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CHAPTER 1

Introduction

The Nobel prize of physics in 2002 was awarded to Ray Davis, Masatoshi
Koshiba and Riccardo Giacconi for pioneering contributions to astrophysics,
in particular opening “two new windows on the Universe” [1]. While Giacconi
worked with high energy photons (X-rays), Davis and Koshiba were rewarded
for the detection of cosmic neutrinos. This discovery marked the beginning of
a new discipline: neutrino astrophysics.
Cosmic Neutrinos are also the subject of the work presented in this thesis. In
contrast to Davis and Koshiba who were detecting neutrinos originating from
nuclear fusion in the Sun and in the core collapse of Super Nova 1987 A, thus
having energies of the order of MeV, the energies of the neutrinos being fo-
cused on here are around six orders of magnitude higher (∼ TeV).
Astronomy has been expanding the wavelength window in which observations
are made ever since the beginning of astronomy with Galileis optical telescope
[2]. Today the window extends from the very low energies of radio astronomy
and microwave observations to the very high energies of GeV or even TeV
gamma rays [3].
With photons as the carrier of information, expanding the window to energies
above∼ TeV will be essentially impossible, since photons at this energy scale
are more and more inhibited by interaction with the Cosmic Microwave Back-
ground (CMB). In effect, the photon mean free path quickly decreases with
energy. At PeV energies, for example, the photon mean free path is shorter
than ten kpc (which corresponds approximately to the distance to the centre
of our own galaxy), see figure1.1. Using other particles as messenger is an
obvious option, but there are not many choices: all charged particles will be
deflected by the interstellar and intergalactic magnetic fields and thereby not
preserve the direction from the source.
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12 CHAPTER 1 INTRODUCTION

Neutrinos on the other hand only interact weakly and gravitationally, which
means they essentially travel undisturbed even from sources at cosmological
distances. Extragalactic astronomy at the∼ TeV to PeV scale might therefore
be only possible using neutrinos as messengers.
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FIGURE 1.1: The gamma ray horizon due to various absorption processes
(predominantly photon pair production in the intergalactic radiation field). The
area to the right of the dashed curve is invisible for gamma-ray astronomy.
Also indicated are the position of the onset and peak star formation as well as
the position of Mrk 501 (nearest active galaxy). Figure taken from [4]

A particular important example of how using neutrinos as messengers might
lead to new insights, is one of the long standing mysteries of nature: the origin
of cosmic rays. Cosmic rays are heavy particles (mostly protons with a∼ 10 %
admixture of heavier elements) constantly bombarding the Earth’s atmosphere.
These particles have been observed with energies exceeding∼ EeV. As can be
seen in figure1.2, the differential energy spectrum is a broken power law and
exhibits two distinct features (thekneeand theankle), which seems to indicate
that different processes might be operating in these different energy regimes.
Below the knee (energies∼ PeV) the spectrum is∝ -2.7, above the knee it
steepens (slope∼ -3) and flattens again at energies above∼ 10 EeV (∼ -2.7).
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FIGURE 1.2: The spectrum of observed cosmic rays. Figure taken from [5]



14 CHAPTER 1 INTRODUCTION

A promising hypothesis for the origin of cosmic rays is that they are produced
and accelerated at cosmological and galactic sites, such as Active Galactic Nu-
clei (AGN), Super Novae (SN) and Gamma-Ray Bursts (GRB), which release
huge amounts of energy. Protons are charged particles thus (as discussed pre-
viously) deflected by intergalactic magnetic fields and consequently the con-
nection between the observed cosmic rays and cosmological objects can not
be established from the directions of the cosmic rays alone. However, if these
objects indeed are sources of cosmic rays, they will most likely also produce
high energy neutrinos, following from particle physics arguments (see section
2). The detection of high energy neutrinos from hypothetical sources of cos-
mic rays would therefore be not only a major step in the understanding of the
origin of cosmic rays but also toward understanding the physical processes at
work in the most energetic objects in our universe.
Detectors for high energy neutrinos (neutrino telescopes) are designed to de-
tect the secondary charged particles produced in neutrino interactions. From
the detected particle, it is attempted to infer the direction of the origin of the
parent neutrino and, if possible, the type of neutrino and its energy.
The analysis presented in this thesis has been performed with data taken by
the Antarctic Muon and Neutrino Detector Array (AMANDA) situated at the
South Pole. AMANDA is one of the two operational neutrino telescopes in
the world, the other one being the BAIKAL [6] neutrino telescope situated in
Lake Baikal in Russia. With AMANDA the feasibility of high energy neutrino
detection has been proven [7] and atmospheric neutrinos (see section2.2) have
been observed [8]. It has furthermore been possible to put limits on the flux
from hypothetical neutrino point sources [9], the diffuse flux of high energy
neutrinos [10], neutrino-induced cascades [11], Gamma Ray Bursts [12] and
other physical processes such as flux from neutrinos from dark matter annihi-
lation [13] and magnetic monopoles [14]. AMANDA can be considered as a
proto-type for a considerably larger neutrino telescopes: the IceCube neutrino
detector [15], which is expected to have the sensitivity to decisively rule out
or confirm models of cosmological neutrino production. Apart from possible
physics discoveries of AMANDA, the operation of the array and the analysis
of data taken with this first generation neutrino telescope thus constitute a nec-
essary step toward the next generation of neutrino telescopes.

This thesis is divided into three parts. Part I is concerned with an analysis
which constitutes one of the prime goals of neutrino telescopes: the search for
cosmic point sources of high energy neutrinos.
The last step of this analysis will be the calculation of a confidence interval
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for the neutrino flux. The presence of significant systematic uncertainties rep-
resents a considerable complication of this calculation. Part II describes a
possible solution to this problem.
Part III describes an assessment of the sensitivity of AMANDA to neutrino
oscillations.
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Part I

A search for neutrinos from
cosmic point sources using

AMANDA-B10
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CHAPTER 2

Cosmic neutrinos

2.1 Introduction

The particle physics process, which is central in the production of high energy
cosmic neutrinos, is proton collision with some target:

p + X → M + Y

↪→ µ± + νµ (ν̄µ) (2.1)

↪→ e± + νe (ν̄e) + ν̄µ(νµ)

whereM can be eitherπ± (which decays to 100 % into muons), aK± (which
decays to muons with a branching ratio of about 65 %), or aK0

L (which sub-
sequently decays intoπ± + e∓(µ∓) + ν. Y is determined by the character of
X which is either another hadron or a photon.
Thus, if there are processes which accelerate protons to high energies (beam)
and there is a medium (target) in which these protons interact to produce kaons
and pions, there will be production of high energy neutrinos.
As described in the previous section, cosmic rays constitute a natural beam of
protons and the Earth’s atmosphere constitutes a natural target. The Earth’s
atmosphere consequently should yield neutrinos. The existence of thoseat-
mospheric neutrinoshas not only been confirmed by experiment (see e.g. [8])
but their spectrum has been measured and used to determine parameters of
neutrino oscillations, see for example [16] for a recent review. Furthermore,
other celestial bodies (such as the Sun) and the interstellar gas provide possible
targets for the cosmic ray beams. The neutrinos from the atmosphere and the
interstellar gas hereby form an isotropic (or nearly isotropic) background to
the search for point sources, whereas the Sun is a possible point source itself.

19



20 CHAPTER 2 COSMIC NEUTRINOS

We will discuss these guaranteed sources of cosmic neutrinos further in section
2.2.
As mentioned earlier, the sources of cosmic rays are not known but they are
certainly good candidates for being proton accelerators. If in addition there is
a medium that surrounds the acceleration sites which acts as a target, produc-
tion of neutrinos would be the consequence. Vice versa, if neutrinos could be
observed from a cosmic point source this would indicate that proton acceler-
ation takes place, thereby supporting the hypothesis that it is also a source of
cosmic rays. On the other hand, it is known from astronomical observations of
photons from the visible to the TeV range that there are objects in the universe
which release huge amounts of energy. Considering the high energies at which
cosmic rays are observed, these objects constitute prime candidate sources for
both cosmic rays and high energy neutrinos.
In the next section we will describe known sources for cosmic neutrinos and
their impact on the search for point sources. We will then turn to the botany of
astronomical candidate sources for high energy neutrinos. The physics model
describing the neutrino production in those objects will be described in section
2.4. In particular, we will present a very simple but illustrative estimate for
the flux of neutrinos originating from Active Galactic Nuclei. Finally, we will
briefly discuss some of the more exotic sources of cosmic neutrinos involving
non standard-model physics.

2.2 Known sources of neutrinos

2.2.1 Atmospheric neutrinos

Cosmic Rays are constantly colliding with the Earth’s atmosphere. These cos-
mic rays consist mainly of protons with a small (∼ 10 % ) admixture of heav-
ier nuclei. In the collision, mesons are produced which subsequently decay to
yield neutrinos, see process2.1.
For pions and kaons, decay into leptons competes with interaction with nuclei
in the atmosphere. The rates of both processes become comparable when the
mean free path of the mesons in air is comparable to the mean distance the
meson can travel during its lifetime, i.e.:

cτ
E

mc2
' 1

nσ
(2.2)

whereE and m are the energy and the mass of the meson,c the speed of
light, n is the number density of atmospheric nuclei andσ the meson cross
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section. One consequence of this relation is that the horizontal neutrino flux
is expected to be larger than the vertical (see figure2.1), the reason being that
mesons produced by cosmic rays with shallow zenith angle will be produced
at higher altitude (lower density), giving the mesons more time to decay. This
density effect introduces asec θzenith dependence of the atmospheric neutrino
spectrum. The decay channel dominates for vertical muons up to energies of∼
100 GeV, which is why their energy spectrum in this region follows the spec-
trum of incident cosmic rays and is well described by a power law spectrum

dΦν

dEν
∝ E−γ (2.3)

with γ = 2.7 [17]. Above 100 GeV the spectrum will start to become steeper
since more and more mesons interact before decaying. At energiesÀ 1 TeV
the spectrum is characterised by a power law indexγ = 3.7 (i.e. one power
steeper than the incident cosmic ray spectrum). It should be noted that because
of the effect of different interaction length of the cosmic rays at different zenith
angles this change of slope is zenith dependent.
Neutrinos are also produced in charmed meson decay. These mesons continue
to contribute to the neutrino spectrum with the shallower slope until much
higher energies (∼ 50 PeV), since the lifetimes of charmed mesons are much
shorter (forπ±, cτ ∼ 7.8 m, as compared to 315µm for a D± charmed me-
son). Thus, despite the fact that the contribution of charmed mesons to the
neutrino flux is generally small, it will eventually dominate the contributions
from other mesons. Estimates of the energy where this cross over takes place
differ between 10 TeV and 100 PeV (see [18] and references therein). Contri-
butions of charmed mesons to the atmospheric neutrino flux are not taken into
account in this work. Figure2.1presents a summary of model calculations for
atmospheric neutrinos up to energies of 10 TeV.

2.2.2 Neutrinos from the sun and the galactic disk

The same process that produces high-energy neutrinos in the atmosphere also
leads to a contribution of neutrinos from other targets for cosmic rays, such as
the Sun and the galactic disk.
The density is lower in the solar atmosphere than in the Earth, therefore there
will be no steepening of the spectrum. Calculations [24] predict the flux of
neutrinos from the sun to be larger than the atmospheric neutrino flux (calcu-
lated in a 1 square degree pad) above energies∼ 10 TeV.
Another possible target is the interstellar matter located in the galactic disk.
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The low density here again leads to a spectrum which is not as steep as the
atmospheric neutrino spectrum. Eventually, it therefore dominates the atmo-
spheric neutrino spectrum (E∼ several hundred TeV) [25] [26].

2.3 The botany of cosmic neutrino sources

In this section we will give an account for candidates for cosmic point sources.
It should be mentioned that we will not be complete in this effort. Among
sources we will not discuss are those very unlikely to give an appreciable flux
(like cosmic rays interacting in the interstellar medium of other galaxies or
in intergalactic medium of clusters) and Gamma Ray Bursts which are very
promising candidates for neutrino emission, but which are subject of a dedi-
cated analysis [12].

2.3.1 Galactic candidates

Super Nova Remnants Super Nova remnants (SNR) are blast waves which
are produced in the core collapse of massive stars (M > 8M¯). The total
energy released in such a core collapse is∼ 1065 eV, from which about one
percent is transferred to the blast wave. SNR are believed to be prime can-
didates for cosmic ray acceleration up to energies of∼ 102 - 103 TeV [4].
The target for neutrino production in this case would be provided by the inter-
stellar medium. The resulting high energy neutrino fluxes might dominate the
atmospheric neutrino spectrum above neutrino energies of∼ 20 TeV [4] (in a
one square degree aperture). This estimate has been obtained from measured
gamma flux of the SNR Cassiopeia A andγ Cygni by equating gamma-flux
and neutrino flux, which is a technique similar to the one we will use in section
2.4.

Microquasars Microquasars (MQ) are formed by accreting black holes with
black hole masses,MBH ≥ 3M¯. They exhibit a structure very similar to Ac-
tive Galactic Nuclei (AGN), see section2.3.2, with jets emanating from the
accretion disk and a variable X-ray spectrum, but on a considerably smaller
scale (the typical black hole mass of AGN isMAGN

BH ∼ 108M¯). The accel-
eration of cosmic rays would be performed in the jet and the target is provided
by the photon radiation of the accretion disk or the synchrotron radiation of the
electrons in the jet (see section2.3.2and2.4). Scaling from the models used to
explain AGN leads to the prediction that acceleration of cosmic rays to ener-
gies of∼ 103 TeV [4], corresponding to neutrino energies ofO (100 TeV), is
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possible. [27] examined a sample of 20 MQs and calculate individual neutrino
flux predictions from source properties inferred from other observations. The
highest flux levels reach the ones expected for SNR.

2.3.2 Active Galactic Nuclei

Active Galactic Nuclei (AGN) are the most powerful objects in the universe
with bolometric luminosities of∼ 1030 eVs−1. These luminosities are sus-
tained over long time periods and radiated from very small regions (∼ size of
our planetary system). The only explanation which theoreticians have been
able to come up with is the energy release of gravitational energy due to accre-
tion onto a very massive black hole typically of the order of M =108M¯.
Protons are accelerated either in the accretion process onto the black hole (AGN
core models) or in jets which emerge perpendicular to the accretion disk (AGN
jet models). Of special interest is here a class of AGN where the jet emanates
along the line of sight, so calledblazars, since they are sources of gamma rays
in the GeV - TeV region supporting the hypothesis of proton acceleration [28].
The target in the case of AGN is either the photons originating in the accretion
disk or synchrotron radiation of electrons accelerated with the jet depending
on how far from the disk the acceleration takes place. Another possibility is
the collision of the jets with the intergalactic medium.
Blazars are prime candidates for the highest energy cosmic rays, since they
are probably capable of accelerating protons up to energies of∼EeV. If indeed
protons are accelerated in blazars, then the high energy gammas can be ex-
plained by neutral pion decay,π◦ → γγ (proton blazar). However, it can not
be ruled out that the gamma radiation is produced by inverse Compton scat-
tering of electron synchrotron radiation (electron blazar). The observation of
neutrinos from blazars would be more or less decisive in that matter.

2.4 Physics of cosmic neutrino production

The goal of this section is to obtain a simple estimate for the flux of cosmic
neutrinos from a proton blazar (see section2.3.2). This is done to exemplify
one common method to calculate the expected neutrino flux from candidate
sources such as those described in the previous section.
The general strategy is to first obtain an estimate of the expected maximal
energy of neutrinos and the spectral shape of the neutrino spectrum (which
essentially is determined by the acceleration mechanism and the target spec-
trum). The second step is then to relate the expected neutrino flux to some
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observed flux of particles, in our case the flux of gamma rays.

2.4.1 Constraining the beam: Fermi acceleration

1upstream
downstream

−β + β = β rel1

−β1 

2E

E2

FIGURE 2.2: Schematics of Fermi Accel-
eration. For the definition of the quantities,
see text

Fermi acceleration is a mecha-
nism to transfer kinetic energy
of a moving magnetised plasma
to single charged particles. The
Fermi mechanism - with only
a few assumptions - provides
a spectrum of charged particles
which has a slope similar to
that observed in cosmic rays,
which makes Fermi acceleration
the prime candidate for providing
the acceleration in cosmic rays.
Consider a test particle which un-
dergoes stochastic collisions and
in each collision gains an amount
of energy proportional to its own
energy,δE = Eξ. Consider fur-
thermore that the region where

these collisions can take place is finite such that a particle has a finite prob-
ability, Pesc, of escaping that region. Then, the number of particles with an
energy> E, can be calculated to be [29]:

N(> E) ∝ 1
Pesc

(
E

E◦

)−Pesc
ξ

(2.4)

whereE◦ is the test particle’s energy at injection. The integral energy spec-
trum of particles will be a power-law with an index depending on the fraction
of energy transferred in each collision and the probability for the particle to
escape the acceleration region. Qualitatively, such a spectrum behaves as ex-
pected. The higher the escape probability and the smaller the energy transfer,
the steeper spectrum one would expect. Vice versa, a low escape probability
and a high energy transfer should lead to a shallow spectrum. Bothξ andPesc

are determined by the physics of the process, but only the stochastic nature of
the acceleration process and the fact that there is a finite probability for the
particle to escape the accelerating region leads to a power-law spectrum.
Turning to the physics process, we consider a shock wave moving through a
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magnetised plasma and a test particle traversing the shock front back and forth,
see figure2.2and [29]. The test particle is supposed to start out in the region in
front of the shock front (“upstream”), traverse the shock front to the region of
shocked gas (“downstream”) where it undergoes repeated scattering on mag-
netic field irregularities present in the shocked gas, and finally traverses the
shock front again returning to the upstream region of unshocked gas (we will
refer to this process as onecycle). If the particle initially has energy,E1, the
question we are interested in is, what will be its energy,E2, after completing
the cycle ?
In answering this question, we will make an important assumption: the scat-
tering process is completely elastic, i.e. the magnetic field irregularities (scat-
tering centres) are assumed to be at rest with respect to the local gas velocity,
which in turn implies that the energy of the test particle is not changed by the
scattering. The velocity of the test particle, however, changes such that after a
few scatterings the average motion will coincide with that of the surrounding
gas. Furthermore, we assume that the particle enters the downstream region
under an angleθd and leaves the downstream region again under an angleθu,
where the angles are defined with respect to the normal to the plane of the
shock front. Then the energy of the particle upon re-entering the upstream re-
gion,E2, is related to the initial energy of the particle,E1, by the combination
of Lorentz factors ( upstream→ downstream→ upstream)

E2 = E1 · Γ2
rel(1− βrel cos θd)(1 + βrel cos θu) (2.5)

whereΓrel is the Lorentz-factor between the upstream and downstream frame
of reference andβrel is the relative velocity of these frames1 ( see figure2.2
for reference). In the derivation of equation2.5, it was assumed that the test
particle is sufficiently relativistic, such thatpc ∼ E.
The average energy gain per cycle is given by averaging equation2.5 over
cos θd andcos θu. Assuming an isotropic flux and a plane shock wave, av-
eragingcos θd in (-1 ≤ cos θd ≤ 0) andcos θu in (0 ≤ cos θu ≤ 1) yields
< cos θd >= −2/3 and< cos θu >= 2/3, [29]. Inserting these values into
equation2.5results in:

ξ = Γ2
rel

(
1 +

4
3
βrel +

4
9
β2

rel

)
− 1 ∼ 4

3
βrel (2.6)

with E2
E1

= (1 + ξ). The approximate form holds for a non-relativistic shock.
This type of shock acceleration is sometimes calledfirst order shock acceler-
ation, since the fractional energy gain per collision is proportional to the first

1nota bene: the downstream frame of reference is the lab frame
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order of the velocity.
In the considered case of a plane (indefinite) shock front, once a test particle
has entered the downstream region it has a finite probability of getting scat-
tered further downstream (instead of getting scattered back to the upstream
region), thereby being lost for further acceleration cycles. The escape proba-
bility is given by the ratio of the rate of particles crossing the shock front and
the rate of particles getting scattered away further downstream. The former is
given by projecting an isotropic flux of test particles on the shock wave plane,
the latter is proportional to the velocity,β2, with which the shocked gas moves
away from the gas in the upstream region. The result [29] is:

Pesc= 4β2 (2.7)

and combining equation2.6and equation2.7:

γ =
Pesc

ξ
= 3

β2

βrel
= 3 · r

1− r
(2.8)

with r = β2/β1. r can be determined from the kinetic theory of gases and
is dependent on the strength of the shock and the specific heats of the gas
involved. For a mono-atomic gas and a strong shock (β1 much greater than
sound speed in the gas),r = 1/4 and consequentlyγ = 1. and thus the differen-
tial spectrum of test particles is given by:

dN

dE
∝ E−2 (2.9)

Remembering the fact that the scattering is caused by magnetic field irregular-
ities, it should be noted that the implicit assumption in the above derivation is
that the magnetic field is parallel to the shock normal. Otherwise, there will be
an electric field induced in the rest frame of the shock front leading to a gain
in energy for a charged particle crossing the shock.
We will now turn to the question of the maximal energy which can be obtained
by Fermi acceleration. For this we introduce the cycle time,Tcyc, which is
the time it takes for the particle to traverse the shock from upstream to down-
stream and back, thereby gaining an amount of energyξE. With this definition
the acceleration rate can be expressed as:

dE

dt
=

ξE

Tcyc
(2.10)

In order to estimate the maximal energy we will have to integrate equation2.10
over the lifetime of the accelerator (the time until the shock wave decays) and
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we have to know the cycle time.
The cycle time is given by the sum of the times that the particles spend in the
upstream region and in the downstream region:

Tcyc = tup + tdown (2.11)

Introducing the scattering length,D, the average time a particle spends in a re-
gion moving with velocityβ is given byt = D

cβ (see [29] for a derivation). For
simplicity we will assume the scattering process in the upstream and down-
stream region to be the same. Then:

Tcyc = 4D

(
1

cβ1
+

1
cβ2

)
(2.12)

whereD is the typical scattering length. The argument to constrainD is that
the scattering length can not be smaller than the Larmor radius of the particle,
rL = E

qB . The general idea is that a particle with a larger Larmor radius would
not respond to the irregularities. Thus,Dmin ' rL and inserting this into
equation2.10and integrating to a finite duration of the shock,TA, results in:

Emax≤ 1
20

β1 · qB · (β1c · TA) (2.13)

where we have assumed a strong shock (r = 1/4, as above) and made use of
equation5.41.
Note that(cβ1 · TA) can be interpreted as the total size of the accelerating
regionRacc. For a relativistic shock the result resembles the one given here
(see e.g. [30]):

Emax' Γ1 · qB ·Racc (2.14)

It should be noted that for this equation to be valid, the acceleration efficiency
has to be 100 %. Effects which are not included are for example the energy
loss of charged particles due to synchrotron radiation (see e.g. [31]).
In summary, Fermi acceleration produces a universal spectrum of particles
which has a power-law index close to what is needed to explain the cosmic
ray spectrum. The small deviation might be explained by the implicit assump-
tion made here that the test particle does not influence the magnetic fields in
the acceleration region, whereas in reality, the cosmic rays themselves might
induce hydromagnetic waves and irregularities, see e.g. [29] [30].
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2.4.2 Constraining the target: the gamma ray spectrum

In what follows we will consider the following channel for neutrino produc-
tion:

p + γ → ∆ → nπ+ (2.15)

with subsequent decay of the pions into neutrinos. The target will consequently
be gammas.
The spectrum of gammas will be assumed to be a black-body spectrum. The
typical energy of this spectrum isEγ = 10 eV (UV bump in AGN spectra). It
can be shown that the neutrino spectrum in the above case will have the same
slope as the incident proton spectrum, i.e. it will be proportional toE−2 [32].
In making the above assumption we constrain ourselves to acceleration taking
place near the black hole, since the target photon spectrum for protons accel-
erated far away from the accretion disk will be predominantly produced by
the synchrotron radiation of the accelerated electrons in the jet (see section
2.3.2). Synchrotron radiation exhibits a power-law spectrum,E−α, leading to
a resulting neutrino spectrum proportional toE−γ−α [4].

2.4.3 Combining beam and target: the neutrino flux

We have now estimated the shape of the cosmic ray spectrum and its maximal
energy (beam), fixed the shape of the gamma ray spectrum and its approximate
energy (target) and thereby determined the shape of the neutrino spectrum. In
this section we will combine this information to obtain a very simple estimate
on the neutrino flux from a cosmic point source. The absolute normalisation
of the neutrino spectrum will be estimated from the observed gamma ray lu-
minosity of a well known blazar. As mentioned in the previous section, the
calculation will be performed using the∆-approximation, meaning we assume
the pion production to proceed via the∆-resonance and neglect contributions
from other resonances and inelastic scattering.
In a first step we estimate the relationship between the neutrino luminosity and
the gamma ray luminosity. Neutrinos are exclusively produced in charged pion
decay. Gammas, on the other hand, are predominantly produced by neutral
pion decay (π◦ → γγ) but also get contributions from the leptons produced in
the charged pion decay (see process2.1) as well as Bethe-Heitler pair produc-
tion,pγ → e+e−p [31]. The four leptons originating in the charged pion decay
(νµ, νe, e

+ andν̄µ) on average all carry the same amount of energy. Thus, the
e+ contributes to the gamma flux mainly by synchrotron radiation [31] with ∼
25 % of the pion energy.
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At the ∆ resonance, the rate of neutral pion production is roughly double the
rate of charged pion production:

Γ(pγ → ∆ → pπ◦)
Γ(pγ → ∆ → nπ+)

∼ 2
1

(2.16)

Thus following picture emerges: from the total energy going into the pion
production (14 · 1

3 ) go into gamma rays from charged pion decay, and2
3 from

neutral pion decay. Thus the total fraction contributed the gamma luminosity is
(2
3 + 1

12 = 3
4). The fraction going into the neutrinos is consequently (1

3 · 34 = 1
4 ).

This implies that naively one expects the neutrino and gamma luminosities to
be related like:

Lν

Lγ
=

1
3

(2.17)

If the contribution toLγ by Bethe-Heitler pair production is included, the result
turns out to be [33]:

Lν

Lγ
=

3
13

(2.18)

With this knowledge, we can proceed to calculate the spectrum of neutrinos.
Whereas [33] perform the calculation for a spectrum∝ E−1, it was mentioned
previously that for pion production on a black-body photon target neutrinos
are expected to exhibit a spectrum∝ E−2.

dNν

dEν
= N E−2

ν

Eν,max
(2.19)

Thus it holds for the neutrino luminosity:

Lν = N
∫ Eν,max

Eν,min

dEνEν
E−2

ν

Eν,max
=

3
13

Lγ (2.20)

which upon integration yields the normalisation constantN and inserting into
equation2.19gives the spectrum of neutrinos:

dNν

dEν
∼ 3

13


 Lγ

E2
ν,max ln Eν,max

Eν,min




(
Eν

Eν,max

)−2

(2.21)

The minimal and maximal neutrino energies can be related to minimal and
maximal proton energies by including the average fraction of the momentum
of the pion relative to the incident proton,< xF >∼ 0.2, and the fraction of
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energy of the neutrino relative to the pion, which assuming equipartition is1
4 ,

thus:

Eν
max,min =

1
4

< xF > ·Ep
max,min∼ 0.05 Ep

max,min (2.22)

The minimum proton energy is given by the proton threshold to produce pions
via the∆ resonance on a photon target. This is dependent on the photon energy
and is given by:

E′
p >

m2
∆ −m2

p

4 · E′
γ

(2.23)

in the co-moving (proton) frame. In the lab frame and after inserting the mass
values, this can be expressed as [34]:

Ep > 1.4 · 1019eV

(
Γ
30

)2 (
10eV
Eγ

)
(2.24)

As mentioned in the previous section, we consider a spectrum as produced by
an accretion disk, i.e. a black body spectrum with a characteristic energy of∼
10 eV. We will for simplicity assume that all photons have this energy, which is
a not too bad approximation for a black body spectrum. The minimal neutrino
energy is related to the proton threshold energy by equation2.22, yielding
Eν,min ∼ 770 TeV. We recall that the maximal proton energy (hence neutrino
energy) will be determined by the magnetic field, the size of the acceleration
region and the boost factor of the shock wave, see equation2.14. The size of
the acceleration region and the magnetic field is determined by observations
and typical values for AGN jets areB ∼5 Gauss andRacc ∼ 0.01 pc [33].
Inserting these values in equation2.14gives together with equation2.22 for
the maximal neutrino energy:

Eν,max' 2 · 106 TeV (2.25)

For Lγ we use the measurement of the Mrk 421 flux from [35], i.e. Lγ =
2× 10−10 TeV cm−2s−1. Inserting these values in equation2.21yields:

E2
ν

dNν

dEν
∼ 5.8× 10−9 GeV cm−2s−1 (2.26)

Obviously this result is based on many simplifications. It is obtained assuming
a boost factor ofΓ = 1, whereasΓ ' several tens seems more favoured [34].
On the other hand, we did not include proton energy losses (i.e. we pretend a
100 % acceleration efficiency) and in this elementary calculation we assume
the two simplifications to cancel each other. Another serious simplification is
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that we performed all calculations in the∆-approximation. A substantially
more detailed discussion of photo-hadronic interactions which also include
inelastic pion production seems to yield rather large differences in for example
the ratio of gamma to neutrino luminosities. For power law index photon fields
the ratio is found to be rather∼ 1 than the value13 which is used here [36].
Also, it should be mentioned, that in this model we assume all gammas to
actually escape the source and be detected, i.e. no absorption. If absorption
takes place, the neutrino flux could be higher.
Figure2.3 summarises present model calculations for cosmic neutrino point
sources. The present calculation is included (denotedstick figuremodel).

2.5 Cosmic neutrinos from beyond the Standard Model

The models described above are examples ofbottom-upmodels, in which par-
ticles (protons) are accelerated to high energies, causing the subsequent neu-
trino production.
Artifacts of the Big Bang, such as topological defects or relic particles are al-
ternative candidates believed to be able to produce neutrinos in their decay or
annihilation, commonly referred to astop-downmodels. In this section we
will give a brief account for the (in our view) most relevant of those models.
Completeness is prohibited by the creativeness of theoreticians.

2.5.1 Dark Matter candidates.

Estimates of the energy density of the Universe, especially from measurements
of the Cosmic Background Radiation and distant Type 1a supernovae indicate
a flat universe with a non vanishing cosmological constant and matter contri-
bution of between 30 and 40 % [42]. The nature of this matter contribution is
to a large extent unclear. Calculations of primordial nucleosynthesis in com-
bination with measurements of the abundance of light elements in distant gas
clouds, suggest that< 5 % of the matter contribution can be attributed to bary-
onic (standard model) matter, the rest being of unknown origin. One constraint
on this type of matter is that it is not interacting electro-magnetically, i.e. it is
not visible by standard astronomical means and its existence could so far only
be inferred from its gravitational effects (for example on the rotation curves of
galaxies). This is what is generally referred to as thedark matter problem.
The prime candidates for dark matter are WIMPs (Weakly Interacting Massive
Particles), generally being identified with the lightest (presumably stable) par-
ticles arising from super-symmetric theories, believed to be the neutralinos.
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FIGURE 2.3: Summary of expected νµ + νµ flux from cosmic sources. 2) AGN
core model for 3C 273 [37] for pp interactions, 3) AGN core model for 3C 273
for pγ interactions [38], 4) AGN jet model for 3C 273 [39], 5) neutrinos from
solar cosmic ray interactions [24], 6) SNR IC444 [40], 7) Cassiopeia A with
Lν=Lγ and Eν = 0.5 Eγ [41], stick figuredenotes the result of the example
calculation performed in the present work. Also shown is the horizontal and
vertical atmospheric neutrino flux for a 4◦× 4◦ search bin. Figure adapted
from [4]
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Neutralinos have a small probability of scattering off nuclei of ordinary matter.
In these scattering processes the neutralino looses energy and will eventually
be gravitationally trapped in the potential wells of huge celestial bodies such
as the Sun and the Earth. After some time, an equilibrium will be reached
between the capture rate and neutralino annihilation rate. Most of the anni-
hilation products will produce neutrinos in hadronisation or decay and these
can be detected in neutrino telescopes by searching for an excess of neutri-
nos in the direction of the celestial body examined. The energy and absolute
flux of neutralino induced neutrinos depend on the particular choice of the
super-symmetric model and since the non-observation of an excess of neu-
trinos from the centre of the Earth can be used to put limits on the flux of
neutralino-induced neutrinos, part of the tremendous set of possible super-
symmetric models have been excluded [13].

2.5.2 Beyond beyond the Standard Model

Even more speculative sources for high energy neutrinos are connected to topo-
logical defects which might have been produced in symmetry-breaking phase
transitions in the early Universe. These include objects like monopoles, cosmic
strings or domain walls. If these defects decay or annihilate they are predicted
to emit their energy in form of massive X-quanta which are the quanta of the
fields that formed the defect (for example gauge bosons) [43]. These quanta
decay and eventually produce neutrinos with energies up to the mass of the X-
quantum. These quanta are therefore candidates for the highest energy cosmic
rays as well as neutrinos. Predictions by [43] indicate that assuming the mass
of the quanta to be∼ 10 15 GeV the neutrino spectrum might be dominating
the atmospheric neutrino spectrum at energies& 105 TeV.



CHAPTER 3

The detection of cosmic
neutrinos

3.1 Detection principle

Cosmic neutrinos can not be detected directly. Instead, the aim is to detect
charged leptons from the reaction

νl + N → l + X (3.1)

wherel denotes charged leptons of any flavor and X represents any hadrons
(see figure3.1 for the corresponding Feynman diagram). A possible neutrino
detector will therefore primarily be a detector of charged leptons, in which
ways have to be found to ensure that the charged leptons are induced by neu-
trinos.
The subject of this thesis is the detection ofνµ induced muons. Already at
relatively moderate energies (in the context of cosmic neutrino detection) the
track produced by the muon in water/ice detectors has a length which allows
efficient reconstruction (see section3.3 and6). The muons are furthermore
essentially collinear with the incoming neutrino at high energies, the mean
deviation given by [29]

√
< Θ2

νµ > ∼
√

mp/Eν (3.2)

i.e. less∼ 1.75 degrees for a 1 TeV neutrino. This means that at energies of
interest (above∼ TeV, when the atmospheric neutrino background is relatively

35
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ν

W

µ

N X

τeeτµ

FIGURE 3.1: Feynman diagram of charged current inelastic νN interaction.
The reaction proceeds via W± boson exchange.

low), the muon essentially points back to the source of the neutrino. Signatures
of electron neutrinos and neutral-current interactions are subject of dedicated
analyses [11][44] and are not further discussed here.
At energies of above∼ PeV [45] the detection of the tau neutrino might be-
come feasible. The tau neutrino exhibits a “double bang” signature with a
hadron shower, a tau track and another shower due to the tau decay. To identify
the tau lepton, the showers have to be resolved from the track, which probably
requires track lengths of hundreds of meters (at PeV the track of a tau is∼
100 meters long) and thus appropriate detector sizes. This signature is proba-
bly beyond the scope of AMANDA, but seems feasible for the next generation
neutrino telescope IceCube [46]. Consequently, this signature is not a subject
of this thesis.

3.2 Neutrino-nucleon cross section

The charged currentνN cross section is given by (e.g. [48])

dσCC

dxdy
= σ◦

(
M2

W

Q2 + M2
W

)2

x{q + q̄(1− y2)} (3.3)

whereMW is the mass of theW boson andq and q̄ symbolise the structure
functions parameterising the contributions of quark and anti-quarks to the nu-
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FIGURE 3.2: Charged current ν N cross section as a function of energy. The
different lines indicate different structure functions. The measured point is an
average of measurements by H1 and ZEUS at HERA. Figure taken from [47]
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cleon content.x denotes the Bjorken scaling variable, which (assuming the
parton model) can be interpreted as the fraction of nucleon momentum carried
by the parton.y is theinelasticity, which is the fraction of the neutrino energy
carried away by the gauge boson. The smallery, the more energy is trans-
ferred to the muon.x andy can be expressed in terms of the square of the four
momentum transfer,Q2, and the energies in the lab system:

x =
Q2

2MN (Eν −Eµ)
; y = 1− Eµ

Eν
(3.4)

σo is given by

σ◦ =
G2

F s

2π
= 1.583 · 10−38cm2 · Eν/GeV (3.5)

wheres is the total centre of mass energy. Figure3.2shows the energy depen-
dence of the cross section (from [47]). At low energies (Q2 ¿ M2

W ) it grows
linearly with Eν . This behaviour can be understood by noting that valence
quark contributions to the structure functions dominate in this regime making
the interaction similar to neutrino-lepton interactions (scattering on point like
constituents).
Above energies of∼ TeV (with Q2

max ≈ M2
W ), the gauge-boson propagator

damps the cross section, leading to a less than linear rise. For the purposes
of µ detection also they- dependence on energy has to be taken into account.
For energies between TeV and PeV< y > falls off linearly from∼ 0.5 to∼
0.25 [47], i.e. the fraction of energy transfer to the muon increases leading to a
larger range of the muon. The probability for detection depends on a convolu-
tion of the cross section and the muon range (see equation3.13), which means
that the slower rise in cross section will be partly compensated by a the larger
fraction of energy going to the muon.

3.3 Muon energy loss in matter

3.3.1 Ionisation & radiative loss

The average rate of muon energy loss (or stopping power) can be written as
[49]

−dE

dx
= a(E) + Eb(E) (3.6)

Below a critical energy,Ecrit, a(E) dominates the energy loss. In this regime
the main process for loosing energy is due to ionisation and atomic excitation.
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Then the stopping power is given by the Bethe-Bloch equation:

−dE

dx
= Z

K

A

1
β2

[
1
2

ln
2mec

2β2γ2Tmax

I2
− β2 − δ

2

]
(3.7)

where we refer to table3.1 for a definition of the parameters and to [50] for
a detailed discussion of the equation.b(E) parametrises the contributions

Parameter Definition
c, β, γ usual relativistic factors
Na Avogadro’s number
me,re electron mass and classical radius
K/A 4πNA/Aremec

2 = 0.307 MeV g−1 cm2

for A = 1 g mol−1

I mean excitation energy
Tmax maximum energy transfer per collision
Z atomic number of absorber
A atomic mass of absorber in g mol−1

δ density effect correction

TABLE 3.1: The parameters of the Bethe-Bloch equation

of photo-nuclear and radiative processes such as e+e− pair production and
bremsstrahlung (and a small contribution ofČerenkov radiation, see below),
which will start to dominate the energy loss aboveEcrit. At the muon energies
of interest in AMANDA (Eµ > 100 GeV) the functionsa(E) andb(E) can
safely be considered constant. In ice the values ofa andb are:a ' 0.2 GeV/m
andb ' 3.4·10−4 m−1 [51]. Then the critical energy where radiative losses
dominate the ionisation losses is given byEcrit = a/b ' 600 GeV. Figure3.3
illustrates the behaviour of the stopping power as a function of muon energy.
In equation3.7we find thedensity correction term, δ. This term introduces a
correction for the fact that the atoms in a dense medium will react coherently
to the incident particle, i.e. in calculating the energy loss of a charged particle
to the electric field of an atom in a medium we have to include the effect of the
macroscopic polarisation of the medium (for a detailed discussion see [50]).
Integrating equation3.6yields the range of a muon as a function of energy:

Rµ(E) ∼ 1
b
ln

(
E

Ecrit
+ 1

)
(3.8)

again assuminga andb to be constant. Thus, we see that the muon range scales
linearly with energy forE ¿ Ecrit and logarithmically for larger energies.
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dE
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µ
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FIGURE 3.3: The qualitative behaviour of the stopping power for muons in ice.

3.3.2 Čerenkov radiation.

Čerenkov radiation is a kind of radiative energy loss which (since it is of the or-
der of 2 MeV/m) is negligible for discussions of the stopping power for muons.
However, since it is the process which is utilised in AMANDA to detect muons
(as we will see in the section3.5), Čerenkov radiation deserves special atten-
tion.
Čerenkov radiation has a physical origin similar to the density correction term
appearing in the Bethe-Bloch formula: the atoms which interact with the in-
cident particle get polarised, and subsequently depolarise resulting in a elec-
tromagnetic wave. The propagation velocity of this wave will be equal to the
speed of light in the medium. If the particle moves faster than this speed, con-
structive interference will be possible, otherwise the radiation is exponentially
decaying. Thus, the condition for observingČerenkov radiation is given by
β > 1

n(λ) , or

Ethr(λ) =
mparticle√

1− (1/n(λ))2
(3.9)

which using a refraction index in ice of n = 1.33 (corresponding to the wave-
lengths where the photo-detectors are most sensitive, i.e. 300-600 nm, see
chapter4 and [51]) and inserting the mass of the muon (105 MeV) gives an
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thresholdEµ
thr = 160 MeV.

Čerenkov radiation is emitted at a characteristic angle :

cos θC =
1

βn(λ)
(3.10)

In the case of highly relativistic muonsβ is very close to unity andn is nearly
constant in the wavelength window of interest. We obtain

θC = const= 41◦ (3.11)

The number of photons per unit length emitted inČerenkov radiation is given
by [50]:

d2N

dλdx
=

2πα

λ2
·
(

1− 1
β2n(λ)2

)
(3.12)

Again assuming the refractive index of ice in the appropriate wavelength range,
n = 1.33, and inserting3.10in 3.12we arrive at∼ 300 photons/cm expected
from Čerenkov radiation.
Figure3.4illustrates the production of̌Cerenkov radiation and its use for muon
detection.

C

ν

µ

Photodetectors

γ

γ

β < 1/n

nβ > 1/

θ

FIGURE 3.4: Schematics of the detection of muon tracks by Čerenkov radi-
ation. The inlet shows the case for a “slow” particle, where the Čerenkov
condition is not fulfilled
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3.4 Signal and background

Figure3.5summarises the different sources of muons detected in neutrino tele-
scopes. The vast majority of muons are produced by cosmic ray interaction in
the atmosphere (called atmospheric muons). It is impossible to distinguish
muons originating from proton interactions from those originating from neu-
trino interactions, unless a way is found to veto proton induced muons. The
main idea of neutrino telescopes is to use the Earth as a filter, stopping all
particles other than neutrinos. Thus, “signal” consists of “up-going”(with re-
spect to the Earth’s surface) muons. Obviously, to make use of this fact, one
needs to be able to reconstruct the direction of the muons. Locating the de-
tector deep underground (or under-ice as in the case of AMANDA) facilitates
this task by reducing the downward-going muon background significantly. For
AMANDA located 1500 meter deep in ice, for example, the atmospheric muon
background is reduced by about 3 orders of magnitude as compared to a de-
tector located at surface [52]. Still, even at a depth of∼ 1500 meters, the ratio
between down-going and up-going muons is roughly106. This implies an ob-
vious risk for mis-reconstructions. For example, even after a first (admittedly
simple) reconstruction and an exclusion of all tracks being reconstructed from
< 10◦ degrees above the horizon this ratio is still about104.
The mis-reconstructed atmospheric muons thus constitute the largest contribu-
tion to the background for the detection of cosmic neutrinos. It should be noted
that to some extent all sources of neutrino-induced muons (discussed in chap-
ter 2) except for cosmic point sources constitute a further background to the
present analysis. However, since point sources are identified by a clustering
over a homogeneous background (determined by data), the exact composition
of this background is of secondary interest (see chapter5)

3.5 Detector size and target medium

A rough estimate of the required size of the detector can be obtained by esti-
mating the rate of muons induced by cosmic neutrino point sources as a func-
tion of target area of the detector.
In order for a neutrino to be detected, it must produce a muon with a range
sufficient to reach the detector. The detection probability depends therefore
on the physics of the neutrino interaction producing the muon and the muon
propagation. It is approximately given by:

Pν→µ ' nσν Rµ (3.13)



3.5 DETECTOR SIZE AND TARGET MEDIUM 43

Detector
Muon

Proton

Neutrino

Up-
going
Muons

ProtonProton

Atmospheric

Muon Bundle
Atmospheric Atmospheric

Muon

Atmosphere

Earth

Extraterrestrial
Neutrino

FIGURE 3.5: Signal and background in a neutrino detector. The majority of
triggers are muons produced in the atmosphere by cosmic ray interactions.
Neutrino-induced muons are identified by their direction (coming from the di-
rections pointing inside the Earth). Point sources of extraterrestrial neutrinos
are the scope of this thesis.



44 CHAPTER 3 THE DETECTION OF COSMIC NEUTRINOS

wheren is the number density of particles in the target medium. For energies
between 1 TeV≤ Eν ≤ 1 PeV ,Pν→µ can be approximated by [17]:

Pν→µ ∼ 5× 10−9

(
Eν

GeV

)0.8

(3.14)

As discussed in chapter2 (see equation2.26) we expect a flux of order of
E2Φν(Eν) ∼ 10−7 GeV cm−2 sr−1 1. The expected rate of muons is given by
convolving the flux with the probability of detection:

fµ =
∫ 109GeV

106GeV
dEν Φ(Eν)Pν→µ(Eν) (3.15)

where the integration boundaries are chosen to cover the range in which neutri-
nos are predicted by the “stick figure” example calculation. Inserting equation
3.14and the flux prediction into3.15leads to an estimate of the rate of muons
induced by a neutrino flux as given in equation2.26:

fµ ∼ 150 [km−2sr−1yr−1] (3.16)

Equation3.16indicates that in order to detect reasonable count rates of cosmic
neutrino induced muons, neutrino telescopes have to be sensitive to areas of
O(km2).
This fact leaves detection ofČerenkov radiation in a naturally available trans-
parent medium as the only feasible technique for detecting muons for the sim-
ple reason that other alternatives would be far too expensive. A key point is that
standard Photo Multiplier Tubes (PMT) can detect single photons and measure
arrival times with∼ ns accuracy over distances which are limited by the atten-
uation length in the target medium. A relatively small number of PMTs can
therefore be used to cover large target areas and the measured arrival times of
photons can be used to reconstruct muon directions.
Large volumes of transparent media are provided by ice, ocean and lake wa-
ter, with different advantages and disadvantages. AMANDA has chosen ice,
whereas the neutrino telescope ANTARES [53] has chosen the Mediterranean
sea and the BAIKAL neutrino telescope [6], Lake Baikal in Siberia. The
Antarctic ice is extremely pure with absorption length of 90 -100 meters as
compared to∼ 50 m in sea water and∼ 20-30 m in Lake Baikal [54]. The

1in equation2.26we calculated the flux of a point source. Like other authors [33] we assume
here 100 of those sources per steradian to convert the point source flux to a diffuse flux.
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situation considering scattering is reversed. An important parameter is the ef-
fective scattering length, defined as:

λeff =
λscatt

1− < cosΘscatt>
(3.17)

which gives the characteristic length for scattering out of the direct light path
(i.e. scattering in near forward direction is neglected). The effective scattering
length for ice is∼ 20 -30 m, whereas it is about 2000 m in oceans and∼ 380
m in Lake Baikal which gives an advantage in angular resolution to the water
sites [54][55]. Obviously, except for the optical properties, there are other fac-
tors which should be taken into account when choosing the site. For example,
one major drawback of the ocean/lake sites is the presence of environmental
noise due to radioactive potassium and bioluminescence. In ice the environ-
mental noise is negligible.
The number of PMTs and the distance between them is dictated by financial
constraints. In the best of all worlds, one would instrument an as large a vol-
ume as possible with an as dense grid of PMTs as possible. Assuming a fixed
number of PMTs, the energy threshold decreases and the detection efficiency
increases with PMT density but the sensitive area decreases. The optimal
choice thus depends on the main goal of the experiment. For example, for
cosmic neutrinos a large detection area is more important than a low energy
threshold (where the atmospheric neutrino background dominates anyway).
The reader is referred to [56] for a more detailed discussion.

Summary The presence and abundance of atmospheric muons requires a
detector for cosmic neutrinos to be build deep under surface. Furthermore, the
detector should give the possibility to reconstruct the direction of the muons.
The expected fluxes and cross sections as well as the range of muon indicates
thatO(km)2 target areas are appropriate to detect cosmic neutrinos. This leads
to the choice of̌Cerenkov photon detection by PMT in a transparent medium as
the detection technique. Reconstructing the direction of the incident muon will
then be possible by measuring the arrival times of photons on different PMTs
distributed in that medium. The natural target media are ice and ocean/lake
water. Equipping a large volume of ice or ocean/lake water with a grid of
photo multiplier tubes is thus the experimental strategy for detecting cosmic
neutrinos.
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CHAPTER 4

The AMANDA neutrino
telescope

The Antarctic Muon and Neutrino Detector Array (AMANDA) [7],[57] is a
neutrino telescope situated at the geographic South Pole. It consists of a three
dimensional grid of photo detectors which are situated on strings of combined
signal/high voltage cable. These strings are lowered into holes drilled into
the antarctic ice sheet by a hot water drill. The construction of AMANDA
started in 1993 with the deployment of 80 photo detectors (and instrumented
volume of 500000 m3) and has reached its present configuration (∼ 680 photo
detectors and an instrumented volume of about 1.5·107 m3)1 in 2000. At
present the AMANDA collaboration consists of about 100 physicists from 21
research labs and universities from Europe and the USA. In this section, the
relevant parts of the detector will be presented.

4.1 Optical modules and the detector geometry

Figure4.1shows a schematic view of the AMANDA detector as it is operated
since 2000. AMANDA consists of a cylindrical array of photon detectors with
( in the present configuration) a diameter of∼ 200 m and a height of∼ 500 m.
The photo detectors - called Optical Modules (OM) - consist of photo multi-
plier tubes (PMT) situated in a glass pressure vessel (see figure4.1 for a cross
section of an OM). The PMT (Hamamatsu R5912-02) has a diameter of∼ 20

1for a neutrino telescope an increase in instrumented volume of factor∼ 30 does not mean
an increase in detection capability of factor 30. The volume in which for example muons can
be detected is proportional to the range of the muon, thus energy dependent.
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cm and consists of 14 dynodes, an anode and a photo-cathode, which is sensi-
tive to photons between 300 nm and 650 nm with a peak quantum efficiency
of 23 % at 420 nm. The timing resolution of the PMT is∼ 3 ns FWHM. The
pressure vessel is roughly 30 cm in diameter and can withstand pressures of
∼ 660 atm. Its glass has a 90 % transmissivity forλ > 400 nm, but has a cut
off at ∼ 300 nm. Optical contact between the sphere and the glass cover of
the photocatode of the PMT is established using silicon gel. The output of the
PMT is transmitted to the data acquisition at surface via co-axial or twisted
pair cables which also supply the high voltage (HV) for the dynode chain of
the PMTs (via a HV divider).
As mentioned previously, the geometry of the array evolved with time. In 1994
the first four strings equipped with in total 80 photo detectors were deployed
in the ice cap at a depth between 800 and 1000 meters (AMANDA-A array).
At these depths, air bubbles which are trapped during formation of the south
pole glacial ice, lead to a scattering length∼ 25 cm [58], which makes the
reconstruction of muon tracks unfeasible. At larger depth, these bubbles dis-
appear [59],[60], which in 1995-1996 lead to the deployment of four additional
strings with 80 OMs at a depth between 1500 and 2000 m (the AMANDA-B4
array). With this array, the first neutrino candidates were detected [51]. Six
strings were added in the following year, forming the AMANDA-B10 array,
consisting of in total 302 optical modules.
In 2000, AMANDA reached its present configuration with 19 strings and 677
photo detectors. Three strings were deployed in 1997/1998 at a depth between
1150 and 2350 m to assess ice properties below and above the B10 array. The
final six strings were deployed in 1999/2000, five of which at depth between
1500 m and 2000 m, the sixth, due to problems during deployment, at a depth
between 1000 m and 1500 m. The data analysed in this thesis was taken with
the AMANDA-B10 configuration in 1999.
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4.2 Trigger system and data acquisition.

Figure4.2 shows a schematic view of the trigger system and the data aquisi-
tion of AMANDA-B10. The electrical signal transmitted by the PMT is both
attenuated (from amplitudeO(V) to O(mV)) and smeared out (from a few
nanoseconds to hundreds of nanoseconds) by the∼ 2 km long cable2. Due to
the attenuation, the signals have to be amplified before entering the discrim-
inators and trigger logic. This is done by the SWAMP (SWedish AMPlifier)
modules.
The smearing of the pulse leads to the merging of several single photo-electron
pulses into one pulse . The time of a pulse is therefore determined by record-
ing the leading edge and trailing edge by a Time to Digital Converter (TDC),
which receives its input from a discriminator connected to the SWAMPs. The
TDC is buffered such that it records upto 8 leading and 8 trailing edges per
OM in 32 µs time window. The second output of the SWAMPs goes, via a
2 µs delay to peak-sensing Analog to Digital Converter (ADC). The delay is
necessary to account for the time it takes to form the trigger, since in contrast
to the TDC the ADC are not buffered. The third output of the SWAMPs is fed
to a discriminator whose output is fed into the DMAD board (Digital Multi-
plicity Adder) [61], which performs the trigger logic. The trigger requirement
in 1999 was on the number of hits in a predefined time window (a majority
trigger). This logic is established by the DMAD by first converting the pulses
from the discriminator to a standard pulse, whose length is defined by the pre-
set trigger time window. The standard pulses are then added and if they cross
the required threshold a trigger is issued. The DMAD then sends a stop signal
to the TDC after an additional 10µs delay, opens the ADC gate and latches an
absolute time stamp (GPS). Furthermore the trigger signal initiates the DAQ
read-out of the ADC and TDC values (after an additional delay of 100µs),
which are consequently written to mass storage.
In 1999 the majority trigger was set to 18 hit OMs within about3 2.2µs. Since
a typical muon event last for∼ 5µs, the time structure of an event thus consists
of the trigger at 22µs (the 32µs buffer of the TDC minus the 10µs delay) with
2.2 µs of event after and before the trigger time, plus∼ 7.5 µs after-pulsing
and∼ 20µs random noise before the event.
A lower bound on the majority requirement is given by the need for suppress-

2as mentioned before two types of cables have been used: co-axial cables for the four strings
deployed in 1995/96 and twisted pair cables for the six strings deployed in 1997/1998. Co-ax
cables produces more dispersion (∼ 400 ns) than twisted pair (∼ 100 ns)

3depending slightly on OM
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ing uncorrelated noise hits, mainly originating from radioactive contamination
of the glass in the OMs pressure vessel and from thermal noise, typically lead-
ing to noise rate (per OM) of∼ 400 Hz (Strings 1 -4) and∼ 1.5 kHz (strings
5-10). Below a majority requirement of about 10, events are strongly noise
dominated. Above that the live-time of AMANDA-B10 is correlated linearly
with the trigger threshold ranging between∼ 75 % (at threshold 10) and∼
100 % (at threshold around 30). The position of the trigger requirement is thus
given by the trade off between the reduction in live-time and the decrease in
energy threshold. A rough estimate gives an energy threshold for muons of
about 50 GeV (assuming a muon track of length about 200 m is necessary to
give 18 hits).
With the increased detector size of AMANDA-II, the wish for large lifetime
leads to a more stringent multiplicity requirement (∼ 24). Since low energy
(short track) muons are suppressed by a too high majority requirement, an ad-
ditional trigger is tested since 2000, which requires a string-wise coincidence
of n hits within a window ofm modules (so called correlation trigger).



CHAPTER 5

Analysis
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5.1 Introduction

In this section, a search for continuous emission of neutrinos from specific
directions in the northern hemisphere is described. The analysis technique
is to identify a hypothesised point source by a statistically significant excess
of events over a background which is determined by an average over all off-
source bins with equal sensitivity, in practise bins in the same zenith band.
The signal of this search is assumed to have aE−2 spectrum of high en-
ergy neutrinos concentrated in one point on the sky. The background on the
other hand consists of the diffuse flux of atmospheric neutrinos and the mis-
reconstructed atmospheric muons. Optimisation will therefore be on recon-
struction quality (atmospheric muons vs. neutrino induced muons), search
bin size and angular resolution (point-source flux vs. diffuse flux) and energy
(softer atmospheric neutrino spectrum vs. harder cosmic neutrino spectrum).

Of course, knowing potential sources might influence the analysis. To avoid
any bias by the experimentalist’s prejudice the analysis is therefore initially
performed blindly. Blindness is provided by randomising the event times, i.e.
the right ascension coordinate. The analysis is then completed on the ran-
domised sample and it is only after having finalised the choice of cut variables
and cut values as well as the analysis strategy, that the correct right ascension
coordinates are reinstalled.
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5.2 The analysed datasets

5.2.1 Experimental data

The data analysed in this thesis was taken by the AMANDA-B10 detector be-
tween February 1999 and November 1999. During 1999 the AMANDA detec-
tor consisted of 13 strings. However, three outer strings were used for detector
studies and thus excluded from subsequent analysis. The detector therefore
effectively had 10 strings and 302 optical modules. The effective live-time of
the detector was 223.63 days (see section5.4.1.1). The detector triggered a
readout when at least 18 hits were recorded within 2.5µs. A total number of
1.3×109 triggers were recorded. The preprocessing to level 2 (see section
5.4) reduced this amount to∼ 1.3×106 events. The full analysis presented
here reduces the amount of data to 642 events (i.e. rejection of data on a level
∼ 106). A summary of the full processing chain can be found in table5.2.

5.2.2 Monte Carlo simulation

For signal simulation, the neutrino generatorNUSIM [62] was used.NUSIM
generates neutrinos and propagates them through the Earth (assuming the stan-
dard Earth model [63]) and simulates the neutrino-nucleon interaction in the
ice or rock (applying the MRS [64] structure function) including the hadronic
shower.NUSIMapplies importance sampling. Therefore it simulates anE−1

spectrum, which is reweighted to the assumedE−2 dependency for point sources
in the subsequent analysis. Neutrinos were simulated in an energy range be-
tween 10 GeV and108 GeV and in a zenith angle range between80◦ and180◦

degrees. In total∼ 1.3×106 neutrinos and anti-neutrinos were simulated.
As a check of the reliability of the signal simulation, atmospheric muons (the
dominant background) were simulated usingCORSIKA[65], which generates
a cosmic ray spectrum and simulates the interactions in the atmosphere and
subsequent production of secondaries (in our case, we are particularly inter-
ested in the muons). In this analysis,3 · 106 primary cosmic rays have been
simulated with an E−2.67 spectrum in an energy range between∼ 10 3 GeV
and 109 GeV. This results in∼ 105 muon triggers. The muons produced in
the neutrino or cosmic ray interaction were propagated through the ice using
the MMC propagator [66]. The muon energy loss simulation includes decay,
ionisation, bremsstrahlung as well as photo-nuclear processes andδ electron
production in ice.
The scattering of photons within the fiducial volume of AMANDA is simu-
lated usingPTD [67]. For muons, the photons originating from̌Cherenkov
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radiation are generated and then scattered according to a given ice model (see
section5.3.3). The result is a table containing the number of photons in the
time intervalt, t+δt at any space point (x,y,z) detected with an OM with orien-
tation (θ, φ). Once the detector response simulation has generated the position
of a muon track, the number of photo-electrons detected with any OM and the
arrival times can be directly read out from these tables.
The last step in the simulation chain is the simulation of the detector response.
This is provided by the software packageAMASIM[68], which simulates the
photons generated and all hardware components of the AMANDA detector.

5.3 Calibration

5.3.1 Time

The electrical signal transmitted by the PMT is both attenuated (from ampli-
tudeO(V) to O(mV)) and smeared out fromO(ns) toO(100 ns) by the∼ 2
km long cable. Due to the smearing, the leading edge time recorded by the
DAQ will not be the one measured in the ice and furthermore dependent on the
amplitude of the pulse, since the time-stamp registered by the DAQ is taken
when the pulse traverses the discriminator threshold. The relation between the
time in the ice,tOM , and the time on tape,tLE , can be parametrised as:

tOM = tLE − T◦ − α√
A

(5.1)

where the amplitude, A, is measured in mV andT◦ andα are OM dependent
calibration constants. To determine the calibrations constants, a laser source
on the surface is used, whose light is guided in an optical fiber to the OM and
there diffused by a diffuser ball. This method of calibration requires the mea-
surement of the absolute time of the laser pulse (given by splitting the pulse),
the time it takes for the photon to travel from the diffuser ball to the PMT
(given by the distance of the diffuser ball to the PMT times the speed of light
in ice) and the pulse travel time through the optical fiber. The measurement of
the pulse travel time through the optical fiber is done prior to the actual time
calibration by measuring the arrival time of the fraction of the pulse which is
reflected at the end of the optical fiber.

5.3.2 Geometry

The relative position of OMs in the ice is determined by in-ice light sources,
in particular LED and lasers. From the known speed of light in the ice, the
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relative position of the OM can be obtained by triangulation. With this method
an accuracy of position measurement is≤ 50 cm [69].

5.3.3 Optical properties of the ice

The optical properties of the ice can be determined by calibration light sources
and down-going muons.
Scattering and absorption of photons at various wavelength is measured using
in -situ light sources which are located at different places in the array [60].
Arrival time distributions are measured and compared with Monte Carlo dis-
tributions characterised by the absorption and scattering coefficients, which
thereby can be determined as a function of depth or as function of wavelength.
Figure5.1shows a measurement of the scattering coefficient done using light
sources with different wavelengths. Peaks are clearly visible in the scattering
coefficient which are attributed to dust layers at those depths. The rapid rise
in the scattering length at depth< 1400 m is assumed to be due to air bubbles
in the ice. For absorption the corresponding plot looks essentially flat, since at
this wavelength the absorption in the ice dominates the absorption due to dust
[60].
An additional source of scattering are air bubbles which are generated around
the OM during the re-freezing of the drill hole1. The time distributions are
essentially unaffected by these bubbles [70], but they influence the angular
response of the OM (we will return to this point in section6.5).

Implementation of the optical properties of the ice The modelling of the
ice structures in AMANDA introduces a systematic uncertainty (see section
6.5). The photon scattering and absorption is simulated using PTD (see section
5.2). To implement the ice model in PTD certain approximations are necessary.
The actual ice structure measured is divided into layers of homogeneous ice,
such that each OM is only seeing a sheet of ice with homogeneous ice proper-
ties and different OMs see different ice. A given photon consequently propa-
gates through homogeneous ice only and does not see different ice properties.
Furthermore, the wavelength dependent scattering is approximated by (an em-
pirically inferred factor times) its value atλ = 532 nm. In one implementation
(which we will call Fundamental Ice Model (FIM)for future reference) also
the wavelength dependency of the absorption length has been approximated by
a constant related to its value atλ = 532 nm. The FIM model is consequently

1not to be confused with the air bubbles which are present naturally at shallower depth in
the ice cap
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58 CHAPTER 5 ANALYSIS

based on the accurately (∼ 10 %) known ice properties. However the approxi-
mations lead to a discrepancy in (amongst others) the multiplicity distribution
for downgoing muons. This is due to a larger number of late photons in the
simulation than in the data, which indicates that the absorption has been under-
estimated. It has therefore been decided to adjust the absorption length such
as to fit the observed photon distributions. The newly found absorption length
is then used for the implementation of the ice model in PTD. After this pro-
cedure, the comparison between data and background simulation shows good
agreement, see e.g. [71]. For future reference this model will be called the
Modified Absorption Model (MAM).
A new implementation of the ice properties into the simulation of photon prop-
agation is under way. This implementation will make use of the the full wave-
length dependency of the scattering and propagate photons through different
ice layers. However, for the study presented in this thesis, this simulation was
not available.
We will return to a discussion of the differences in ice model implementation
in section6.5.

5.4 Data cleaning

5.4.1 Removing noisy OMs and unstable data taking periods

Since the data taking period starting January 2000, a monitoring system [72] is
operational based on the ROOT data analysis framework [73]. For each file and
run2 during the data taking period different parameters of the detector (such as
ADC/TDC rates, noise rates, trigger rates and time difference distributions) are
recorded and subjected to a first statistical analysis. The information is sum-
marised run-wise and then monitored continuously by collaboration members.
For the data taken in 1999 this type of data stream has been produced off-line
(posterior to the actual data taking) and provides a data base for the selection of
noisy OMs and unstable data taking periods. The selection is here performed
on noise rate exclusively, since this has the strongest effect on the reconstruc-
tion result. In a first step, the noise rate distribution of each OM for each run
is fitted with a Gaussian. The result of this fit is then used to classify OMs
according to the following criteria:

2a standard run is 24 hours long, but shorter run times are possible if interruptions occur and
runs have to be started manually.
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• an OM is classified as bad for the whole data taking period if it has a
deviation> 5σ from its own or the global mean in> 50 % of all runs

• an OM is classified as bad for a given run, if it has a deviation> 10σ
from its own or the global mean in this run.

• a run is classified as bad, if either 50 % of all OMs exhibit a> 5σ
deviation of the noise rate or 20 % of all OMs a> 10σ deviation.

OMs and runs classified as bad are then removed from the subsequent analysis.
Figure5.2shows the noise rates as a function of run number for four different
OMs, two of which have been excluded. As mentioned in section4.2, noise
rates for OMs on string 1 to 4 are∼ 400 Hz, whereas they are∼ 1500 Hz
for strings 5 -10, which has to be taken into account in the analysis described
above.

5.4.1.1 Calculating the effective live-time

Having removed bad data taking periods and OMs, the effective live-time
(wall-clock time minus dead time) can be estimated. For this purpose, again
the files produced as part of the AMANDA monitoring system have been
utilised. For each file the time-difference distributions were fit with an ex-
ponentialexp∆t/τ , from which the true rate of events can be calculated as:

Rtrue =
1
τ

(5.2)

The raw rate (i.e. the one including the dead-time) can be calculated by divid-
ing number of events in each file by the time span of the file,tfile. The effective
live-time for the whole data taking period can then be estimated by:

teff(1999) =
∑

file|good runs

tfile × Rfile
raw

Rfile
true

(5.3)

For the present analysis the live-time was calculated to be 223.63 days.
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FIGURE 5.2: Noise rate as a function of run number for four different OMs.
The solid line gives the global average for this type of OM. The OMs on the
left side are included in the analysis, the OMs on the right side excluded.
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5.4.2 Removing non-physical hits
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FIGURE 5.3: The ADC as a function
of TOT for OM 149. The correlation
for physical hits and those from cross
talk are indicated. The straight dashed
line indicates the standard time-over-
threshold cut. Figure from [44]

As described in the previous section,
in a first step, very noisy OMs and
data taking periods have been re-
moved. However, even the average
“good” OM exhibits a noise rate, i.e.
hits which are not useful for the re-
construction. To be able to exclude
those hits several additional require-
ments have been imposed on each
event. First of all, only hits within
a certain time window (4500 ns) are
accepted, which are most likely to
belong to the physical event. Fur-
thermore the calibrated amplitude of
the hit is required to be between 0.3
and 1000 photo electrons and the
time-over-threshold (TOT) between
125 and 2000 ns. An isolation cri-
terion is imposed excluding all hits
which do not have at least 1 neigh-
bouring hit within 500 ns not further

than 70 meters away. Another especially disturbing class of hits is due to elec-
tronic cross talk, i.e. electromagnetic coupling between different cables. Cross
talk in AMANDA occurs exclusively between OMs on the same strings and
can be explained by the way cables are wrapped together [74]. The time-over-
threshold cut (> 125 ns) already reduces a significant amount of these elec-
tronically induced hits, but a more efficient algorithm has been devised [75],
which makes use of the fact that hits due physical events exhibit a distinctive
correlation between the time-over-threshold value and the ADC value, see fig-
ure 5.3, and furthermore uses maps of the cross talk in the detector obtained
from the timing calibration data.

5.5 Reconstruction

The reconstruction algorithm used in AMANDA is a maximum likelihood
method to find the track matching the light pattern in the detector in an op-
timal way. There are different flavours of this reconstruction algorithm, de-
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pending on what track hypothesis and what track parameters are sought to be
reconstructed. Though normally interested in a distinct set of parameters of
the track (in our case primarily the direction) performing different types of
reconstruction can provide information on for example the quality of the re-
construction, which is why different variants are commonly performed on the
same event.
For a detailed discussion the reader is referred to [76]. Here the emphasis will
be on the basic ideas and on the variants of the reconstruction which have been
used in the analysis.
The experimental data contains times of the leading edges, time-over-thresholds
and peak amplitudes of the pulses for each event and each OM signal. The
reconstructions utilised in the present analysis make use only of the timing in-
formation. For a given set of hits in the array and for a given hypothesis one
calculates the likelihood:

L =
∏

i

pi(tres,i, OMi|Hj) (5.4)

where the product runs over all OM with a hit andHj is a tested track hypoth-
esis.tres,i is given by:

tres,i = thit,i −
[
T◦ +

d

sinΘC · cice

]
(5.5)

with T◦ being the calibration constant (introduced in section5.3), d the dis-
tance from the hypothetical track to the OM,ΘC theČerenkov angle andcice

the speed of light in ice. The second term on the right side is the expected
arrival time for an unscattereďCerenkov photon. In this analysis the track is
characterised by its coordinates, three spatial coordinates (x,y,z) (=~r◦) and
two angles (φ,θ), i.e. our assumption is that all light patterns are produced
by single muons (not bundles) without stochastic energy losses (regardless of
energy). Reconstructions with other sets of free parameters (like for example
the energy) and also other types of signatures (cascades from NC interactions
and CC electron andτ neutrinos) are possible [76] [77]. However, they have
not been used in this work.
The best fit to the light pattern is determined by minimising− logL with re-
spect to the parameters of the track. Each term in equation5.4is the probability
for an OM to observe a hit withtres given by equation5.5assuming a test hy-
pothesis,H. This probability depends on both the timing properties of the OM
and - more strongly - the scattering in the ice. While in the detector simulation
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(see section5.2), the timing distribution of each OM is produced by propa-
gating photons in ice with a MC method [67], for calculational reasons in the
reconstruction analytic functions are used which are obtained from fits to the
MC distributions [78]. For minimisation the Powell’s algorithm is used [79]
in this analysis. Other minimisation algorithms (simplex, simulated annealing
[79] or MINUIT [ 80]) are optional.

First guess Simple approximations to the light pattern seen in an event serve
as first guess for the subsequent minimisation. The first guess used in this
analysis is theline fit. Here, the positions and times are assumed to be linearly
related:

~ri = ~r◦ + ti~v (5.6)

and aχ2 is calculated:

χ2 =
Nhits∑

i=1

(~ri − ~r◦ − ~v · ti) (5.7)

with ~r◦ and~v as free parameters. Minimisation of theχ2 can be performed an-
alytically and consequently yields a vertex position~r◦, a direction~n = ~v/|~v|
(given in terms ofθ andφ angle) and the length of the vector~v. In the present
analysis, the direction is used as a first filter against down-going muons.
Other initial guess methods have been developed for special purposes like the
reconstruction of cascade like events or the rejection of coincident muons.
Also the line-fit has been replaced recently with a more efficient method (“di-
rect walk”), which however was not available for this analysis. Since we do
not use those methods in the present analysis, the reader is referred to [76] for
a detailed discussion.

Iterative reconstruction. To avoid finding a local minimum instead of the
global one an iterative scheme is used, i.e. several reconstructions of the same
type are done on the same event, each starting with a different initial track.
Following a first iteration, a new initial track is found by randomly choosingφ
andθ, and moving the position vector~r◦ on the new track to the point closest
to the centre of gravity of hits (defined as

∑NOM
i=1 ~ri). Then a new minimisation

is performed. The likelihood of the newly found minimum is evaluated and
compared to the likelihood for the track found by the previous iteration. If the
new likelihood is smaller, the new track becomes the reference for the next
iteration. The iteration is performed for a user-defined number of times - here
16.
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FIGURE 5.4: Distributions of events in
AMANDA as a function of the zenith
angles, atmospheric muons constitute
the overwhelming majority (solid line).
Also shown are atmospheric neutrinos
(dashed line). Figure from [8].

Bayesian reconstruction Maximis-
ing the likelihood gives us the hy-
pothesis which has the highest prob-
ability to produce the observed hit
pattern. This statement should not be
confused with a statement about the
probability forH given the observed
times tres, i.e. P (H, tres). These
two probabilities are connected via
Bayes’ theorem:

P (H, tres) ∝ P (tres,H) · P (H)
(5.8)

P (H) is the a priori probability
of the hypothesis. This observa-
tion lead to the development of a
reconstruction algorithm based on
P (H, tres) instead ofP (tres,H), the
Bayesian (zenith weighted) recon-

struction[81]. In AMANDA cosmic muons provide the vast majority of trig-
gers (see figure5.4). The zenith distribution of atmospheric muons therefore
constitutes a good approximation to the prior function. In practise, the zenith
distribution of muons is simulated by Monte Carlo and then parametrised by a
polynomial. This parametrisation is then implemented in the likelihood recon-
struction as an additional (zenith dependent) weight. With this assumptions
the reconstruction can be performed usingP (H, tres).
In contrast to the likelihood reconstruction, the track parameters found by the
zenith weighted reconstruction are not used in the present analysis. Instead,
the calculated likelihood for the zenith weighted reconstruction is used as a
quality parameter. As will be described in section5.6.2, this quality parameter
yields good separation between signal and background.

Parabola fit The Parabola fit does not constitute a separate reconstruction in
the sense that a new track is calculated. Instead, it re-evaluates the result of a
previous reconstruction by fitting a two dimensional parabola to the likelihood
function. Results of this parabola fit provide new quality parameters, mainly
correlated to the track resolution. In the present case, the parabola fit was
performed on the track results of the iterative reconstruction. See below for a
description of the resulting quality parameters.
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5.6 Separation of signal from background

In this section we will describe the method for separating signal from back-
ground employed in the present analysis. As mentioned previously, the signal
will be assumed to be neutrinos originating from point sources with an energy
spectrum∝ E−2. The background consists mainly of atmospheric muons but
also any component of diffuse flux of neutrino induced muons. Somewhat
counter-intuitively, we will consider the data to be our background. This is
legitimate since the expected contamination by signal is (optimistically) negli-
gibly small. Using data is beneficial by not having to rely on the accuracy of
the background simulation and not being limited by the background simulation
statistics.

5.6.1 Variable selection

The point source search has been iterated a few times during the existence
of AMANDA [ 82][83][84] . Many variables which provide good signal effi-
ciency and background rejection efficiency have been identified. In this work
we choose to quantify a given variable’s quality for background/signal distinc-
tion by calculating the “overlap-integral”:

I =
∑

nbins

fsig(v) fbg(v) (5.9)

wherefsig andfbg are the signal and background distributions, where both dis-
tributions are normalised to have integral equal one. Inspired from quantum
mechanics, the overlap integral gives the integrated probability of both vari-
ables having values in the same region. This means, the smaller the overlap
integral, the better the separation between background and signal. Figure5.5
illustrates the concept.

We then chose each cut variable according to following criteria:

• physics motivation (such as correlation with resolution or energy)

• a small value of the overlap integral

• small correlation with the already chosen variables
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FIGURE 5.5: Illustration of the overlap integral. Upper Panel: the maximal
distance of > 4 photo-electron hit to the track, lower panel: the absolute value
of the smoothness (see section 5.6.2). The solid line is the signal distribution.
The difference in overlap integral is a factor 4. The smoothness variable has
been used in the analysis.
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5.6.2 Description of cut variables
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FIGURE 5.6: Illustration of calculation
of smoothness. An event with clus-
tered hits gives a large value of the
smoothness, a high quality track-like
event a small value. Figure taken from
[8]

Smoothness The likelihood recon-
struction does not take into account
correlations between hits. Thus,
tracks with clusters of hits at one
end and those with smoothly dis-
tributed hits along the track may ob-
tain equal likelihood despite the fact
that the latter is more likely to be a
well reconstructed event. This ob-
servation lead to the invention of
thesmoothnessparameter [85]. The
value of the smoothness parameter
S is the Kolmogorov-Smirnov test
statistic calculated for the observed
hit pattern and the hypothesis of con-
stant light emission:

S = max (Sj), Sj =
j − 1
N − 1

− lj
lN

(5.10)
herelj is the distance along the track

between the points of closest approach to the first andjth hit OM. Figure5.6
illustrates the calculation of the smoothness parameter.
The distribution of the smoothness parameter for well reconstructed events
will in general be narrower than the corresponding distribution for background
events. The above described definition of smoothness considers the distribu-
tion of hits along the track which is defined by the first and last hit. In the
present analysis two different variants ofS have been used.Smrl, where the
track is considered between the first hit and the last possible track point within
the detector (“maximum reasonable length”) andSphit, which is defined as:

Sphit = max

(∑j
i=1 Θi∑N
i=1 Θi

−
∑j

i=1 P hit
i∑N

i=1 P hit
i

)
(5.11)

HereN is the number of all operational OMs, andΘi = 1, if the OM had a
hit, 0 otherwise. The hit probabilitiesP hit are calculated as in the reconstruc-
tion. Both variables are presented in figure5.7. Smrl is used as an initial cut
parameter to reduce the data set to an amount manageable for the multivariate
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FIGURE 5.7: The smoothness parameters (definition see text) used in this
analysis. The solid line is the signal distribution, dashed is background. A cut
has been applied to Smrl at the value indicated by the straight solid line. Sphit

has been used as input variable for a multivariate method (the Support Vector
Machine, see section 5.6.3).
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method we are using to reduce the sample to the final level (the Support Vector
Machine, see section5.6.3). Sphit has been used later in the analysis as an input
variable to this multivariate method.

Hit probability Another cut variable is formed by summing all hit probabil-
ities for the OMs which had a hit. A bad reconstruction will reveal a track with
respect to which the probabilities for the OMs to have a hit are smaller than for
a well reconstructed track. Therefore this variable will obtain smaller values
for mis-reconstructed tracks than for the well reconstructed. Since the summed
probability is proportional to the number of OM with a hit, this variable is also
correlated with the muons energy. Figure5.8 shows the distributions for this
parameter for signal and background. The hit probability is used as an input
parameter to the Support Vector Machine.

FIGURE 5.8: The summed hit probability for all OMs which had a hit. The solid
line is the signal distribution, dashed denotes the background.

Likelihood parameter difference As mentioned previously, a series of re-
constructions is applied to each event. Each fit returns thelikelihood parame-
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ter:

Lfit = − logL (5.12)

Comparisons between likelihood parameters of different fits can provide useful
variables for distinction between signal and background. In the present anal-
ysis, the difference of likelihood parameter returned by the Bayesian and the
likelihood parameter returned by the iterative fit was found to be particularly
useful. The Bayesian fit was hereby performed, such that the algorithm was
forced to return a downward-going fit. Especially for relatively vertical signal,
the iterative fit returns a rather large likelihood (small likelihood parameter),
whereas the zenith-restricted Bayesian fit returns a comparably low likelihood
(large likelihood parameter). For data, both fits give a relatively low likelihood
irrespective of zenith angle. The result is a variable which gives comparatively
good separation for zenith anglesθ > 100◦, see figure5.9.

FIGURE 5.9: The difference of the likelihood parameter for the Bayesian recon-
struction and the iterative reconstruction as a function of zenith angle. Signal
and background show good separation for θ >∼100◦
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Track resolution Instead of relying on Monte Carlo simulations for finding
the angular resolution of the detector, [86] implemented a method which pro-
vides a resolution on track by track basis. From the calculated likelihood func-
tion a track resolution can be obtained from fitting a parabola to the likelihood
around the minimum. In case of a Gaussian shaped likelihood, the resolutionσ
is obtained from finding the points in hypothesis space (θ,φ) where∆logL =
1
2 . For the Gaussian assumption, it holdsσ = σ∆θ = ∆θ(∆ logL = 1

2) (and
for φ correspondingly). Though, in general,σ 6= σ∆θ in case of non-Gaussian
likelihood function, this variable still provides a good handle on separating
signal from background, see figure5.10. Well reconstructed tracks have a nar-
rower likelihood function and consequently a smallerσ∆θ,∆φ. In the present
analysis, bothσ∆θ andσ∆φ are used as input variables for the Support Vec-
tor Machine. Furthermore, prior to the SVM, events withσ∆θ,∆φ < 0 have
been removed, since negative values of these quantities indicate pathological
likelihood functions and consequently mis-reconstructed events.

FIGURE 5.10: The parameters σ∆θ and σ∆φ obtained from a parabola fit ap-
plied to the likelihood function. Solid line is signal, dashed line is background.
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5.6.2.1 Comparison with background simulation

While very important for the analyses where the background estimate relies on
simulation prediction, the comparison of the data distributions with the back-
ground simulation is of limited interest for the point source search, since the
background is estimated from the data itself. We use here the comparison
merely as a cross check for the signal simulation. A large discrepancy be-
tween simulated atmospheric muons and data would indicate problems in the
detector simulation. Figure5.11 compares the distributions of the data and
background simulation for the variables which have been used in the SVM.
The distributions are in good or very good agreement.

FIGURE 5.11: Comparison of the variables used in the present analysis with
a background simulation. Dots are the simulation, solid lines the data
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5.6.3 Support Vector Machines: Theory

Support Vector Machines (SVM) is a relatively new multivariate analysis method
which in its present form has been developed in the beginning of the 90s at
AT&T Bell Laboratories for applications in optical character recognition and
time series prediction (see [87] and references therein). For particle physics
applications it has only recently been discovered, see for example [88]. In this
section, a brief introduction to the methodology of the SVM will be given, the
reader is referred to [87] and [89] for more detailed introductions.

5.6.3.1 Hyperplane classifiers

Hyperplane classifiers deal with the task to find the function that maps the
input parameter space into some classification space. Consider a set of training
events(x1, y1), ..., (xl, yl) ⊂ Λ × R, whereΛ symbolises the space of input
parameters (xi ∈ Λ) andR denotes the target value space (yi ∈ R). Commonly
it would beΛ = Rn (wheren is the number of variables used) and the function
to find would be:

f : Rn → R (5.13)

One way to construct this function is to find hyperplanes separating the classes.
To simplify the discussion, we start by considering the linear case, where a
hyperplane will be given by:

f(x) = w · x + b (5.14)

w ∈ Λ andb ∈ R in equation5.14are the parameters which determine the
hyperplane. Figure5.12 illustrates the problem for a one-dimensional input
space. Finding the hyperplane is a minimisation problem, in which we require
f to be asflat as possible, and at the same time to deviate from the training
data target values by at mostε. The flatness requirement implies the greatest
possible margin between the two classes (figure5.12illustrates that fact). Flat-
ness can be defined differently, here it is defined by the euclidean norm ofw,
‖w‖2. The task is consequently to minimise‖w‖2 subject to constraints:

− ε < (w · xi + b)− yi (5.15)

(w · xi + b)− yi ≤ ε (5.16)

To find an hyperplane fulfilling the above conditions might not be feasible,
therefore one allow for errors (one defines a “soft margin”), which however, is
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y = wx + b

x

y

2 ε

FIGURE 5.12: Illustration of a hyperplane classifier for one dimensional input
data. The optimal hyperplane is given by the one with the smallest slope
(flattest), which implies largest possible separation.

penalised in the minimisation process by the parameterC. More formally, one
minimises:

1
2
‖w‖2 + C

l∑

i=1

ξi (5.17)

and relaxes at the same time the constraints (equation5.16) to fulfill the con-
dition≤ ε + ξi. Theξi are a function ofε:

|ξi| :=




0 if |ξ| ≤ ε

|ξ| − ε otherwise
(5.18)

and the constantC quantifies the penalty on the miss-classification.
The method to solve this minimisation problem chosen in the SVM case is to
construct a Lagrange function, which includes both the function to minimise
and the constraints. This is not only a convenient way to solve a minimisation
problem in presence of constraints but in addition will be the key ingredient to
generalise the SVM to the non-linear case (see below). The way to introduce
constraints into Lagrange function is by usingLagrange multipliers, see e.g.
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[90]. The corresponding Lagrange function will be:

L =
1
2
‖w‖2 + C

l∑

i=1

ξi −
l∑

i=1

αi(ε + ξi − yi + w · xi + b)

−
l∑

i=1

α′i(ε + ξi + yi −w · xi − b) (5.19)

Where we have introduced the Lagrangian multipliersα, α′ corresponding to
the two boundary conditions. The Lagrangian multipliers are sometimes called
dual variables.

5.6.3.2 Support vectors and the dual optimisation problem

The task is thus to find the stationary points ofL with respect tow,b, ξ. This
means all partial derivatives∂w,b,ξL have to vanish separately. In particular:

∂wL = w −
l∑

i=1

(αi − α′i)xi = 0 (5.20)

Thus,w =
∑l

i=1(αi − α′i)xi and

f(x) =
l∑

i=1

(αi − α′i)xi · x + b (5.21)

We see, that thew can be expanded in linear combinations of the training
patterns. The subset of those with non-vanishingαi are calledSupport Vectors.
The relations resulting from the requirement∂(w,b,ξ)L = 0 can be substituted
into equation5.19, yielding a function with only the Lagrange multipliers as
free parameters. The new Lagrange function becomes

L = −1
2

l∑

i=1,j=1

(αi − α′i)(αj − α′j)xi · xj

−ε
l∑

i=1

(αi + α′i) +
l∑

i=1

(αi − α′i)yi (5.22)

The optimisation task is now to maximiseL with respect to the Lagrangian
multipliers. This is sometimes called thedual optimisation problem[89].
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5.6.3.3 Generalisation to the non-linear case

One way of linearising a problem, is to preprocess the data via a non-linear
map. Consider the following example (see [87] and references therein) . As-
sume a map fromΦ : R2 → R3, given by:

Φ(x) = (x2
1,
√

2x1x2, x
2
2) (5.23)

In the feature space, R3, a linear SVM can be used and reveals a quadratic
function inR2. Preprocessing works in this particular case, but becomes in-
creasingly unhandable for higher polynomials [87]. Noting that for the above
example:

< Φ(x), Φ(x′) >=< (x2
1,
√

2x1x2, x
2
2), (x

′2
1 ,
√

2x′1x
′
2, x

′2
2 ) >=< x,x′ >2

(5.24)
where we denote the dot product by< .. >, hints towards a solution of the
problem: The scalar product of the mapped vectors can be expressed as func-
tion of the scalar product of the unmapped vectors.
In the previous section we reformulated the optimisation problem in terms of
dual variables. This lead to an expression only involving scalar products of the
vectors. As indicated by equation5.24, in this case, the mapΦ does not have
to be found explicitly, instead it is sufficient to know the function:

κ(x,x′) =< Φ(x), Φ(x′) > (5.25)

κ denotes a class of functions, so calledkernel functions, which correspond
to dot products in the feature space. The optimisation problem can then be
rewritten as:

L = −1
2

l∑

i=1,j=1

(αi − α′i)(αj − α′j)κ(xi,xj)

−ε
l∑

i=1

(αi + α′i) +
l∑

i=1

(αi − α′i)yi (5.26)

and for the functionf :

f(x) =
l∑

i

(αi − α′i)κ(xi,x) + b (5.27)

The task has been transformed to the task of finding a kernel function,κ(x,x′).
Fortunately, we do not have to find kernel functions for each and every prob-
lem. Instead, kernel functions are characterised by certain mathematical re-
quirements and we can choose from known kernel functions and apply them
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to the problem in question.
Kernel functions are characterised by Mercer’s theorem3, which states that a
functionκ(x,x′) is a kernel function, if:

∫

R
κ(x,x′)g(x)g(x′)dx dx′ ≥ 0 (5.28)

∀g(x) ∈ L2 (meaning
∫

g(x)2dx < ∞). From this theorem and its corol-
laries [87], kernel functions can be constructed. Examples for those functions
include, polynomials:

κ(x,x′) = (γx · x′ + c)d (5.29)

the sigmoid kernel:

κ(x,x′) = tanh γ(x · x′) (5.30)

and the Gaussian kernel:

κ(x,x′) = exp (−γ‖x− x′‖2) (5.31)

5.6.3.4 ν-SVM.

The algorithm described in the previous sections, finds an optimal hyperplane
with at mostε margin to the target values. Sinceε is a fixed value, the required
accuracy has to be known in advance4.
In some cases, however, (particularly in the case of the present analysis) the
aim is rather to optimise to the best possible accuracy. Therefore [92] proposed
a modification which automatically minimisesε. This is achieved by introduc-
ing a variableν into the minimisation problem (compare with equation5.17):

1
2
‖w‖2 + C

(
νε +

1
l

l∑

i=1

ξi

)
(5.32)

The differences between this modification and the original method described
previously concern mainly the implementation and we refer the reader to [93]
for details.

3see [87] or [91] for a more formally correct form
4which is why the algorithm is sometimes calledε-SVM
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5.6.4 Support Vector Machines: Application

The aim of the present analysis is to separateE−2 signal events from back-
ground. For use with the SVM we choose 5 variables to characterise each
event (see section5.6.1for a detailed description):

• Hit probability

• Track resolution inθ

• Track resolution inφ

• Smoothness (Phit version)

• Likelihood parameter difference

Consequently, the function we want the SVM to find is:

f : R5 → R (5.33)

and target values are set toy = 1 for signal andy = 0 for background, mean-
ing the SVM will (if successful) return values close to 1 forE−2 signal and
close to 0 for background. For the present analysis, we used the software li-
brary libsvmdeveloped by [94]. This C++ -library implementsε-SVM andν
-SVM with four optional kernel functions (linear, polynomial, Gaussian and
sigmoid). We choose to apply aν-SVM with Gaussian kernel. Other kernels
have been tested but did not give significantly different results.
For ν-SVM - apart from choosing the type of kernel function - there are es-
sentially two parameters which should be chosen in advance. These are the
parameterγ of the kernel function and the penalty parameterC 5. To find the
optimal set of these two parameters we apply the method ofcross validation.
A grid search in (γ,C) is performed and for any given pair of parameters the
accuracy of classification is calculated by following steps:

• divide the training sample randomly into M sub-samples

• For each subsample: build hypothesis from the training data without
subsample and determine the error rate of classification on the subsam-
ples which were not used for learning.

• The resulting accuracy of the parameter pair is defined by the average
error rate.

5the observant reader will have realised thatν is another free parameter, which we fixed for
the present analysis.
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FIGURE 5.13: Classification accuracy for different values of γ and C. For the
analysis in this work γ = 2 and C = 28 was chosen, which is indicated by the
filled circle.

The training sample consisted of 11813 data events and 8938 simulated neu-
trino signal events. For this training sample, the accuracy of classification
seems to be a rather slowly varying function ofγ and C for parameter values
γ & 2−4 andC = 212, see figure5.13. We chose the parameters to beγ = 2
andC = 28, giving a accuracy of 93.8 %6. Figure5.14shows the achieved
separation between data and signal with a energy spectrum∝ E−2. It is note-
worthy, that the present implementation of the SVM does not have the ability to
treat weighted events. This implies that we had to use signal simulation with
the intrinsic spectrum which is∝ E−1, see section5.2. This leads to some
loss in efficiency, still the separation is satisfactory for our purposes. Figure
5.15compares the SVM output forE−1 spectrum with the output for aE−2

spectrum. Also shown is the passing fraction of signal events as a function of
cut on the SVM output forE−1, E−2 and for an atmospheric neutrino spec-

trum (∝ E−2.7). Passing fraction is here defined as
n

passing
sig

ntotal
sig

with n
passing
sig being

the number of signal events with SVM output values larger than the SVM cut

6the maximal accuracy was 93.9 %, however, at a penalty parameterC = 214, and since
computing time is an increasing function of the penalty parameter, it was decided to accept the
slightly lower accuracy.
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FIGURE 5.14: The achieved separation between data and E−2 signal simula-
tion
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value.
In section5.6.5we will see that cut optimisation leads to (zenith dependent)
cuts on the SVM output varying between 0.90 and 0.96. From figure5.15it is
estimated that the loss in efficiency due to the training on anE−1 spectrum is
of the order of 15 %.

FIGURE 5.15: Left hand: the SVM output for E−1 signal (solid) and for E−2

signal (dashed), right hand: the fraction of signal events passing a cut on the
SVM output for E−1 (boxes), E−2 (circles) and atmospheric energy spectrum
(triangles).

5.6.5 Cut value optimisation and optimal bin size

For optimisation of the cut value one has to define a figure of merit, which is
maximised (or minimised) with respect to the cut value. A common choice is
to optimise on signal to noise, i.e. the optimal cut value for variablev is given
by:

vopt = v

[
max

(
S(v)√
B(v)

)]
(5.34)

Except for the first cut (on smoothness), here a different approach will be fol-
lowed. The figure of merit chosen is themodel rejection factorproposed by
[95]. It is designed to give the strictest possible upper limit on a theoretical
signal model.
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5.6.5.1 The Model Rejection Factor

Considering a source fluxΦ◦ used as a signal prediction, the 90 % confidence
upper limit7 on the flux can be calculated by:

Φ90 = Φ◦ × µ90(nobs, b)
ns

(5.35)

Hereµ90 is the 90 % upper confidence limit on the number of signal events
(see.e.g. [96] and the discussion in partII ) calculated from Poisson statistics,
nobs is the number of observed events andb the number of events expected
from background. Obviously, minimising the ratioµ90(nobs, b)/ns leads to
the strongest constraint on the signal flux. This minimisation will be depen-
dent on the data, sinceµ90 depends on the number of observed events. This
bias can be removed by instead considering theaverage upper limit, µ90. The
average upper limit is defined as the average of all upper limits obtained from
an ensemble of experiments with no signal process. This quantity is equivalent
to thesensitivityintroduced by [96], and can be calculated by:

µ90(b) =
n=∞∑

n◦=0

µ90(n◦, b)
bn◦

n◦!
e−b (5.36)

The sensitivity will be one of the central results of this thesis and we will come
back to this quantity in section6. The figure of merit is consequently the ratio
of the average upper limit and the number of expected signal events (from the
model), that is we calculate the optimal cut value by:

vopt = v

[
min

(
µ90(v)
ns(v)

)]
(5.37)

hereµ90 denotes the ensemble average over all upper limits with 90 % confi-
dence level andns is the number of signal events surviving the selection crite-
ria. The right side of equation5.37will be referred to as the model rejection
factor (MRF).

5.6.5.2 Optimal bin size

In a grid search for point sources the choice of bin size is of obvious impor-
tance. The general idea behind bin size optimisation is illustrated by perform-
ing the calculation for the ideal case of a circular bin and Gaussian resolution

7generally, one chooses the confidence level to be100(1− α)% with α = 0.1, 0.05 or 0.01.
We chooseα = 0.1 for simplicity. The discussion holds for anyα.
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function. Then, the mean number of signal events expected within a circular
bin is:

S ∝
∫ R

0
G(0, σ)d r (5.38)

whereG(0, σ) represents a Gauss-function with standard deviationσ, centred
on the source. For a background distributed uniformly in two dimensions, the
mean number of expected background events is proportional to the geometric
area:

B ∝ πR2. (5.39)

Maximising S√
B

yields
Ropt = 1.585σ. (5.40)

For a quadratic bin the solution is slightly smallerWopt ∼ 1.4 σ, Wopt being
the half width of the quadratic bin.

5.6.5.3 Cut value and bin size optimisation in the present analysis

The cylindrical geometry of AMANDA suggests, that the (unoptimised) re-
sponse of the detector is independent of azimuth angle but depends on zenith
angle. This is in particular true for the angular resolution (which is confirmed
later on in the analysis, see figure6.4). It is therefore advantageous to perform
the cut optimisation in zenith bands within which the response can be assumed
to be constant. Furthermore, in optimising the bin size, the numeric solution
given in the previous section can not be used: the angular resolution of the
detector is non- Gaussian (see figure6.2) and it was decided to use the MRF as
a figure of merit. Also, the variables in the SVM were chosen with the aim to
improve the angular resolution, meaning that SVM cut value optimisation and
bin size optimisation will be coupled and should consequently be performed at
the same time.
These considerations lead to following algorithm for cut and bin size optimi-
sation in the present analysis:

• The sky is divided into 10 zenith bands between 90◦ and 180◦ with 10◦

width each.

• For each zenith bin a point source is simulated using the full detector
simulation.

• For each point in (bin size, SVM cut) space, the MRF is calculated for
a quadratic (in solid angle) bin centred on the source. The expected
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backgroundb is calculated from all events in the zenith band scaled to
the bin size.

• the pair of values for (bin size, SVM cut) with minimal MRF is chosen
as optimal cut value and bin size.

Figure5.16exemplifies the result of such an optimisation. Shown is the log-
arithm of the MRF as a function of SVM output cut and half bin size for the
zenith band between zenith = 130◦ and zenith =140◦. The results for all zenith
bands are summarised in table5.1.

FIGURE 5.16: Example of the result of simultaneous bin size/SVM cut optimi-
sation with the MRF as figure of merit.



5.7 THE PROCESSING CHAIN 85

Zenith band[◦] Optimal SVM cut Optimal Half Bin Size[◦]
90-100 0.94 5
100-110 0.94 5
110-120 0.94 5
120-130 0.92 5
130-140 0.96 4.5
140-150 0.96 3.5
150-160 0.96 3.
160-170 0.94 3.
170-180 0.90 2.5

TABLE 5.1: The results of the SVM cut value and bin size optimisation

5.7 The processing chain

Table5.2summarises the processing that the data and the signal simulation was
subjected to. A first reduction of the data is done centrally together with the
calibration, a first cleaning and the first five reconstructions. The resulting data
set (commonly referred to aslevel 2) reduces the data set to∼ 1 % of the data
on trigger level and keeps∼ 50 % ofE−2 signal. This reduction is achieved
by three cuts: a cut on the zenith angle returned by the line fit (see section
5.5), a cut on the zenith angle returned by the first (non-iterative) likelihood
reconstruction and a cut on the number ofdirect hits, Ndir. Direct hits are
hits which have reached the optical module with only a small delay, the delay
being calculated relative to ǎCerenkov photon emitted from the reconstructed
track. The size of the delay can be chosen differently, here the delay window
was [-20:25] ns. The negative lower bound accounts for uncertainties in the
calibration of geometry and time. In table5.2 we omit reconstructions which
have not actually been used in the analysis.

5.8 Analysis of the final sample: Strategy

Having isolated a sample of events, the next task is to investigate it for possi-
ble clustering in declination/right ascension space and to calculate confidence
intervals on the flux of neutrinos from cosmic point sources. In this work, two
strategies will be followed: thegrid search, in which the whole sky is covered
with a grid of search bins, and thesearch for selected sources, where a search
bin is centred on a potential neutrino source (usually an astronomical object).
Details for the two strategies will are described in this section.
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5.8.1 Grid search

In a grid search the hemisphere is divided into a large number of rectangular
bins. In this analysis a type of grid is devised, which will be referred to as
the lid grid. In order to be able to treat sources at highest declinations, one
single cell is placed atθ = 180◦. Using a single grid is not optimal with respect
to an unknown source position (imagine a source lying on a cell boundary).
Therefore four different grids are devised. The first (null) grid is defined by an
integer number of grid cells in declination starting withθ = 90◦ and an integer
number of grid cells in right ascension (starting with right ascension = 0 h).
The number of grid cells is hereby chosen such that the size of the cells is as
close as possible to the optimal bin size found in section5.6.5. The second grid
is obtained from the first by a rotation in right ascension by half a bin width.
The third grid is obtained by shifting the null grid by half a bin width in zenith.
Instead of a single lid cell, now the highest zenith bin is divided into three cells
in order to take care of those hypothetical sources lying on the edge of the lid
cell. The fourth grid, finally, is obtained from the third grid by rotation by half
a bin width in right ascension. The situation is illustrated in figure5.17. For the
calculation of the limits we will then compare the number of observed events
in each cell with a background expectation which is determined by averaging
over all off-source bins in the same zenith band.

5.8.1.1 Accessing the significance of an excess

Supposed an excess over a background expectation is detected, the statistical
significance of this excess should be determined. In this analysis, theexcess
significancewill be defined via:

The probability of detecting an excess larger or equal to the experimental value
in an experiment identical to the one actually performed but with no signal.

The smaller this probability the larger the significance of an excess. To quan-
tify an excess, we define theexcess parameter:

ξ = − log
ntot∑

n=nobs

P binom(n|ntot, Nbins) (5.41)

with

P binom(n|ntot, Nbins) =
(

ntot

n

)
· (N−1

bins

)n · (1−N−1
bins

)ntot−n
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in zenith and three central bins

Lid Grid Rotation in azimuth (half bin)

Translation in zenith
(half bin) and three central bins

Rotation in azimuth, translation 

FIGURE 5.17: The lid grid illustrated. Four different grids are devised: two
grids with a lid cells and two grids with three cells in the upper-most zenith
band. Hypothetical sources which would be covered by the splitting in the
three upper most cells are indicated by the dashed circles.
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Equation5.41 yields the probability of detectingnobs or more events in one
bin, givenNbins number of bins andntot number of events in total in the zenith
band, i.e. would be identical to the above defined excess significance in the
case that our experiment consisted of a grid only covering one zenith band
with (uncorrelated) search bins. The grid proposed in the previous section,
however, consists of 1092 grid cells (including grid shifts) with different num-
ber of events in each zenith band. Furthermore the search bins are obviously
not all uncorrelated. Therefore, it is decided to use a Toy Monte Carlo simu-
lation to calculate the excess significance. The Toy Monte Carlo proceeds as
follows:

• a pseudo experiment is constructed by randomising the data in right as-
cension, i.e. an experiment without source.

• for each pseudo experiment a grid search is performed, identical to the
one performed in the actual experiment.

• for each pseudo experiment the excess significance parameter is deter-
mined for each bin.

• for each pseudo experiment the maximal excess parameter is determined.

• the first four steps are repeatednpseudotimes.

In this way a distribution of thenpseudomaximal excess parameters are ob-
tained. The excess significance of the maximal excess found in the actual
experiment is then calculated from:

Ξ =
n(ξmax > ξ

exp
max)

npseudo
(5.42)

A number of relatively weak sources will not necessarily be found by just con-
centrating on the maximal excess parameter. As an indication for the existence
or non-existence of an overabundance of excesses just below the maximal ex-
cess , we calculate the probability:

β = P
(
n(ξ > ξexp) > nexp(ξ > ξexp)

)
(5.43)

In practise, we will take theith largest excess,ξi, in the experiment and cal-
culate the probability that there will be at leasti cells with an excess larger
thanξi, thus a bias towards a larger number of high excesses in the experiment
would reveal itself by a low probability to find a larger (or equal) number of
higher (or equally high) excesses in the random sample. In the case of the
maximal excess, this probability is the same asΞ (defined in equation5.42).
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5.8.2 Selected sources

We will present neutrino flux limits for in total 20 preselected sources, which
are chosen among potential candidates for high energy neutrinos. As we have
seen in section2, blazars which are known sources of TeV gamma rays are
good candidates for neutrino production. We present limits for 6 experimen-
tally confirmed TeV gamma ray sources , which represent allTeV blazarsin
the northern hemisphere as listed by the EGRET catalogue [97].
While TeV sources are certainly good candidates for neutrino production in
AGN jets, it has been argued that TeV gamma ray sources are probably weak
sources for neutrinos originating in the core. The reason is that TeV emission
requires a comparatively low UV photon density which in turn suppresses pγ
interaction [98]. Blazars with known gamma emission in the GeV range do not
suffer from this constraint. We therefore include 3GeV blazarsselected from
the EGRET catalogue into the list hypothetical sources. These three sources
fulfil two additional constraints: firstly, a constraint on the V luminosity of
the AGN (this constraints the number density of UV photons) and secondly
the condition that a jet either has not been observed at all or that its projected
length has been estimated to be less than 1 kpc (which implies that the jet is
emitted almost in line of sight with respect to the observer). The reader is re-
ferred to [98] for a detailed discussion.
Another possible source of high energy neutrinos, which has been mentioned
in section2 are Microquasars. We include 8 known Microquasars on the north-
ern hemisphere in our list of selected sources. Finally, we include 3 Super
Nova Remnants in the list.



CHAPTER 6

Results

6.1 General definitions

6.1.1 Flux limits and effective area

In this analysis, signal efficiency is calculated by the detector simulation. Sup-

pose a point source with differential flux
(

dΦν
dEν

)
◦

is simulated. Then, for each

search bin, the differential flux limit can be calculated from the number of sig-
nal events,ns, which pass all cuts, the number of detected events,n◦, in that
bin and the expected background,b:

(
dΦν

dEν

)

90

=
µ90(n◦, b)

ns
·
(

dΦν

dEν

)

◦
(6.1)

whereµ90(n◦, b) denotes the 90 % upper confidence limit on the number of
expected signal events. The limit of equation6.1is independent of the assumed
absolute normalisation of the flux, but depends on the spectral shape and is not
easily converted to different fluxes. To be able to calculate the number of
events from an arbitrary flux, it is therefore useful to define a quantity related
to the signal detection efficiency, theeffective area:

Aeff,νµ(Eνµ,Θνµ) :=
ṅdet

νµ

Φνµ
(6.2)

whereΦνµ denotes the incident flux of neutrinos or muons andṅdet
νµ is the num-

ber of detected events (originating from that flux) per unit time. In AMANDA,
the effective area is a function of the energy,Eνµ, and the zenith angle of inci-
dent particles,θνµ. To simplify the discussion we will not explicitly state the

91
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zenith dependence, but assume it implicitly.
The effective area is useful to characterise the signal efficiency since it relates
detected rates directly to flux. We will present effective areas for both the
neutrino and the muon, since we are trying to find a flux of neutrinos but are
detecting muons.
Using the definition given in equation6.2, the number of signal events,ns,
detected during the data taking time,Tlive, given an arbitrary differential flux(

dΦν
dEν

)
◦
, is:

ns = Tlive

∫ Emax
ν

Emin
ν

dEν Aeff,ν(Eν)
(

dΦν

dEν

)

◦
(6.3)

Given the functionAeff,ν(Eν), this expression thus allows to calculate the num-
ber of events expected in the detector for any arbitrary flux. On the other hand,
from 6.1, the integral flux limit is given by:

Φν(Emin
ν < Eν < Emax

ν )90 =
µ90(n◦, b)

ns
·
∫ Emax

ν

Emin
ν

dEν

(
dΦν

dEν

)

◦
(6.4)

Inserting equation6.3into 6.4thus allows to calculate a flux limit for arbitrary
fluxes knowing the functionAeff and the upper limit found in the experiment.
The resulting expression can be simplified by the definition of theenergy-
averaged effective area:

Aeff,ν(Emin
ν < Eν < Emax

ν ,
dΦν

dEν
) =

∫ Emax
ν

Emin
ν

dEν Aeff,ν(Eν) · dΦν
dEν∫ Emax

ν

Emin
ν

dEν
dΦν
dEν

(6.5)

With this definition6.4becomes:

Φν(Emin
ν < Eν < Emax

ν )90 =
µ90(n◦, b)
Tlive ·Aeff,ν

(6.6)

The integral limit is thus inversely proportional to the energy-averaged effec-
tive areaAeff,ν .
The limits which we will present in this thesis will be calculated using equa-
tion 6.1, thus not make use of expression6.6. However, the functionsAeff,ν

andAeff,ν contain useful information, which is why they will be presented in
addition. For example, the limits presented in section6.6 are for a spectrum
with power law index,γ = −2. They can in principle be converted into in-
tegral limits for spectra with arbitrary power law index knowing the function

Aν(Eν) and by multiplying the presented limit withAeff,ν(−2)

Aeff,ν(arb)
.
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6.1.2 The sensitivity

It has been noted that schemes of calculating frequentist confidence intervals
lead to an undesired effect (see for example [96] and the discussion in chapter
8). If significantly less events are detected than are expected from background,
the limit becomes stricter with increasing background expectation. This may
be considered undesirable, since it is not connected with an increased sensi-
tivity of the experiment to signal, but rather a downward fluctuation of the
background.
It has therefore been suggested [96] that together with the limit one should also
present thesensitivity, which is defined as the average upper limit one would
obtain in a large number of experiments with no signal (see also chapter5,
section5.6.5). This quantity can be calculated by:

µ90(b) =
n=∞∑

n◦=0

µ90(n◦, b)P (n◦|b) (6.7)

whereP (n◦|b) denotes the Poisson probability to detectn◦ events given a
background,b. µ90 is the corresponding 90 % confidence upper limit on the
number of signal events. The sensitivity to a hypothetical source flux will
therefore be given by:

(
dΦν

dEν

)

90

=
µ90(b)

ns
·
(

dΦν

dEν

)

◦
(6.8)

for the sensitivity on differential flux. Note that, in contrast to common lan-
guage, an increase in sensitivity means that - on average - the limit the exper-
iment will report will belessstringent. Consequently, optimising the analysis
means trying to achieve alow sensitivity.

6.2 Angular resolution.

The angular resolution of the detector is assessed using the detector simulation.
It is conveniently characterised by the space angle difference, which can be
calculated from the true (known from simulation) and reconstructed zenith and
azimuth angles:

cosΨ = cosΘfit cosΘtrue + sinΘfit sinΘtruecos (φfit − φtrue) (6.9)

HereΘfit andΘtrue are the reconstructed and true zenith angle andφfit andφtrue

the corresponding azimuth angles. The definition is illustrated in figure6.1.



94 CHAPTER 6 RESULTS

Ψ

x

y

z

∆φ

∆θ

reconst.

true

FIGURE 6.1: The definition of space angle difference in terms of zenith and
azimuth mismatches.
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FIGURE 6.2: Upper panel: the point spread function for the final sample of this
analysis, lower panel: the distribution of space angle difference for the final
sample of this analysis. The solid line indicates the space angle resolution
(see text for definition). The distributions have been normalised to yield an
integral equal one.
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Figure6.2 shows the distribution of the space angle difference and the point
spread function (space angle difference distribution divided by the correspond-
ing solid angle element). We define the resolution by integrating the distribu-
tion of space angle difference to the value which confines 68% of all recon-
structed tracks:

0.68 =
∫ Ψ68

0
dΨ f(Ψ) (6.10)

Table6.1 summarises the results for the space angle resolution. It has been
customary to define the space angle resolution in terms of median space angle
difference [82][83], which for the sake of comparison is included in table6.1.
Also included are its values prior to the SVM cut. The application of the SVM
improves the angular resolution considerably. For illustration, figure6.3shows

Prior SVM Post SVM
Ψ68 6.7 4.9
Ψ50 4.5 3.5

TABLE 6.1: The space angle resolution after and prior to the application of the
SVM. Also shown is the median space angle difference.

the distributions of the azimuth and zenith angle mismatch separately.

FIGURE 6.3: Zenith and azimuth mismatches for the final sample of the data.
The distributions are reasonably well fit by the sum of two Gauss functions.
The azimuth distribution has been multiplied by sinΘ to account for the zenith
dependence of the covered solid angle.
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The distributions are reasonably well fitted by the sum of two Gauss functions:

f(x = θ, φ) = A1G(σ1, x01) + A2G(σ2, x02) (6.11)

which might indicate the presence of two distinctive classes of events. Table
6.2 summarises the fit results. It should be noted that, in contrast to previ-

Distribution A1 σ1 x01 A2 σ2 x02

∆Θ 1. 1.68 -0.53 0.28 4.24 -2.4
∆φ 1. 2.30 -0.02 0.27 5.88 -0.1

TABLE 6.2: The result of the fit of the sum of two Gauss functions to the zenith
angle and azimuth angle mismatch.

ous analyses [82],[83] we do not need to parametrise the resolution function
for the sake of finding the optimal bin size. Instead we use the (zenith-wise)
distribution of angular mismatch as provided by the full detector simulation.
Figure6.4 shows the space angle resolution as a function of zenith angle and
for comparison the bin size used in the present analysis, cf. section6.4. The
resolution varies from∼ 5.8 ◦ to∼ 3 ◦, which is consistent with the used bin
size.

FIGURE 6.4: Solid line: space angle resolution as function of zenith angle.
Also shown are the half width of the bins used in the grid search. Horizontal
error bars are zenith bin width, vertical are the step width in bin size used in
the bin size optimisation.
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6.3 Sky-plot

Figure6.5 shows the distribution of the reconstructed zenith angle and right
ascension of the final sample. The right ascension distribution shows no vis-
ible structure. The distribution is consistent with a flat distribution on 90 %
confidence level (inferred from Kolmogorov-Smirnov test). The zenith dis-
tribution reflects the zenith dependent background rejection capability of the
SVM, which seems to decrease significantly for zenith angles between 140◦

and 160◦. Figure6.6shows the sky-plot, i.e. the distribution of events in equa-
torial coordinates.

FIGURE 6.5: Right ascension (left) and zenith angle distribution (right) of the
final sample. Note declination δ = Θ -90◦
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FIGURE 6.6: The 642 events of the final data set in equatorial coordinates.



100 CHAPTER 6 RESULTS

6.4 Grid searches for point sources

6.4.1 Effective area and sensitivity

Figure6.7 shows the effective area for neutrinos as a function of energy and
for four different zenith angles. For lower energy the effective area for smaller
zenith angles (shallower directions) is smaller than for larger zenith angles
(more vertical directions). This is expected from the cylindrical geometry of
the array since horizontal tracks have a smaller lever arm for reconstruction.
The effective area increases up to energies of 100 - 1000 TeV where it reaches

FIGURE 6.7: The effective area for neutrinos for different zenith angles.

a maximum and starts to decrease or flattens out. The position of this maxi-
mum is correlated with the zenith angle: the larger the zenith angle the smaller
the energy at which the maximum is reached. Part of this behaviour can be
qualitatively understood by considering the interaction length of the neutrino
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in charged current interactions. The interaction length is inversely proportional
to the charged current cross-section, thus decreases with energy. At energies
of about 40 TeV the interaction length becomes comparable to the Earth di-
ameter, which means neutrino absorption in the Earth will become important
above this energy. For a more quantitative discussion the reader is referred to
[99].
The effective area for muons (see figure6.8) also decreases for very high en-
ergies, however, the turn around seems to be at roughly the same position
irrespective of zenith angle. This behaviour is interpreted as an instrumental
effect: for large light output the reconstruction algorithm does not perform
very efficiently. This effect also contributes to the decrease in the effective
area for neutrinos discussed previously.

FIGURE 6.8: The effective area for muons for different zenith angles. The
effective area is shown as a function of energy at closest approach to the
detector centre.
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FIGURE 6.9: Energy averaged effective area for neutrinos. Different slopes of
the neutrino spectrum have been assumed. Error-bars account for the statis-
tical uncertainty. The effect of neutrino absorption in the Earth is included.
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The energy averaged effective area is shown for neutrinos in figure6.9 and
for muons in figure6.10. Different slopes of the neutrino spectrum have been
assumed. The achieved area for neutrinos with an energy spectrum∝ E−2 is
around 5 cm2 and it is relatively constant for zenith angles larger than 120◦.
The fluctuation seen for the most vertical bin is partly due to the statistical
uncertainty in the signal prediction, partly due to a systematic effect in the ice
model implementation (see section6.5).

FIGURE 6.10: Energy averaged effective area for muons as a function of
zenith angle. Different slopes of the neutrino spectrum have been assumed.
Error-bars account for the statistical uncertainty.

Figure6.11shows the bin efficiency (defined as the fraction of muons which
are reconstructed within the search bin). The bin efficiency is more or less
constant at around 67 % with a drop of a few percent for zenith angles larger
than∼ 160◦. The relative constancy of the bin efficiency is achieved by the
variable bin size (see figure6.4). The distinctive rise atΘ = 180◦ again is
attributed to the statistical and systematic uncertainties.
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FIGURE 6.11: Bin efficiency (fraction of muons reconstructed within source
bin) as obtained for the lid grid. The vertical error bars account for the statisti-
cal uncertainty, horizontal bars represent the zenith bin width.

The sensitivity achieved by the present analysis (without including systematic
uncertainties) is shown in figure6.12and summarised in table6.3. The sensi-
tivity varies between∼ 3 and12 · 10−7 GeV cm−2s−1. The rise by roughly 20
% for zenith angles between∼ 140◦ and∼ 160◦ is partly due to the increased
background (see figure6.5) partly due to a decrease in signal efficiency in that
region. The rise for shallow angles (< 100 ◦) is due to the drop in signal ef-
ficiency. The signficant drop for the most vertical bin is due to the previously
mentioned effect of the ice implementation. We will return to that point in the
discussion of the systematic uncertainties in section6.5. Figure6.13shows the
energy distributions of the neutrinos and muons on the final level. The mean
energy of those neutrinos is∼ 50 TeV, the mean energy of muons (energy at
closest approach to the center of the detector) is∼ 10 TeV.
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FIGURE 6.12: The sensitivity for the lid-grid in polar coordinates. The band
corresponds to the statistical uncertainties of the signal simulation.
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Zenith[◦] Nbins Nevents Sensitivity[10−7GeVcm−2s−1]
90-100 35 36 11.9
100-110 34 72 6.5
110-120 32 71 5.8
120-130 29 81 5.3
130-139 28 77 5.2
139-147 27 82 5.4
147-154 25 105 6.6
154-160 23 52 6.7
160-166.5 15 42 6.5
166.5-172.5 10 10 4.7
172.5-177.5 6 12 6.2
177.5-180. 1 b = 1.6 3.2

TABLE 6.3: Results of the grid search:the zenith band boundaries, number of
bins in the zenith band, Nbins, number of events in zenith band, Nevents, and
the calculated sensitivity. The expected background, b, in the lid cell has been
estimated from a surrounding zenith band.

FIGURE 6.13: The energy distribution of E−2 neutrinos (solid) and muons
induced by E−2 neutrinos (dashed) on the final level of the present analysis.
The muon energy is the energy at closest approach to the detector centre.
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6.4.2 Excess significance

In figure6.14, the distribution of excess parameters found in the present anal-
ysis is compared to the one found from104 pseudo experiments in each of
which the 642 final events are assigned random right ascensions. The exper-
imental distribution is consistent with the no source distribution on the> 5
σ level (calculated by Kolmogorov-Smirnov test). Also shown is how a hy-
pothetical source with an excess corresponding to the detection threshold (see
section6.4.3) would appear in this figure.

FIGURE 6.14: The excess parameter distribution obtained from a sample of
10000 pseudo experiments randomised in right ascension as compared to the
experiment. Also indicated is how a hypothetical source (with a flux corre-
sponding to the detection threshold, see section 6.4.3) would appear in this
figure.

Figure6.15shows the distribution of the maximum excess parameter as ob-
tained from104 pseudo experiments. From integration one obtainsΞ = 94 %
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(see equation5.42for a definition ofΞ). In words, there is a 94 % probability
of obtaining a maximal excess larger than the experimentally found maximal
excess from an ensemble of experiments without a source. Also shown isΞ
as a function of maximal signifcance parameter. The coordinates of the four

FIGURE 6.15: On the left: the distribution of maximal excess parameters given
by 104 pseudo experiments without a source. The arrow indicates the exper-
imentally found maximal excess. On the right: the excess significance, Ξ, as
a function of the maximal excess parameter. The filled rectangle indicates the
maximal excess parameter found in the present analysis.

largest excesses are shown together with the number of observed events, the
expected background and the probabilityβ (see definition in equation5.43) in
table6.4. The conclusion is that no statistically significant point sources are
found in the present analysis. Figure6.16shows the the excess parameter for
each cell of the grids (defined in section5.8.1).

zenith[◦] R.A[h] nobs b ξ β

125. 0.42 8 2.8 2.16 0.94
157. 13.87 7 2.3 2.15 0.82
143. 2.23 8 3.0 1.96 0.92
153.5 14.08 10 4.4 1.89 0.89

TABLE 6.4: Summary of the four largest excesses found in the grid search.
nobs is the number of observed events, b the expected background. For defini-
tions of β and ξ, see text.
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FIGURE 6.16: The excess parameter for the four grids. Upper two: the lid-
grids with a single bin centred on 180◦, lower two: the grids with three bins in
the upper zenith band. The maximal excess found is ξ = 2.16.
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6.4.3 Detection threshold

An interesting question to ask is, what level of flux would be necessary in or-
der to detect a source with the present analysis ?
From figure6.15, the size of an excess required to claim the detection of a
source can be estimated. Assuming we are willing to claim a source if we
would expect an excess larger than the experimentally found in only 1 % of all
no-source experiments leads to a required excess parameter ofξ ' 4.75. This
value of the excess parameter fixes the number of observed events,nsource◦ ,
necessary to detect a source for each zenith band. In order for a flux to be de-
tectable, we will require that it (together with the known background) results
in n◦ < nsource◦ with less than 10 % probability. This defines a detection thresh-
old: sources below this threshold will not be detected by the all-sky analysis
whereas sources above will be detected (with 90 % detection efficiency). The
detection threshold is shown together with the sensitivity (see figure6.12) in
figure 6.17. It varies between∼ 7 and40 · 10−7 GeV cm−2s−1 and differs
from the sensitivity by about a factor 3.

FIGURE 6.17: The (90 % efficiency) detection threshold for the present anal-
ysis. Also shown is the sensitivity (line closer to the origin).
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6.5 Systematic and statistical uncertainties

Since the background for the point source search is estimated from data, the
only systematic uncertainty to be considered in the calculation of confidence
intervals on the neutrino flux is the uncertainty on the signal efficiency. Once
an estimate of the signal efficiency uncertainty has been obtained, it will be
included into the limit calculation by folding the function parameterising the
uncertainties with the PDF used in the confidence interval construction. Since
negative efficiencies are unphysical we will assume a log-normal distribution
for the parametrisation of the uncertainties. The reader is referred to partII of
this thesis for detailed discussion of the calculational method. The statistical
uncertainty of the background estimate and the estimate of the signal efficiency
are briefly discussed in a paragraph at the end of this section.

Ice properties and OM sensitivities In section5.3.3we discussed briefly
the implementation of the ice model into the detector simulation. Problems
which arise due to having to use approximations in this implementation are
partly remedied by adjusting the absorption length to the experimentally ob-
served time residual distributions.
We will in this study follow a conservative approach: the effect of different
implementations of ice properties will be assessed by comparing the FIM im-
plementation and the MAM implementation. The FIM model is built on the
ice measurements, the MAM model on fitting to data. The comparison gives
us some indication of how the implementation of the ice model affects the es-
timate of our signal efficiency. We will assume the difference between FIM
and MAM to be exclusively due to the ice model implementation. The uncer-
tainty of the absolute level and angular dependence of the OM sensitivity will
be considered uncorrelated with this and added in quadrature.
Figure6.18 shows the difference of the two models. In a crude but conser-
vative approximation we take the maximal found difference for source angles
smaller than 180 degrees to give theσ of a log-normal distributed uncertainty
on the signal efficiency, i.e. we assume a 20 % uncertainty for zenith angles
smaller than 177.5 degrees. For the bin centered on 180 degrees we assume an
uncertainty of 40 %.
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FIGURE 6.18: The relative difference in signal efficiency between the FIM and
MAM implementation of the ice model. The vertical error bars account for the
statistical uncertainty in this quantity, horizontal bars for the bin widths.
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The absolute OM sensitivity is a combination of the transmissivity of the glass
and gel and PMT specific properties like the quantum efficiency and collection
efficiency. These quantities are measurable in the laboratory, but especially
the transmissivity might be influenced by ageing of the glass and the gel. We
will take laboratory values to estimate of the uncertainties and assume in-situ
modifications to be small as compared to those.
The measurements of transmissivity are done on a small number of optical
modules and differences between OMs lead us to expect an uncertainty of∼
10 % whereas measurement uncertainties are negligible [100]. The manufac-
turer specifications for the uncertainty in the quantum and collection efficiency
are 20 % respectively 10 % [101], which we add in quadrature to the uncer-
tainty from the measurements of transmissivity. The overall uncertainty in the
OM sensitivity is thererfore estimated to be∼ 25 %. The typical energy of
muons from cosmic neutrinos in this analysis is∼ 10 TeV. In [102] it is shown
that a 25 % change in the absolute level of sensitivity of all OMs leads to a∼
10 % change in the rate of muons at these energies. We will therefore assume
that the uncertainty in the absolute level of the OM sensitivity adds a 10 %
uncertainty on the signal efficiency.
In section5.3.3 it was mentioned that the refreezing of the water column
around the OM leads to additional scattering near the optical module due to
air bubbles. This additional scattering would reveal itself mostly by a modifi-
cation of the angular dependence of the OM sensitivity measured in-ice [70].
The effect has been studied in [103] using the large statistics of down-going
muons. The study lead to a modification of the angular response of the OM
in the detector simulation in order to reproduce measured (down-going) muon
distributions. This modification incorporates uncertainties in the (bulk) ice
model and the intrinsic angular dependence of the OMs response as well as
the scattering. Since the study was done with an ice-model which is now con-
sidered obsolete, the modified angular response can not be viewed as a better
representation of the OMs angular response, therefore it has not been used
here. However, it can be used as an indication of the uncertainty in our knowl-
edge of the angular sensitivity and [82] showed that the effect of using the
two different parameterisations for the angular response of the OM on the ef-
ficiency for anE−2 signal is∼ 25 %. This uncertainty will be added to the
uncertainty originating from the uncertainty in absolute OM sensitivity (10 %,
see above) in quadrature, yielding in total a 27 % uncertainty in the signal
efficiency due to the imperfect knowledge of absolute OM sensitivity and its
angular dependence.
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Neutrino-nucleon cross section Uncertainties in the neutrino-nucleon cross
section are negligible up to energies of aboutQ2 ∼ M2

W , see the discussion
in section3.2 and figure3.2. Above energies of∼ 100 TeV, differences in
parameterisations of structure functions are getting increasingly important. As
we have seen in the previous section, 90 % of all neutrinos detected in this
analysis (assuming anE−2 spectrum) have an energy. 800 TeV. Conserva-
tively, we assume the uncertainty in the neutrino nucleon cross section to be
given by the uncertainty at∼ 1000 TeV, which is∼ 15 %, inferred from figure
3.2.

Muon propagation The rate of muons per unit area produced by a cosmic
neutrino source depends roughly linearly on the range of the muon, as can be
seen from equations3.13to 3.15. The present muon propagation simulation is
estimated to have an uncertainty in the muon range of 5 - 10 % [104], which we
assume to propagate linearly to a 5-10 % uncertainty on the expected rates of
muons from cosmic neutrinos. We conservatively assume a 10 % uncertainty
in the signal efficiency due to uncertainties in the muon propagation.

Type Effect Comments
on signal eff.

optical parameters ∼20(40) % FIM/MAM
OM sens. & air bubbles ∼27 % [82][100] [101] [102] [103]
Hardware simulation ∼ 5 % [105]
Timing and geometry < 2 % [69][106]
ν cross-section ∼ 15 % [47]
µ-propagation ∼ 10 % [104]
Squared sum 39 (51) %

TABLE 6.5: Summary of systematic uncertainties. The bracketed values are
for the most vertical bin.

Hardware simulation & calibration A major revision of the detector sim-
ulation [105] yielded only a moderate change in the simulated trigger rate for
atmospheric muons (∼ 6 %). While this insignficant increase in rate for at-
mospheric muons (background) can not directly be translated into an rate for
high energy neutrinos (signal), it seems reasonable to assume, that the effects
of uncertainties in hardware simulations are at least not much bigger for the
signal simulation. We will therefore assume the uncertainties to be∼ 5 %.
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Uncertainties in the timing calibration (which includes the geometry calibra-
tion) are estimated to be of the order of∼ 5 %. [106] has shown that uncer-
tainties of that size affect the signal efficiency by less than 2 %.

Statistical uncertainties Statistical uncertainties originating in the limited
statistics of the signal simulation are generally< 5 % except for the three most
vertical bins (corresponding to angles larger than 166◦) with 6 %, 9 % and
19 % respectively. Except for the most vertical bin they are small compared
to the systematic uncertainties discussed in the previous section. The statisti-
cal uncertainty on the background estimate is in general of the order of 10 %.
However, in the case of few background events in the zenith band, as for the
two zenith bands from zenith = 166.5 to 177.5 degrees the statistical uncer-
tainty amounts to∼ 30 %.
One way to treat the statistical uncertainties of the background and signal ef-
ficiency estimate is to approximate them to be Gaussian distributed and then
treat them analogously to systematic uncertainties using the method described
in partII .
This approach will be followed when taking into account the statistical uncer-
tainty for the signal efficiency estimate for the most vertical bin. The statistical
uncertainty in the background estimate will be neglected. The justification for
neglecting the statistical uncertainty in the background estimate can be found
in figure 5 in paper II (see partII ). Uncertainties of up to∼ 40 % hardly have
any effect on the confidence interval for the relevant levels of background per
bin (∼ 2.0) and number of observed events (∼ 1-2).

A remark on neutrino oscillations The results presented here are calculated
assuming that no neutrino oscillations are present. This is motivated from the
fact that current models of cosmic neutrino production do not take into account
neutrino oscillations.
A modification for neutrino oscillations results merely in a multiplicative fac-
tor. For current estimates on the oscillation parameters (near maximal mixing,
δm2 ∼ 103eV2) the long baselines (∼ Mpc) over which the neutrinos are ob-
served lead to an approximate equipartition of flavors. The flavor ratio which
at the source isνe:νµ:ντ ∼ 1:2:0 will be 1:1:1 at the detector.



116 CHAPTER 6 RESULTS

6.6 Flux limits

6.6.1 Grid search

From the number of observed events and the expected off-source bin back-
ground, we calculate a 90 % upper limit on the signal flux with aE−2 spec-
trum. The confidence interval calculation is performed using the Feldman &
Cousins prescription [96] including the systematic uncertainties in a fashion
which is described in detail in partII of this thesis. The limit for each zenith
band averaged over right ascension is in general comparable to the sensitivity
which is expected in the case of no or few sources. Figure6.19exemplifies
this for one of the four grids.
Figure6.20presents the neutrino limits for each of the grid cells. Muon flux
limits can be obtained from these multiplying the neutrino limits by the ratio
of the respective effective areas, see figure6.9.

FIGURE 6.19: The estimated sensitivity (solid line) compared to the average
limit obtained for each zenith band (dashed line) in the lid grid
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FIGURE 6.20: The neutrino flux limits for each cell of the four grids. Note for
the zenith band at horizon, that the bin size is only half of the bin size in the
null grid, therefore the relatively bad limits for this band.



118 CHAPTER 6 RESULTS

6.6.2 Selected sources

Table 6.6 summarises the limits on the muon and neutrino flux for 20 pre-
selected sources. The most stringent upper limit is for the TeV blazar 1ES

Candidate Dec [◦] R.A. [h] nobs b Φν
90 Φµ

90

TeV Blazars
Mrk 421 38.2 11.07 2 2.92 3.7 3.2
Mrk 501 39.8 16.90 4 2.99 7.6 6.5
H 1426+428 42.7 14.48 0 2.60 1.2 1.0
1ES 2344+514 51.7 23.78 3 1.88 8.7 6.4
1ES 1959+650 65.1 20.00 1 2.92 2.7 1.7
3C 66A 42.9 2.38 4 2.48 9.1 7.1
GeV Blazars
QSO 0528+134 13.4 5.52 2 2.05 7.3 8.6
QSO 0235+164 16.6 2.62 1 2.02 4.1 4.8
QSO 1611+343 34.4 16.24 7 2.52 16.6 14.2
Microquasars
SS 433 5.0 19.20 0 0.98 13.5 19.9
GRS 1915+105 10.9 19.2 1 1.73 5.4 6.5
GRO J0422+32 32.9 4.36 1 2.60 2.4 2.0
Cygnus X1 35.2 19.97 2 2.64 4.6 3.9
Cygnus X3 41.0 20.54 2 2.49 5.2 4.0
XTE J1118+480 48.0 11.30 1 2.71 2.2 1.7
Ci Cam 56.0 4.33 5 2.49 12.5 9.2
LS 1 +61 303 61.2 2.68 2 2.87 4.6 4.3
SNRs
SGR 1900+14 9.3 19.12 1 1.44 6.6 9.9
Crab Nebula 22.0 5.58 3 2.18 9.2 9.0
Cassiopeia A 58.8 23.39 5 2.50 10.4 6.9

TABLE 6.6: Neutrino and muon flux limits on selected sources in units of
10−7GeVcm−2s−1 (neutrino flux) and 10−15cm−2s−1 (muon flux). The muon
limits are calculated for a neutrino spectrum ∝ E−2

ν and integrated above Eν =
10 GeV.

1426+428 with 1.2·10−7GeV cm−2s−1. This stringent limit is due to a down-
ward fluctuation of the background. The limit is a about a factor 5 below the
sensitivity at that zenith angles.
For the GeV blazar QSO 1611+343, we find 7 events over a background of
2.52, which results in a two sided confidence interval with 1.1< µs < 13.50
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(including systematic uncertainties). This should not be confused with having
detected a source. Following a similar reasoning as presented in the previous
section, we would require at least 10 events over an expected background of
2.52 for the detection of a source. Therefore, we present here only the upper
limit of the interval.
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6.7 Discussion & outlook

Figure6.21shows the sensitivity (including systematic uncertainties) and the
detection threshold achieved in the present analysis together with a number of
current models for cosmic neutrino production (see section2, figure 2.3 for
reference). As can be seen the sensitivity of the present analysis is roughly
1 - 2 order of magnitudes from the most optimistic models for AGN neutrino
production. A previous point source search performed in 1997 with essentially
the same detector configuration [82] has achieved a sensitivity which at best is
about a factor 1.7 worse1 than the one achieved in the present analysis.
Of course there are aspects of the present analysis, which could be improved.
A single most significant improvement would be the implementation of a SVM
which can treat weighted events, making it possible to optimise on aE−2 neu-
trino spectrum, which would probably improve the sensitivity by about 15 %
(see figure5.15in section5).
It is obviously unfeasible to test all possible combinations of variables as input
to the SVM, so there might be a combination which yields better results. We
tested 5 sets of variables which have been preselected for separation power and
chose the one with the best performance. It seems difficult to think of addi-
tional combinations which lead to major improvements.
The sensitivity shown in figure6.21 is not strictly valid for the whole zenith
range. For example, in the zenith range below 100 degrees the sensitivity rises
by a factor of 2, and for the zenith range between 140 and 160 degrees it rises
by about a factor 1.2. For the very shallow angles, it will be difficult to achieve
a strong improvement, a possible suggestion might be to remove the initial cut
on the zenith of the first reconstruction, but no big effects are expected2. A
detailed study of the background between 140 and 160 degrees is necessary
to achieve an improvement in these region, but is not expected to lead to an
improvement by more than 20 %.
The presence of a∼ 40 % systematic uncertainty on the signal efficiency leads
to roughly a 20 % worse sensitivity with respect to what would have been ob-
tained without uncertainties. To get an improvement in the sensitivity by trying
to reduce the systematic uncertainty is difficult: to reduce the effect on the sen-
sitivity to 10 % for example would require an improvement of our knowledge
of the signal efficiency by about 20 %.
The AMANDA-B10 detector has been operational from 1997-1999, thus a
large improvement will be achieved by combining those years. Since in the

1recall that worse means higher sensitivity
2for AMANDA-II the larger lever arm for shallow angles leads to a significant improvement
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FIGURE 6.21: The 90 % confidence level sensitivity and the detection thresh-
old compared to a variety of cosmic neutrino source models (see figure 2.3
for reference). The sensitivity and detection threshold is here averaged over
zenith angles between 110◦ and 150◦ degrees. Also included are the sensi-
tivities achieved by analyses of the data taken with the AMANDA-B10 array in
1997 [82], the AMANDA-II array in 2000 [84] and the predicted sensitivity for
the IceCube detector [15].
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background dominated domain the sensitivity scales with
√

Tlive, an improve-
ment by atbetween a factor 1.7 and 3 can be expected.
It should be mentioned that the 19 string array AMANDA-II has been opera-
tional since 2000. With this array a point source search has been performed
for data taken in 2000 [84].
This analysis, which strategically is rather similar to the one presented in this
thesis, results in a sensitivity which is about a factor 3 smaller than the one
of the present analysis. AMANDA-II data taken in the years 2000 to 2002 is
currently being analysed. Combining the B10 analyses of the years 1997-1999
with the AMANDA-II analyses of 2000-2002 will conservatively yield a sen-
sitivity within a factor 2 of the most optimistic predictions of cosmic neutrino
production. The sensitivity of IceCube is predicted to be sufficient to rule out
or confirm models of AGN production [15] (see figure6.21).
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CHAPTER 7

Introduction

Often the goal of experiments in physics is to estimate the parameters of a
probability density function (PDF) from which experimental results are drawn.
Apart from the estimate of the parameter, one must also give the corresponding
uncertainty in order to judge the quality of an experimental result. This uncer-
tainty is quantified in terms ofconfidence intervalsandconfidence levels. For
a given confidence interval, the higher the confidence level, the more reason to
believe that the true value lies within the interval. Vice versa, for a given confi-
dence level, the smaller the confidence interval the more precise estimate of the
parameter has been obtained. Generally, confidence intervals should include
statistical as well as systematic uncertainties. A method to include systematic
uncertainties into the calculation of confidence intervals is the main subject of
this part of the thesis. The part is organised as follows: the next chapter gives a
short review of the statistics of confidence intervals as they are used in particle
physics. Section9 is devoted to a summary of the four papers in which the
method is developed (papers I & II), its statistical properties are examined (pa-
per III) and its technical implementation is documented (paper IV). The final
section gives a short discussion and an outlook.
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CHAPTER 8

Confidence intervals in particle
physics

Within mathematical statistics there are two fundamentally different approaches
to probability which reflect themselves in the way confidence intervals are
calculated. On the one hand there is Bayesian statistics. Here probability is
defined as “degree of belief”. Given a confidence interval[s1, s2], there is a
certain degree of belief that the true value of the parameter lies within the inter-
val. This degree of belief is called theconfidence level, denoted as 100(1-α)%,
where common choices ofα are 0.1, 0.05 or 0.01.
Mathematically, this definition of probability allows to calculate the confidence
intervals in terms of the likelihood function for different hypothesis under con-
dition of the observed data:

1− α =
∫ s2

s1

P (s|n◦)d s (8.1)

HereP (s|n◦) is the likelihood for parameters, given the observationn◦.
On the other hand, there is the frequentist approach to probability. Here prob-
ability is defined in terms of repeated experiments. The probability for the
outcomen◦ in a given experiment is:

P (n◦|s) = lim
N→∞

N
exp
n=n◦(s)

N
(8.2)

whereN is the total number of experiments,N
exp
n=n◦ is the number of experi-

ments which result in the measurementn◦ ands is the parameter of the PDF.
Since in frequentist statistics the parameter of the PDF is fixed (although un-
known) it can not be treated as a random variable unless it is possible to define
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it in terms of repeated experiments. An integration in hypothesis space (as
given in equation8.1), therefore does not make sense. Obviously, this makes
calculation of confidence intervals much more complicated, since still the goal
remains to make statements about the probability of hypotheses.
Neyman [107] proposed in 1937 a scheme to construct confidence intervals
without having to integrate the likelihood function (see paper II for a detailed
description of this algorithm). Instead of making statements about the proba-
bilities of hypotheses, statements are made about the set of intervals which is
obtained from an ensemble of repeated experiments. The construction seeks
to calculate confidence intervals which are members of a set which contain the
true value of the parameter in100(1−α)% of all cases. If the construction suc-
ceeds the resulting intervals are said to havecorrect coverage. In other words,
given the true value of the parameterstrue, 100(1−α)% of all experiments will
give a confidence interval which includesstrue. Since we do not know the true
value, the algorithm has to fulfill this requirement for all possible values ofs.
One feature of the Neyman construction is, that it has to be chosen in advance
whether a discovery is going to be announced or whether an upper limit will
be reported. In practice, this choice will be made based on the observation.
For example, an experimentalist who detects a large excess will not be willing
to report an upper limit, on the other hand, one can not report a discovery if
the number of events is compatible with the expected background.
This constitutes a problem of the Neyman construction, since it distorts the
ensemble of experiments which is used to construct the confidence intervals in
the sense that the requirement of correct coverage is no longer fulfilled.
A solution to this problem has been (re-)discovered in 1998 by Feldman &
Cousins [96]. This scheme is based on the likelihood ratio hypothesis test
[108], where for each possible pairs, n of parameter and experimental out-
come the ratio between the likelihood for the testeds and the likelihood for
the parameters being most compatible with the observationn is calculated
and then used in the construction of the confidence interval. It turns out that in
this scheme, confidence intervals switch from one sided (upper limits) to two
sided (discovery) by construction, hence preserving correct coverage. This
scheme will be referred to aslikelihood ratio scheme.
However, also the likelihood ratio scheme has one major drawback. Consider
a Poisson process with known background. If the number of observed events
is significantly below the expected background, the reported limit will be more
stringent than in the case that an experiment has observed a number of events
compatible with background. While this is consistent with frequentist statistics
(as long as what is detected is a downward fluctuation of the background), it is
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often considered counter-intuitive and undesirable. Other schemes have been
proposed to solve this problem by normalizing the distribution of events taking
into account the fact that the number of background events cannot have been
larger than the number of events actually observed [109]. It has however been
shown (for example in paper III) that those schemes do not fulfill the require-
ment of correct coverage and can therefore not be recommended. This method
will be referred to aslikelihood ratio scheme with conditioning.
The likelihood ratio theme is the present standard in particle physics. The
problems with frequentist intervals presented above are absent in Bayesian
statistics, so a reasonable question is why not Bayesian statistics is chosen in-
stead. The reasons are mainly philosophical. Apart from the fact thats should
not be treated as a random variable (unless definable in terms of repeated ex-
periments) in general the functionP (n|s), i.e. the probability of making an
observationn given the hypothesiss is known, whereas what we like to know
is the functionP (s|n). To go from the former to the latter Bayes’ theorem
has to be applied, which states thatP (s|n) ∝ P (n|s) × P (s). This means,
the a priori probability,P (s) of the hypotheses has to be known or assumed,
introducing a certain amount of subjectivity or bias.
This far the statistics of confidence intervals have been discussed from a stand-
point where there are no experimental uncertainties or where they are negligi-
ble with respect to the statistical uncertainties.
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CHAPTER 9

Summary of the papers

Consider the case in which a confidence interval is to be constructed for the
parameters of a PDFP (n|s, ε), where the experimental outcome depends not
only ons, but also on another parameter1, here calledε. Since the task is pri-
marily to constrains, this parameter will be referred to asprimary parameter,
parameters such asε will be referred to asnuisance parameters. Nuisance pa-
rameters are the parameters in which systematic uncertainties are present, for
example the experimental detection efficiency or the background prediction.

9.1 Bayesian method and algorithm (paper I)

Paper I describes the first attempts to solve the problem of including system-
atic uncertainties in the calculation of confidence intervals. The main idea is a
convolution of the PDF representing the statistical process with a PDF param-
eterising the the systematic uncertainties in the nuisance parameters, or more
formally:

P (n|s, ε) →
∫

P (n|s, ε′)P (ε′|ε)dε′ (9.1)

here the integration is performed over an interval suitable for the range of the
nuisance parameter. This way of treating systematic uncertainties is Bayesian,
since the integral is in all possible true values ofε′ given the assessmentε.
This method is therefore a natural extension of the Bayesian method to cal-
culate confidence intervals which was recommended by the PDG before 1998
[110]. In paper I, building on [111], a Monte Carlo algorithm is described per-
forming the PDG calculation with a PDF like the one given in equation9.1,

1one additional parameter is assumed for simplicity.
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i.e. a convolution of the statistical process (a Poisson process) and a PDF de-
scribing the uncertainties. The method takes into account uncertainties in the
background prediction with a Gaussian parameterisation and uncertainties in
the effective area (signal efficiency) with a flat or Gaussian parameterisation.
Several applications of this method are discussed and a first attempt at the fus-
ing of the Bayesian treatment of the uncertainties with a frequentist construc-
tion of confidence intervals is presented. It is speculated about the differences
in the two different implementations (PDG and frequentist construction).
Since the PDG method is currently disfavoured (see discussion in the previous
section), after having completed this note we focused entirely on frequentist
confidence interval calculation.

9.2 The generalized Cousins & Highland method (pa-
per II)

In 1992, a method was presented by Cousins & Highland [112] which included
a Gaussian uncertainty in the signal efficiency in a Neyman construction of
confidence intervals by replacing the Poisson distribution describing the phys-
ical process by the convolution given in equation9.1. The combination of the
frequentist treatment of the primary parameters and the Bayesian treatment of
the nuisance parameters is often referred to assemi-Bayesian. In paper II the
method proposed in [112] is generalized to take into account uncertainties in
the prediction of background processes, uncertainties in the signal detection
efficiency and background efficiency and to allow for a correlation between
the signal and background detection efficiencies. Furthermore, the method is
implemented with the (currently recommended) likelihood ratio scheme with
and without conditioning. The generalized method utilizes Monte-Carlo inte-
gration which makes implementation of other parameterisations of uncertain-
ties simple. This method will be referred to as Generalized Cousins-Highland
(GCH) method.
Figures 4 and 5 of paper II show the effect of introducing uncertainties in
the signal and background efficiencies into the interval calculation for differ-
ent combinations of background expectation and number of observed events.
A general result is that the confidence interval becomes wider with increas-
ing uncertainties. However, in cases where there are significantly less events
observed than expected from background, the interval’s width decreases with
increasing uncertainty for the likelihood ratio scheme. Examples for this be-
haviour are given in table 3 of paper II. In cases where negative values of
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the nuisance parameter are unphysical (like for example in case of detection
efficiency), it might be reasonable to choose a log-normal distribution for de-
scribing the uncertainties instead of a truncated Gaussian distribution. This
choice seems to have little effect on the confidence interval for uncertainties
smaller than∼ 40%.
The GCH method is compared to an approximative calculation. Assuming a
Gaussian uncertainty, the logarithm2 of the likelihood ratio between the like-
lihood for the outcome under the present hypothesis and the likelihood under
the hypothesis which best explains the data forms aχ2 distribution, which can
be converted into confidence limits. It is found, that the intervals found by the
χ2 approximation generally are larger, implying that they are more conserva-
tive (for a given ensemble of experiments).
The most important property of confidence intervals is the coverage (see previ-
ous section). A first attempt is made in paper II to calculate the coverage of the
GCH intervals. Two different ensembles are considered: an ensemble where
the nuisance parameters are fixed at the nominal (estimated) value and one en-
semble where the true value of the nuisance parameter is varied according to
a Gaussian PDF centered on the estimated value of the nuisance parameter.
With respect to the former ensemble, the presented method leads to increasing
over-coverage with increasing uncertainties. With respect to the latter there
is no over-coverage (except for the unavoidable over-coverage caused by the
discrete nature of the Poisson distribution). It is noted that both ensembles can
only be seen as approximations to the ensemble with respect to which cov-
erage should be preserved: the one where the nuisance parameter should be
measuredfor each experiment
Two applications are presented from high energy neutrino astrophysics to illus-
trate the importance of including systematic uncertainties in the calculation of
confidence intervals. The AMANDA neutrino telescope has recently published
limits on cascades from the diffuse flux of cosmic neutrinos in the energy range
between 5 TeV and 300 TeV [11]. Based on zero detected events compared to
an expected background of 0.01 events, the 90 % confidence level was calcu-
lated. The background expectation is based on Monte Carlo simulations which
are estimated to have a 30 % Gaussian uncertainty. The systematic uncertainty
of the signal efficiency was estimated from detector simulations to be Gaus-
sian and∼ 25 %. Using the GCH method to include systematic uncertainties
the finally published limit is about 10 % higher than it would have been if the
systematic uncertainties were negligible.

2in equation 9 of paper 2 the logarithm unfortunately has been lost.
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Another example concerns results published by AMANDA on searches for
super-symmetric dark matter in the form of weakly interacting massive parti-
cles (WIMPS) [13]. Here the uncertainties in signal efficiency are estimated to
range from 10 % to 25 % depending on the assumed signal spectrum. Corre-
lated with signal detection efficiency there is an additional detection efficiency
uncertainty for the background, estimated to be∼ 20 %. Finally, the uncer-
tainty in the overall normalization of the atmospheric neutrino flux (which con-
stitutes the background) has to be added. The final limit including systematic
uncertainties can be seen in figure 14 of paper II.

9.3 The coverage of the GCH method (paper III)

From a frequentist point of view, an algorithm is said to have the correctcov-
erageif, given a confidence level 100(1−α)% and a large number of repeated
identical experiments, it provides correct answers in 100(1−α)% of the cases,
independent of the value ofs. In paper III, the coverage of the method de-
veloped in paper II is studied using two different approaches. One approach
considers an ensemble strictly in accordance with above stated definition of
coverage, i.e. an ensemble consisting ofidentical experiments. In this case,
the coverage can be calculated analytically. In the other approach, the defini-
tion is modified to hold for similar experiments, meaning for an ensemble of
experiments with varying nuisance parameters. Calculations of coverage for
this ensemble have been done using Monte Carlo simulations. Figure 1 in pa-
per III shows the identical-ensemble-coverage for the likelihood ratio scheme.
Flat, Gaussian and log-normal parameterisations of systematic uncertainty are
investigated for different sizes of the uncertainties. Apart from the see-saw
behaviour of the coverage which is caused by the discrete nature of the Pois-
son distribution, the coverage is constant with signal expectation. Generally
the likelihood ratio scheme leads to over-coverage even without uncertainties.
The GCH method causes increased over-coverage, especially for higher signal
expectations. The effect is smaller for a flat parameterisation than for Gaussian
and log-normal distributions.
Figure 2 in paper III shows the same for likelihood ratio scheme with condi-
tioning applied. It is noteworthy, that introducing conditioning leads to under-
coverage for certain signal expectations also without uncertainties. Otherwise,
inclusion of uncertainties has similar effects as in the case of likelihood ratio
scheme without conditioning.
Figure 3 of paper III shows the mean coverage for a similar-experiments-
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ensemble, where the mean has been taken over different signal expectations
and constant background expectation. Here the true efficiency is drawn from
a Gaussian distribution for each experiment. With respect to this ensemble no
additional over-coverage is introduced.
A realization of the similar-experiments ensemble could be an ensemble of ex-
periments in which the detector is “rebuilt” with as a result slightly different
efficiencies for each repetition. However, in particle physics the ensemble is
one, where the true efficiency is fixed but unknown, but where the assessment
of the efficiency is uncertain. To represent this ensemble by Monte Carlo, the
measuredefficiency has to be drawn from a distribution for each experiment.
Since in this case the construction has to be performed for each Monte Carlo
experiment, the implementation of this test is computationally more cumber-
some. Preliminary studies presented in paper III reveal an increase of coverage
from 92 % to 94 % for two different signal expectations (true signal equals 3
and 6, no background) which seems to indicate that the GCH method leads to
moderate over-coverage with respect to this ensemble.

9.4 A routine for confidence interval calculation (pa-
per IV)

Paper IV gives a technical summary and serves as a short user manual for
the FORTRAN routine which has been developed to perform the confidence
interval calculations described in the preceding sections.
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CHAPTER 10

Outlook

The method to incorporate systematic uncertainties in the calculation of confi-
dence intervals is convenient, has well defined statistical properties and gives
intuitive results for most cases. The few cases, where the method gave counter-
intuitive results (smaller intervals with increasing uncertainties), inspired [113]
to suggest a modification to the method where the averaging over the nuisance
parameters is only done in the numerator of the likelihood ratio, whereas the
denominator is maximised with respect to the nuisance parameters. While
this method gives intuitive results in all tested cases, it is argued here that the
suggested modification is at best only half way to a better, fully frequentist
method.
Within the theory of likelihood ratio hypothesis testing nuisance parameters are
included by maximising both the numerator and the denominator of the likeli-
hood ratio. This is the so called profile-likelihood method, which constitutes
a fully frequentist method to treat systematic uncertainties, see [108]. Thus,
it is realized that the suggested modification is a hybrid between the method
treating the systematics in a Bayesian way and a fully frequentist treatment of
the nuisance parameters. Conceptually, this is unsatisfactory: in the original
method the nuisance parameters are treated in a Bayesian way, whereas the
primary parameter is treated in a frequentist way.
To get rid of the conceptual ambiguities present also in the method presented
in papers II and III, the profile likelihood method seems to be the next step.
This method is so far largely unexplored within the particle physics commu-
nity, though there are claims [114] that it provides correct coverage in all cases.
Certainly, conclusive result on the profile likelihood method require further in-
vestigation.
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Part III

AMANDA-II and neutrino
oscillations
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CHAPTER 11

11.1 Introduction

In this chapter an assessment of the sensitivity of AMANDA-II to neutrino os-
cillations in the beam of atmospheric neutrinos is presented. This work was
performed prior to the actual completion of AMANDA-II, therefore relies on
detector simulations incorporating the best knowledge about the AMANDA-II
detector at that point. The work presented here is based on two AMANDA
internal notes [115] and [116], here we will give a short summary only.

In the approximation that only two neutrino flavors mix with each other, the
probability that a neutrinoν of flavor i (e,µ,τ ) will turn into one of a different
flavor i′ is given by:

P (νi → νi′ 6=i) = sin2 2θ sin2

(
1.27∆m2 L(km)

Eν(GeV)

)
(11.1)

θ being the mixing angle,∆m2 the squared mass difference in eV2 of the two
mass eigenstates that build the flavor state, L the distance of the source to the
detector andEν the neutrino energy. Any experiment covering a range of val-
ues of E and/or L should therefore be able to measure the mass difference.

11.2 Neutrino oscillations in AMANDA-II using con-
tained events

In a first study, we concentrated on atmospheric neutrino induced muons com-
pletely contained in the AMANDA fiducial volume. For contained events, in
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principle, a calorimetric measurement of the neutrino energy should be possi-
ble by exploiting the relation between the total light yield and the number of
OMs with a hit:

Eν = a×Nom + b (11.2)

The energy resolution will in this case be given by the statistical uncertainty in
the number of OMs with a hit, i.e.∝ √

Nom.
The energy resolution was in this study determined by simulating contained
muons in a generic AMANDA-II detector with 20 strings. The simulated de-
tector consisted of the (at that time already existing) B10 core and 10 additional
strings. Three different spacings of OM were simulated for these additional
strings (10, 15 and 20 m).
The energy resolution for contained muons was found to be:

σ(Eµ)
Eµ

∼ 2√
Eµ

(11.3)

For neutrinos the resolution will be even worse, since due to its localised topol-
ogy of the hadronic shower only contributes insignificantly (with∼ 1 hit) to
the multiplicity 1.
Even assuming it would be possible to achieve a similar resolution for the neu-
trino as for the muon, it was found that (with oscillation parameters∆m2 =
2.2 · 10−3eV2 andsin2 θ = 0.9) the resolution is not sufficient to allow a map-
ping of the energy spectrum.
In a next step, we calculated analytically the number of contained events in the
AMANDA detector in order to assess the possibility of performing a counting
experiment. This is done by integrating the equation:

dNµ

dEν
= φν(Eν)P (νi → νi′ 6=i)× 1

2

(
dσνN→µX

dEµ
+

dσν̄N→µX

dEµ

)
(11.4)

×ρNa ×∆t× Leff
µ (Eµ)×∆A

whereφν is the neutrino flux,σ the differential (anti)neutrino-nucleon cross
section,∆t is the running time,ρ is the ice density, Na ,Avogadro’s number
andLeff

µ ∆A is the geometrical volume for contained events.P (νi → νi′ 6=i) is
equal to unity for the case of no oscillations and given by equation11.1in case
of oscillations.
The integration boundaries are determined by the lower energy threshold for
muon detection and the containment requirement. The result is shown for
some selected muon detection thresholds in table11.1 For a comparatively

1however, this hit might have a large ADC
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E◦
µ (GeV) Nevents Nosc

events

10 73 37

20 28 10

30 14 2.5

40 8 0.7

TABLE 11.1: Number of contained events with and without flavor oscillations
in a 9 month exposure of AMANDA-II.

low threshold ofE◦
µ ∼ 20 GeV there is a 3σ effect. Note, however, that we

did not include detection efficiency into the calculations and since count rates
are very low, detecting sufficient statistics of contained events seems a difficult
if not impossible task.

11.3 Neutrino oscillations in AMANDA-II using zenith
angle distribution

In the previous section, the sensitivity to neutrino oscillations was assessed
concentrating on contained events. Since the probability for oscillations de-
pends on the path length from the production site of the neutrino to the de-
tector, the zenith distribution of atmospheric neutrinos in AMANDA should
be influenced as well. In this section we study the sensitivity of a 19 string
AMANDA-II detector towards a distortion of the angular spectrum of atmo-
spheric neutrino induced muons. The analysis proceeds as follows:

• The distribution of reconstructed zenith angle,Θ, is weighted with the
corresponding oscillation probability, see equation11.1. Here it should
be noted that the path-length,L, depends on the zenith angle. This is
done for a grid of30× 50 points in the(sin2 Θm, ∆m2) plane.

• for each point in the(sin2 Θm,∆m2) plane we randomly draw 100
pseudo-measurements from a Poisson distribution.

• a χ2 is calculated for the two distributions normalised to each other in
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an angular rangeΘ > 110◦:

χ2 =
∑

i

(nosc
i − nnoosc

i )2

nnoosc
i

(11.5)

The detector was considered sensitive to a certain combination of oscillation
parameters if theχ2 was bigger than theχ2 corresponding to 90 % (95 %, 99
%) confidence levels in 80 % of all pseudo-measurements.
Since the AMANDA-II efficiency for atmospheric neutrino detection was un-
known we repeated the above procedure for a couple of assumptions on the
efficiency. Figure11.1shows the sensitivity contour for the full level 2 effi-
ciency for atmospheric neutrinos as well as the sensitivity contour assuming a
reduction to 20, 30 and 40 % of the efficiency at level 2. Since the year 2000
AMANDA-II is operational. It is impossible to directly compare the predic-
tions made in this study with the atmospheric neutrino efficiency reached in
the real detector. For example, we simulated a detector with trigger threshold
of 18 hits, whereas the real AMANDA-II threshold is set to 24. The loss in
efficiency for low energy events caused by the high trigger threshold affects
especially the sensitivity to neutrino oscillations since they are most effective
at low energies. Also we assumed efficiencies with respect to a level 2 pre-
trigger, which was inspired by the B10 analysis. The AMANDA-II level 2
actually used is different from the assumptions we made in this study. The
AMANDA-B10 efficiency for atmospheric neutrinos with respect to level 2
was about 10 %, thus clearly below the efficiency necessary to be sensitive to
neutrino oscillations. For AMANDA-II it is most probably not much larger
than that.
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FIGURE 11.1: The 90 % (95 %,99 %) confidence level sensitivity regions for
AMANDA-II with efficiency comparable to the level 2 efficiency (upper) and the
level 2 efficiency reduced to 20, 30 and 40 % (lower). Also included is the sen-
sitivity that ANTARES claims to have [117] based on Monte Carlo simulations
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