant mass plots to measure yields of inclusive 9(15)
in the continuum data. We partition the continuum data into CLEO II and CLEO
I1.V divisions; each division has 20 bins in py(15). We combine the electron and muon
modes in these fits.

The yield of )(15) or ¥(2S) in each partition is obtained using a binned maximum
likelihood fit. Mn_fit is the fitting package used. The signal is modeled by the signal
lineshapes obtained in the last section. The background is modeled with a cubic
polynomial. In all except 16 of the plots, no constraints are placed on any of the fit
variables, and the fits converge with a physically valid (positive) yield. The exceptions
are partitions with extremely low statistics and no visually apparent signal. These fits
return a negative yield. They are then re-fit with the constraint that the yield must
be positive. Errors in the yield are from MIGRAD, except in the positive-constraint
cases, in which case MINOS errors are used.

The fitter returns a “fit status” of 3 to signify that the fit has converged; we check
this variable for all fits. Mn_fit also returns the “Likelihood,” or x? in the Baker-
Cousins definition [10]. The x2 value is plotted for every fit, in the histograms shown
in Figure 4.2; the mean x? for each category of fits is summarized in Table 4.1. We

expect that the average x? should be approximately equal to the number of degrees
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of freedom (d.o.f.) of the fit. This is indeed the case for all search modes in both
data and Monte Carlo.

As a cross-check, we calculate Y = >} V;, where Y; is the yield obtained from
fitting the 7th momentum bin of the comi)ined e~ partitions. The statistical error
on the sum is related to the statistical error of each bin, by AY =  [35(AY;)%. We
obtain values for Y and AY which are listed in Table 4.1. We may C(Z)mpare these
values with the yields which were obtained by fitting the entire dataset (Figure 3.4).

We find good agreement between the two methods.

We therefore conclude that the fits obtained are reasonable.

Fit Quality Yield Over All py
search mode do.f. Datax2 MC x2| Summed Figure 3.4
“»(15) inclusive” 75 76.1 73.3 | 16448 £ 165 16478 + 166
“p(1S) from x.1” 45 48.0 43.7 687 + 46 689 + 46
“p(1S) from (2S)” 55 58.3 57.6 670 + 37 703 + 37
“»(2S) via Yrm” 55 56.7 60.7 669 + 36 703 + 37
“»(2S) via dileptons” 75 76.9 67.6 640 + 48 639 + 48
“continuum t(1S) incl.” | 75 75.1 n/a 170 £ 30 142 £ 31

Table 4.1: Properties of the Invariant Mass Fits. Mean Values of x? for each 1) search
mode. d.o.f. = degrees of freedom = number of bins — number of fit parameters.

4.1.4 Yields, MC (Efficiency)

To calculate the detection efficiency of ¥ in a given momentum range, we first iso-
late all the signal Monte Carlo events which contain only 1 ¢ in the event (to avoid
complexities with the tagger); the generated value of p, must be in the momentum
range under consideration. The denominator of the efficiency ratio is the number of
events in this group. This group of events is then run through the detector simula-
tion. The yield of the invariant mass peak formed by the reconstructed events is the
numerator of the efficiency ratio. The numerator does not include any cuts on the
reconstructed ¥ momentum. In both the numerator and denominator of the efficiency

calculation, we cut on the generator-level momentum in the CLEO lab frame. This
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differs from the more typical definition of efficiency, in which the numerator cuts on
the observed momentum. The reason for our adoption of this particular definition of
momentum will be discussed in Section 4.4. The efficiency results are shown in the
upper right and center right plots of Figures 4.3, 4.4, 4.5, 4.6, and 4.7 for each of the
search modes.

Figure 4.3 shows data for the inclusive ¥(1S) search mode, but uses the signal
Monte Carlo events of directly produced ¥(15) to estimate the detection efficiency.
This is valid because for a given bin of ¥(1S) momentum, whether or not a 1(1S) has
an intermediate parent has little bearing on the efficiency of finding the 1(1S5). This
is justified by Figure 4.8, which shows that the ratio of €y(15)(direct) 10 €p(15)(fecd—down)
is consistent with one for all py15) and both feed-down modes.

The v detection efficiency depends somewhat on polarization. A Monte Carlo
study of this effect can be seen in Figure 4.9, which shows the ratio of purely transverse
¥(15) efficiency to purely longitudinal 1(15) efficiency, as a function of pys). The
ratios are consistent with 1, with the exception of high momentum, in which transverse
1, with a greater occurrence of forward-backward decays, produce more soft leptons
than do longitudinal ¢. By assuming that o = —1/3 as we have for this measurement,
we are vulnerable to bias to the extent that the actual polarization differs from —1/3.

We consider the magnitude of this effect later in the systematic error study.

4.1.5 Yields, Data

The left top and left middle plots of Figures 4.3, 4.4, 4.5, 4.6, and 4.7 show the
efficiency-corrected yields from data for each of the search modes.

In order to obtain the momentum distribution of 1(1S5) created directly from B
decays, we must subtract the “feed-down” distributions (Figures 4.4 and 4.5) from
the inclusive ¥ (15) distribution (Figure 4.3). However, as discussed in Section 3.1.3,
there are also several feed-down modes which we do not attempt to measure. We now
construct the momentum distributions from these unmeasured decays.

Assuming that the 1(1S) momentum distributions for 1(2S) — ¥(1S)7T7n~ and
¥(2S) — ¥(19)7 7 are identical, we can multiply the efficiency-corrected yield of
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P(25) = Y(LS)mtn~ by (1 + 222) = 1.583 to obtain the efficiency-corrected yield of
¥(25) — (1S)mm. The ratio is taken from the 2001 PDG, and the uncertainty on
the branching fractions is handled later in the systematic error study.

Likewise, using the Monte Carlo simulation, we generate (pre-detector simulation)
momentum distributions of the “miscellaneous” unmeasured modes ¢(25) — ¥(15)n,
B(28) = B(1S)2, ¥(25) = X2y = B(15)77, and ¥(25) = Xy = $(15)77. The
relative normalization of the modes is given by the 2001 PDG. The Monte Carlo
distributions for the miscellaneous modes are then scaled so that the momentum-
integrated, pre-detector yield, over the momentum-integrated, efficiency-corrected
yield of ¥(2S) — ¥ (1S)7n 7, is equal to the PDG 2001 ratio of branching fractions.

Having measured (or obtained from Monte Carlo) the momentum distributions
of all B — 9(2S5) — ¥(15)X decay chains listed in the 2001 PDG, we obtain the
momentum distribution of 1(1S5) from these decays, Figure 4.10.

Since the PDG lists only one mode in which y.; decays into a ¥(15), we assume
that this mode, x.1 — ¥ (15)7, accounts for 100% of ¥(1.5) produced from x,;.

By subtracting the efficiency-corrected feed-down momentum distributions from
the inclusive ¢(1S5) distribution, we obtain the distribution of directly produced
¥(15). Figure 4.11 summarizes the measurement for ¢(15), showing the momen-
tum distribution of inclusively produced (1S5) and all sub-components.

There is no feed-down to worry about in the (2S) mode. The momentum distri-
bution of directly produced (2S5) is obtained by adding the statistically independent
samples of ¥(25) — ¥(1S)r*n~ (Figure 4.6) and 7 — ¢T¢~ (Figure 4.7).

4.1.6 Normalization; Inclusive Branching Fraction

The inclusive branching fractions B(B — %X) are related to the efficiency-
corrected yields we have obtained, by the following:

Ndata ZQNBE B(B—HPX) ZBW—U%) (41)

i=1
where Nyq, is the efficiency-corrected yield of ¢ observed in the data, 2N,z is the
total number of B mesons produced (2 x 9699702), B(B — %X) is the inclusive
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branching fraction, and Z B(y — f;) is the fraction of ¢ which we attempt to
reconstruct; f; is the ﬁnal state of the ¢-th reconstruction mode, and m is the number

of decay modes included in the measurement of V.

When we wish to combine results from all reconstructed decay modes to provide
the best statistical result for B(B — % X), we set m equal to the total number of
modes: 2 for ¢(1S) and 4 for ¥(2S). However, by setting m = 1, we may also
determine results for B(B — ¥ X) implied by a single decay mode. This provides a
useful cross-check as we can compare measurements of different ¢/ modes which have

different branching fractions.

Equation (4.1) enables us to convert the normalization of the vertical axis of
our momentum distributions from efficiency-corrected yield per bin, N, to inclusive
branching fraction per bin in momentum, dB/dp. Doing so gives us the plots on the
lower right corners of Figures 4.3, 4.4, 4.5, 4.6, and 4.7.

Figure 4.12 shows summary plots of the momentum distribution of directly pro-
duced 9(1S5) and ¢(2S). The upper plots are our results; the lower plots show the
results of the previous CLEO measurement [35]. In all cases, only statistical errors

are shown.

A summary of the inclusive branching fraction measurements is given in Table
4.2 (again, with no systematic errors at this point.) We see excellent agreement
between the e and p modes of 9 reconstruction for B(B — ¥(15)X). When using
PDG 2001 values for the reconstruction mode branching fractions, the four measured
decay modes of 1(25) also agree reasonably well, with the exception of the ¥(25) —
ptp~ mode. The significantly lower value of B(B — %(25)X) for this mode occurs
primarily because of the very high PDG 2001 value (but with a very large uncertainty)
for B(y(25) — putu™).

The PDG has only one experimental measurement on which to base its eval-
uation of B(¥(2S) — utp~), a 1975 SPEAR measurement [63]. Our efficiency-
corrected yields, as well as recent results from BaBar [41] [64] [65], are consistent
with B((2S) — ptp~) = B(1(2S) — eTe™) at the 20% level, as opposed to at the
50% level as the central values of the PDG 2001 values suggest. For our final result, we
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will therefore assume lepton universality, i.e. B(1(2S) = u*u~) = B(¥(25) — ete™)
(neglecting phase space differences), with a 20% uncertainty. As a result of making
this assumption, the four independent measurements of B(B — 1(25)X) are signifi-
cantly more consistent with each other than if we had used the PDG 2001 value for
B(¢(2S) — ptp™). The results are listed in Table 4.2.

Reconstructed Modes 10°x Data
Search Mode (¢ — f;) SBW = fi)| Naata B(B — ¢X) x 103
P(1S) — ete” 09.3+£1.0 |13214+196 11.494+0.17£0.19
P(1S) = ptp~ 08.8+ 1.0 |13054 +190 11.44+0.17£0.19
Y(1S) — £t 118.1 +1.4 26231 £ 272 11.45+0.12£0.14
Y(1S) — £T¢~ (continuum-sub.) 118.1 +1.4 |25682 4+ 289 11.21 +£0.13 £0.13
¥(28) = eTe- 79+05 | 433+48 2.82+0.32+0.18
¥(2S) — ptp~ (lepton univ.) 79+1.6 510 £49  3.334+0.32+0.67
$(2S) — £+~ (lepton univ.) 158417 | 946+ 71  3.09+ 0.23 & 0.32
$(25) = p(19)[— ete |rtr~  20.6+£1.7 | 1291£98 3.22+0.24 +0.27
$(25) = Y(19)[— ptp |ntr~  205+£17 | 1240£96 3.12+0.24 +0.26
$(25) = p(1S)[— £+¢ ]atr~  AL.1+£3.3 | 2538+£137 3.18£0.17+0.26
All ¢(2S) modes (lepton univ.)  61+£5.2 |3484+154 3.16+0.14+0.16
$(25) = pF - (PDG 2001) 12£4 | 510£49 2.19+0.21+0.73
$(28) — £+¢- (PDG 2001) 19.944.0 | 946+71  2.45+0.18 4 0.50
All $(2S) modes (PDG 2001) 61452 | 34844154 2.94+0.13 +0.25

Table 4.2: B — X results. The errors on B are statistical and scale error. “Scale
error” refers to the uncertainty on the branching fractions of the modes in which we
reconstruct the 1, i.e., the error in the second column of the table. The bottom third
of the table shows the results of using the PDG 2001 value for B(¥(2S) — u*u™)
instead of assuming lepton universality in 1(2S) dilepton decay to 20% as is done in
the standard procedure.

87



Measurement:| Momentum [Polarization

knobknob description W(1S5)(2S9)(1S) Y (2S)
a: unmeasured ¥(2S5) — ¥ (15)X decays
al |B(v(2S) — ¢¥(18)7%7Y) X - X -
a2 8(1/1(25) - w(ls)szsc) X - - -
a3 |a(Xmise) = +1 - - X -
a4 a(Xmisc) =-1 - - X -

b: invariant mass fit procedure
bl |background: quadratic polynomial

b2 |background: fix bkgd., get shape from data

b3 [signal: allow horizontal offset

b4 |signal: sum of Gaussians, get shape from data

c: low-level MC efficiency accuracy
cl |e(track): cut 2.6% (< 250 MeV), 0.7% (> 250 MeV)
c2 |absolute €(7y): cut 2%

c3 mon-GB €(): cut 2% in non-GB

c4 |absolute e(y): cut 1% (< 2 GeV), 0.5% (> 2 GeV)
c5 mon-GB €(p): cut 2.5% in non-GB

c6 |absolute €(e): cut 2%

¢7 non-GB €(e): cut 5% in non-GB

d: high-level MC efficiency accuracy

il
SRl
SRl
Sl

):
):

PR K A K
PR K A K
K K K
PR K R A K

dl |ape = +1 X X - -
d2 |apec = -1 X X - -
d3 [M(zt7™) cut in ¥(25) = (1S)7t7w™ X X | X -
d4 [R2GL cut X X - -
e: luminosity-related
el |continuum scale factor X - X -
e2 Inggp X - -
f: feed-down correction, « extraction procedure
first, obtain angular distribution of direct ¢
STDlthen, fit directly for o« and N - - - -
f1 |then, fit for Ny and Ni; compute « - - X X
f2 |then, fit for Ny and Ny; get a from toy MC - - X X
first, fit for Ny and N;, for inclusive and feed-down angular distributions
f3 |then, compute « - - X -
f4 |then, get o from toy MC - - X -

Table 4.3: Knobs for the Systematic Error Study, as discussed in Section 4.2 (for
the momentum distribution and inclusive branching fraction analyses) and Section
5.2 (for the polarization analysis). “X” means that the measurement [momentum or
polarization for ¥(15) or 1(25)] was repeated with the knob “activated;” “-” denotes
that the knob was not applicable to the measurement. “STD” denotes “standard
procedure,” which is listed for reference. gg



4.2 Systematic Error Study

4.2.1 Overview

Table 4.3 shows the list of of “knobs” used to estimate the systematic error. We
re-measure the momentum distributions and inclusive branching fractions, each time
activating exactly one of the knobs. Many of the knobs (al-a2, cl-c7, d3, el-e2)
change some parameter used in the analysis. We assume that the small changes
produced by wiggling these parameters are symmetric; therefore we need only change
each parameter in one direction to determine the deviation produced by changing the
parameter.

We now provide detailed descriptions of each of the knobs used for the momentum
distribution measurement. The reader may wish to refer to Tables 4.6, 4.7, and 4.8 to
see the effect of each knob as they are discussed. Table 4.6 lists the deviation caused
by activating each knob on the inclusive branching fractions of each search mode.
Tables 4.7 and 4.8 show the deviation caused by the knobs on the yield of directly
produced 9(15) and 9(2S5), as a function of py.

4.2.2 Uncertainty in Unmeasured Modes
Knobs al and a2: Branching Fractions of Unmeasured Modes

In the ¥(1S) momentum spectrum measurement, we made use of PDG 2001
branching fractions in order to estimate the momentum distributions of several 1/(25)
feed-down modes which we do not directly measure. In this section we consider the
effect that the errors on these PDG results have on the momentum distribution mea-

surement. oo

B(1(2S) — ¥ (18)n°7")
= 1.6532 £ 0.0698.

B(¢(2S) = ¢ (18)n+7)

We used this central value to adjust the yield of ¥(25) — ¥ (1S)7Tn~ upwards,

assuming that the ¢ (1S) distribution is identical in both modes. Knob al adjusts

The first PDG figure to consider is

this branching fraction by +1o¢, using 1.7230 instead.

Second, there were several modes with small branching fractions (the “miscel-
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laneous feed-down modes” of Section 3.1.3) which we did not measure; the Monte
Carlo simulated provided the v momentum distributions for these decay modes. Us-

ing PDG 2001 results, we obtain

B (28) > (18)m)+ B($(25) = xea v (15)y7)+B((25) 2 (15)m0) + B($(25) = xe0 1= (15)77)
B(y(2S)—9(1S)r 1)

= 0.0984 + 0.0237. Knob a2 uses the value 0.1221 instead, which is +1¢ from the
PDG central value.

— Discussion, a Knobs

For the inclusive branching fraction measurements, the a knobs will affect only the
“h(18) from 1(2S5)” feed-down mode and, by subtraction, the direct 1(1S) mode.
The momentum spectrum of direct 1(15) is also affected; the bins that are the most
susceptible to systematic error are the bins which have the highest yields in the
“p(1S) from ¢(25)” feed-down mode. These knobs are the dominant systematic
error in determining B[B — 9(25)X — ¢(1S5)X], but are minor in the direct 1 (15)

measurements.

4.2.3 Invariant Mass Fit Procedure
Knobs bl and b2: Invariant Mass Background

When fitting the invariant mass plots, we parametrized the background as a cubic
polynomial (dz® + cz? + bz + a, where z is the invariant mass variable in GeV), of
which all 4 terms (a, b, ¢, and d) were allowed to float in each fit.

Knob bl replaces the floating cubic polynomial with a floating quadratic polyno-
mial. The lack of a cubic term caused the fitter to never model the background shape
as a “wave” or sideways “S”, as was occasionally observed in cubic background fits
of very low statistics. Distributions of the fit likelihoods were made and the results
are shown in Table 4.4. Relative to the number of degrees of freedom, the mean y?
of the fits stay nearly constant.

Knob b2 retains the cubic polynomial parametrization, but the shape is fixed, so

that the overall normalization is the only degree of freedom. This is accomplished by
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floating the cubic term d but fixing the ratios g, 7 and %. The values of these ratios
are taken from fits of the data, integrated over momentum. We obtain 15 different
background shapes: 5 for each of the search modes, and 3 for each lepton possibility
(e, p, or both). With only one degree of freedom, the susceptibility of the fitter to
wrongly accommodate statistical fluctuations in some background bins is eliminated.
The values of x* — d.o.f. (Table 4.4) show that in both dilepton modes, fits of the
data are worse than in our standard procedure, suggesting a significant variation of

background shape as a function of py.

Knob: | Std. Procedure bl b2
Fit Background: Float Cubic Float Quadratic Fixed Cubic

d.o.f. X2 d.o.f. x2 d.o.f. x2

search mode Data MC Data MC Data MC
“»(1S) inclusive” 75 76.1 73.3| 76 76.7 76.4| 78 82.5 81.5
“h(1S) from xe1” 45 48.0 43.7| 46 50.2 539| 48 51.9 494

“(15) from 1(25)” | 55 58.3 57.6| 56 59.3 57.8| 58 60.6 67.5
“p(28) via rr” | 55 56.7 60.7| 56 57.3 61.3| 58 59.3 71.6
“p(25) via dileptons” | 75 76.9 67.6| 76 77.5 69.6| 78 92.9 710

Table 4.4: Mean x? for invariant mass fits, using alternate parametrizations of the
background (knobs bl and b2).

Knobs b3 and b4: Invariant Mass Signal Lineshape

Now we vary the other parameterization used in the invariant mass fits, namely,
that of the signal. Our “standard” procedure is to use signal lineshapes obtained
from tagged signal Monte Carlo.

Knob b3 parametrizes the signal as a “smoothed” histogram taken from the tagged
signal Monte Carlo. Using a smoothed histogram allows us to add an additional de-
gree of freedom, a horizontal offset. This parametrization therefore has the advantage
of correctly accommodating any shifts in invariant mass between the data and Monte
Carlo. In order to see how much this potential shift might be, we first did 4 prelim-

inary fits, one for each of the search modes. In each of these fits we fit the entire
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unpartitioned data with the Monte Carlo tagged signal lineshape. The amounts by
which the Monte Carlo lineshape had to be shifted to optimally fit the data were on
the sub-MeV level, and are listed in Table 4.5.

Using smoothed histograms in repeating the analysis, we found that obviously
unreasonable values of the horizontal offset parameter were obtained for some fits of
low-statistics partitions. Therefore the value of the horizontal offset was constrained
to be within £30 of the central value of the offset obtained from fitting the unparti-
tioned data as above. As usual, distributions of the mean x? were obtained from the
fits and the means are listed in Table 4.5. The mean y? was lower than our standard
procedure in many cases, as can be seen by comparing to the standard procedure

results in Table 4.4.

Knob b4 models the signal as a sum of Gaussians, the parameters of which are
obtained as much as possible from fits of the data, integrated over ¥y momentum. In
all but one search mode, the signal /background ratio of the fits is insufficient to obtain
sensible results for the parameters by fitting the data alone. Each mode requires a

unique procedure to extract the signal lineshape.

For ¢(1S) — ¢¢, we parametrize the signal as a sum of two asymmetric (“bifur-
cated”) Gaussians. The means of the two Gaussians are set to be equal, but the
four widths and relative normalization are allowed to float freely. Fitting the unpar-
titioned data with this signal shape and a cubic polynomial background, we obtain
3 signal lineshapes for ¢ = e, i, or both. To check the lineshapes, we attempt to fit
the tagged signal Monte Carlo with them, allowing the overall width to float. The
fits do not converge, because the lineshapes obtained from the data do not include
the long radiative tail in invariant mass. The fits of the momentum-integrated data
incorporate the radiative mass tails into the background!. We make a second attempt

to fit the Monte Carlo with the data lineshape by adding a floating cubic polynomial.

!The procedure for Knob b4 redefines the signal as the peak in invariant mass, ignoring the
radiative mass tail. Since our final results are the ratio between data and Monte Carlo (efficiency)
distributions, each of which uses this new definition of signal lineshape, the final results should not
be affected by this redefinition. In that sense, Knob b4 tests the accuracy of the ¢y — £¢ Monte
Carlo in two important ways — first, in the shape of the mass peak (without mass tail), and second,
in the size of the radiative tail relative to the mass peak.
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These fits converge, and the ratio of Monte Carlo to data signal widths is found to

be consistent with one.

Now we proceed to obtain signal lineshapes for the related modes ¥(25) — ¢/.
We find it impossible to obtain a sensible fit for this lineshape directly from the
momentum-integrated data, given the poor signal-to-background ratio. However, we
know that 1(2S) — £¢ decays should result in an invariant mass distribution that is
very similar to that of 1)(1S) — ££. Indeed, when we reproduce the above signal Monte
Carlo test, namely, fit the ¢)(2S) — £¢ signal Monte Carlo using the lineshape obtained
from (15) — £¢ data plus a cubic polynomial background, the x? is consistent with
a good fit. However, we observe that the overall width of 1(2S) — ¢/ is about 20%
larger than that of ¢(1S) — ¢£. Based on these observations, we set the (2S) — ¢/

lineshape to be the same as ¥(1S) — ¢4, but with an overall width, w;fgt“, defined as
MC

w
follows: wdete, = ydata Y3 1) other words, the overall width is that of the ¥(1S
wlds) = ) e

data, multiplied by the ratio of /(2S5) to ¥(1S) overall widths from the Monte Carlo.

We experienced difficulties in attempting to fit the the “(1S) from x.” and
“h(1S) from 1(2S)” with freely floating signal lineshape parameters, due to the low
signal-to-background ratio in these modes. We therefore obtained some of the pa-
rameters from the Monte Carlo. For these modes we parametrize the signal with
the mn_fit “Sum of Two Bifurcated Gaussians”, which differs from the parametriza-
tion described above (and is somewhat misleading) in that this parametrization has
only 3 degrees of freedom for the width parameters (both Gaussians must have left-
right widths in the same ratio). We fit the tagged signal Monte Carlo to this signal
parametrization plus a floating cubic polynomial, allowing all variables to float. Then,
we fit to the data, fixing all of the width parameters to those of the MC (except for
overall width). The combination of MC-fitted shape and data-fitted width gives us
the lineshapes for these modes in each of the leptonic ¢ decay channels. We find
that the Monte Carlo tends to significantly underestimate the width of the signal

lineshapes in the feed-down modes, which can be seen in Figure 3.4.

Having obtained the lineshapes for each of 12 partitions (4 search modes x 3 bins

in /), we repeat the momentum distribution measurement. The x? results are shown
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in Table 4.5. We observe that the x? improves relative to our standard procedure
for most data modes; however, the fits to the Monte Carlo simulation are not nearly
as good. Many of these fits showed that the signal lineshapes from data had subtly
different shapes and/or different widths than the Monte Carlo signals, leading to
degraded fit quality. However, the fits are not bad in the sense that they return

obviously incorrect results for the signal yield.

Knob: b3 (Smooth Hist.) b4 (Gaussian)
Offset (MeV) d.o.f. X2 d.o.f. X2
search mode Data MC Data MC
“h(1S) inclusive” —0.05£0.15 76 74.8 734 | 75 75.8 187.7

“p(1S) from x.1” +0.09+0.96 46 47.6 427 | 45 481 172.7
“p(1S) from ¥(25)” | +0.51+£0.16 56 57.4 585| 55 58.1 188.5
“p(2S) via Yrn” +0.51+0.16 56 95.6 60.6 | 55 56.1 193.6
“p(2S) via dileptons” | —0.37 £0.16 76  76.1 76.2| 75 782 198.2

Table 4.5: Mean x? for invariant mass fits of each search mode, using alternative
parametrizations of the signal lineshape. The column labeled “Offset” is from a fit
of the entire unpartitioned dataset, both e and p channels combined, and is used
to constrain the maximum offset of the momentum-partitioned fits. These can be
compared to the corresponding results for the standard procedure, shown in Table
4.4.

— Discussion, b Knobs

To both the signal and background parametrization we have assigned two knobs
which change the fitting procedure. In both cases, we have a minor change (knobs
b1, b3) and a much more drastic change (knobs b2, b4). The more ambitious changes
to the procedure make use the data to fix the signal (b4) or background (b2) shapes;
however, in order to get sufficient statistics in the data, we are forced to use the
momentum-integrated data. Therefore these methods have the disadvantage that
they do not allow for the signal or background shape to change as a function of py.
Since for each of the signal and background parametrizations we have one conservative

and one aggressive change to the procedure, we define the systematic error due to
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signal (background) definition to be equal to the average deviation from the standard
procedure caused by the two knobs.

In the feed-down modes, knob b4 gives the largest deviation. This is expected
given our observation that the Monte Carlo and data differ significantly in the width
of feed-down signal lineshapes. For the v» — ££ modes, knob b2 results in the largest

deviation from the standard procedure.

4.2.4 Monte Carlo Low-Level Accuracy

Knobs c1-c¢7: Low-Level MC Tests

In our measurements of inclusive branching fraction and momentum distribution,
we obtain the absolute detection efficiency from the Monte Carlo simulation. Since we
normalize to the number of produced B mesons any difference in detection efficiency
between the data and Monte Carlo simulation will bias our results. For each of the
7 “low-level” knobs, our strategy is to artificially decrease the detection efficiency
by using a random number generator to randomly rejecting some percentage of the
tracks, showers, muons, or electrons. The specific percentage cut out is taken from
CLEO “conventional wisdom” in the form of benchmark systematic studies, cited
below. Since our final result are ratios of data yields to Monte Carlo yields, we must
carry out this artificial rejection on either the data or the Monte Carlo but not both.
To the extent that the data has sufficient statistics, the choice of whether to cut
events from the data or the Monte Carlo is arbitrary. We apply the knobs on the
data, as described below:

Tracks (cl): Based on an embedding study on recompress/CLEO I1.V data [66],
we randomly reject 0.7% of the charged tracks; in the case of very soft tracks (< 250
MeV), we reject 2.6%. We expect that this knob will result in a 1.4 % effect for
“inclusive ¥(15)”, “¢»(15) from x.1”, and “inclusive 1(2S)” modes, all of which have
2-track final states; and a 2.8 % effect for the “i)(1S) from t(2S5)” /“4)(2S) via 1 (1S5)”
mode, with 4 tracks in the final state.

r 0
Showers (c2, ¢3): A CLEO analysis of (n = 3m)

L(n — v7)

MC agree in the efficiency of finding single showers to 1.6%. This finding applies to

[67] finds that data and
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the entire barrel region for CLEO II and CLEO IL.V. Knob (c2) rejects 2% of all
observed showers. We conservatively assume that showers in the non-Good Barrel
region are less well simulated, due to extra detector material, by defining knob (c3)
to reject 2% of showers, but only in the non-Good Barrel region. Crystal calorimeter
measurements will primarily affect the “¢(1S) from x.” mode; however, all modes
will be affected subtly because showers are also added as Bremsstrahlung in ¢ — ee

decays.

Lepton ID, Fake Rate: Fake rate and efficiency are the two quantities that
should match between MC and data. In our analysis, the correct simulation of the
true fake rate is not important, as we combine pairs of leptons to form ; v which
are reconstructed with particles other than true leptons will not peak in M (). We

assign no systematic error due to incorrectly modeled fake rates in the MC.

Muon ID, Efficiency (c4, ¢5): Comparative studies of MC and the first half of
CLEO II data [68] [69] indicate that CLEOG simulates muon efficiency correctly to
0.5%. Knob (c4) rejects 0.5% of muons with momenta greater than 2.0 GeV; below
2.0 GeV, the efficiency function drops steeply and so we reject 1.0% of muons. Knob
(c5) accounts for the possibility that endcap muons (such as the “Tier 2”7 and “Tier
3” muons used in our analysis) are modeled less accurately; this knob rejects 2.5%
of muons not in the Good Barrel region. As most of the muons from v are softer
than 2 GeV, we expect that knob (c4) will lead to a 1% effect in all modes (1% for
each muon in v — uu; but the electron mode is unaffected, leading to a 1% effect in
v — L).

Electron ID, Efficiency (c6, c7): The software package that calculates the
electron-ID variable R2ELEC [70] [71] fundamentally treats data differently than MC.
For the data, R2ELEC is calculated based on physics quantities such as dE/dx and
calorimeter information. For the MC, R2ELEC ignores the simulated physics infor-
mation, as it is deemed untrustworthy for the purposes of electron ID. Instead, it
considers the momentum, angle formed with the beamline, charge, and true identity?

of the track, and returns an “expected” value of R2ELEC from a lookup table based

2i.e. whether the track is truly an electron or not, which is known for Monte Carlo
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on these quantities. The lookup table is based on a study of radiative Bhabha events
ete” — ete 7, a physics process which provides a clean sample of true electrons.
Therefore, in principle, the MC should match the data exactly.

Our electron ID cut, R2ZELEC > 0, is loose compared to most analyses; this results
in high lepton efficiencies, which gives the Monte Carlo less room in which to be
incorrect. On the other hand, unlike most analyses, we make no cuts on the detector
region that the electron is detected in. We accept Good Barrel, Bad Barrel, Good
Endcap, and Bad Endcap electrons in order to maximize yield. Nevertheless, most
¥(1S) — eTe™ events (77%) are made of two Good Barrel electrons, insulating us
somewhat from poor MC modelling of non-GB electrons.

To determine appropriately scaled knobs to test the effect of incorrectly modeled
electron ID on our results, we need to know by what extent the MC is known to
deviate from data for our particular cuts. We carried out a study [72] of hadronic
events with embedded electrons from data radiative Bhabha events, using techniques
from previous similar studies [73] [74]. We found that the degree to which the MC
and data agree depends a great deal upon the cuts made to define an acceptable
radiative Bhabha event. Variations on these cuts led to uncertainties of 2% of Good
Barrel electrons and about 5% for non-Good Barrel electrons.

Based on this study we define knob (c6) to reject 2% of all electron candidates,
and (c7) to reject 5% of electron candidates not detected in the Good Barrel region.
We expect that knob (c6) will lead to a 2% effect over all search modes (2% for
each electron in b — ee; but the muon mode is unaffected, leading to a 2% effect in

b — 00).

— Discussion, ¢ Knobs

The uncertainties in lepton ID are the major contributors to systematic error in
the inclusive 1(1S) measurement.

As mentioned in the paragraph labeled “Knobs c1-c7,” we applied the knobs to
the data, instead of the Monte Carlo. Had we applied them to the MC, we would
expect that knob c1 affects the 2-track final states by 1.4% and the 4-track final states
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by 2.8%; knob ¢2 would affect the “»(1S) from x.” mode by 2%; knob c4 would
affect all modes by 1%, and knob ¢6 would affect all knobs by 2%.

These predicted deviations may be compared to the deviations obtained from
applying the knobs to the data, in Table 4.6. We find that statistical errors do
smear the deviations away from the values that we expected. However, particularly
when adding the deviations in quadrature, we see that the deviations obtained are
in reasonable agreement with the predictions. The final results would change little if

we had applied the knobs to the Monte Carlo instead.

4.2.5 Monte Carlo High-Level Accuracy
Knobs d1 and d2: Monte Carlo v Helicity

In the standard procedure, our Monte Carlo sample has an average 1 polarization
of —1/3 (see Section 4.1.2). This assumption leads to a potential bias because that
as discussed earlier, the detection efficiency of high-momentum ¢ — pu events is
sensitive to the 1 polarization (see Figure 4.9).

To gauge the dependence of our result to having possibly used Monte Carlo of the
wrong helicity, we repeated the entire momentum measurement using Monte Carlo
with both extreme polarizations, i.e. with all % longitudinal or transverse. The

systematic error is taken to be the average deviation that results from applying these
knobs.

Knob d3: M(r"n~) Cut Efficiency

To decrease combinatoric background in (2S) — ¢(1S)nt7n~, we require
M(rtn~) > 0.45 GeV (see Figure 3.3). From the Signal Monte Carlo, we have
evc = (81.7+0.2)%. To test this, we obtained a M (7*7~) distribution from data in
a manner analogous to finding the p, distribution: the data is partitioned into 4 bins
in M(m"7~) and invariant mass peaks are fit for each partition. Doing so, we obtain
€data = (90.3 = 3.1)%. However, if we change the signal shape parameterization to

a Gaussian sum, as described in Section 4.2.3, we obtain €5****"*" = (85.7 + 3.6)%.
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Based on these results we assign an additional systematic error of 5% on the M (7t 7 ™)
cut efficiency. Knob d3 accomplishes this by scaling the final ¢(2S) — ¥(15)7 7~
distribution by 1.05.

This turns out to be the largest systematic error for B[B — 9(25)X — ¢(15)X].

Knob d4: R2GL cut

Figure 4.13 compares the distributions of R2GL, the ratio of Fox-Wolfram moments,
between Monte Carlo and data. The plot is generated by fitting for the yield of
¥(1S5) in bins of R2GL. In the data, we fit for inclusive 1(15), and subtract the scaled
contribution from the continuum. The Monte Carlo for this exercise is a mixture of
signal Monte Carlo: 73% direct B — ¥(15)X, 17% ¢(1S5) from (2S), and 11%
¥(1S) from x.;. The exact ratios are given by the observed yields of these modes in
the data (see Table 4.6). Furthermore, & = —1/3 and there is a 50-50 mix of electron
and muon modes. The resulting distributions in R2GL are shown in Figure 4.13.

We observe excellent agreement between the data and Monte Carlo. The cut
R2GL< 0.5 is found to have an efficiency of (99.69 £ 0.80)% in the data and (99.52 +
0.20)% in the Monte Carlo. We take the statistical uncertainty of 0.80% as a system-
atic error for this cut.

Knob d4 increases the yield of data by 0.80% in all modes.

4.2.6 Luminosity-Related Uncertainty
Knob el: Continuum scale factor
Knob el increases the continuum scaling factors for both CLEO IT and CLEO
I1.V by 1%. This has a negligible effect on the final results.
Knob e2: nggz

Knob e2 increases the yield of data by 2%, which is the uncertainty in n,5. The
value of 2% is taken from past CLEO analyses. This knob affects all search modes

and is one of the major systematic errors in measuring B[B — ¢(15)X].
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4.3 Results with Systematic Errors

4.3.1 Inclusive Branching Fraction

For each of the 18 knobs for ¢)(15), and 15 knobs for 1(25), we obtain efficiency-
corrected momentum distributions. By summing over the momentum bins, we obtain
total yields. The yields for the standard procedure, as well as the percentage deviation

from those yields obtained from activating the knobs, are shown in Table 4.6.

When determining a systematic error, we can either quote a number which at-
tempts to represent a “lo error”, or a larger number which represents an “entire
range” of values. We take the former approach to obtain a final systematic error,

ABgyst, by combining the knob deviations, A, as follows:

ABg'yst = Ail + Aiz
(A |+ [Asa]) /21 + [(|Asa| + [Apal]) /2]
HAG + AL + A + AL+ AL+ Al + A
HAx| + [Axl) /2P + AL + A%
A2+ A2 (4.2)

In 3 cases (knobs bl and b2 for background fit, knobs b3 and b4 for signal fit, and
knobs d1 and d2 for as¢), we consider pairs of knobs to be two measurements of the
same systematic source, and so take the average deviation of the knob pair before

adding in quadrature.

Using the prescription given in Table 4.2, we normalize the yields obtained by
the number of BB generated to extract final results for inclusive branching fractions,
listing statistical, systematic, and scale errors (uncertainty in the branching fractions

of the modes in which we reconstruct ), in that order.
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BB — (15)X] = (1.121 4 0.013 4 0.040 & 0.013)%

B[B — (18)(direct)X] = (0.813+0.018 = 0.036 % 0.010)%
B[B = xaX — %(18)X] = (0.119 = 0.008 & 0.009 + 0.001)%
B[B — ¥(28)X — ¢(18)X] = (0.189 4 0.010 + 0.018 + 0.002)%
B[B — #(25)X] = (0.316+ 0.014 & 0.023 + 0.016)%

4.3.2 Momentum Distributions

The procedure used above to determine the systematic error of the inclusive
branching fractions may be directly applied to each bin of the momentum distri-
butions. Doing so results in systematic error estimations for every momentum bin
in py(1S) and py(2S). Since the momentum distributions of direct (1S) and direct
1 (2S5) are of the greatest interest, we show systematic errors for these distributions

only in Tables 4.7 and 4.8.
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B — 9(15) B — 9(25)
Knob | Inclusive From x. From v(2S) Direct | — €, (1S)ntn~
B x 100 1.121 0.119 0.189 0.813 0.316
ABgat 1.12% 6.73% 5.45% 2.23% 4.43%
al 0 0 +4.16% -0.97% 0
a2 0 0 +1.41% -0.33% 0
bl -0.25% -4.40% +0.57% +0.17% +0.60%
b2 -1.24%  4+2.85% +3.32% -2.89% -2.93%
b3 -0.41%  +1.59% +1.96% -1.25% +1.72%
b4 +0.33%  +8.32% +7.11% -2.41% +4.43%
cl -0.91% -0.07% -2.48% -0.67% -2.29%
c2 -0.38% -2.00% +0.01% -0.23% +0.02%
c3 -0.38% -0.37% +0.01% -0.47% +0.02%
c4 -1.04% -1.69% -0.31% -1.11% -0.67%
cd -0.36% -0.82% -0.05% -0.37% -0.19%
c6 -1.93% -0.85% -3.26% -1.78% -2.87T%
c7 -0.65%  +0.14% -1.49% -0.57% -0.77%
d1l +1.23%  +1.05% +0.85% +1.34% +0.69%
d2 -0.77% -1.00% -0.50% -0.80% +4.49%
d3 0 0 -5.00% +1.16% -3.64%
d4 +0.80%  +0.80% +0.80% +0.80% +0.80%
el -0.02% 0 0 -0.03% 0
e2 +2.00%  +2.00% +2.00%  +2.00% +2.00%
Ya 0 0 4.39% 1.02% 0
b 0.83% 6.14% 4.93% 2.39% 3.54%
dc 2.55% 2.90% 4.37% 2.36% 3.82%
>d 1.28% 1.30% 5.11% 1.77% 4.54%
de 2.00% 2.00% 2.00% 2.00% 2.00%
ABsyst 3.58% 7.20% 9.63% 4.41% 7.19%

Table 4.6: B(B — ¥ X) Systematic Error Results. The first row lists continuum-
corrected inclusive branching fractions (B) from the standard procedure, using both
electron and muon decays of ¢). The statistical error on B is shown in the second row.
The following rows show the percentage change in B from each knob. The final six
rows list the “subtotal” systematic errors for each category of knobs, and the final

systematic error, as defined in Equation 4.2.
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Lower Limit of Momentum Bin (GeV)
Py(15) 0.0 01 02 03 04 05 06 07 08 0.9
%(Gf’v) 0.0l 0.03 0.10 0.19 0.22 0.25 0.33 0.41 0.52 0.43
A%W 36.3% 64.2% 25.8% 17.7% 18.4% 19.1% 14.5% 11.8% 9.3% 11.6%
al +0.0% -3.5% -2.4% -2.6% -2.5% -3.8% -2.7% -2.0% -1.3% -2.0%
a2 -0.1% -0.6% -0.4% -0.4% -0.5% -0.6% -0.5% -0.7% -0.6% -0.8%
bl +5.1% -1.6% -0.3%+0.3% -2.5% -0.1% -0.6% -1.1%+1.3% -0.5%
b2 +2.4% -26.2%+2.0% -8.5% -3.7% -1.3% -3.1% -3.7%+0.7% -0.9%
b3 -2.4% -15.9% -6.2% -3.4% -1.5% -6.0% -0.7% -2.7% -0.2% -0.5%
bd | +2.8%+25.9% -9.0% -8.5% -6.3%-12.6% -0.6% -6.5% -2.3% -4.0%
cl +0.0%+10.6% -0.6% -0.7% -4.0% +0.2%+1.8% -1.1%+0.6% -0.6%
c2 -3.5% +0.8%+0.9%+2.0% -0.3% +0.2%+0.8% -0.2%+0.1% +1.2%
c3 +0.0% +0.8%+0.4% -0.5% -0.4% -2.2% -0.3% -0.7%+0.7% +0.1%
cd +0.0% -28.0%+0.1% -2.6% -1.0% -2.2% -1.8%+1.9% -1.0% -0.2%
ch +0.0% +0.0%+0.1% -0.4% -1.9% +0.8% -1.3%+1.2%+0.4% -0.9%
c6 -9.4%+14.5%+7.5% -0.1% -5.1% -0.3% -2.6% -2.7% -0.5% -2.6%
c7 +0.0%+11.5%+5.8% -1.5% -0.3% +0.8% -3.0%+0.4% -1.4% -1.3%
d1 +1.7% +8.7% -3.5% -1.2%+2.7% -2.7%+0.1%+0.9% +1.1% +0.5%
d2 H+252% -4.0%+2.9%+1.2% -1.8% +2.3%+0.4% -1.3% -0.6% -0.2%
d3 +0.0% +4.1%+2.8%+3.1%+3.0% +4.4%+3.1%+2.5% +1.6% +2.5%
d4 | +0.8% +0.8%+0.8%+0.8%+0.8% +0.8% +0.8%+0.8% +0.8% +0.8%
el +0.0% -0.3%+0.0%+0.0% -0.1% +0.0%+0.0%+0.0% +0.0% —+0.0%
e2 +2.0% +2.0%+2.0%+2.0%+2.0% +2.0% +2.0%+2.0% +2.0% +2.0%
%sw 17.5% 44.1% 13.4% 95% 9.9% 11.9% 7.1% 7.5% 41% 5.7%
Dy(1s) T.0 11T 12 13 14 15 16 17 18 1.9
%(GZ?V) 0.57 0.56 0.62 0.73 0.80 0.85 0.70 0.54 0.25 0.01
AD | 86% 88% 78% 6.0% 6.0% 62% 55% 6.0% 9.7% 90.4%
al -1.1%  -1.2% -0.8% -0.3% -0.3% -0.1%+0.0%+0.0% +0.0% +0.0%
a2 -0.6% -0.6% -0.3% -0.2% -0.1% -0.1% -0.1%+0.0%+0.0% +0.0%
bl +0.8% -0.6% -0.6%+0.5%+0.6% +1.4%+0.5%+1.0% -2.1% -16.8%
b2 | +0.1% -2.3% -6.8% -3.2% -3.2% -2.0% -2.9% -1.8% -9.8% -11.7%
b3 -2.1% +0.5% -1.6% -1.1% -0.3% -1.5% -0.5% -0.8% -1.1%-+23.6%
b4 -5.4% -3.3% -3.0% -1.0% -0.4% -1.9%+0.0%+0.3% +5.5%+26.8%
cl -0.4% +0.2%+0.2% -1.2% -0.8% -2.3% -1.3% -0.8%+0.5% -9.8%
c2 -0.4% -0.5% -0.7% -1.2% -0.7%+0.0% -1.0% -0.1%+0.2% -0.4%
c3 0.7% -1.1% -0.6% -0.9% -0.4% -0.3% -0.9%+0.2%+0.2% -0.4%
cd -02% -0.8% -1.4% -1.7% -1.4% -0.8% -1.6% -0.8% -2.3% -0.4%
cH -0.7% -01% -1.4% -0.2% -0.1% -0.1% -0.5% -0.9% -1.0% -3.1%
c6 -1.5%  -2.1% -1.6% -1.4% -1.8% -2.2% -2.3% -2.6% -1.3% -4.5%
c7 -0.3% -0.3%+0.0% -0.1% -0.6% -0.6% -1.3% -1.0% -0.7% -6.1%
d1 -02% -0.1%+0.8%+0.6%+0.7% +2.9% +4.3% +5.2% +1.6% +5.0%
d2 | +0.3% -0.1% -0.6% -0.4% -0.4% -2.1% -2.8% -3.3% -1.1% -3.2%
d3 | +1.3% +1.5%+1.0%+0.4%+0.3% +0.1%+0.0%+0.0% +0.0% +0.0%
d4 | +0.8% +0.8%+0.8%+0.8%+0.8% +0.8% +0.8%+0.8% +0.8% +0.8%
el +0.0% +0.0%+0.0%+0.0%+0.0% +0.0%+0.0%+0.0% -0.1% -0.7%
e2 +2.0% +2.0%+2.0%+2.0%+2.0% +2.0% +2.0%+2.0% +2.0% +2.0%
%SW 51% 4.6% 5.8% 4.3% 4.0% 5.3% 58% 59% 7.9% 32.0%

Table 4.7: B — (15)|direct] X momentum spectrum systematic error results.
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Lower Limit of Momentum Bin (GeV)
Duy(25) 0.0 0.1 02 0.3 04 05 06 0.7
%((%V) 0.01 0.03 0.07 0.15 020 0.26 0.30 0.24
%w 69.4% 45.0% 28.7% 19.4% 18.2% 14.7% 13.8% 16.9%
bl +2.1% -2.6% -0.1% -1.0% -0.6% +0.2% +0.2% +0.2%
b2 -18.8% +2.9% -5.1% +1.5% +3.8% -0.4% -2.1% +6.3%
b3 +3.2% +0.3% +7.9% +0.6% +0.9% +1.4% +0.0% +0.0%
b4 -0.1% -6.7% +10.4% +6.4% +5.7% +5.2% +6.1% +4.9%
cl +0.0% -2.8% -6.1% -0.8% -2.9% +1.2% -3.0% +1.5%
c2 +0.0% -3.0% +0.7% +0.3% +0.3% +0.5% -0.1% -0.4%
c3 +0.0% -3.0% +0.7% +0.3% +0.3% +0.5% -0.1% -0.4%
c4 +0.0% -0.2% -4.3% -0.8% -2.1% -02% -1.6% +1.5%
ch +0.0% +0.0% +0.0% -0.8% -2.5% +0.7% -0.1% +0.3%
c6 +0.0% +1.7% -10.4% -4.4% -7.9% -2.8% -3.2% +0.5%
c7 +0.0% +1.7% -6.2% -6.3% -2.6% +0.0% +0.8% -0.4%
dl  [+13.0% +2.5% +1.8% +5.3% -0.2% +2.1% -1.3% -0.2%
d2 -5.4% +9.2%  -0.6% +3.4% +5.0% +3.3% +7.2% +5.1%
d3 -5.0% -4.4% -2.5% -4.2% -4.2% -35% -3.5% -4.1%
d4 +0.8% +0.8% +0.8% +0.8% +0.8% +0.8% +0.8% +0.8%
e2 +2.0% +2.0% +2.0% +2.0% +2.0% +2.0% +2.0% +2.0%
%SW 15.1% 10.5% 17.5% 10.8% 11.5% 6.7% 82% 7.1%
Dy(25) 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
%(G%) 020 026 036 032 034 0.23 015 0.05
A%SW 19.1% 15.6% 12.4% 13.4% 13.1% 16.6% 20.8% 52.3%
bl +6.1% -1.4% +0.7% +1.0% +0.2% +1.7% +0.1% +3.1%
b2 -4.0% -11.4% -1.4% -8.7% -6.9% +1.4% -8.5% -5.9%
b3 +0.0% +5.3% +1.9% +2.4% -0.2% +1.8% +0.5% +18.5%
b4 +4.3% +4.3% +4.0% +4.1% +3.1% +1.3% +2.7% +11.8%
cl -7.5% -4.6%  -4.8% -2.3% -2.3% +1.6% -1.7% -1.1%
c2 +0.3% -0.9% -0.1% +1.1% -0.3% -1.2% +1.0% +2.2%
c3 +0.3% -0.9% -0.1% +1.1% -0.3% -1.2% +1.0% +2.2%
c4 +0.1% -3.8% -0.8% -0.3% -0.3% -0.4% +0.8% +5.9%
ch -0.6% +0.9% -0.1% +1.1% -0.8% -2.4% +0.5% +2.2%
c6 3.9% -1.3%  -4.8% -31% -1.7% -0.6% +0.9% -5.6%
c7 +0.2% +1.1% -1.8% +0.7% +0.2% -3.0% +0.4% -1.0%
d1 -0.7% +2.3% +0.2% +1.6% +0.1% +1.2% -2.6% +0.6%
d2 +6.7% +3.1% +5.0% +2.9% +3.8% +5.1% +6.0% +1.0%
d3 -3.3% -3.6% -3.4% -3.5% -3.8% -3.9% -2.9% -4.9%
d4 +0.8% +0.8% +0.8% +0.8% +0.8% +0.8% +0.8% +0.8%
e2 +2.0% +2.0% +2.0% +2.0% +2.0% +2.0% +2.0% +2.0%
%Sw 11.4% 11.4%  9.1% 86% 6.9% 7.5% 7.7% 19.0%

Table 4.8: B — 1(2S5)X momentum spectrum systematic error results.
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4.4 Bin Migration Correction

In this section we adjust our results to correct the assumption made in Section
4.1.4, namely, that “net bin migration” due to mismeasurement smearing (see Sec-
tion 3.1.2) is negligible’. Bin migration refers to the phenomena of detecting and
measuring the momentum of the 1, but obtaining an incorrect measurement, to such
an extent that the detected momentum is in a different momentum bin than the true
momentum. Bin migration will happen for all momenta of 1, so in principle it is
possible that for every bin, the migration of wrongly measured events into the bin
will be equal to the number migrated out of the bin. In such an unlikely case, the
“net” bin migration would be zero. It is the “net” bin migration, or, the effect of bin
migration, that we must correct for.

We use the Monte Carlo simulation to quantify this effect and correct for it. The
degree to which this is a problem for our analysis may be seen in Figure 3.2, which
shows a box plot of the reconstructed ¢(1S) momentum versus the generated 1 (15)
momentum for tagged (1S) — £¢ Monte Carlo events. We see that the majority
of events are reconstructed in the correct momentum bin (along the diagonal). This
justifies our choice of setting the momentum bin size to 0.1 GeV. Of the events that
are reconstructed in the wrong momentum bin, most migrate only one bin; however,
the tails of the distribution extend out to several bins.

We will describe the algorithm used to correct for this smearing, but first need to

justify it with a general discussion of the problem.

4.4.1 General Results

We denote any discrete distribution by the vector ¢, where the elements of the
vector are positive real numbers and the dimension of the vector, m, is equal to the
number of bins. Define #°** as the observed (post-convoluted) distribution, and 9"

as the generated (pre-convoluted) distribution which we wish to recover. It is not

3 As the final results will show, the momentum spectrum after correcting for measurement smear-
ing is almost identical to the spectrum before the correction; on this basis one could argue that the
net bin migration is indeed negligible.
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helpful to think of the vector spatially, since we define the norm of the vector to be

the sum of its elements:
o= (1,1,---1)¥ (4.3)

We use the variable M to denote the 2 dimensional square matrix which describes
the convolution. The elements of M are real numbers between 0 and 1 and represent
probabilities. Specifically, M,., the matrix element of the r-th row and c-th column, is
the probability that an event generated in bin number ¢ will be observed in bin number
r. The detector matrix M connects the generated and observed vectors, whereas the

inverse, M~!, returns the original distribution given an observed distribution:

7 = Mg (4.4)
W = Mg (4.5)

In this discussion, we define all matrices M so that they transform an un-convoluted
distribution to a convoluted distribution. When we speak of a transformation that
does go the other way, we will use the form M. We choose this convention because
M is the “observed” quantity in that we use the Monte Carlo simulation to determine
the matrix, and later calculate M ! to to de-convolute an observed measurement.

The simplest example of a matrix is that of no convolution at all: MpPerfect — T,
in which case 79" = 7°%.

Next, consider a detector which has 100% efficiency but an unknown measurement
accuracy; define M= as the matrix describing such a detector. All we can say is

that every generated event will be observed in one bin or another, which in turn is

equivalent to

g =[] v (4.6)

& M = 3| V¥ (from Eqn. 4.4) (4.7)

& (1,1,--, )M = (1,1,---,1)F" V%" (from Eqn. 4.3) (4.8)
& (L,1,---, )M = (1,1,---,1) (4.9)
& Y MSH =1 Vn (4.10)

in other words, every column of the matrix sums to 1.
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Now consider a general convolution matrix M, with dimension m. Using simple

arithmetic, we rewrite

My My --- My,
M= | 7 ’ (4.11)
Mml Mm2 Tt Mmm
Mi My .. _Min
ZMn ZMﬂ ZMim Z M; 0 cen 0
Moy Mao Mom '
Ml' Mi T Mim 0 EM’LQ L 0
as M = Zz: ' Zz: ’ Z; é (4.12)
My, Mp, Mym e .
S M S Ma Y Mom 00 2 Mim
N ] 1 — 7 ., EIGE
=M5

The “S” in matrix M® stands for “smearing.” Each column of M* adds up to 1;
therefore, this is a matrix of the M=! variety.

The “E” in diagonal matrix M¥ stands for “efficiency;” each element of M¥ is a
detection efficiency. Here “detection efficiency” is defined in a very specific way, and
may be obtained as follows: generate N, Monte Carlo events in a single bin (the z-th
bin, in this example). Then, the efficiency of bin x is defined as the fraction of the N,
events observed, in any bin (i.e. events which are detected but migrate to other bins
count). However, events which migrate into the observed bin from other generated
bins do not count, so that the numerator contains only events generated in bin z.

To elaborate further on the relation between the elements of M¥ and efficiency,
we note that generating N, Monte Carlo events in the z-th bin corresponds to setting
9" = (0,---, Ny, ---,0), where the nonzero element is the z-th element. The effect
of propagating these events through the detector is given by Equation 4.4, i.e. the
observed momentum distribution is given by M#9¢". The number of events in this
distribution (summed over all possible observed momenta) is [M9¢"|. Therefore we

may write the above-defined efficiency ¢, as

¢ = |Min|/N, (4.13)
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= (1,1,---,1)M#"/N, (4.14)
- <NwZMz’x> /N, (4.15)
= > Mg (4.16)

so that substituting into Equation (4.12) yields

€1 0 0
0 € 0

ME=| T (4.17)
0 O €m

To summarize, equation (4.12) is a general result that says that any matrix M
which represents a detector’s response may be factorized into a smearing matrix
component and a detection efficiency component.

Substituting this result into Equation (4.4) yields

FIer = Mgt (4.18)
= (M M)~ tgebs (4.19)
= (M)~ (M%)~ tiobs (4.20)

Being a diagonal matrix, M¥ is trivial to invert. If the degree of bin migration
is sufficiently small, it seems that M* would also be not too difficult to invert, being

quasi-diagonal.

4.4.2 Application to Data

We now apply these results to the momentum distribution measurement.

The definition of detection efficiency used in this analysis (Section 4.1.4), matches
that of the previous section. This means that we have already determined the values
of the diagonal elements of M¥; they are given by the the right columns of Figures
4.3, 4.6, and 4.7. By applying bin-by-bin efficiency corrections to the data and taking
into account the statistical and systematic errors, as we have already done, we have

) 1,
obtained ME ™ 705
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We will now apply a smearing correction to the efficiency-corrected data we have
already obtained. In other words, we will find (M?)~}(MZ)15°%. Relative to Equa-
tion (4.20), however, this presents a commutation problem. The magnitude of this
problem can be calculated by noting that (M®)~! ~ I, and writing (MZ)! in such
a way that reflects this:

146 0
B 1 0 14469 --- 0
(ME) ‘= € : : - : (4.21)
0 0 14+ 06,

= (4.22)

(M5~ (M)~ — (MP) M), [0 if r=c
[(MP) T (M), STy

The efficiencies in Figures 4.3, 4.6, and 4.7 are flat as a function of p, to about
15%. Therefore by multiplying by (M*®)~! on the wrong side, we will obtain a result in
which only the off-diagonal elements will be incorrect, by at worst 15% of themselves.
The off-diagonal elements are small to begin with (see Equation (4.24)), thus making

this a negligible correction.

M? describes the measurement error of events that are known to have been de-
tected; this is exactly what is depicted in Figure 3.2. To obtain M* from Figure 3.2 it
is only necessary to normalize each column individually such that each column sums

1

to 1. Combining electron and muon channels, M® and (M?®) ! are calculated and

listed below:

M?S x 1000 =
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846

135

12

19

846

92

25

39

870

68

10

46

862

70

12

56

850

68

10

58

853

65

61

852

61

62

852

60

73

845

57

10

73

840

59

11
81
835

55

110

11

81

835

56

12

84

834

53

12

85

824

60

12

84

824

59

0 0 O
0 0 O
0 0 O
0 0 O
0 0 O
0 0 O
0 0 O
0 0 O
0 0 O
1 1 1
2 1 0
3 2 1
7T 4 2
15 7T 4
94 15 7
815 98 15
55 808 111

8

18

5 57 808 130

10

17

2 4 4T 799 257

1 1

4 36 704

(4.23)



(M5)~! x 100 =

119 -3 0 0 0 0 O 0 O 0 0 0 o o0 o0 o0 o0 o0 0 0
—-19 119 -5 0 0 0 O 0 O 0 0 0 o 0 o o0 o0 o0 0 0

2-12116 -6 0 0 O O O 0 0 0 o 0 o o0 o0 o0 0 0
-1 -2 -9117 -8 0 0 0 O 0 0 0 o 0 o0 O o0 o0 o0 0

-1 -1 -1-10119 -8 -1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 -1 0 —-8119 —10 0 0 0 o 0 o o0 o0 o0 0 0
0 0 0 0 0 0 -1 -8 120 -10 -1 0 o o0 o o0 o0 o0 o0 0
0 0 0 0O 0 0 0 0 -8 121 —12 0 o o0 o0 o0 0 o0 0 0 (424)
0 0 0 0 0 0 O O O 0 -8 121 —-12 0 -1 o o0 0 O 0
0 0 0 0 0 0 O O O 0 0 -8 122 —-12 0 -1 0O 0 O 0
0 0 0 0 0 0 O 0 O 0 0 0 -8 123 —-12 -1 -1 0o 0 -1
0 0 0 0 0 0 O O O 0 0 0 0 -9 123 -14 0 -1 0 0
0 0 0 0 0 0 O O O 0 0 0 0 0 -9 125 -15 0 -1 0
0 0 0 0 0 0 O 0 O 0 0 0 0 0 0 -8 126 -17 0 -1
0 0 0 0 0 0 O O O 0 0 0 0 0 0 0 —9 126 -21 5

0 0 0 0 0 0 0 O 0 0 0 0 0 0 0 0 0 —7 128 —47

o o0 o o o0 o0 o0 o o0 o0 o0 o o o o 0 0 0 —6 144

Applying the latter matrix to the efficiency-corrected yield vector, and assum-
ing that the bin errors are uncorrelated, we can calculate the efficiency-corrected,
smearing-corrected momentum distribution. As a cross-check, we also fit to find this
distribution. 20 histograms, are created, each one showing the measured distribution
from a single event generated in each of the bins. In other words, the histograms are
the rows of Equation (4.23). We then do a x? fit to a linear superposition of the 20
histograms. The two methods yield nearly identical results. We note that the result
of the smearing correction is subtle; even at high momentum, where the correction is
the most drastic, the change in central values is within 1o of statistical error.

The statistical errors on each bin increase by about 25% (of themselves) for all

momentum bins; the increase occurs because neighboring bins of the corrected dis-
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tribution are correlated. The magnitude of the increase is primarily driven by the
diagonal elements of Equation (4.24). Though the errors seem to have become worse,
we note that if we were to add the bins up to obtain an inclusive branching fraction,
proper consideration of the 20 x 20 error correlation matrix would lead to the same
statistical error on the sum of the bins. In other words, the increase in the statistical
error applies to the shape of the momentum distribution only, not the sum.

The procedure for obtaining the smearing-corrected 1(2S) spectrum is identical
to that of ¢(1S). There is a small complication in that we reconstruct the 1(25)
in both the dilepton and ¥ (1S)7*7~ channels. However, from (25) MC studies
(plots similar to those in Figure 3.2),we find that the invariant mass signal width in
both ¥(25) — ete™ and ¥(2S) — ¥(15)[— ete”|ntn~ is 38 MeV. Similarly, we find
resolutions of 24 and 25 MeV, respectively, for the muon modes 1(2S5) — p*p~ and
¥(2S) = Y(1S)[— pTp |mTw~. The nearly identical widths justify our using the
¥(2S) — eTe™ to deconvolute the smearing in ¥ (25) — ¥ (1S)[— eTe |rTn~ (and

likewise for the corresponding muon decays.)

4.5 Final Results, Momentum Distribution

The final results of efficiency-corrected, measurement smearing-corrected momen-
tum distributions of ¢(15) and 1(2S) produced directly from B decays are displayed
in Figure 4.14 and listed in the final columns of Table 4.9 [for ¢(15)] and Table 4.10

[for 1(25)].

4.6 Discussion of Results

4.6.1 Comparing to CLEO Monte Carlo

The distributions of ¥(1S5) and ¢(2S) as produced in the signal Monte Carlo are
compared to that of the efficiency-corrected data in the left column of Figure 4.15.
There are significant differences between MC and data, especially in the feed-down

modes.
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dB/dp (%/GeV)
py(1S) (GeV) | Uncorrected Corrected
0.0-0.1 0.015 £ 0.005 | 0.017 £ 0.007
0.1 -0.2 0.026 £ 0.016 | 0.021 £ 0.020
0.2-0.3 0.096 £ 0.05 | 0.095 £ 0.029
0.3—-04 0.190 £0.034 | 0.192 £ 0.039
0.4—-0.5 0.218 £0.040 | 0.215 £ 0.048
0.50—-0.6 0.247 £0.047 | 0.237 £ 0.056
0.6 —0.7 0.328 £0.048 | 0.324 £ 0.057
0.7—0.8 0.413 £0.049 | 0.398 £ 0.058
0.8—-0.9 0.524 £0.049 | 0.533 £ 0.058
0.9-1.0 0.432 £ 0.050 | 0.402 £ 0.061
1.0-1.1 0.572 £0.049 | 0.574 £ 0.060
1.1-1.2 0.557 £0.049 | 0.537 £ 0.059
1.2-1.3 0.621 £0.048 | 0.605 £ 0.059
1.3—-14 0.734 £0.044 | 0.736 £ 0.055
1.4—-1.5 0.804 £0.048 | 0.778 £ 0.059
1.5—-1.6 0.851 £0.053 | 0.859 £ 0.064
1.6 — 1.7 0.700 £0.038 | 0.700 £ 0.048
1.7—-1.8 0.537 £0.032 | 0.554 £ 0.040
1.8—-1.9 0.250 £ 0.024 | 0.268 £ 0.031
1.9-2.0 0.014 £0.013 | 0.002 £0.019

Table 4.9: Final Results, B — 9(15)(direct) X momentum spectrum. “Uncorrected”
is the spectrum without correcting for measurement smearing, and corresponds to
Figure 4.12. “Corrected” is the spectrum after correcting for measurement smearing,

and corresponds to Figure 4.14. The final systematic errors for each bin are shown
in Table 4.7.

This discrepancy between the momentum distributions of Monte Carlo and data
has the potential to bias the polarization measurement (if, for example, the polariza-
tion were a strongly dependent function of py.) We therefore take steps to change
the Monte Carlo so that it better matches the data. A “rejection skim” program is
executed for the signal Monte Carlo in which the generated lab-frame momentum of
the 1 determines the event’s probability of survival. The values of the probabilities
are calculated from the above results. After running the signal Monte Carlo events
through this skim, the momentum distributions of ¥ (15) and (2S) more closely

match those of the data. This may be seen in the right (“after skim”) column of
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dB/dp (%/GeV)
py(2S) (GeV) | Uncorrected Corrected
0.0-0.1 0.008 £ 0.008 | 0.010 £ 0.008
0.1 -0.2 0.028 £ 0.028 | 0.028 £ 0.016
0.2-0.3 0.067 £ 0.067 | 0.061 £ 0.023
0.3—-04 0.154 £0.154 | 0.161 £ 0.037
0.4—-0.5 0.196 £ 0.196 | 0.190 £ 0.044
0.50—-10.6 0.262 + 0.262 | 0.262 £+ 0.047
0.6 —0.7 0.298 £0.298 | 0.307 £ 0.050
0.7—0.8 0.244 £0.244 | 0.239 £ 0.050
0.8—-0.9 0.196 £0.196 | 0.181 £ 0.047
0.9-1.0 0.262 + 0.262 | 0.252 £ 0.051
1.0-1.1 0.359 £0.359 | 0.372 £ 0.056
1.1-1.2 0.315 £ 0.315 | 0.306 £ 0.053
1.2-1.3 0.336 £ 0.336 | 0.348 £ 0.055
1.3—-14 0.230 £ 0.230 | 0.235 £ 0.049
1.4—-1.5 0.151 £0.151 | 0.155 £ 0.040
1.5—-1.6 0.050 £ 0.050 | 0.049 £ 0.034

Table 4.10: Final Results, B — (25)(direct)X momentum spectrum. “Uncor-
rected” is the spectrum without correcting for measurement smearing, and corre-
sponds to Figure 4.12. “Corrected” is the spectrum after correcting for measurement
smearing, and corresponds to Figure 4.14. The final systematic errors for each bin
are shown in Table 4.8.

Figure 4.15.

We use the corrected Monte Carlo in the polarization measurement.

4.6.2 Comparing to Other Measurements and Theory

The most recent CLEO analysis of inclusive B — 1 was based on 2.02 fb~! of
T(4S5) data [35]. Among the results were branching fraction measurements: B(B —
¥(15)X) = 1.12 + 0.04 £+ 0.06 and B(B — ¢(15)(direct)X) = 0.80 + 0.08. These
results are the primary measurements used by PDG 2001. With 4.5 times as much
data, the statistical errors in this analysis have been reduced by a factor of 2, and the
systematic errors have also been improved. The results reported here are consistent

with these earlier findings.
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Recent results reported from BaBar [64]: B(B — ¢(15)X) = 1.0444+0.0134+0.028,
B(B — 9(1S)(direct)X) = 0.789 £ 0.010 £ 0.034, and B(B — ¥(25)X) = 0.275 +
0.020 £ 0.029 are consistent with our findings to within 20. Despite having twice the
integrated luminosity, their systematic errors dominate and the overall precision of
our results is equivalent to that of BaBar.

Several improvements were made relative to the last CLEO publication in the
momentum spectrum measurement. Qur analysis subtracts measured momentum
distributions of 1(1S) from (2S) and ¢ (1S) from X1, whereas the previous analysis
was forced to resort to MC because of low statistics. This is a significant difference,
as the left column of Figure 4.15 shows. We also subtract the measured continuum
charmonium contribution. Our final results in Figure 4.14 include a correction for
detector measurement smearing and include systematic error calculations for every
momentum bin.

Figure 4.14 also shows the contributions to the momentum distributions from ex-
clusive two-body decays B — ¢Y, where Y € {n, K, K*, K;(1270)}. A significant
part of the observed ¥(1S5) and v(25S) distributions lies below the two-body region of
Py, showing that both B — 9(15)X and B — 9(25)X have substantial multibody
components. This was noted soon after the first CLEO momentum distribution mea-
surement, and was interpreted as being consistent with significant color-octet (cc)
production [29]. The reason is that color-octet ¢ states must emit a gluon to become
a 1; the emitted gluon is likely to create additional light hadrons in the final state.

A peak in p,(2S) at about 650 MeV is observed that was not apparent in the
previous CLEO measurement (Figure 4.12). Figures 4.6 and 4.7 show that this effect
can nominally be seen in each of the 4 independent data sets that we employ to
measure the pys) spectrum. Taking the overlayed two-body modes into account,
the new bump may be simply be interpreted as being the peak of the multibody
B — 1(25)X component; similarities between the distributions of multibody v(1.5)
and 1(2S) are apparent.

Section 1.6.3 briefly discussed a recent conjecture that the discovery of a bump at
Pys) ~ 500 GeV might be a signature of triple charm decay b — ccc [39]. We observe

no such enhancement in this region. The hint of a bump which was seen in CLEO
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IT data was most likely a statistical fluctuation. The CLEO II and CLEO II+II.V
momentum spectrum results (where both results are uncorrected for measurement
smearing and show statistical errors only) are shown for B — 1 (direct) X in Figure
4.12.

We hope that the final momentum distributions shown in Figure 4.14, Table 4.9,
and Table 4.10 will prove useful in further constraining the color octet NRQCD matrix

elements.
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Figure 4.3: “4»(1S) inclusive” momentum distributions. Top left: Efficiency-corrected

data, inclusive ¥(1S) — ee.

Top right: Detection efficiency, direct 1(1S) — ee.

Middle left: Efficiency-corrected data, inclusive 1(1S) — uu. Middle right: Detection
efficiency, direct ¥(1S) — pp. Bottom left: Efficiency-corrected data, difference

between ¥ (1S5) — ee and 9(1S) — pp modes.
data, ¥(1S) — ¢£, with the vertical axis rescaled in terms of B(B — ¥ (15)X

Bottom right: Efficiency-corrected
). As

discussed in Sec. 4.1.4 and shown in Figure 4.8, the efficiencies for direct ¥(15) — ee
and inclusive 1(15) — ee are the same for a given bin in pyis).
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1/3 signal Monte Carlo events. In these plots, efficiency is defined as the probability
of detecting the 9(1S). These plots demonstrate that the probability of detecting
the 1(1S5) is independent of the direct parent of the ¢(1S); therefore, Monte Carlo
efficiency estimations for directly produced 1(1S) may be applied to inclusively pro-
duced 9(15) in the data. See Sec. 4.1.4 for further discussion.
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Efficiency dependence on Polarization
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Figure 4.10: B — 9(2S) — %(15) Momentum Distribution Components. Solid:
Total, efficiency-corrected distribution, from the sum of (2S) — ¢ (1S)r*tn~,
¥(25) — ¥(18) 770, and ¥(25) — ¥(15) X nise decays. Dotted: Measured contribu-
tion from ¢(2S) — ¢(1S)nTn—. ¥(1S) = et (y)e (y) or u*p~. Dashed: Expected
contribution of ¥(2S) — ¥(15) Xmse, from MC.
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Figure 4.11: B — 9(1S) Momentum Distribution Components. Top Solid: Inclusive
¥(1S) (measured). Dot-Dashed: ¢(1S) directly produced from B (inferred). Dashed:
¥(1S) from 1(2S) (measured). Dotted: ¥ (1S) from x.; (measured). Bottom Solid:
Continuum % (1S) (measured). ¥(1S) — et (y)e (y) or ptu .
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Momentum Distributions of Direct P(1S) and P(25)
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Figure 4.14: Final results, momentum distributions of ¥(15) and %(2S) produced
directly from B decay. Data is corrected for continuum (15), detector efficiency,
and detector smearing. Vertical bars are statistical errors; the region between the two
lines is the systematic error region. For the ¢)(15) distribution, the top solid histogram
is the contribution, obtained from Monte Carlo simulation, from the two-body decays
B — ¢(15)Y, where Y € {m, K, K*, K;(1270)}. The lower solid histogram is from
B — 9(1S)K;, the dot-dash histogram is from B — ¢(1S)K*, and the dotted
histogram is from B — (1S)K (the contribution from B — ¢(1S)7 is small.)
For the (2S) distribution, the top solid histogram is the contribution, obtained
from Monte Carlo simulation, from the two-body decays B — (25)Z, where Z €
{K, K*}. The dot-dash histogram is from B — ¢(25)K*, and the dotted histogram
is from B — (2S5)K. The branching fractions used to set the normalization of
each exclusive-mode histogram were obtained from the 2001 PDG, except for B —
Y(1S)K; [75] and B — 1(2S)Z [76]. As of this writing, there are no known two-
body decays with non-upper-limit branching fractions, other than those listed above.
There is an additional scale uncertainty (not shown on the plots) of 1.2% for v(1.5)
and 5.1% for 1(2S) due to uncertainty in the branching fractions that we reconstruct

the 1 in (see Section 4.1.6). 130



Momentum of Inclusive Yi(1S)
As Generated After Selection

********* W(1s)

Figure 4.15: MC versus data: points show data (efficiency- and smearing-corrected),
histograms show Monte Carlo (as generated). Relative normalization is equal-area.
Left: Momentum distributions of 1(1S5) as generated by the CLEO Monte Carlo.
Right: The same, but after a rejection technique is used to force the MC distributions
to conform to the data; these are the MC event sets which are used in the polarization
measurement.

131



Chapter 5

Polarization Measurement

5.1 Analysis

5.1.1 Analysis Outline

The polarization variable « is simply a parameter in one dimension which describes
the shape of the distribution in cosf. So, just as in the momentum distribution mea-
surement, which was constructed by combining 1/ yield measurements in partitions of
Dy, in this measurement we obtain angular distributions by grouping together yield
measurements in partitions of cos 6.

As in the momentum distribution measurement, we must again take into account
differences in efficiency across the angular distribution, as well as the fact that about
30% of the 1(1S) from B decays have intermediate parents, 1)(2S) or x.1.

Ideally, one could obtain « by fitting the efficiency-corrected angular distribution
from the data, to the function 1 + a cos?d. However, as discussed in Section 3.1.1,
when we measure cosf, we use p, as measured in the lab frame when we should
ideally use p, as measured in the B frame. Therefore we actually measure cos §'%;
the difference between this smeared measurement and the actual cos 6 is shown in the
lower right plot of Figure 3.1.

To solve this problem, we extract the polarization from the measured distributions

— that is, distributions that suffer from both the B-frame smearing discussed above,
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as well as measurement smearing. Instead of attempting to unsmear data so that we
can fit it to an exact function (1 + acos?#), we generate Monte Carlo events with
known angular distributions, propagate them through the Monte Carlo simulation to
include the effects of B-frame and measurement smearing, then compare the resulting

distributions to the data.

As discussed in Section 3.6, we generate signal Monte Carlo in two separate sub-
sets: one with the 1 sample completely transversely polarized, and the other, with all
1 completely longitudinally polarized. Said another way, the Monte Carlo generates
events so that in the limit of infinite statistics, the angular distributions of the two
subsets are exactly 1 + cos?6 and 1 — cos?6, respectively. We note that # in this
context is the “true” B-frame 6, not the smeared measurement §'**. These events
are then propagated through the detector simulation, thus incorporating B-frame
and measurement smearing. Angular distributions are then constructed by fitting
for yields in bins of cos #'%’, in exactly the same manner as the data. This gives us
smeared angular distributions, in cos #!%°, of the “pure-polarization” Monte Carlo. By
fitting the (smeared) data angular distribution to a weighted sum of the two Monte
Carlo “pure-polarization” smeared angular distributions, we determine the number
of transversely and longitudinally polarized v in the data. Finally, we use Equation

1.52 to extract o.

This strategy works to the extent that we can trust the Monte Carlo to get the
smearing right. For symmetric colliders, in the reaction ete™ — Y(4S) — BB, the
energy of the B meson is given by the beam energy. The fact that the beam energy
is slightly larger than the rest mass of the B meson is the source of B-frame smear-
ing. Modeling this smearing is therefore a matter of simple kinematics. However,
it is important to note that the Monte Carlo simulation also incorporates the subtle

variations in beam energy [77] that have occurred over the life of CLEO.

Relative to B-frame smearing, smearing due to mismeasurement is a comparatively
subtle effect. Evidence that the Monte Carlo also models this source of smearing ex-
tremely well is found in our comparisons of data versus Monte Carlo signal lineshapes

in the 1 (1S) — £¢ mode, as discussed earlier in Section 4.2.3 (systematic knob b4.)
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5.1.2 Signal Lineshapes

Signal lineshapes were obtained from signal Monte Carlo. The procedures used
to obtain the signal lineshapes are identical to those of the momentum distribution
measurement (see Section 4.1.2). However, the Monte Carlo in this analysis is “post-
rejection-skim” (see Figure 4.15), so that the Monte Carlo momentum distributions

of (15) and ¥(2S) match those of the data.

5.1.3 Invariant Mass Fits

In obtaining yields from invariant mass fits, the only difference between the polar-
ization and momentum distribution measurements is in the definition of the partitions.
We use the same fitting procedure in both measurements.

For the polarization analysis, there are a total of 720 (5x3x4x3x4) on-resonance

partitions to consider, each involving a mass fit, and defined as follows:
e cosf ! (5):

— —1.0<cosf < —0.6
— —0.6 <cosf < —-0.2
— —0.2 <cosf < +0.2
— +0.2 < cosf < +0.6

— 40.6 < cosf < +1.0

e Data source (3):
— Signal MC, ¥ Helicity = +1
— Signal MC, ¥ Helicity = 0

— 452-4sT on-resonance data

e Search mode (4):

1Starting from here, we will use cos to denote either cos 6 or cos §:?%; after reading the discussion
in Section 5.1.1, it should be clear from context which is being referred to. Since cos#'*® is what we
actually measure, this is the usual meaning.
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— “(1S) inclusive”
)
)
25) via dileptons”

e Dilepton mode lepton species (3):

— electrons: ¥(1S) [or ¥(25)] = et (y)e (7)

— muons: ¥(1S) [or ¢(25)] — ptu~
— both: 9(15) [or ¢(25)] = ™ (y)e” (7) or pTpu~
e py (measured momentum) (4):

— “low”: 0.0 GeV< pys) < 0.8 GeV, 0.0 GeV< pyas) < 0.7 GeV

“mid”: 0.8 GeV< pyas) < 1.4 GeV, 0.7 GeV< pyas) < 1.1 GeV

“high”: 1.4 GeV< pyas) < 2.0 GeV, 1.1 GeV< pyas) < 1.6 GeV
— “all” 1 0.0 GeV< pyas) < 2.0 GeV, 0.0 GeV< pyas) < 1.6 GeV
We also generate angular distributions of continuum data. Based on Figure 3.5,
we assume that the production rate of continuum (2S) and x.; is negligible. Fur-

thermore, because of limited statistics, we do not partition by momentum. The 15

(5 x 3) partitions for off-resonance data are defined as follows:

e cosf (5): as above

Data source (1): 4s2-4sT off-resonance data

Search mode (1): “¢(1S) inclusive”

Dilepton mode lepton species (3): as above

® pyas) (measured momentum) (1): 0.0 GeV< pyig) < 2.0 GeV
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Our choice of binning in cos @ is justified by several observations. Since the angular
distributions of longitudinally and transversely polarized i both involve only even
powers of cosf, we could have binned in |cosf| instead. However, this would have
removed a useful “symmetry check” of our distributions, with no improvement in
statistical power. So, we fit in cos # over the interval [-1, 1]. We also wish to define the
bins in such a way that does not diminish the differentiation between the endpoints,
cosf) = +1, and the midpoint, cos@ = 0. This restricts us to an odd number of
bins. The minimum number of bins is therefore 3. Now, the fitter returns N and
«, i.e. the total number of ¢ and their polarization. With 2 parameters in the fit,
a 3-bin fit would give little information on fit quality. We therefore choose the next
largest number of bins, 5. The binsize that results (0.4 in cos @) is justified in terms
of the B-frame smearing of cos@ (Figure 3.2); keeping the binsize this coarse keeps
the amount of bin migration to a minimum.

As in the momentum distribution measurement, we measure the 1(1S) or 1(25)
yield in each partition with a binned maximum likelihood fit. The signal is modeled
by lineshapes from tagged signal Monte Carlo. The background is modeled with a
cubic polynomial and no constraints are imposed on any of the fit variables. MIGRAD
errors were used.

In fewer than than 1% of the fits, partitions with very low statistics returned
negative yields. For these fits, we attempted to force the yield to be positive; however,
this resulted in undependable error measurements. Sometimes the error obtained
was smaller by orders of magnitude than fits with a small positive yield. In this
measurement, the error measurement is vital to the procedure because an error that
is falsely reported as being near zero can unduly pull the angular fits. Therefore we
do not constrain the yield to be positive; when a fit returns a negative yield, we use
the error obtained by the fit, and manually reset the central value of the fit to zero.

The x? of each fit was saved to a histogram and the distributions are shown in
Figure 5.1 and Table 5.2. The signal lineshapes are not statistically independent from
the signal Monte Carlo, so the x? of those fits tend to be lower than that in the data.
The x? distributions in the data plots show that the fits obtained are reasonable.

Figures 5.2 (H = 0) and 5.3 (H = +£1) are efficiency-weighted angular distribu-
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tions obtained from fitting purely polarized signal Monte Carlo. The normalization
of these plots is such that the sum of the columns is equal to the detection efficiency.
Each point is the 9(1S5) signal yield for that bin, divided by the number of events
generated in all 5 angular bins. The plots illustrate a combination of effects: the
difference between the two 1(15) polarization states, detector efficiency and resolu-
tion, and smearing in the measurement of § (Figure 3.1). These figures show that the
difference between H = 0 and H = +1 events is unmistakable in our detector despite
the inherently smeared # measurement. Similar plots are also made for the other 1
search modes but are not shown here.

Uncorrected yields of the data are shown for each search mode in Figures 5.4, 5.5,

5.6, and 5.7.

5.1.4 Continuum Correction [¢(1S) only]

We correct for continuum production of ¢(15) only in the partitions that include
all py, due to low statistics in the continuum 1(1S) mode. Any plots involving
the “all-momentum” partitions, such as the bottom row of Figure 5.4, will use solid
lines to denote the continuum-subtracted distribution and dashed lines to denote the
distribution before continuum subtraction. Figure 5.4 shows that the contribution
of the continuum is at the sub-percent level. The fact that we do not execute the
continuum subtraction in the lower-statistics partitions leads to a negligible error in

the measurement of « in these partitions.

5.1.5 Illustration: ayg) for Inclusive B — ¢(15)X

Although we are interested in the polarization of ¢ produced directly from B
decays, we take a brief detour to derive the polarization of inclusively produced ¥ (15),
over all ¥(15) momenta and leptonic decay modes.

All of the steps are depicted and explained in Figure 5.8. We can extract a
couple of cross-checks from the results. The first fit (Figure 5.8, lower left) yields
No = 12939 + 499 and N, = 12457 + 516. Using Equations (1.48) and (1.52) and
ignoring errors, we obtain N = 25396 and o = —0.350. Since the second fit (Figure
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5.8, lower right) simply incorporates these change-of-basis equations into the fit, it is
no surprise that the results from the second fit match exactly: N = 25396 4+ 285 and
a = —0.350 + 0.034.

The data angular distribution (upper left, Figure 5.8) is of continuum-corrected
data over all ¢y momenta and both lepton channels. So, the result for N should
match the efficiency-corrected, continuum-corrected yield obtained previously in the
inclusive branching fraction measurement. From Table 4.2, Ngr = 25682 + 289. The

two results agree to 0.70.

5.1.6 Correcting for Feed-Down, 1(15)

In order to obtain the polarization of ¢(1S) which are produced directly from B
decays, we must first subtract the angular distributions of the (1S) from (25)
and x.; from the distribution of the inclusively produced (1S). In the polarization
analysis, however, this correction is more complicated than that of the momentum
distribution measurement. In the momentum distribution measurement, we obtain
efficiency-corrected yields for all search modes, i.e. inclusive ¥(1S5) as well as feed-
down (1S). In the polarization measurement, we do not want to correct for effi-
ciency; we need to know the observed (smeared) distribution of directly produced
¥(15). Therefore, when correcting for the feed-down (1S), we need to adjust the
feed-down distributions partially for efficiency; namely, we correct for the efficiency
loss incurred due to adding extra particles to the 1(1S) to form the intermediate
parents 1(2S) or x.. The strategy to correct for the other complication, namely,
that we must take into account fraction of the feed-down that we actually measure,
remains the same as in the momentum measurement.

All of the above concerns are addressed in the following:

Ydirect = Y;'nclusive - ;g%ﬁw(;g)YwQS - GXC(}S B;(/}CIIS)YXM (51)

Here, Y is the (uncorrected) observed yield in each bin of the data. Yi,cusive is the
yield of ¥(1S) from any source; Y2y, the yield of 4/(15) which, when combined with
*tr~, form a ¢(25); and Y, ,, which is the yield of ¢(15) which, when combined
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with a 7, form a x.;.

The “marginal” efficiency eiggg is the efficiency of finding a ¢(15), divided by the
efficiency of finding that same 1 (15) and combining it with a 7 and 7~ to form a
¥(25). Likewise, €49 is the ratio of the 1(1S) efficiency to the [¢)(15)+~] efficiency.

In calculating € we must account for the fact that the ¢ detection efficiency may
vary as a function of cosf. By combining H = +1 and H = 0 Monte Carlo in a 2:1
ratio, we create populations of ¢)(1S) with zero net polarization, i.e., generated flat in
cos f. By propagating these events through the Monte Carlo simulation, fitting yields
in bins of cos # to form angular distributions, and normalizing by the total number of
events generated, we derive angular efficiency plots. These efficiency plots are shown
for the three search modes in Figures 5.9 [direct ¢/(15)], 5.10 [¢(1S) from 9(25)], and
5.11 [t(1S) from x.1]. The efficiency loss due to detecting the extra 77~ or 7 is clear
from comparing the vertical scales of the plots; subtleties of the detector response are
apparent as well. Bin-by-bin division of the efficiencies depicted in Figure 5.10 by the
corresponding efficiencies of Figure 5.9 yields ezggg ¢¥(15) is obtained similarly.

Finally, we must correct for the fact that we only reconstruct one decay mode of
¥(2S) — ¥(15)X (as discussed in Section 4.1.5); the fraction which we do measure
is the factor Bi((;g)) in Equation (5.1). We assume that the angular distribution for
¥ (15) generated from (2S) — 1(15)X is identical to that of ¥(25) — ¢(1S)rt 7.
This assumption is made in the above equation by the 5$(21§) term, which is equal to
B(1(2S) — $(15)X)/B((28) — p(1S)r*7~). Using PDG 2001 values, Ble =
1.752 + 0.119. The error in ngg will be handled later in the systematic error
study. As for g¥(9), PDG lists only one decay mode for xa — 9(15)X, and that
is Xa — ¥(15)7y, which we measure. We therefore take ﬁ;fc(lls) = 1 and assign no
systematic uncertainty to this.

Having obtained all of the required ingredients in Eqn. 5.1, we may now carry
out the feed-down subtraction. Figure 5.12 shows “partially corrected” distribu-
tions, where the inclusive 1(1S) is corrected only for the 1(2S) feed-down mode, i.e.
Yinctusive — wgg Bw 21:;)) Yy(2s)- Figure 5.13 shows the results after correcting for both
feed-down modes (direct 1(15).)

The statistical errors are added in quadrature in the feed-down subtraction. This
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is equivalent to making the assumption that the three corrected distributions are
completely uncorrelated to each other. This assumption is conservative because the

statistical error in Yy,...: would decrease if we took the correlations into account.

5.1.7 Fitting for «

We now obtain « by fitting the feed-down corrected distributions, using the same
procedure described in Section 5.1.5. Results for « (statistical error only, at this
point) are shown in Table 5.7; and will be discussed after the systematic error study
is described in the next section. Table 5.1 shows the confidence levels of the fits for

a. We conclude that the angular fits obtained are reasonable.

¥(1S) | 0.0 —0.8 GeV 0.8—1.4 GeV 1.4-2.0GeV |0.0—-2.0GeV
e 83.7% 98.3% 9.4% 67.0%
7 97.1% 27.7% 94.0% 81.2%
e or 92.9% 42.8% 33.4% 99.0%
¥(25) | 0.0 —0.7 GeV 0.7—1.1GeV 1.1-1.6GeV |0.0—-1.6 GeV
e 84.4% 71.0% 56.7% 77.5%
W 63.8% 46.1% 12.1% 23.9%
e or 92.5% 69.9% 8.6% 34.2%

Table 5.1: Confidence Levels for Fits of ay1s) and ay(as).

5.2 Systematic Error Study

5.2.1 Overview

The knob-turning study for the polarization measurement is similar to that of the
momentum distribution measurement: we redo the procedures that lead to a many
times, each time activating a different “knob” designed to test the importance of a
single systematic error source. The last two columns of Table 4.3 list the knobs which

applied to the polarization analysis.
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Detailed results, showing the deviation in « attained from applying each knob,

are listed for ay(15) in Table 5.5 and for ay(2s) in Table 5.6.

5.2.2 Uncertainty in Unmeasured Modes

Knobs al, a3, a4: Polarization and Branching Fraction of Unmeasured
Modes (¢(1S) only) As previously discussed in Section 4.2.2, there are several

decay chains of the form B — #(25)X — #(15)X which we do not attempt to
Y(28)—=p(18)nt 7~

measure. Define cv /g9 to be the average polarization of 1(15) which occurs
from the intermediate decay v(2S) — J/¢7mTn~. Similarly, let a;p}gggaw(ls)w%o be

the average polarization of ¢(1S) which occurs from the intermediate decay ¢ (25) —

J/m7%. Finally, let ozzggg_)w(ls)xm“ be the average polarization of 1(1S) which

occurs from any one of the following intermediate decays: ¥(2S) — xcov — ¥(15)7y7,
B(25) = w(1S)R2, $(25) = Xy — B(18)77, or Y(28) - Y1)t

Our standard procedure is to measure a://jgg;mp(m)ﬁw— and then assume that
P(28)=p(1S)n070 _ 9(28)=9(18) Xmise _  W(2S)—=y(18)ntw~
Oy(15) = Qy(rs) = Qy(1s) (5-2)
The first assumption is that a:ﬁgggﬁw(w)wowo = a:zgggaw(ls)ﬁr’ i.e. the polar-

ization of 1(15) created via ¥(2S) — 1(15)n%7? is identical to the polarization of
¥(1S) from ¥(2S) — ¥(1S)nTn~. Both (2S) and ¢(1S) are isospin zero; therefore

the two-pion state must also be created in an (I, I3) = (0,0) state. The particular

0 — will have no effect on

manifestation of this (0,0) isospin state — be it 777~ or 77
the (15).

Even after making this assumption, we also need to know how often (2S) —
¥ (1S)m°7® occurs. The relevant result from PDG 2001 is B@%%ﬂ;{f%ﬁl@_) = 1.752+
0.119. The standard procedure is to use the central value of the PDG result. Knob

al uses 1.8716 (central value +10) instead.

Now we deal with the second assumption, a:/;gg;aw(ls Wmise a:ﬁgg;aw(w)ﬁr'

In this case, there is absolutely no fundamental reason that this equality should
hold. We estimate the degree to which this assumption affects the final result by re-

calculating o twice; once assuming a%gwus JXmiee — 11 and once again assuming
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a,’ﬁgﬁgw(ls)xmi“ = —1. These are knobs a3 and a4.

5.2.3 Invariant Mass Fit Procedure

Knobs bl-b4: Fitting Procedure As in the momentum distribution measure-
ment, we re-fit the invariant mass plots using alternative parametrizations of back-
ground (knobs b1, b2) and signal lineshape (knobs b3, b4). The mean x? of these fits
are listed in Tables 5.2 and 5.3.

Knob: Standard bl (Float Quadratic)|b2 (Fixed Cubic)
d.o.f. X2 d.o.f. X2 d.o.f. X2

search mode Data MC Data MC Data MC

¥ (1S) Inclusive 75 75.8 74.1| 76 78.2  75.3 78 99.8 78.9

¥(1S) from ¥(2S) | 55 624 53.1| 56 63.2  54.0 58 66.1 59.3

¥(15) from xa 45 515 45.9| 46 55.0 54.1 48 56.0 50.2

¥ (2S) via dileptons| 75 80.3 71.7| 76 80.3 72.2 78 106.2 73.8

Table 5.2: Mean x? for invariant mass fits using standard and alternative background
parametrizations.

Knob: | b3 (Smooth Hist.) b4 (Gaussian)
d.o.f. X2 d.o.f. X2
search mode Data MC Data MC
¥ (1S) Inclusive 76 765 836| 75 76.1 161.7
$(15) from ¥(2S) | 56  61.0 59.0| 55 61.8 111.2
¥(1S) from X 46  50.7 46.5| 45  50.7 97.1
¥ (2S5) via dileptons | 76 796 71.6| 75 80.5 115.7

Table 5.3: Mean 2 for invariant mass fits using alternative signal parametrizations.

5.2.4 Monte Carlo Accuracy, Luminosity-Related Uncertainty
Knobs c, d, e These are the same as in the momentum distribution measurement.
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5.2.5 Procedure for Feed-Down Correction and o Extraction

Knobs f1-f4: Handling Feed-Down; Determining o« We attempt four alterna-
tive procedures in handling feed-down and determining a.

For knobs f1 and f2, instead of obtaining the final variables o and N directly from
the fitter, we obtain Ny, N4, and the 2 x 2 correlation matrix from the fitter, then
derive @ and N. Knobs fl and f2 differ in how they extract a and N from these
variables.

For Knob f1, we obtain « analytically from the (N, V) basis. The central value
of o is given by Equation 1.52. The correlation matrix returned by the fitter has the

Ci. C
C = ( O E0 ) (5.3)
CO:l: COO

form

where Cy = Cyy, Cix = ANZ, and Cyy = ANE. The analytical solution for the

error in « is then

4
Aa — m\/N‘?ANi + Ny AN — 2NyNCoy (5.4)

Knob 2 makes use of a Monte Carlo method to obtain cv. We use random number
routines in CERNLIB to generate 100,000 pairs of numbers (ny,ng), such that the
distributions of each of these variables is Gaussian, with widths (ANy, AN,) and
central values (Ny, Ny). The generated numbers are also correlated, consistent with
the off-diagonal correlation matrix element Cyy. For each pair (n,ng), we calculate
the corresponding value of o and save it to a histogram. The resulting distribution
of « is then fit to a bifurcated Gaussian, where the Gaussian widths and central
value are allowed to float. The ability to fit to a bifurcated Gaussian and thus obtain
asymmetric errors in « is an advantage of this method.

Knobs {3 and {4, used only for the a5y measurement, differ from the standard
procedure at an early stage. In the standard procedure, we correct the angular
distributions for feed-down, then derive a from fitting the angular distribution of
direct ¥(15). Knobs f3 and 4 reverse the order: for each distribution of the directly
observed search modes [inclusive ¢(15), 1(15) from 1(2S), and ¥(15) from x.1], we
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perform the angular fit, thus obtaining
(chl Néncl) (Nw(%‘) N¢(2S))’ (N, N (5.5)
and the correlation matrices
( Cing  Qincl ) ( Cﬁfs) Ci(()QS) ) ( cX4  OXa ) 56)
Czncl C(%Lcl C’gfs) C(%@S) CcXe X '
When fitting, we impose a constraint that all yields N be non-negative.
At this point, we again have two methods of converting these results to a. Knob
f3 is the analytic calculation (similar to Knob f1), where the central value of « is
N — 2N, <Nincl _ Ni(%) _ N:)écl) _9 (Néncl _ Naﬁ(QS) _ Ng‘“)
© NL 42N, (N:itncl _ N;WS) _ ij:cl) +9 (N(z)'ncl _ Na/l(QS) _ Na(cl)

Finding an analytic solution to the error on « requires that we have the 6 x 6

(5.7)

correlation matrix. However, the information we are given by the fitter is three 2 x 2

correlation matrices, so we construct a 6 x 6 correlation matrix as follows:

Czncl Cmcl 0 0 0 0
o Cipd 0 0 0 0
0 0 @ v o g
C= »(28) (25) (5-8)
0 0 & v 0 0
0 0 0 0o X oy
0 0 0 0 CXcl CXcl

By setting all of the off-block-diagonal elements to zero, we are again treating the
results from the three fits as being uncorrelated.

Knob f4 uses the same Monte Carlo technique as Knob 2. A computer program
throws 100,000 experimental trials of three pairs of numbers, distributed with the
central values, errors, and (pairwise) correlation coefficients that are obtained from
the three fits. Every time a set of random numbers is generated, « is calculated by
Equation 5.7; the distribution in « is plotted and fit with a bifurcated Gaussian to
obtain « and its error. Because we throw pairs of numbers that satisfy the 2 x 2
correlation matrices, each pair of random numbers generated has no correlation with
the other pairs, i.e. once again we treat the results from the three fits as being

uncorrelated.
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5.2.6 Results

Activating each of the 20 knobs for (1S5), and 13 knobs for ¥(2S), we obtain
varying results for «. We combine the deviations from the standard procedure for
each knob, Ag,m, to obtain a final systematic error, Agys;. As in the momentum
spectrum measurement, pairs of knobs which probe the same systematic uncertainty
are averaged before adding in quadrature. The systematic error is obtained from the

individual knob deviations as follows:

Ay = A% +[(|Aas| + |Agal) /2]
(1261 ] + [An2]) /2] + [(| Ass| + | Dsal) /2]
+AZ + AL+ AL+ A2+ AL+ A%+ AL
+AZ, + A2
HAf]+ [Apa] + [Ags| + [Aga]) /4] (5.9)

Table 5.7 shows the final polarization results, with statistical and systematic er-

Iors.

Table 5.4 is a systematic error summary for our two central results, the all-
momentum, both-lepton partitions of ay5) and ayas). The table shows “subtotal”
systematic errors from groupings of similar knobs; each knob is weighted according
to Equation 5.9. In both the 15y and ayzs) measurements, the largest systematic
error comes from uncertainty in the Monte Carlo modelling [the (c) knobs], particu-
larly in lepton ID. Almost as significant is the variation due to invariant mass fitting
procedures [the (b) knobs], within which the dominant error comes from using a fixed
background shape. The total systematic error is less than 4% in both a5 and

Quy(25), Which is small compared to either of the statistical errors.

The deviation from the central value obtained from each knob, as well as the
systematic error, for all 12 partitions in momentum and lepton decay mode, are

shown for ay1s) in Table 5.5 and for ay2s) in Table 5.6.
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5.2.7 Low-Statistics ¢(25) Partitions

In the 9(2S) polarization measurement — particularly for the partitions with low
statistics — we sometimes observe 1) nonphysical central values of o and 2) unstable

results when applying knobs b2 or f2.

Unphysical Results for a: The central values determined for « for high-momentum
¥(2S) — ee and 1(2S) — pp lie outside the physically valid region of [—1, +1] (al-
though with very large errors). To see how this is possible, recall that « is the value
for which 1 + a.cos? @ is the shape that best fits the cos distribution. If the cos @
distribution is extremely concave or extremely convex (for example, due to statistical
fluctuation), the fitter returns a value of « which, although mathematically possible,
is physically not allowed.

Examining the angular distributions (third row, left and center, Figure 5.7), we
see that both of them include a bin with negligible yield. Even completely polarized
samples do not include bins with zero yield (see Figures 5.2 and 5.3). Therefore
the mere existence of a zero-yield bin means that the distribution cannot have been
created by an additive linear superposition of pure-helicity events.

In these atypical cases, artificially forcing the fit to return |« > 1 complicates
the calculation and interpretation of the resulting error. Therefore we report the

unconstrained fit result.

Unstable results from knob b2: Applying knob b2 on the 1(2S) data results in
3 partitions reporting polarization results that differ by more than 1.0 relative to the
standard procedure, as seen in Table 5.6. Knob b2 applies a fixed background shape
to the invariant mass fits. Figure 5.14 shows the middle-momentum (2S) — ee
partition. The top row shows the invariant mass fit of data events in the fifth angular
bin, i.e. +0.6 < cos@ < +1.0. The standard, floating-cubic background fit is on the
left, and the fixed background (knob b2) is on the right. With knob b2 activated, the
fit returns a negative value, which is modified to be zero. The effect of this change
is evident in the middle row, which plots the angular distributions resulting from

the 5 mass fits. The dramatic drop in yield in the crucial fifth angular bin pulls
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the fit to be more convex than the completely longitudinal MC, thus pulling « to
an unphysical value, —1.33. The statistics are small enough that a relatively minor
change in background shape changes the yield drastically enough to make a large

change in .

Unstable results from knob f2: This method fits the direct-i angular distri-
bution for Ny and Ny.. The fitter results are then converted into the (N, «) basis
by throwing random numbers for Ny, and N, converting them to «, and making a
histogram of the many random trials. The bottom row of Figure 5.14 shows exam-
ple histograms. The left histogram is of the “grand” partition of ¢(2S). When the
errors on Ny and Ni are small, as they are in this case, then the errors on « are
well-behaved. In the high-momentum muon partition, however, the errors on N, and
Nj are large to the point that the o that is calculated for most of the thrown values
is out of the allowed region. Because of this the errors on « are highly non-Gaussian.
Fitting a bifurcated Gaussian is woefully inadequate in this case (lower right, Figure

5.14) and the knob deviation reflects this.

Conclusion: The cases of nonphysical central value and knob instability simply
reflect the fact that there are insufficient statistics to make a robust measurement of
ay(2s)y When dividing the dataset into momentum bins; therefore the results for these
bins, particularly the high-momentum bins, should be viewed with caution. However,
our primary result is for the combined-momentum partitions, for which none of the

points raised in this subsection apply.
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Systematic Error
knob(s) source of uncertainty Qy(1s)  Op(2s)
al B(y(2S) = ¢ (1S)ntn™) 0.007 0.000
a3-ad | a(Xnisc) 0.010 0.000
subtotal (a) | 0.012  0.000
bl-b2 | background parametrization | 0.020 0.020
b3-b4 | signal lineshape 0.011 0.003
subtotal (b) | 0.023  0.021
cl tracking 0.000 0.015
c2-c3 | crystal calorimeter 0.012 0.008
c4-¢5 | muon ID 0.010 0.021
c6-¢c7 | electron ID 0.018 0.005
subtotal (c) | 0.024  0.027
d3 M (m*7~) cut efficiency 0.005  0.000
el continuum scale factor 0.000 0.000
f1-f4 | feed-down, « procedure 0.009 0.016

| | TOTAL | 0.037  0.038 |

Table 5.4: Systematic error summary for the polarization measurements which include
all ©» momenta and both leptonic decay modes.
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Pyas) | low (0.0 — 0.8 GeV) [ mid (0.8 — 1.4 GeV)
Y(1S) — |ete” utp~ 70 |efe ptp 10
« 091 -0.13 0.321-0.24 -045 -0.37
al 0.13 0.00 0.06] 0.01 0.01 0.01
ad -0.17 -0.01 -0.07]-0.03 -0.02 -0.02
ad -0.07 0.03 -0.01{-0.01 0.00 0.00
bl 0.09 0.00 -0.02] 0.01 -0.07 0.00
b2 -0.03 -0.02 -0.14-0.21 0.07 -0.01
b3 -0.02 0.03 -0.03-0.01 -0.01 0.01
b4 0.02 -0.02 0.02]-0.03 -0.01 -0.01
cl 0.02 0.02 0.00] 0.00 -0.04 0.01
c2 0.01 0.00 -0.01 [-0.01 -0.04 0.00
c3 0.01 0.01 -0.01| 0.00 -0.01 0.01
c4 0.00 -0.07  -0.01| 0.00 0.00 0.03
cH 0.00 -0.03 -0.01| 0.00 0.00 0.02
cb -0.13  0.00 0.08| 0.01 0.00 0.01
c7 0.01 0.00 -0.01|-0.01 0.00 0.01
d3 0.10 0.00 0.03| 0.01 0.00 0.01
el 0.00 0.00 0.00] 0.00 0.00 0.00
f1 0.09 0.00 0.00] 0.00 0.00 0.00
f2 -0.16 -0.14  -0.14|-0.03 -0.03 -0.02
3 -0.04 0.13 -0.02| 0.02 0.01 0.01
f4 -0.17  0.06 -0.14| 0.01 0.00 -0.01
Rasyy | 027 012 0.15] 012 009 0.4
Dos) | high (14— 2.0 GeV) | all (0.0 — 2.0 GeV)
(1S) = |ete”™ ptp~ 070 ete” ptp~ 010
« -0.65 -0.40 -0.521-0.23 -0.37 -0.30
al 0.00 0.00 0.00] 0.01 0.00 0.01
ad -0.01 -0.01 -0.01(-0.02 -0.01 -0.02
ad 0.00 -0.01 0.00]-0.01 0.00 0.00
bl 0.01 -0.01 0.01] 0.02 -0.02 0.00
b2 -0.09 0.09 0.01]-0.13 0.04 -0.04
b3 0.01 0.00 -0.01]-0.04 -0.01 0.00
b4 0.00 0.00 -0.01(-0.03 0.00 -0.02
cl -0.01  0.01 0.00] 0.00 0.00 0.00
c2 0.02 -0.01 0.00| 0.00 -0.02 -0.01
c3 0.01 0.00 0.00| 0.00 -0.01 -0.01
c4 0.00 0.00 0.00| 0.00 0.01 0.01
co 0.00 -0.01 0.00| 0.00 0.00 0.00
cb 0.01 0.00 0.01] 0.04 0.00 0.02
c7 0.02 0.00 0.01] 0.01 0.00 0.00
d3 0.00 0.00 0.00| 0.01 0.00 0.01
el 0.00 0.00 0.00| 0.00 0.00 0.00
f1 0.00 0.00 0.00| 0.00 0.00 0.00
2 -0.02 -0.02 -0.01 (-0.02 -0.02 -0.01
3 -0.01 -0.10 -0.04|-0.02 0.00 -0.01
f4 -0.02 -0.11 -0.05(-0.03 -0.01 -0.02
Nag,, | 006 008 003 010 004 0.04

Table 5.5: ay(1s) systematic error results.
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Pyes) | low (0.0 — 0.8 GeV) | mid (0.8 — 1.4 GeV)
P(2S) — |ete™ utp~ 740~ |efe” ptp~ 10~
« -0.57 -0.54  -0.57|-0.56 -0.91 -0.83
bl 0.01 -0.01 0.00| 0.00 0.00 0.00
b2 0.07 0.15 0.11}-0.77 0.01 -0.30
b3 0.01 -0.03 0.01] 0.03 -0.03 0.01
b4 0.06 -0.01 0.00(-0.02 0.04 0.01
cl 0.05 -0.05 -0.01]-0.04 0.01 -0.01
c2 -0.05 0.02 -0.01(-0.08 0.01 -0.02
c3 -0.05 0.02 -0.01(-0.08 0.01 -0.02
c4 0.00 -0.15 -0.09| 0.00 0.05 0.03
cH 0.00 0.13 0.07] 0.00 0.03 0.02
cb 0.03 0.00 0.00| 0.05 0.00 0.00
c7 0.04 0.00 0.01]-0.02 0.00 -0.01
f1 0.00 0.00 0.00| 0.00 0.00 0.00
f2 -0.30 -0.25 -0.15]-0.24 -0.14 -0.09
Aogys | 014 0.23 0.13] 0.41 0.08 0.16
Py2s)y |high (1.4 —2.0 GeV) | all (0.0 —2.0 GeV)
¥(2S) — |ete™ ptpu™ 747 |ete” ptp~ 10
« -1.24  5.28 0.19]-0.81 0.03 -0.45
bl 0.00 -0.12 0.01] 0.00 -0.01 0.00
b2 0.04 9.09 1.391-0.27 0.33 0.04
b3 0.03 1.00 0.08| 0.01 -0.05 0.00
b4 0.00 -0.36 -0.03| 0.01 0.01 0.00
cl -0.03 0.41 0.001-0.03 0.00 -0.01
c2 0.02 -0.16 0.04]-0.03 0.01 -0.01
c3 0.02 -0.16 0.04]-0.03 0.01 -0.01
c4 0.00 -0.10 0.01} 0.00 -0.04 -0.02
cH 0.00 -0.72 -0.07| 0.00 0.04 0.01
cb -0.06  0.00 -0.04 | -0.03 0.00 0.00
c7 -0.02 0.00 0.00]-0.01 0.00 0.00
f1 0.00 0.01 0.00| 0.00 0.00 0.00
2 -0.08 -4.07 -0.38|-0.08 -0.19 -0.06
Aogys: | 0.08 4.84 0.72] 0.15 0.19 0.04

Table 5.6: ay(25) systematic error results.
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ayas)| 0.0—08GeV  08—-14GeV  14-20GeV | 0.0-2.0GeV
e |+0.91708 1+ 0.27 —0.247512 +0.12 —0.65708% £ 0.06 | —0.23751L £ 0.10
po | —0.1375038 4+ 0.12 —0.45514 +£0.09 —0.407312 + 0.08 | —0.3713:80 + 0.04
¢ |4+0.327037 £ 0.15 —0.3775909 £0.04 —0.527398 4+ 0.03 | —0.3070:97 + 0.04

ayesy| 0.0—0.7 GeV 0.7 —1.1 GeV 1.1 — 1.6 GeV 0.0 — 1.6 GeV
e |—0.5770% £0.14 —0.567052 £ 0.41 —1.247323 £0.08 | —0.8175:25 £ 0.15
o | —0.54%335 4 0.23 —0.9173-38 4 0.08 +5.2812%3° + 4.84 | +0.0375:38 4+ 0.19
¢ | —0.57703T +0.13 —0.837927 4 0.16 +0.1973% +0.72 | —0.45%322 + 0.04

Table 5.7: Final results, polarization measurement. The first error is statistical er-
ror, the second error is systematic. The summed partitions (all partitions involving
¢ and/or 0.0 — 2.0 GeV) are obtained from independent fits, not averages of the
unsummed partitions.
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5.3 Results and Discussion

Our primary results for B — v (direct) X polarization, which include all ¢ mo-
mentum and both leptonic decay modes, are shown below, where the first error is
statistical and the second is systematic. These are the first measurements of the po-
larization of ¥(15) or ¢(2S) produced directly from B decays. Results for a5y and

Qy(25) as a function of py are shown in Table 5.7.

agas) = —0.30%0.07 +0.04 (5.10)

apps) = —0.45707 +£0.04 (5.11)

5.3.1 Cross-check: Lepton Universality

The polarization parameter should be independent of the flavor of the daughter
leptons. The data are consistent with this, as for each momentum bin, the results for
electron and muon bins are all within 20 of each other. The low momentum bin for
¥ (1S) may be cause for some concern, with central values near 1 for electrons and
near 0 for muons, although with large errors. The upper left and upper middle plots
of direct-1(15) distributions, Figure 5.13, show that indeed, the electron distribution
looks like 1+ cos? f, whereas the muon distribution is more flat. Figure 5.12 shows the
“partially feed-down corrected” distributions which result when we correct for (2S5)
feed-down but not x.; feed-down. The low-momentum electron and muon bins agree
better than in the fully corrected distributions. This is confirmed by Figure 5.6, which
clearly shows a significant difference between the low-momentum electron and muon
bins for the x.; feed-down sample. Recall that each of the points in these plots is the
result of a mass fit; the mass fits that make up these two plots are displayed in Figures
5.15 and 5.16. Inspection of these plots shows that nothing obviously pathological is
happening with the fits, supporting the hypothesis that this difference is a statistical

fluctuation.
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5.3.2 Comparing to Other Measurements

The last time CLEO reported findings on 1 polarization was conference pro-
ceedings in 1992 [78]. The result was FTLq/;(w) = 0.59 +£ 0.15, corresponding to
a = —0.48 £ 0.24. Given the poor statistics available at the time it is highly un-
likely that this result corrected for feed-down #(15).

A January 2000 thesis from KEK-BELLE using 0.42 fb~! of on-resonance data
[79] obtained o) = —0.92 4 0.16 £ 0.09, for the entire momentum range of ¥(15).
This analysis does not correct for feed-down (15).

In March 2001, BaBar [64] presented a preliminary result of ays) = —0.424 +
0.023, using about 20 fb~!, about double the data used for our result. Comparing
the statistical error of this result to that of our inclusive ¢ measurement of ay(15) =

—0.350 4+ 0.034 (Section 5.1.5 and Figure 5.8) | it is fairly certain that the BaBar

result includes the contributions of ¥(15) feed-down modes.

5.3.3 Conclusions

Our result for ay1s) is almost 40 away from zero. This measurement therefore
rules out the color evaporation model, which predicts that charmonia are produced
with zero net polarization, regardless of the production mechanism.

Within 20 in combined statistical and systematic error, we find that ay@us) €
[—0.48, —0.12]. According to the latest NRQCD predictions for a (Section 1.6.5, Table
1.5), our result tends to favor a higher b quark mass. However, these calculations
are leading-order in ayg; therefore the links between our results and the NRQCD
matrix elements are currently not firmly established. In the future, with continued
improvements in the theoretical calculations, we hope that these results will provide

a strong constraint on the NRQCD color-octet matrix elements.
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Figure 5.1: Distributions of the Likelihood function (x?) of the 720 fits for yield in
the polarization analysis.
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Yield Per Event, Signal MC, H 15 =0

Direct Y(1S)
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Figure 5.2: Detected Angular Yield per Monte Carlo Event, ¥(15)g—¢ produced
directly from B decays. Momentum Range Definitions: “Low” = 0.0-0.8 GeV, “Mid”
= 0.8-1.4 GeV, “High” = 1.4-2.0 GeV, “All” = 0.0-2.0 GeV.
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Yield Per Event, Signal MC, H ,5=£1
Direct Y(1S)
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Figure 5.3: Detected Angular Yield per Monte Carlo Event, ¢(15)g-+1 produced
directly from B decays. Momentum Range Definitions: “Low” = 0.0-0.8 GeV, “Mid”
= 0.8-1.4 GeV, “High” = 1.4-2.0 GeV, “All” = 0.0-2.0 GeV.
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Observed Y(1S) Yidds, Data
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Figure 5.4: Data: inclusively produced 1 (1S). Bottom row, dashed: before subtract-
ing the distribution of continuum (15).
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Observed Y(29) Yields, Data
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Figure 5.5: Data: 1(1S) produced via 1(2S) — ¢(1S)r+ 7.
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Observed x, Yields, Data
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Figure 5.6: Data: ¥ (1S5) produced via x. — ¥(15)7.
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Observed Y(29) Yields, Data
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Figure 5.7: Data: ¢(2S) decaying via 9 (25) — 7.
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Obtaining a from Angular Distributions
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Figure 5.8: An illustrative example of how « is obtained from the angular distribu-
tions — see Section 5.1.5 for more discussion. All plots are from the all-momentum,
combined e-y partition. Top left: Data, continuum-corrected inclusive ¢ (15), from
Figure 5.4. Top center: MC, direct helicity 0 ¢(1S), from Figure 5.2. Top right:
MC, direct helicity £1 ¢(15), from Figure 5.3. The data plot is a measured, uncor-
rected distribution. The MC plots show the average contribution of one pure-helicity
¥(1S) to the measured, uncorrected distribution. For the same reasons as in the
momentum measurement, we may use direct 1» Monte Carlo to adjust inclusive 1
data, see Figure 5.8. Lower left: results of fitting the data to a linear combination
of the two MC plots, thus obtaining N, and Ny, the number of transversely and
longitudinally polarized ¢(1S) in the data. The dashed line is the contribution of
the H = £1 component. Lower right: Results of fitting directly for o and N, the
polarization and total number of ¢)(1S). The two fits are mathematically equivalent.
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Efficiency, Signal MC, Unpolarized (1S)
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Figure 5.9: Efficiency as a function of cos# and p, for unpolarized (15) produced
directly from B decays. Momentum Range Definitions: “Low” = 0.0-0.8 GeV, “Mid”
= 0.8-1.4 GeV, “High” = 1.4-2.0 GeV, “All” = 0.0-2.0 GeV.
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Efficiency, Signal MC, Unpolarized (1S)
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Figure 5.10: Efficiency as a function of cos # and p,, for unpolarized (15) produced

via 9(25) — Y(1S)rt7~.

Momentum Range Definitions: “Low” = 0.0-0.8 GeV,
“Mid” = 0.8-1.4 GeV, “High” = 1.4-2.0 GeV, “All” = 0.0-2.0 GeV.
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Efficiency, Signal MC, Unpolarized (1S)
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Figure 5.11: Efficiency as a function of cos # and p,,; for unpolarized ¢(1S) produced
via Xa — ¥(15)y. Momentum Range Definitions: “Low” = 0.0-0.8 GeV, “Mid” =
0.8-1.4 GeV, “High” = 1.4-2.0 GeV, “All” = 0.0-2.0 GeV.
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Observed Y(19) Yields, Data
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Figure 5.12: Data: partially corrected angular distributions. The distributions of
[¢(1S) from (2S)] are subtracted from the distributions of inclusively produced
¥(1S5). Bottom row, dashed: before subtracting the distribution of continuum (15).
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Figure 5.14: Plots illustrating large knob deviations in low-statistics 1(2S) partitions.
See Sec. 5.2.7 for more details. Top Row: Mass fits for 1(25) — efTe™, 0.6 <
cosf < 1.0. Left: standard fitting procedure; Right: fixed background shape [knob
(b2)]. Horizontal axis is GeV. Middle row: Angular distributions for ¢ (2S) —
ete™; the fifth bin is given by the yield on the fits in the top row. Left: standard
fitting procedure; Right: fixed background shape [knob (b2)]. Horizontal axis is cos 6.
Bottom Row: Fits for o using the Toy MC technique. Left: « for the unpartitioned
full dataset. Right: « for the high-momentum muon partition. The central value for
the highly complicated distribution that results is poorly estimated by the bifurcated
Gaussian. Horizontal axis is a.
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Figure 5.15: Data: Mass fits for ¢(1S) from x.;, low momentum bin, ¥(15) — ee.
The yields of these fits are the entries of the bins in the upper left plot of Figure 5.6.
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5.6.
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