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Abstract

The color transparency phenomenon refers to the suppression of final-state inter-
actions of a hadron propagating through the nuclear medium at large momentum
transfer when the hadron is produced with small transverse size. The pion elec-
troproduction cross section from 1H, 2H,12C, 63Cu and 197Au targets from Q

2 =
1.1 to 4.8 (GeV/c)2 was measured in Jefferson Laboratory Experiment E01-107. The
nuclear transparency was formed by the ratio of (σA/σH) from the data and (σA/σH)
from a model of electroproduction from nuclei that does not include π N final state
interactions. A signature of color transparency is the enhancement of the nuclear
transparency at large Q

2 compared with predictions based on Glauber multiple scat-
tering theory. This experiment represents the first nuclear transparency data from
(e,e′π+) reactions.

Thesis Supervisor: Haiyan Gao
Title: Associate Professor of Physics

3



4



Acknowledgments

My time at MIT was divided into two major projects, my work for the BLAST exper-

iment (at the Bates Linear Accelerator Center), and the experiment described in this

thesis (at JLab). I am very grateful for the support I received and the opportunities

that were available during this time. I am indebted to seemingly countless people for

what I have accomplished and, first of all, I would like to say thank you to all of these

people.

My supervisor, Haiyan Gao, provided me with many opportunities and I am very

grateful for her support and all she has taught me. When I first joined the MIT

graduate program, Haiyan welcomed me to her research group with dinner at her

home. She also provided many interesting projects to work on, including the laser-

driven target project. I am impressed by her attention to detail and this was crucial

in the success of the laser-driven target project. She encouraged me to attend several

conferences during my time at MIT, including those in Russia, Japan and Hawaii.

These experiences were an adventure and have been invaluable.

I had the pleasure of working closely with Dipangkar Dutta while he was at MIT

and at Duke University. He was a spokesperson for the experiment in this thesis

and he tirelessly answered many questions I had about the running and analysis of

the experiment. He often made time for me in his busy schedule and I especially

appreciate the rapid proof-reading of this thesis. He did this at a particularly busy

time in his life, as it was during his move to Mississippi. He went above and beyond in

giving me support and encouragement, particularly during the times before meetings

and conferences.

The work of many former graduate students contributed to the analysis in this

thesis. The JLab Hall-C experiments on pion electroproduction and the dissertations

by Dave Gaskell (E91-003), Tanja Horn (E01-004) and Jochen Volmer (E93-021)

addressed several key issues, such as modifications that included electroproduction

in the Monte Carlo model, the transport and decay of pions in the simulation,the

procedure for applying coincidence time cuts and the estimation of absorption of

5



pions in the HMS spectrometer.

In addition to Haiyan, I thank the other members of my committee, Bill Donnelly

and Bob Redwine, for making room in their schedules for me and for their sugges-

tions after reading my thesis. They also had many helpful comments since my first

committee meeting and I appreciate the interest they have shown in my work. Thank

you also to my academic adviser, Richard Yamamoto. Richard helped make to sure

I was on track and I always looked forward to our conversations each semester.

My time at MIT would not have been the same without the work of many people

from LNS. Many thanks to Joanne Gregory for organizing everything from my first

office in the penthouse to travel packets; Sandy Tenorio and Sheela Hulsoor for the

conversations and coffee, which helped me get through each day; Michael Grossman

and George Sechen for their help with making and assembling parts for the laser-

driven target project; and, Billy, Cheryl, Elsye, Jack, Jerry, Ken and Pier for making

my time at MIT more enjoyable.

I shared many great experiences with fellow graduate students while taking classes

at MIT and working on experiments at Bates and JLab. Jason Seely has been an

unbelievable source of support, knowledge and friendship. We often worked together

on the same or similar projects and, on many occasions, he went out of his way to pro-

vide assistance. Sometimes this involved the relatively simple answering of questions

about his work, and other times he spent long hours setting up measurements with

the laser-driven target. I learned a lot from Jason while we studied for the qualifying

exams and while I worked on this thesis, as evidenced by the number of references to

his work herein. Chris Crawford very patiently helped bring me up to speed with the

laser-driven target project when I first arrived at MIT. Thank you Chris for showing

me how to work with the various vacuum, electronic, mechanical and control systems

related to this work. The glassblowing was fun too. Thank you also for all of your

help with C++, ROOT and emacs. Tanja Horn helped me get acquainted with the

Hall-C software and analysis when I first arrived at JLab and continued to help me

through to the final results. Tanja was very thorough in her analysis and many of

the methods she developed appear in this work, such as the tracking efficiency for

6



two-track events and the calculation of the pion absorption in the spectrometer win-

dows. Thank you to Xin Qian who is analyzing the L-T separation results and has

checked various parts of my work. Xin has been very good at coming up with fresh

ideas in this complicated analysis. Thank you to Brad, Adam, Aaron, Sean, Yuan,

Chi, Wang, Nik and Vitaliy and many other graduate students who have helped me

through this experience.

My family, on both sides of the world, have been a continuous source of support.

My wife, Debbie, has been very understanding in my pursuit of a PhD and I don’t

know where to start with how to express my gratitude. Thank you for being a part

of the stressful times and the cheerful times, and for being understanding when I

needed to work long hours on my thesis. My family in Australia have given me

many opportunities that led to this point in my life. I thank my parents, Frank

and Anne, my sister, Kyla and my brother, Shane, and his wife, Hannah, for their

encouragement, and the constant supply of VegemiteTM. My family in the US have

been wonderful and have helped me enjoy my life outside of MIT. Thank you Dan,

Vivian, Merith, Brook and Irving for your interest, support and generosity. A special

thanks to Dan, Vivian and Merith for suffering through the 1 1/2 hour defense of my

dissertation.

7



8



Contents

1 Introduction and Physics Motivation 19

1.1 Color Transparency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2 Expansion models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4 Previous measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.5 Advantage of using pions . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.6 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.7 Pion electroproduction cross section . . . . . . . . . . . . . . . . . . . 31

1.8 Quasifree pion electroproduction model . . . . . . . . . . . . . . . . . 33

1.9 Models for the energy of the proton . . . . . . . . . . . . . . . . . . . 35

1.10 Spectral functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.11 Glauber scattering theory . . . . . . . . . . . . . . . . . . . . . . . . 38

1.12 Models of color transparency . . . . . . . . . . . . . . . . . . . . . . . 40

1.13 Background processes and other considerations . . . . . . . . . . . . . 42

1.13.1 Pauli blocking . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

1.13.2 Pion absorption in nuclear matter . . . . . . . . . . . . . . . . 43

1.13.3 n-N final-state interactions . . . . . . . . . . . . . . . . . . . . 43

1.13.4 Multiple-pion production . . . . . . . . . . . . . . . . . . . . . 44

1.13.5 Rescattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

1.13.6 Pion pole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

1.13.7 Pion excess . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

1.13.8 Medium modification of nucleons . . . . . . . . . . . . . . . . 47

9



1.13.9 Spectroscopic strength . . . . . . . . . . . . . . . . . . . . . . 48

2 Experimental Apparatus 49

2.1 Accelerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.2 Hall C Arc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.3 Target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.4 Spectrometers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.4.1 High-Momentum Spectrometer (HMS) . . . . . . . . . . . . . 56

2.4.2 Short-Orbit Spectrometer (SOS) . . . . . . . . . . . . . . . . . 57

2.4.3 Detector packages . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.4.4 Trigger configuration . . . . . . . . . . . . . . . . . . . . . . . 60

2.5 Kinematic settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3 Data analysis 65

3.1 Event reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.1.1 SOS optics matrix . . . . . . . . . . . . . . . . . . . . . . . . 67

3.1.2 SOS saturation corrections . . . . . . . . . . . . . . . . . . . . 68

3.2 Event selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3 Coincidence blocking correction . . . . . . . . . . . . . . . . . . . . . 76

3.4 Synchronization correction . . . . . . . . . . . . . . . . . . . . . . . . 77

3.5 Random coincidence subtraction . . . . . . . . . . . . . . . . . . . . . 79

3.6 Scintillator 3-out-of-4 and trigger efficiency . . . . . . . . . . . . . . . 81

3.7 Dead time corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.8 Tracking efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.9 Particle absorption in the spectrometers . . . . . . . . . . . . . . . . 87

3.10 Charge-normalized yield . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.11 Target boiling check . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.12 Cell wall subtraction for liquid targets . . . . . . . . . . . . . . . . . 89

4 Simulation of the experiment 93

4.1 Pion decay, multiple scattering and energy loss . . . . . . . . . . . . . 94

10



4.2 Coulomb corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.3 Final-state interactions . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.4 Pauli blocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.5 Radiative corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.6 Collimator punch-through . . . . . . . . . . . . . . . . . . . . . . . . 107

4.7 Monte Carlo equivalent yield . . . . . . . . . . . . . . . . . . . . . . . 109

4.8 Multiple-pion production simulation . . . . . . . . . . . . . . . . . . . 110

4.9 e p elastic scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.10 Iteration of the model cross section . . . . . . . . . . . . . . . . . . . 116

4.11 Bin centering and experimental cross sections . . . . . . . . . . . . . 120

5 Results 123

5.1 Nuclear transparency . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.2 Error analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.3 Results from additional kinematic settings . . . . . . . . . . . . . . . 135

5.4 Results using different analysis options . . . . . . . . . . . . . . . . . 138

6 Summary and Outlook 147

A Experimental and Monte Carlo distributions 149

11



12



List of Figures

1-1 Proton-hadron total cross section. . . . . . . . . . . . . . . . . . . . . 21

1-2 Factorization in deep-exclusive meson production . . . . . . . . . . . 24

1-3 Transparency from A(e, e′p) quasielastic scattering . . . . . . . . . . . 25

1-4 Electroproduction ρ
0 mesons. . . . . . . . . . . . . . . . . . . . . . . 27

1-5 Transparency from 4He(γ, π
−
p) . . . . . . . . . . . . . . . . . . . . . 28

1-6 Pion electroproduction kinematics . . . . . . . . . . . . . . . . . . . . 30

1-7 Born diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1-8 Schematic of quasifree pion electroproduction . . . . . . . . . . . . . 34

1-9 Diagram for the kinematics model . . . . . . . . . . . . . . . . . . . . 35

1-10 Schematic of a Glauber scattering calculation. . . . . . . . . . . . . . 38

1-11 π
+

N cross sections from the Particle Data Group. . . . . . . . . . . 39

1-12 Glauber transparency simulation for πCT . . . . . . . . . . . . . . . . 40

1-13 Calculation of the nuclear transparency by B. Kundu et al.. . . . . . 42

1-14 Rescattering diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

1-15 t dependence of the rescattering cross section in ρ
0 photoproduction. 46

1-16 EMC effect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2-1 Schematic of the electron accelerator . . . . . . . . . . . . . . . . . . 50

2-2 Top view of the Hall C beam line . . . . . . . . . . . . . . . . . . . . 51

2-3 Histogram of the fast raster position . . . . . . . . . . . . . . . . . . 52

2-4 Schematic of the target ladder . . . . . . . . . . . . . . . . . . . . . . 54

2-5 Side view of the HMS . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2-6 Configuration of the detectors in the HMS . . . . . . . . . . . . . . . 57

13



2-7 Side view of the SOS . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2-8 Single-arm trigger electronics configuration . . . . . . . . . . . . . . . 61

2-9 Trigger supervisor and coincidence trigger electronics . . . . . . . . . 62

3-1 SOS field correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3-2 SOS saturation correction observed at PSOS = 1.73 (GeV/c) . . . . . 70

3-3 SOS saturation correction parameterization . . . . . . . . . . . . . . . 70

3-4 Acceptance cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3-5 Parameterization of the HMS gas Cerenkov efficiency. . . . . . . . . . 75

3-6 Coincidence blocking correction . . . . . . . . . . . . . . . . . . . . . 77

3-7 Synchronization correction . . . . . . . . . . . . . . . . . . . . . . . . 78

3-8 Coincidence time histogram . . . . . . . . . . . . . . . . . . . . . . . 79

3-9 Coincidence time cut . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3-10 Computer live time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3-11 Electronic live time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3-12 Tracking efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3-13 Target boiling check . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3-14 Dummy target subtraction . . . . . . . . . . . . . . . . . . . . . . . . 90

4-1 Missing mass distributions showing n-N FSI. . . . . . . . . . . . . . . 101

4-2 Pauli blocking model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4-3 Momentum distribution of nucleons in nuclear matter. . . . . . . . . 104

4-4 Pauli blocking correction to the Monte Carlo. . . . . . . . . . . . . . 104

4-5 Feynman diagrams for radiative corrections . . . . . . . . . . . . . . . 106

4-6 Radiative tails in the experiment and Monte Carlo. . . . . . . . . . . 107

4-7 Collimator punch-through events. . . . . . . . . . . . . . . . . . . . . 108

4-8 Multiple-pion production model. . . . . . . . . . . . . . . . . . . . . . 111

4-9 Carbon nuclear missing mass with multiple-pion contribution. . . . . 112

4-10 Copper nuclear missing mass with multiple-pion contribution. . . . . 113

4-11 Experimental and Monte Carlo H(e,e′p) distributions. . . . . . . . . . 115

4-12 Ratio of experimental and Monte Carlo H(e,e′p) normalized yields. . . 115

14



4-13 Convergence of the correction function. . . . . . . . . . . . . . . . . . 117

5-1 Nuclear transparency results vs. Q
2. . . . . . . . . . . . . . . . . . . 124

5-2 Nuclear transparency results vs. Pπ. . . . . . . . . . . . . . . . . . . . 125

5-3 Fitting of the parameterization T = A
α−1. . . . . . . . . . . . . . . . 128

5-4 Plot of α vs. Q
2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5-5 RA,2 super ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5-6 RA,12 super ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5-7 Results from the L-T separations. . . . . . . . . . . . . . . . . . . . . 136

5-8 Nuclear transparency results from the W vs. kπ kinematic setting. . . 137

5-9 Nuclear transparency results from the low-epsilon kinematic settings. 138

5-10 Deuterium missing mass distributions for different models of the proton

energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5-11 Carbon missing mass distributions for different models of the proton

energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5-12 Results with correlations in the spectral function for carbon. . . . . . 143

5-13 Nuclear transparency results using the nucleon missing mass cut. . . . 144

5-14 Nuclear transparency results without Coulomb corrections for the pion. 145

A-1 Hydrogen distributions at Q
2=1.1 (GeV/c)2. . . . . . . . . . . . . . . 150

A-2 Deuterium distributions at Q
2=1.1 (GeV/c)2. . . . . . . . . . . . . . 151

A-3 Carbon distributions at Q
2=1.1 (GeV/c)2. . . . . . . . . . . . . . . . 152

A-4 Copper distributions at Q
2=1.1 (GeV/c)2. . . . . . . . . . . . . . . . 153

A-5 Gold distributions at Q
2=1.1 (GeV/c)2. . . . . . . . . . . . . . . . . . 154

A-6 Hydrogen distributions at Q
2=3.9 (GeV/c)2. . . . . . . . . . . . . . . 155

A-7 Deuterium distributions at Q
2=3.9 (GeV/c)2. . . . . . . . . . . . . . 156

A-8 Carbon distributions at Q
2=3.9 (GeV/c)2. . . . . . . . . . . . . . . . 157

A-9 Copper distributions at Q
2=3.9 (GeV/c)2. . . . . . . . . . . . . . . . 158

A-10 Gold distributions at Q
2=3.9 (GeV/c)2. . . . . . . . . . . . . . . . . . 159

15



16



List of Tables

2.1 Nominal liquid target thicknesses . . . . . . . . . . . . . . . . . . . . 55

2.2 Nominal solid target thicknesses . . . . . . . . . . . . . . . . . . . . . 55

2.3 SOS gas Cerenkov detector configurations . . . . . . . . . . . . . . . 60

2.4 πCT central kinematics . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.1 SOS reconstruction matrices . . . . . . . . . . . . . . . . . . . . . . . 67

3.2 Nominal acceptance cuts . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.3 SOS gas Cerenkov cut efficiencies . . . . . . . . . . . . . . . . . . . . 73

3.4 HMS gas and aerogel Cerenkov cut efficiencies . . . . . . . . . . . . . 74

3.5 Above-threshold missing mass cut positions . . . . . . . . . . . . . . 76

3.6 Nucleon missing mass cut positions . . . . . . . . . . . . . . . . . . . 76

4.1 Layer thicknesses in the target and HMS . . . . . . . . . . . . . . . . 95

4.2 Layer thicknesses in the SOS . . . . . . . . . . . . . . . . . . . . . . . 96

4.3 Coulomb corrections for copper and gold targets. . . . . . . . . . . . 99

4.4 Fermi momentum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.5 Multiple-pion production compared to single-pion production. . . . . 111

4.6 Spectrometer settings for hydrogen e p elastic measurements. . . . . . 114

5.1 Nuclear transparencies values. . . . . . . . . . . . . . . . . . . . . . . 126

5.2 The fitted values for α. . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.3 Summary of systematic uncertainties . . . . . . . . . . . . . . . . . . 134

5.4 Results with correlations in the spectral function for carbon. . . . . . 139

17



18



Chapter 1

Introduction and Physics

Motivation

1.1 Color Transparency

The interactions between quarks and gluons are described by Quantum Chromody-

namics (QCD), the theory of the strong force. QCD is well tested in the high energy

regime where perturbative QCD calculations can be carried out. Interactions at low

energies, such as the binding of protons and neutrons in a nucleus, appear to be bet-

ter described using color-neutral nucleons and mesons as effective degrees of freedom,

rather than quark and gluon degrees of freedom, due to our inability to solve QCD in

the confinement region. The study of the transition from meson-nucleon degrees of

freedom to quarks and gluons is an important topic in nuclear physics. This transition

can be investigated through measurements of the onset of various predictions of QCD.

One such prediction is the color transparency effect, which involves the expansion of

a compact configuration of quarks into a normal-sized hadron.

The phenomenon of color transparency was first introduced by Mueller and Brod-

sky in 1982 [1, 2]. Experiments designed to search for color transparency have been

performed since the late 1980s and currently there is no conclusive evidence for this

effect. The goal of the experiment analyzed in this thesis, the Pion Color Trans-

parency Experiment (πCT ), was to search for the effects of color transparency in

19



semi-exclusive pion electroproduction reactions, A(e,e′π+), and was the first experi-

ment to search for color transparency in this channel. A positive slope of the nuclear

transparency with increasing Q
2 is a signature for the color transparency effect that

was searched for in πCT .

Color transparency refers to the suppression of final-state interactions of a hadron

propagating through the nuclear medium in exclusive processes at large momentum

transfer when the hadron is produced with small transverse size [3]. This behavior

is predicted by QCD and is due to the selection of Fock states with the minimum

number of constituents at transverse distances, b⊥ ≈ 1/
√

Q
2, where (-Q2) is the four

momentum transfer squared. At large Q, the transverse size may be smaller than the

equilibrium (free) size of the hadron, and the hadron may remain intact as it rapidly

expands. Events where the hadron remains intact can be selected by experimental

cuts in a coincidence experiment. The mechanism for the expansion of the hadron

(for example, the hadronization time, which is the amount of time over which the

small configuration expands) is poorly understood, as there is no widely accepted

theory and the existing data are not sufficient to constrain or exclude models.

Three conditions must be satisfied to observe color transparency. These conditions

are:

1. Large momentum transfer squared, so that hadrons are preferentially selected

with small transverse size. This is based on the uncertainty principle, where

the range of the virtual photon is approximately 1/Q. The quarks that make

up the hadron must come from a small region within this range and the small

grouping of quarks is called a Point Like Configuration (PLC).

2. Large magnitude of the hadron velocity, so that the hadron can propagate out

of the nucleus before returning to its equilibrium size. This can occur because

the lifetime of the PLC is dilated in the rest frame of the nucleus. The distance

over which the PLC travels before reaching its dressed (free) size is called the

formation length. The formation length increases with increasing magnitude of

the relative velocity between the hadron and the residual nucleus.
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Figure 1-1: Experimental evidence for the geometric interpretation of the hadron-
proton total cross section, σ

t. The slope parameter, b, is given by b = R
2
h +R

2
p, where

Rh is the radius of the hadron and Rp is the radius of the proton [4]. The figure is
from Ref. [4].

3. Reduced interaction, or color screening, which is experienced between the hadron

of reduced transverse size and the residual nucleus. Perturbative QCD predicts

that the cross section for the interaction between a small qq̄ dipole and the

nucleus is proportional to b
2, where b is the transverse distance between the q

and the q̄. Experimental evidence for the dependence of the total cross section

on the size of the hadron can be seen in Fig. 1-1 from Ref. [4].

Therefore, at a sufficiently large momentum transfer and formation length, one may

find a nucleus to be completely transparent to the hadron produced in the reaction.

Nuclear transparency is defined as the ratio of the cross section per nucleon for

a process on a bound nucleon in the nucleus to the cross section for the process on

a free nucleon [5]. The nuclear transparency can be interpreted as the probability

that the hadron produced in the reaction is not scattered outside of the experimental

acceptance by the residual nucleus. If there is a color transparency effect, the nuclear

transparency will depend on the momentum transfer involved in the process (it will

have a positive slope with respect to the momentum transfer). This is because the

valence quarks of the hadron are preferentially selected from smaller regions as Q
2 is

increased. An increase in the nuclear transparency with increasing Q
2 will be in sharp
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contrast to the theory of multiple scattering at high-energies in Ref. [6]. The nuclear

transparency in this picture is energy independent due to the energy independence

in the hadron-nucleon total cross section at high energies. The Q
2 dependence of the

nuclear transparency was measured in πCT and, in addition, the dependence of the

nuclear transparency on the nucleon number, A, was investigated.

1.2 Expansion models

The formation length, lf , is the distance over which a PLC expands to its dressed

(free) size. Assuming that this expansion occurs linearly with time, lf is given by

lf = γt0βlab, (1.1)

where βlab is the speed of the hadron in the lab frame, γ = 1/
√

1 − β
2
lab, and t0 is the

time required for the expansion in the hadron rest frame. The naive parton model [7]

assumes that quarks separate in the transverse direction at the speed of light and lf

is given by

lf = γRhβlab. (1.2)

The naive parton model of the expansion was improved by the quantum diffusion

model, which was inspired by perturbative QCD. In this model, the quark separation,

xt, is proportional to
√

z, where z is the longitudinal distance from the production

point to the position of the particle. The formation length in this model is determined

from the average value of the dominant energy denominator [7]

lf ≃ 2ph

〈

1

M
2
n − M

2
h

〉

, (1.3)

where ph and Mh are the momentum and mass of the hadron, respectively, and Mn

is the mass of a typical intermediate state of the hadron.

The setting with the largest pion momentum in πCT was at pπ = 4.4 GeV/c,

which makes lf ∼ 22 fm in the naive parton model. A wide range of values have
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been suggested for ∆M
2, which is the denominator in Equation 1.3, and current data

do not constrain the value of lf for pions. Based on semiclassical ideas, ∆M
2 =

0.25 (GeV/c2)2 [7], and in Ref [8], it was estimated that ∆M
2 = 0.7 (GeV/c2)2 based

on the lowest lying Regge partner and ∆M
2 = 1.4 (GeV/c2)2 was suggested as an

upper limit. The formation length at the highest momentum setting will be 7 fm,

2.5 fm and 1.3 fm for ∆M
2 = 0.25 (GeV/c2)2, 0.7 (GeV/c2)2 and 1.4 (GeV/c2)2,

respectively. Therefore, some models predict that the formation length at the highest

momentum setting in πCT may be larger than the radii of nuclei with small nucleon

number.

1.3 Motivation

Color transparency (CT) is a novel QCD phenomenon and currently there is no con-

clusive evidence for this effect. In particular, there are no experimental data showing

the onset of CT. The onset is particularly important for studying the expansion pro-

cess and quantities such as the formation length. Data showing the onset of color

transparency may help constrain models that may elucidate how a compact config-

uration of quarks expands into a hadron. Furthermore, the interaction between a

scattered hadron and the residual nucleons is traditionally described by the Glauber

multiple scattering mechanism [6] and CT will be an important modification to this

theory if its existence is confirmed.

The onset of color transparency is important for the study of Generalized Parton

Distributions (GPDs) and the measurement of GPDs is amongst the highest priorities

in intermediate energy nuclear physics. GPDs provide information on the longitudinal

momentum and, simultaneously, the transverse position of partons in a nucleon. The

onset of CT is a requirement for factorization [9], which is related to access to GPDs.

CT is not the only requirement for access to GPDs, for example, factorization assumes

that leading-order perturbative QCD is fully applicable, and appreciable contributions

from higher-twist amplitudes can lead to a breakdown of factorization.

The typical diagram showing factorization in deep-exclusive meson production
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Figure 1-2: Factorization in deep-exclusive meson production (figure from Ref [9]).

is shown in Figure 1-2, where the amplitude for the process can be expressed as the

convolution of three processes. The separation of these three processes is possible due

to the incoherence of physical processes at widely separated energy scales (fij and φM

are soft processes, whereas H is a hard process that can be calculated perturbatively).

The process labeled with fij provides access to the GPD, H is the hard amplitude

and φM is the meson distribution amplitude. CT is necessary in the separation of

these processes as the exchange of gluons between the meson produced from the hard

interaction and the baryon is suppressed.

1.4 Previous measurements

The first experiment designed to search for color transparency used the 12C(p,2p) re-

action and was performed at Brookhaven National Laboratory [10] in the late 1980s.

Later, more measurements of the nuclear transparency, which used the same reac-

tion, were performed at Brookhaven National Laboratory [11, 12]. The nuclear trans-

parency was defined as the cross section for elastic p p scattering in the nucleus

divided by the cross section for elastic p p scattering in hydrogen, with corrections

for Fermi motion of the proton in the nucleus [10]. The observed nuclear transparency

first increased as a function of the beam energy and then decreased, with a peak near

9 GeV. While this behavior was not predicted by traditional nuclear physics calcu-

lations, it is usually not attributed to color transparency. Ralston and Pire [13, 14]
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proposed that this behavior may have been due to nuclear filtering. In this picture,

the proton is viewed as having many components in its Fock-space wave function that

are superposed to make a normal-sized proton. The nucleus can act like a filter that

depletes the long-distance amplitudes of the incoming and scattered protons. Brod-

sky et al. [15] suggested that the peak in the nuclear transparency could be related

to the threshold for charm resonance production.

Figure 1-3: Transparency from (e, e′p) quasielastic scattering. The figure comes from
K. Garrow et al. [16]. The measurements made at Bates are the small open symbols,
SLAC are the large open symbols, and JLab are the solid stars, squares and triangles.
Errors for the JLab data points include statistical and point-to-point systematic un-
certainties, but do not include model-dependent or normalization-type uncertainties.
The SLAC and Bates data points include statistical and net systematic uncertainties.

Figure 1-3 shows the nuclear transparency measured using the A(e,e′p) reaction

at the Bates Linear Accelerator Center [17], the Stanford Linear Accelerator Center

(SLAC) [18] and the Thomas Jefferson National Accelerator Facility (JLab) [19, 20,

16]. The nuclear transparency in this reaction was defined as the ratio of the experi-

mental yield to the yield from the Plane Wave Impulse Approximation (PWIA). The

nuclear transparency was observed to be energy independent from Q
2 ≈ 2 (GeV/c)2
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to the maximum measured Q
2 of 8.1 (GeV/c)2 from deuterium, carbon, iron and gold

targets. These measurements indicated that there was no significant effect from color

transparency in the A(e,e′p) reaction up to Q
2 = 8.1 (GeV/c)2. The absence of the

color transparency effect in the A(e,e′p) reaction has been interpreted as an indica-

tion that the proton formation length may only have been as large as internucleonic

distances, rather than the size of the nucleus, in these experiments [21].

Color transparency measurements using coherent and incoherent ρ
0 production

have been performed at Fermilab [22] and more recently at DESY [23]. Electropro-

duction of ρ
0 mesons from a nucleus is described in Figure 1-4. The virtual photon

fluctuates into a qq̄ pair that has a transverse size r⊥ ∼ 1/Q, which can propagate

over a distance called the coherence length, lc. The coherence length is given by

lc =
2ν

Q
2 + M

2
qq̄

, (1.4)

where ν is the energy of the virtual photon and Mqq̄ is the invariant mass of the qq̄

pair. The qq̄ pair scatters from the target nucleus and evolves into a normal-size ρ
0

over a distance given by lf . For coherent reactions, the target nucleus remains intact

and in its ground state after the interaction. For incoherent reactions, the nucleus is

excited or it breaks up.

The nuclear transparency for the production of ρ
0 mesons was defined as T =

σA/(AσH) and the results from Fermilab were parameterized with the function T =

A
α−1. A positive slope of α as a function of Q

2 was reported and appeared to contra-

dict the flat Q
2 dependence predicted by the Glauber multiple scattering mechanism.

However, the results have since been interpreted as a coherence length effect [24]. For

kinematics with large lc, the virtual qq̄ pair may undergo interactions with the nucleus

before the hard interaction that puts it on the mass shell. As the kinematics of this

experiment were not at constant lc, the variation of α with Q
2 was explained by a

reduction in these initial-state interactions rather than by a reduction in final-state

interactions.

More recent measurements of coherent and incoherent ρ
0 production at DESY [23]
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Figure 1-4: Electroproduction of ρ
0 mesons from a nucleus. The virtual photon fluc-

tuates into a qq̄ pair which can propagate over a distance, lc, known as the coherence
length. The qq̄ pair evolves into a ρ

0 meson after interacting with the nucleus.

at Q
2 = 0.9−3 (GeV/c)2 and at constant lc showed a rise in the nuclear transparency

with Q
2 consistent with theoretical calculations of color transparency. Although the

results showed hints of color-transparency behavior, contributions from the complex

interplay between various effects in the reaction mechanism may have influenced the

observed effect [25]. Hence, these results did not provide conclusive evidence for color

transparency.

The most convincing evidence for the existence of color transparency comes from

an experiment performed at Fermilab [26]. The cross section of diffractive dissociation

of 500 GeV/c pions into dijets was measured and parameterized with σ = σ0A
α, where

σ0 is the π-N cross section in free space. The free parameter, α, was fit to the data

with the result α ∼ 1.6. This result was in agreement with calculations assuming

100% color transparency and was very different to the normal π-N cross section,

which has the dependence σ = σ0A
2/3. However, Q

2 could only be estimated from

the transverse momentum of the individual jets with respect to the beam direction,

kt. It was estimated that Q
2 & 10 (GeV/c)2 in these results and the experiment did

not provide information on the onset of color transparency with respect to Q
2.

The data from pion photoproduction from helium, 4He(γ, π
−
p), at JLab (measure-

ments at θ
π
cm = 70◦ are shown in Figure 1-5) displayed hints of color-transparency

behavior [27, 28, 29]. Color transparency can be measured in photoproduction reac-
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Figure 1-5: Transparency from 4He(γ, π
−
p) at θ

π
cm = 70◦ as a function of the momen-

tum transfer square to the hadron system, t (defined in Section 1.6). The figure comes
from Ref. [27]. The inner error bars are statistical uncertainties, while the total error
bars are statistical and point-to-point systematic uncertainties added in quadrature.
There is, in addition, 4% normalization, or scale, systematic uncertainty.

tions, where Q
2 = 0, by measuring the cross section vs. the four momentum transfer

squared, t, to the hadron system. The impact parameter of the real photon, b, is

approximately b ∼ 1/
√
−t, which can be likened to the range of a virtual meson

with four momentum squared equal to t. At large −t, the impact parameter is small

enough to force the partons to exchange the minimum number of gluons before they

recombine into the final particles [30]. These hard gluons are exchanged between

quarks within a limited range and these quarks form a PLC. The data from JLab

showed 2σ deviations from traditional Glauber calculations and the slope of the data

vs. −t was in better agreement with calculations that included color transparency.
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1.5 Advantage of using pions

Mesons are made up of only two valence quarks (qq̄), while protons and other baryons

are made up of three valence quarks (qqq). The production of a PLC requires the

exchange of only one hard gluon for a qq̄ system. Intuitively, it is more probable to

produce a point-like configuration of a meson compared to a baryon, which requires

the exchange of at least two hard gluons. The amplitude for producing a PLC with

a transverse dimension of 1/Q is in general (m/Q)k−1, where k is the number of

constituents of the hadron and m
−1 is the transverse dimension of the typical config-

uration of the hadron [7]. For a typical nuclear dimension of 1 fm and energy scale of

Q
2 = 5 (GeV/c)2, m/Q is approximately 0.1, and therefore, this amplitude decreases

rapidly as the number of constituents and/or Q
2 increases.

Pions (π+, π
0, π

−), which have the smallest mass of all the mesons, are easier

to produce with velocities, |~v|, larger than protons with a given beam energy. The

velocity of the hadron is important because the expansion of the PLC occurs over a

finite time in the rest frame of the hadron. For larger velocities, the PLC will travel

longer distances before expanding to its equilibrium size and will therefore have a

longer formation length.

1.6 Kinematics

The particular reaction studied in πCT was A(e,e′π+), which can be written as

e + A → e
′ + π

+ + X, (1.5)

where X represents other particles in the final state (for example a neutron and the

residual A-1 nucleons). A diagram of the reaction is shown in Figure 1-6. All of the

variables in this diagram are defined in the lab frame; the scattering plane is the plane

containing the three-momentum of the incident and scattered electron; the reaction

plane is the plane containing ~q and the pion momentum vector; θe is the electron

scattering angle; θpq is the angle between the three-momentum of the virtual photon
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151.2. Pion Ele
troprodu
tion1.2.1. Kinemati
sThe rea
tion studied in E91003 was,e+ A! e0 + �� +X ; (1.5)where A denotes the hydrogen, deuterium, or helium-3 target. �� indi
ates thatdata was taken for both positively and negatively 
harged pions. X is the �nalhadroni
 state whi
h was either a free 
ontinuum state of one, two, or three nu-
leons or a bound nu
lear state. The data was 
onstrained su
h that none of the�nal nu
leons were in an ex
ited state. A diagram of the rea
tion is shown inFigure 1.9.
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FIGURE 1.9. Diagram of the pion ele
troprodu
tion rea
tion. The initial and�nal ele
tron de�ne the s
attering plane, while the pion and re
oiling nu
leon(s)de�ne the rea
tion plane.
Figure 1-6: Pion electroproduction kinematics [31]. All quantities are in the lab
frame.

and the pion; and φpq is the angle between the scattering plane and the reaction

plane.

The pion electroproduction cross section is usually expressed as a function of Q
2,

W and t, where q
2 = −Q

2 is the four-momentum transfer squared and W is the

invariant mass of the virtual photon and the target, given by

W =
√

M
2
A + 2MAω − Q

2
, (1.6)

where ω (also called ν) is the energy of the virtual photon. The four-momentum

squared of the momentum transferred to the nucleon(s), t, is given by

t = (q − pπ)2 = (Eπ − ω)2 − |pπ|2 − |q|2 + 2|pπ||q| cos(θpq). (1.7)

The minimum value of −t, denoted by −tmin, corresponds to the value of −t when

θpq = 0. We can also define −tpole = −M
2
π+ , which corresponds to the smallest value

of −t that can be obtained at any kinematics, and is not kinematically accessible in

electroproduction. When −t = −tpole, the denominator in Equation 1.40 is zero. The

magnitude of the virtual pion 3-momentum, kπ, is given by

kπ = |q − pπ|. (1.8)
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The missing mass of the particles represented by X in Equation 1.5 is defined as

Mx. The missing energy and missing momentum of X are given by

Ex = Ee − Ee′ + M − Eπ, and,

P x = q − pπ.

(1.9)

Mx can be constructed using the missing energy and momentum, and is Mx =
√

E
2
x − P 2

x. One can form the nuclear missing mass using M = MA in Equation 1.9.

Another useful definition of the missing mass, called the nucleon missing mass, M
′
x,

can be formed using M = Mp in Equation 1.9.

1.7 Pion electroproduction cross section

The elementary pion cross section is the cross section from a hydrogen target. The

Born level, or first order, diagrams for this reaction are shown in Figure 1-7. The

elementary pion cross section was measured in πCT using a hydrogen target and the

model for the elementary process was iterated to match the data.

The pion electroproduction cross section from a stationary proton in the one-

photon-exchange approximation is [32]

d
5
σ

dΩe′dEe′dΩπ

= Γν
d

2
σ

dΩπ

, (1.10)

where

Γν =
α

2π2

Ee′

Ee

Keq

Q
2

1

1 − ǫ

(1.11)

is the virtual photon flux,

Keq = (W 2 − M
2
p )/(2Mp) (1.12)

is the equivalent photon energy,

ǫ =

(

1 +
2|q|2
Q

2
tan2 θe

2

)−1

(1.13)
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Figure 1-7: Born diagrams that contribute to the elementary pion cross section. (a) is
the pion pole diagram (t-channel process), (b) is the nucleon pole diagram (s-channel),
(c) is the crossed nucleon pole diagram (u-channel), and (d) is the seagull diagram.

is the longitudinal polarization of the virtual photon, and d2σ
dΩπ

is the virtual photon

cross section. The solid angle of the pion, Ωπ, is determined in the lab frame. The

virtual photon cross section for a stationary proton target is

d
2
σ

dΩπ

= ǫ

d
2
σL

dΩπ

+
d

2
σT

dΩπ

+
√

2ǫ(1 + ǫ)
d

2
σLT

dΩπ

cos(φπ) + ǫ

d
2
σTT

dΩπ

cos(2φπ), (1.14)

where the cross sections d2σL

dΩπ
,d2σT

dΩπ
,d2σLT

dΩπ
and d2σTT

dΩπ
depend on Q

2, W and t.

For nuclear targets, there is a new degree of freedom due to the relative momentum

between the struck nucleon and the spectator nucleons, and the missing mass is no

longer constrained by 4-momentum conservation to equal Mn, the mass of the neutron.

The differential pion electroproduction cross section for a nuclear target is given by

d
6
σ

dΩe′dEe′dΩπdMx

= Γν
d

3
σ

dΩπdMx

, (1.15)
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where the virtual photon cross section is

d
3
σ

dΩπdMx

= ǫ

d
3
σL

dΩπdMx

+
d

3
σT

dΩπdMx

+
√

2ǫ(1 + ǫ)
d

3
σLT

dΩπdMx

cos(φπ)+ ǫ

d
3
σTT

dΩπdMx

cos(2φπ).

(1.16)

1.8 Quasifree pion electroproduction model

The quasifree model is used to describe electroproduction from nuclear targets. The

energy of the incoming electron is large compared to the energy associated with the

binding of nucleons in the nucleus and the nucleons bound in the target nucleus may

be viewed as essentially free (the impulse approximation). Properties of the nucleons

inside of the nucleus are assumed to be described by an independent particle shell

model, where each nucleon interacts with a mean field exerted by the other nucleons.

The probability of finding a nucleon with momentum pm, and separation energy Em,

in the nucleus is given by the spectral function, S(Em,pm).

In πCT , the π
+ particle was detected in coincidence with the scattered electron,

and therefore, the struck nucleon was constrained to be a proton by charge con-

servation. The struck proton was changed into a neutron by the interaction and a

schematic of this process is shown in Figure 1-8. The model for electroproduction

from nuclear targets was built from the measured cross section from a hydrogen tar-

get. Pions were assumed to be produced from individual protons that made up the

nucleus, which had an initial momentum due to Fermi motion.

The quasifree pion electroproduction cross section for a nuclear target is given by

d6σA

dΩe′dEe′dΩπdPπ
=

∫

dEmdpmS(Em, pm)
d5σH

dΩe′dEe′dΩπ
δ (h(Em, pm) − Pπ) , (1.17)

where,

d5σH

dΩe′dEe′dΩπ
= fΓΓν

d2σH

dΩπ
(1.18)

is the elementary cross section for a proton that is moving due to Fermi motion, δ(h(Em, pm)−
Pπ) is a delta function that restricts Pπ to those values allowed by 4-momentum conserva-

tion, and, Pπ = |pπ|. The factor, fΓ, corrects the virtual photon flux due to the proton
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Figure 1-8: Schematic of quasifree pion electroproduction. The lightly shaded area
(yellow in color) represents a nucleus. A proton, p, was moving inside of the nucleus
when it was struck with a virtual photon, q. A neutron, n, and a π

+ particle are
produced in the reaction.

Fermi motion and fΓ is given by

fΓ =
Mp/Ep

1 − pm · ẑ/Ep
, (1.19)

where ẑ is the direction of the incident beam and Ep is the energy of the proton. The

delta function and Ep will be discussed further in the next section. Pπ was not generated

randomly in the Monte Carlo simulation (Chapter 4) due to the constraint imposed by the

delta function.

Models of the virtual photon cross section,
d2σH

dΩπ
, usually give

d2σH

dtdφcm
, where φcm is the

angle between q and pπ in the γ∗ p center of mass frame. The variables can be transformed

using the Jacobian

d2σH

dΩπ
=

∂(t, φcm)

∂(cos θ, φ)

d2σH

dtdφcm
. (1.20)

The virtual photon cross section in these new variables was iterated until it matched the

hydrogen data and was different for each kinematic setting. However, the starting point for

iterations was the parameterization

d2σL

dtdφcm
= fW 350Q2 exp(−t(16−7.5 ln Q2))

(1+1.77Q2+0.05Q4)2
,

d2σT

dtdφcm
= fW (4.5/Q2

+ 2/Q4
),

d2σLT

dtdφcm
= fW

(

exp(0.79 − 3.4√
Q2

t) + 1.1 − 3.6
Q4

)

sin(θcm), and,

d2σTT

dtdφcm
= −fW

5
Q4

|t|
(|t|+0.02)2

(sin θcm)
2,

(1.21)
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Figure 1-9: Diagram showing quasifree A(e,e′π+). The proton that is hit by the
virtual photon has 4-momentum pp=(Ep,pm).

where, fW =
8.539

2π(s−M2
p )2

. This form of the virtual photon cross section was based on the

parameterization in J. Volmer’s work [33] that was later extended to higher Q2
.

1.9 Models for the energy of the proton

In the quasifree approximation, the virtual photon interacts with a single proton inside a

nucleus (Figure 1-9). The momentum of the proton is given by pm, however, Em is not

the energy of the proton and it can be interpreted as the separation energy. Therefore,

the energy of the proton, Ep, is not constrained by any of the assumptions in the quasifree

approximation.

A model that can be used to determine Ep is described in Ref. [31], and is called the

default model in this thesis. This model assumes that the invariant mass of the spectator

nucleons are the same immediately before and after the interaction, which is based on the

hypothesis that the spectator nucleons were unaffected by the interaction. The mass of the

spectator nucleons, M∗
A−1, can be determined from the usual definition of Em,

Em ≡ Mp + M∗
A−1 − MA, (1.22)

and the energy of the struck proton is given by

Ep = MA −
√

(M∗
A−1)

2 + |pm|2. (1.23)

The function, h(Em, pm), in the delta function in Equation 1.17 conserves 4-momentum in
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the elementary process and can be determined by solving the relation

M2
n = (q + pp − pπ)

2, (1.24)

where pp = (Ep,pm) and q are the 4-momenta of the proton and virtual photon respectively,

and pπ = (

√

h2 + M2
π , hp̂π).

A second model was developed in the πCT analysis that we called the “Em = 0”

model. The development of this model was based on the realization that we do not know

anything about the recoiling neutron in Figure 1-9 as only the outgoing electron and pion

were detected. This is a distinction between A(e,e
′π+

) and A(e,e
′
p), because in the latter

reaction the nucleon is detected outside of the nucleus. In A(e,e
′π+

), it is possible for the

neutron not to leave the nucleus and it can be off the mass shell in the final state. It was

therefore assumed that the A(e,e
′π+

) process could have taken place without the shift in

energy due to the separation energy of the proton. This model is similar to the default

model, except that Em was set to zero in Equation 1.22, giving

M∗
A−1 = MA − Mp. (1.25)

The procedure for determining h(Em, pm) then followed the same steps as in the previous

method. Ep was determined using Equation 1.23, except with the new definition of M∗
A−1,

and h(Em, pm) followed from Equation 1.24. With this model, Em did not affect Ep, and

h(Em, pm) = h(pm). Therefore, the quasifree cross section (Equation 1.17) was simplified,

d6σA

dΩe′dEe′dΩπdPπ
=

∫

dpm

d5σH

dΩe′dEe′dΩπ
δ (h(pm) − Pπ)

∫

dEmS(Em, pm) (1.26)

=

∫

dpmS(pm)
d5σH

dΩe′dEe′dΩπ
δ (h(pm) − Pπ) , (1.27)

where S(pm) =
∫

dEmS(Em, pm).

A third model was also tested that we called the “Proton-on-shell” model. This model

assumed that the proton was on the mass shell before the interaction. The procedure for

calculating the quasifree cross section was the same as the “Em = 0” model, except that

Ep was given by

Ep =

√

|pm|2 + M2
p . (1.28)
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The function h(Em, pm) was also simplified to h(pm) in this model.

1.10 Spectral functions

The spectral functions used in this analysis were independent-particle shell model spectral

functions that did not include correlations. The copper spectral function was constructed

for πCT , whereas existing spectral functions were used for deuterium, carbon, aluminum

and gold. The deuterium, carbon and gold spectral functions were obtained from SLAC

experiment NE18 [18, 19] and the aluminum spectral function was obtained from Ref. [34].

The deuterium spectral function was calculated using the Bonn potential [35] as input

to the optical model. However, the high-momentum tails of the spectral function did not

extend far enough and the spectral function from the Bonn potential was merged with a

spectral function calculated using the Argonne v18 potential [36]. The carbon and gold

spectral functions were computed by the program DWEEPY [37, 38], which solves the

Schrödinger equation in an optical model potential. The parameters for the optical model

potentials were obtained from the data of Ref. [39] and more details on these spectral

functions can be found in Ref. [40].

The copper spectral function was constructed from the iron spectral function described

in Ref. [40] by increasing the number of protons in the outermost 1f shell from 6 to 9 and

changing the central binding energy, EB, of this shell using the separation energy, Esep, for

copper. The central binding energy of a shell is a variable that comes from the DWEEPY

model and is

EB = KN + Esep, (1.29)

where, KN =

√

|pm|2 + M2
N − MN is the kinetic energy of a nucleon inside of a nucleus.

The binding energy distribution of the 1f shell was calculated using the Lorentzian

L =
1

π

Γ/2

(E − EB)2 + (Γ/2)2
, (1.30)

where the width parameter, Γ, was taken from the formula of Brown and Rho [41]

Γ(E) =
(24 MeV)(E − EF )

2

(500 MeV
2
) + (E − EF )2

. (1.31)
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Figure 1-10: Schematic of a Glauber scattering calculation for A(e,e′π+). The circle
represents a nucleus, and the point at (x,z) represents the point where the pion was
created. The pion is propagated parallel to the z axis where it can interact with the
nucleons in the residual nucleus.

The width parameter for copper was much smaller than 1 MeV, which is smaller than the

resolution of the spectrometers in πCT . Therefore, Γ was set to 1 MeV, as was the case

with iron.

1.11 Glauber scattering theory

The nuclear transparency in A(e,e
′π+

) can be calculated using Glauber scattering theory [6]

and is called the Glauber transparency. A simple Glauber transparency simulation is de-

scribed below. The point where the pion was created was generated randomly inside the

nucleus. The pion was given a random momentum direction and propagated until it was

outside of the nucleus. The nucleus was assumed to be spherical and, therefore, the interac-

tion point was only generated in a half-circle in the 2-dimensional x-z plane (Figure 1-10).

The pion was propagated parallel to ẑ with the step size ∆z. The transmission of the pion,

Tπ, after completing each step was given by

Tπ = 1 − (npσπp + nnσπn)∆z, (1.32)

where np (nn) was the number density of protons (neutrons) and σπp (σπp) was the π+ p

(π+ n) cross section. The π+ p and π+ n cross sections were taken from Ref. [42], which
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Figure 1-11: The π
+

p and π
+

d cross sections from the Particle Data Group [42].
The solid (red) bar indicates the pion momentum range in πCT .

are shown in Figure 1-11. These cross sections were dominated by inelastic scattering and

the neutron cross section was determined by subtracting σπp from σπd. The variation in

these cross sections was at most ±5.4% from the value of the cross section at the center of

the solid (red) bar in Figure 1-11.

The model was extended to include the pair distribution function, gpN (r1, r2) (see for

example Ref. [43]). The pair distribution function describes the joint probability of finding

a proton at the position r1 and a different nucleon at r2. The pair distribution functions

were normalized such that

∫

np(r2)dr2 −
∫

np(r2)gpp(0, r2)dr2 = 1,
∫

nn(r2)dr2 −
∫

nn(r2)gpn(0, r2)dr2 = 0,
∫

np(r1)np(r2)gpp(r1, r2)dr1dr2 = Z(Z − 1), and,
∫

np(r1)nn(r2)gpn(r1, r2)dr1dr2 = (A − Z)(Z − 1).

(1.33)

The transmission of the pion after completing each step was modified to include the pair
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Figure 1-12: The Glauber transparency using a Monte Carlo simulation developed
for πCT .

distribution functions

Tπ = 1 − (gppnpσπp + gpnnnσπn)∆z. (1.34)

The Glauber transparency, which is equal to the transmission of the pion after exiting the

nucleus, was determined at the kinematics encountered in πCT (Table 2.4). The results

of this Glauber simulation are shown in Figure 1-12, and the Glauber transparency at the

highest Q2
were at most 2% larger than the lowest Q2

for all of the nuclei shown.

1.12 Models of color transparency

Refs. [7, 8] give the cross section for the pion during and after the expansion process,

σeff
πN (z, pπ) = σπN (pπ)

({

(

z

l f

)τ

+
n2

〈

k2
t

〉

Q2

[

1 −
(

z

lf

)τ]
}

θ(lf − z) + θ(z − lf )

)

, (1.35)
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where, lf is the formation length (the distance over which the expansion takes place). The

cross section of the initially produced PLC at z = 0 is

σPLC = σπN (pπ)
n2

〈

k2
t

〉

Q2
, (1.36)

where n = 2 is the number of quarks in a pion and
〈

k2
t

〉
1

2 ≈ 0.35 GeV/c is the average

transverse momentum of a parton in a hadron [7]. A model without CT can be obtained

by setting τ = 0 in Equation 1.35, τ = 1 corresponds to the quantum diffusion model and

τ = 2 corresponds to the naive parton model.

Recently, the quantum diffusion model was used in a semi-classical approximation to

estimate the effects of color transparency in the energy range of πCT [8]. The transparency

was determined using a semi-classical formula involving an integral over the path of the

outgoing pion,

T =
1

A

∫

d3rn(r) exp

[

−
∫ ∞

z
dz′σeff

πN (z′ − z, pπ)n(r′)

]

. (1.37)

The formation length was determined using the quantum diffusion model,

lf ≃ 2pπ/∆M2, (1.38)

with ∆M2
= 0.7 (GeV/c

2
)
2
. The predicted change in the nuclear transparency was approx-

imately 17%, 32% and 33% for
12

C,
63

Cu and
197

Au, respectively, for the range of energies

in πCT .

B. Z. Kopeliovich et al. in Ref. [44] provided a more quantum mechanical model for

predicting the effects of CT in exclusive ρ0
production on nuclei. The cross section of a qq̄

pair with transverse size, r, had the cross section

σ(r) =
1

3
π2r2F(ν, r), (1.39)

where F(ν, r) is related at small r to the gluon structure function of the proton by F(ν, r) =

αs(r)xg(x, Q2
r), which is evaluated at the virtuality Q2

r ∼ a/r2
(where a ∼ 7 − 10), x ≈

(Q2
R + m2

ν)/2MNν, and, αs(r) is the running QCD coupling. However, this model has not

been used to predict the effects of color transparency in the A(e,e
′π+

) reaction.

41



Figure 1-13: Calculation of the nuclear transparency in A(e,e′π+) by B. Kundu et al.

(Figure from Ref. [45]). The solid and dashed curves use end-point and asymptotic
distribution amplitudes respectively and correspond to A=12, 56 and 197 from top
to bottom.

The nuclear transparency for different nuclei for A(e,e
′π+

) was calculated for the kine-

matics in πCT by B. Kundu et al. in Ref. [45]. This model followed a perturbative QCD

approach, where the struck hadron was full sized and, subsequently, only the short distance

amplitudes dominated inside the integrations. This model relied on the pion distribution

amplitude, φ(x, 1/b) (this is a function of the Feynman variable x and the transverse separa-

tion between the quarks, b), to describe the zero-distance wave functions. The distribution

amplitude models can be classified as “end-point” dominated (from QCD sum rules) or

“centrally” dominated (from the asymptotic distribution amplitudes). They used both an

end-point model [46, 47] and an asymptotic model [48] and the predicted nuclear trans-

parency for each case is shown in Figure 1-13.

1.13 Background processes and other considera-

tions

In this experiment, the signal searched for was a deviation between the experimental data

and the quasifree production model for deuterium and heavier targets. Background pro-

cesses, which were those that were not described by the quasi-free model, may have obscured
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this signal. The kinematics of the experiment were chosen to minimize the influence of back-

ground processes, however, a model uncertainty was assigned to the nuclear transparency

results due to these effects (Chapter 5).

1.13.1 Pauli blocking

Pauli blocking is an effect due to antisymmetrization of identical Fermion wave functions.

As a result, no two identical fermions, such as protons and neutrons, can have the same

quantum numbers. Ideally, a model of Pauli blocking of the recoiling neutron in A(e,e
′π+

)

should be constructed using the wave function of the nucleus and an operator for elemen-

tary pion electroproduction to calculate the amplitude for this process. However, existing

operators for the elementary pion electroproduction process were not valid at the energies

encountered in πCT (see for example MAID2003 in Ref. [49]). The model for Pauli blocking

that was used in πCT is described in Section 4.4.

1.13.2 Pion absorption in nuclear matter

The free cross section for pion-nucleon scattering, σπN , was assumed not to be modified

when a nucleon was inside of a nucleus, or at least not to be energy independent. This

assumption was based on the observation that σπN is energy independent for the pion

momenta encountered in πCT (Figure 1-11) and therefore any modification should also

have been energy independent to first order. Ref. [8] made the former assumption for our

pion momenta and Ref. [50] assumed that σπN was independent of the nucleon number.

Measurements of the pion-nucleus absorption cross section are presented in Ref. [51] as a

function of the pion momentum. Although there were few measurements for pions with

momentum between 2 and 4 GeV/c, the data suggested that the pion-nucleus cross section

did not have a strong dependence on the pion momentum.

1.13.3 n-N final-state interactions

It was not expected that n-N Final-State Interactions (n-N FSI) would influence the events

in A(e,e
′π+

) that had small missing mass, Mx ≈ MA−1 + Mn. This was the threshold for

single-pion production and at this threshold the recoiling neutron and spectator nucleons

had zero relative momentum. The Jost function formalism (Section 5.4.1 in Ref. [31]) can
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be used to include n-N final state interactions in the quasi-free model for A ≤ 3. Corrections

for n-N FSI in the πCT analysis are described in Section 4.3.

1.13.4 Multiple-pion production

The quasi-free production model did not describe the production of more than one pion

in a single event, which is called multiple-pion production. Multiple-pion production from

hydrogen targets in πCT was suppressed due to the relatively high Q2 > 1 (GeV/c)
2

and

W > 2.1 GeV, which was outside of the resonance region. In fact, no significant multiple-

pion production in the missing mass distributions from hydrogen targets was seen in πCT

(Appendix A). These results suggested that the mechanism for multiple-pion production

involved the outgoing pion producing one or more pions from a nucleon in a second process

that was incoherent (the amplitude for the second process does not undergo interference

with the first process) from the production of the first pion. A model of multiple-pion

production based on this assumption is described in Section 4.8. Multiple-pion events can

only be produced above a missing mass threshold that is larger than the missing mass

threshold for single-pion production. Therefore, a missing mass cut was employed in πCT

to suppress multiple-pion events in the data samples (Section 3.2). The multiple-pion

production simulation was used to estimate the contamination from multiple-pion events

and was at most 0.4% when missing mass cuts were employed.

1.13.5 Rescattering

Rescattering events may contribute to the results when −t > −tpole. Rescattering in

A(e,e
′π+

) involves the electroproduction of a meson followed by a second interaction that

produces the π+
particle. For example, rescattering can occur through ρ electroproduction

followed by ρN → πN ′
. A diagram for rescattering is shown in Figure 1-14.

The cross section for rescattering can become very large compared to the single scat-

tering cross section. Although little is known about the rescattering contribution for

the kinematics encountered in πCT , the effect in ρ0
photoproduction is shown in Fig-

ure 1-15. Rescattering contributions dominate the cross section in ρ0
photoproduction

for −t > 0.5 (GeV/c)
2
. As tmin varied between settings in πCT , some settings could be

more susceptible to rescattering contributions. The πCT central kinematics were chosen so
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Figure 1-14: The diagram corresponding to rescattering in pion electroproduction
inside a nucleus (shaded region). The interactions represented by the black circles
may or may not be coherent with each other, and so the meson line joining these
circles contains a fine-dashed line.

that −tcentral & −tpole, however, the region near the pion pole was avoided for the reasons

described in Section 1.13.6. Furthermore, the πCT central kinematics were chosen with

−t = −tmin, or as close to this condition as possible given the allowed rotation angles of

the spectrometers. Under these conditions, θpq ≈ 0, and the contribution due to rescat-

tering events were reduced by the missing mass cut used to exclude multiple-pion events.

We verified experimentally that there were no observable contributions from rescattering at

−t = 0.374 (GeV/c)
2

using the W vs. kπ test point (Table 2.4).

1.13.6 Pion pole

The elementary pion electroproduction cross section changes rapidly in the vicinity of the

pion pole (−tpole = −M2
π+). In this region, the longitudinal cross section is dominated by

the t-channel process (Fig. 1-7), and is given by

σL ≈ −t Q2

(t − M2
π+)2

g2
πNN (t)F 2

π (Q2, t), (1.40)

where gπNN is the πNN coupling and Fπ is the pion form factor.

A smoothly varying cross section was desirable in πCT as the model for the elementary

process was iterated to match the experimental data from the hydrogen target. This cross

section may not be valid in the quasi-free model of a nucleus if the cross section is rapidly

varying as some nucleons have large-momentum due to the tails of the spectral function,
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Figure 1-15: The t dependence of the rescattering cross section in ρ
0 photoproduction.

The dashed, dash-dotted, dotted and solid curves represent single scattering, double
scattering, interference between single and double scattering, and full contributions
respectively. The triangles are experimental data from Ref. [52] and the figure is from
Ref [53].

and, these nucleons may be outside of the range of the model for the elementary process.

Furthermore, Fπ is not known very accurately above Q2
= 1 − 2 (GeV/c)

2
, which could

complicate corrections for this effect. The kinematics of πCT were chosen to minimize

the problems due to the pion pole, while at the same time, minimize possible rescattering

contributions.

1.13.7 Pion excess

Excess pions may be present in nuclei due to the pion-exchange forces between nucleons [54].

An energy dependence in the A(e,e
′π+

) nuclear transparency could be interpreted as an

energy dependence of the density of the pion field in nuclei. An experiment that searched

for the pion excess in nuclei [55] did not rule out or confirm the existence of this effect.

Friman et al. [54] used a static one-pion exchange potential to show that the pion excess

can be as large as 10% at kπ = 0.43 GeV/c. If the pion excess exists, it will increase the

nuclear transparency in πCT near Q2
= 2.15 (GeV/c)

2
(kπ = 0.41 GeV/c) and then have

the opposite dependence to the color transparency signal at larger Q2
.
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Figure 1-16: The cross section ratios for isoscalar targets as a fuction of x =
Q

2
/(2Mν). The cross section ratios are not constant and equal to 1, which is a

result of the EMC effect. The circles are experimental data from Ref. [56] and the
errors bars are the combined statistical and point-to-point systematic errors. The
figure is from Ref. [56].

1.13.8 Medium modification of nucleons

The effect discovered by the European-Muon Collaboration (EMC effect) showed that the

distribution of quarks in a nucleus was different from the distribution of quarks in a nu-

cleon [56], due to nuclear effects. The inclusive cross sections from nuclei divided by the

inclusive cross section from deuterium are shown in Figure 1-16. In πCT , the range of x

was 0.21-0.54 (Table 2.4), where the inclusive cross section ratio decreased by approximately

10%. The impact of the EMC effect on the cross sections in πCT was expected to be smaller

than 10% because a pion was detected in coincidence with the electron. In addition, the

cross section ratio had a negative slope for the range of x in πCT which could have caused

a change in the nuclear transparency that was opposite to the color transparency signal.

The EMC effect describes how the influence of the nuclear medium changes the quark

distributions inside a nucleon. A similar effect is the change in the nucleon structure func-

tions due to the binding of the nucleon. This is typically incorporated in A(e,e
′
p) using

the off-shell prescription due to T. de Forest [57]. However, no such prescription exists

for A(e,e
′π+

) and the results in πCT did not include corrections for medium modification
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of the elementary cross section. As we were searching for a Q2
dependence in the nu-

clear transparency, this approximation was acceptable if the effect did not change with Q2
.

Longitudinal-Transverse (L-T) separations were performed at Q2
= 2.15 and 4.0 (GeV/c)

2

in πCT (Table 2.4). The goal of the L-T separation was to verify that the L-T character

did not appreciably change from the hydrogen target to targets with A > 1, and was an

important check of the quasifree approximations.

1.13.9 Spectroscopic strength

Measurements from A(e,e
′
p) revealed that spectroscopic factors were quenched by approx-

imately 30-35% compared to mean-field values [58, 59]. A possible explanation for this

discrepancy was that correlations moved some of the single particle strength to orbitals

above the Fermi energy. Measurements at high Q2
showed that the spectroscopic fac-

tors were momentum-transfer dependent [60] and no significant quenching was seen at

2 ≤ Q2 ≤ 4 (GeV/c)
2

in exclusive (e,e
′
p) reactions [61]. This type of effect was very im-

portant when the nuclear transparency was extracted in A(e,e
′
p) reactions with cuts on

the momentum of the struck nucleon. However, the nuclear transparency extracted from

A(e,e
′π+

) was less susceptible to these effects because the cross section involved an inte-

gration over all Em and pm (Equation 1.17). Different spectral functions, including those

with and without correlations, were tested to quantify the effect due to the Q2
dependence

of the spectroscopic factors.
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Chapter 2

Experimental Apparatus

The πCT experiment was performed in Hall C at the Thomas Jefferson National Accelerator

Facility (JLab). The standard Hall C equipment, including the solid target ladder, was

used. A Continuous Wave (CW) beam was produced by the accelerator at beam energies

up to 5.8 GeV. The beam position and current were monitored by the standard beam

line instrumentation of Hall C. The electron beam was incident on stationary nuclei in the

target, and the target material could be changed by moving the target ladder. The scattered

electron and the π+
produced in the reaction were detected in coincidence using the SOS

and HMS spectrometers. The target material was unpolarized, and the electron beam was

unpolarized when averaged over time. The signals from the detectors were relayed to the

Hall C counting house, where they were processed by the trigger electronics and recorded

by the data acquisition system.

A brief description of the equipment used in πCT will follow in this chapter, and more

detailed descriptions can be found in Refs. [62, 63, 31, 64].

2.1 Accelerator

The electron beam was accelerated using superconducting Radio Frequency (RF) cavities

in a configuration that resembles a racetrack, as shown in Fig. 2-1. Electrons were injected

into the North Linac at 56 MeV and were accelerated in the North and South Linacs.

Superconducting magnets in the West and East Arcs circulated the beam. The beam

passed through each linac up to 5 times with an increase in energy of up to 1.15 GeV
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Figure 2-1: Schematic of the electron accelerator (figure from Ref. [64]).

after each pass. The beams from each pass were separated in the recirculation arcs using

RF separators, transported separately in the arc and recombined at the entrance to each

successive linac. The beam energies used in the experiment were 5.767, 5.012 and 4.021

GeV.

The beam current in the experiment was 35-80 µA, and the duty factor of the beam was

almost 100%. The beam’s microstructure consisted of pulses occurring at a frequency of

1497 MHz. The nominal bunchlength was 1/360 of the period between bunches (approxi-

mately 2 ps). Each bunch was maintained as small as possible because a longer bunchlength

caused a larger energy spread in the beam due to the difference in accelerating gradients

in the RF cavities at the front and rear of a bunch. The energy spread of the beam was

±0.025%. At the Beam Switchyard, the beam was split to three experimental halls in which

each hall could operate simultaneously with different beam energies. Every third pulse was

delivered to Hall C, with a frequency of 499 MHz.

2.2 Hall C Arc

The beam position, profile, energy and current were measured in the Hall C arc (Fig. 2-2).

In addition, the beam was rastered over an area of the target of up to 2×2 mm
2

by the Fast
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Figure 2-2: Top view of the Hall C beam line showing the equipment used in trans-
porting the beam from the beam switchyard to the target (figure from Ref. [31]).

Raster. The raster was necessary to reach acceptable beam currents without damaging the

target and to reduce the effect of localized boiling in the liquid targets.

The beam position was continuously monitored during data collection using the non-

destructive Beam-Position Monitors (BPM) H00A and H00B to ensure that the beam was

centered on the target. The transverse beam size was measured using the destructive

superharp scanner H00A and the beam diameter was 60-130 µm, which was much smaller

than the raster size. The BPMs and superharps could measure the beam position with a

precision of 0.2 mm and 0.01 mm respectively.

Using the bending magnets of the Hall C arc, the relative beam energy could be measured

with a precision of ∆E/E ≈ 10
−4

. The beam energy could be determined absolutely to

a precision of 10
−3

by measuring the angle and/or momentum of outgoing particles in

reactions where these properties are kinematically constrained by the beam energy. The
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Figure 2-3: Histogram of the vertical fast raster position [cm] vs. horizontal fast
raster position [cm].

most precise method is the diffractive minima method [62].

The beam current was monitored through a combination of a parametric DC current

transformer (Unser monitor) and coupled resonant cavities (BCM1 and BCM2). The BCMs

provided stable and linear output vs. the beam current while the Unser monitor was used

to provide an absolute calibration for the BCMs. The baseline (zero current) signal from

the Unser monitor drifted slowly over several minutes, and so was not used once the BCMs

were calibrated.

The BCMs consisted of cylindrical cavities with holes at each end to allow the beam

to pass through. The cavities were designed with a resonant frequency equal to the bunch

frequency of the beam. An antenna in the cavity coupled to the TEM010 mode produced

a signal proportional to the beam current. BCM1 was less reliable than BCM2 and used a

power meter to directly measure the electrical power from the antenna. BCM2 was more

linear than BCM1 through the use of a high precision RMS to DC converter followed by a

DC to frequency converter. The frequency signal was then counted in a scaler. BCM2 was

used to extract the cumulative charge for the data analysis.

The BCMs were calibrated using the Unser monitor during πCT and during experi-
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ments that ran immediately before and after the πCT running periods. A global fit of

the calibration coefficients was determined for these calibrations and the residual had a

standard deviation of 0.3 µA. The beam current in πCT was 35-80 µA, and therefore, the

point-to-point uncertainty in the cumulative charge delivered by the beam was estimated

to be 0.4-0.9%. The normalization uncertainty, which comes from the Unser monitor, was

estimated to be 0.4% [65].

The raster pattern used for all targets was uniform over a 2 mm × 2 mm square. The

current in the fast raster magnets were monitored and the position of the beam was fed

into the data stream for each event. The reconstruction could therefore be corrected for

the vertical position of the beam, event-by-event. An image of the raster pattern is shown

in Fig. 2-3

2.3 Target

The standard Hall C cryogenic target ladder and optics sled was used in πCT (Fig. 2-4).

For the July 2004 running period, Loop 1 was filled with liquid hydrogen and Loop 2 was

filled with liquid deuterium. Loop 3 was unused. For the December 2004 running period,

Loop 1 was unused, Loop 2 was filled with liquid hydrogen and Loop 3 was filled with liquid

deuterium. The liquid targets were cylindrical with a diameter of ∼4 cm (see Table 2.1) and

the axis of the cylinder was vertical (the “tuna can”). The cans were made of aluminum

0.12 mm thick, which contributed to energy loss of the beam as it entered the cell and the

scattered particles as they exited the cell, and also produced events in the spectrometer

that came from interactions between the beam and the cell wall.

The cryogenic target ladder could be translated vertically by lifter motors. The ladder

could be positioned so that the beam interacted with any of the liquid or solid targets in

the ladder. The optics sled contained a dummy target, which consisted of two aluminum

foils placed 4 cm apart in order to determine the effects of the cell wall on the yields from

the liquid targets. The yields from the liquid alone could be determined by subtracting the

yield from the dummy target from the yield from the liquid target (after suitable scaling

because the dummy target foil thickness was approximately 7 times thicker than the walls

of the liquid target). The solid target ladder was attached above the optics sled containing

target foils of naturally occurring isotopic abundances of carbon, copper and gold. All foils
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Figure 2-4: Schematic of the target ladder.

in the solid target ladder were separated vertically.

The temperature and pressure of the liquid targets affect the density and the contrac-

tion of the aluminum cell walls, which in turn affects the thickness. The temperatures

of the cryogenic loops of hydrogen and deuterium were regulated with fluctuations up to

0.02 K. During the July running period, the temperatures of the hydrogen and deuterium

targets were 18.60 and 22.00 K, respectively. During the December running period, the

temperatures were 19.00 and 22.00 K for the hydrogen and deuterium targets, respectively.

Each liquid target was connected to a large ballast tank, which was not cryogenic and was

available to store the target liquid if it warmed up or in an emergency. The pressure of

the gas in the ballast tank, which was also the pressure of the liquid, fluctuated by up to

1 psia and the effect on the density was negligible (the liquid was almost incompressible).

The pressure was 24 psia for hydrogen and 21 psia for deuterium during the July running

period, and 22 psia for both hydrogen and deuterium during the December running period.

The thicknesses and associated uncertainties of the liquid targets are described in Table 2.1.
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Target 18.6K H2 19K H2 D2 D2

Loop 1 Loop 2 Loop 2 Loop 3
Thickness (g/cm

2) 0.2858 0.2860 0.6587 0.6617
Inner diameter (cm) 3.930 3.956 3.935 3.953
Purity (%) >99.99 >99.99 >99.95 >99.95
Boiling correction (%) 0.6 0.6 0.6 0.6
Beam path length (%) 0.6 0.6 0.6 0.6
Equation of state (%) 0.5 0.5 0.5 0.5
Total uncertainty (%) 1.0 1.0 1.0 1.0

Table 2.1: Nominal liquid target thicknesses and associated total uncertainty. The
thickness values are not corrected for beam offsets.

Target C Al, foil 1 Al, foil 2 Cu Au
Thickness (g/cm

2) 0.6667 0.2626 0.2633 0.7986 0.3795
Purity (%) 99.95 98 98 99.995 99.999
Total uncertainty (%) 0.5 0.5 0.5 0.5 0.5

Table 2.2: Nominal solid target thicknesses and associated total uncertainty.

The solid targets are described in Table 2.2.

The cryogenic cells were cylinders and as the beam did not pass through the axis of the

cylinder, the beam traversed a reduced path length through the target. The uncertainty in

the absolute beam position relative to the axis of the cylinder was approximately 0.2 mm.

The target thickness was corrected for any known offsets and the uncertainty in the beam

path length was estimated at 0.6% using the uncertainty in the beam position. The thickness

of the solid targets were calculated using measurements of the mass and area of the targets.

The uncertainty of the solid target thicknesses were estimated from the uncertainty in these

measurements. The uncertainty due to the target boiling is discussed in Section 3.11.

After passing through the target, the beam was transported to a beam dump in the

experimental hall via the “small diameter” beam pipe (d=2 in). The small diameter beam

pipe was used to allow the High-Momentum Spectrometer (Section 2.4.1) to rotate to the

smallest opening angle used in the experiment (θHMS = 10.6◦).
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2.4 Spectrometers

The reaction studied was A(e,e
′π+

) and the scattered electron (e
′
) was detected in the Short-

Orbit Spectrometer (SOS) while the π+
was detected in coincidence in the High-Momentum

Spectrometer (HMS). Bending magnets and wire chambers in each spectrometer allowed the

determination of the particle’s momentum, while gas and aerogel detectors were employed

to select the desired particles. In addition, plastic scintillators with < 1 ns time resolution

provided the difference in the time-of-flight between the e
′
and the π+

and were also used

for triggering in each spectrometer.

2.4.1 High-Momentum Spectrometer (HMS)

Figure 2-5: Side view of the HMS (figure from Ref. [31]).

The HMS uses four superconducting magnetic elements to focus and separate particles

based on their momentum and charge (Fig. 2-5). The magnetic elements consisted of three

quadrupoles followed by a dipole (QQQD). The HMS was rotated about the target, and

angles between 10.6
◦

to 20.0
◦

were used with momentum settings between 2.1-4.4 (GeV/c).

The resolution of the momentum and the in-plane and out-of-plane scattering angles was

0.2%, 0.8 mrad and 1.2 mrad respectively. At a particular setting, the nominal momentum

acceptance was ±10% of the central momentum and the nominal angular acceptance was

±40 mrad in plane and ±75 mrad out of plane. The configuration of the detectors in the

HMS is shown in Fig. 2-6, and will be discussed further in Sec. 2.4.3.
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Figure 2-6: Configuration of the detectors in the HMS (figure from Ref. [65]).

2.4.2 Short-Orbit Spectrometer (SOS)

The SOS contained three room temperature magnetic elements, a quadrupole followed by

two dipoles (QDD) (Fig. 2-7). The SOS was rotated about the target, and angles between

27.8
◦

to 55.9
◦

were used with momentum settings between 0.73-1.73 (GeV/c). The reso-

lution of the momentum and the in-plane and out-of-plane scattering angles was 0.15%,

2.5 mrad and 0.5 mrad respectively. At a particular setting, the nominal momentum accep-

tance was +15% to −10% of the central momentum and the nominal angular acceptance

was ±70 mrad in plane and ±40 mrad out of plane. The distance from the target to the

center of the detector hut was approximately 10 m. The configuration of the detectors in

SOS hut was very similar to the HMS, shown in Fig 2-6. The distances between the detector

elements were slightly different in the SOS compared to this figure and no aerogel Cerenkov

detector was used in the SOS.

2.4.3 Detector packages

The HMS and SOS each contained two wire (or drift) chambers that were separated by

81.5 cm in the HMS and 49.5 cm in the SOS. The chambers were located outside of the

magnetic fields of the spectrometer magnetic elements. The position and angle of a track

could be determined using the two wire chambers in a given spectrometer. Each chamber

consisted of 6 planes of wires and the gas surrounding the wires was a mixture of argon and

ethane in the ratio of 1:1. The position resolutions of the HMS and SOS drift chambers
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Figure 2-7: Side view of the SOS (figure from Ref. [31]).

were 280 µm and 180 µm respectively.

The HMS and SOS detector huts contained planes of fast scintillators. The planes

were grouped into pairs, with one pair directly behind the drift chambers and another pair

separated by 250 cm in the HMS and 180 cm in the SOS. Each detector hut therefore

contained four planes of scintillators. A particle that passed along the central ray of a given

spectrometer was expected to produce signals in each of the four planes. The time-of-flight

of a particle between the planes was not used in πCT except to calibrate the timing of

the scintillator paddles. The coincidence time, which was the relative timing between the

spectrometers was used in πCT . The FWHM of the coincidence time was 200-300 ps for

e-π+
events.

Threshold Cerenkov detectors were employed for e-π-K-p separation in each spectrom-

eter. The HMS contained a gas Cerenkov filled with 0.956 atm of perfluorobutane (C4F10).

It had an index of refraction of 1.00137 and a momentum threshold of 2.65 (GeV/c) for π+

and a threshold of 9.4 (GeV/c) for K
+
. The maximum HMS central momentum setting

was 4.4 (GeV/c) so that the Cerenkov detector could be used to identify π+
except for

settings with the central momentum below 3.1 (GeV/c). For these settings, the π+
velocity

was close to or below the threshold for particles within the acceptance. Positrons did not

need to be separated from pions in the HMS because the coincidence requirement with an

electron in the SOS removed positron events.

An aerogel Cerenkov detector was installed in the HMS for πCT to separate π+
from K

+

for central momentum settings below 3.1 (GeV/c). The aerogel had an index of refraction of
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1.015 and so had a threshold for π+
of 0.8 (GeV/c) and a threshold for K

+
of 2.85 (GeV/c).

Two kinematic settings had the central HMS momentum below 3.1 (GeV/c), the Q2
=

1.10 (GeV/c)
2

setting and the W vs. kπ test point, which had central HMS momenta

2.793 (GeV/c) and 2.074 (GeV/c), respectively. The HMS momentum acceptance at the

Q2
= 1.10 (GeV/c)

2
setting extended up to 3.016 (GeV/c), which is above the aerogel

momentum threshold for kaons. Therefore, it may be possible for kaons to pass all of

the particle identification cuts in the HMS at this setting and be misidentified as pions.

However, events where kaons were misidentified as pions were an insignificant background

because the cross section for producing kaons at this setting is only a few percent of pion

production cross section and they were reconstructed with a missing mass much larger than

the double pion production threshold. So, these events were removed by the double pion

missing mass cut (Section 3.2).

The SOS contained a gas Cerenkov which was used to separate electrons from π−
par-

ticles. The existing (“Old”) Cerenkov detector was used during the July running period.

This detector was replaced with a “New” Cerenkov detector for other experiments, and

was used during πCT in the December running period. The two Cerenkov detectors are

compared in Table 2.3. The maximum momentum setting of the SOS was 1.73 (GeV/c)

(with momentum acceptance up to 1.99 (GeV/c)) during July, which was well below the

3 (GeV/c) momentum threshold for pions. The pion threshold in the New Cerenkov de-

tector was also larger than the pion momenta detected in the SOS during the December

running period.

Lead glass calorimeter stacks existed at the back of HMS and SOS detector huts and

signals from these detectors were not used in πCT , except to calibrate the SOS gas Cerenkov

detector. Electrons impinging on the calorimeter caused cascades of secondary electrons and

the primary electrons rapidly lost their energy within one or two blocks of lead glass. The

signal from the calorimeter was calibrated to give the total energy deposited by these events

(where the energy was also determined from the momentum of the electron). Hadrons, such

as pions, tended to punch through the calorimeter and deposited only a fraction of their

energy. The calorimeter therefore provided particle identification between electrons and

hadrons independent of the Cerenkov detectors.
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Gas Cerenkov Old New
Running period July December
Window-to-window length (cm) 111 99.4
Width (cm) 73.7 110
Height (cm) 99 110
Window material 2×(254 µm Lexan 2×(0.762 mm Al)

graphics film and
50.8 µm Tedlar film)

Window thickness 2×39 mg/cm2 2×206 mg/cm2

Gas Freon-12 (CCl2F2) Perfluorobutane (C4F10)
Pressure (atm) 1.0 1.41
n 1.00108 1.0019
Electron threshold 11 (MeV/c) 8.3 (MeV/c)
Pion threshold 3 (GeV/c) 2.27 (GeV/c)
Entrance 11” high, 24” wide and 22” high, 14” wide and

12” half circles 7” half circles
above and below above and below

NPE for relativistic particles 10-11 44

Table 2.3: Description of the Old and New SOS gas Cerenkov detectors.

2.4.4 Trigger configuration

The purpose of the trigger electronics was to provide an electronic pulse (also called the

trigger) whenever certain combinations of detector elements had events within a narrow

time window (gate width). The single arm trigger logic of the HMS and the SOS is shown

in Figure 2-8. To output a signal, the SCIN logic unit required 3 out of 4 scintillator planes

to have hits in a given spectrometer. Similarly, the ELLO and ELHI logic units required

a combination of detector hits to output a signal, as shown in Figure 2-8. The ELREAL

condition was satisfied when the ELLO and/or ELHI logic units outputted an electronic

pulse. For πCT this trigger requirement was SCIN (3/4) in the HMS and ELREAL in the

SOS. The gate width was small enough to limit the electronic dead time, but long enough

to ensure that all the detectors associated with an event that are required for the trigger

have enough time to arrive at the electronics. The gate width was 60 ns during πCT .

The SOS (which was detecting scattered electrons) formed a trigger on an event if the

conditions for ELLO or ELHI were met. To satisfy the ELLO condition, the gas Cerenkov

detector had to detect an event, and either three out of four scintillator planes had to

register hits (SCIN 3/4), or a combination of scintillator planes and the calorimeter had to
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Figure 2-8: Single-arm trigger electronics configuration [65]. For the SOS, the output
from ELREAL was used as the input for the pretrigger (PRETRIG). For the HMS,
the ELHI, ELLO and ELREAL logic was bypassed so that the SCIN 3/4 was the
input to the pretrigger.

register hits. The PRLO signal (it is called the PRLO signal, because the voltage threshold

of the discriminator was low) came from the first layer of calorimeter lead glass bars, where

the electrons were expected to create electron showers. The ELLO condition was almost

always met with electrons by satisfying the SCIN 3/4 condition and the requirement that

the gas Cerenkov detected an event. Other combinations of detectors were used in the

trigger so that the efficiency of each detector element could be determined.

The ELHI signal provided redundancy in the trigger because its signal was independent

of the gas Cerenkov. This allowed one to determine the efficiency of this detector in the

analysis. The ELHI condition was satisfied when three out of four scintillator planes reg-

istered hits, the preshower signal passed a high voltage threshold (PRHI) and the summed

signal from the lead glass calorimeter passed a low voltage threshold.

The outputs from the single-arm trigger electronics were used in the coincidence trigger

(Figure 2-9). The HMS and SOS pretrigger signals were sent to an 8LM LeCroy pro-

grammable logic unit. The status of the trigger supervisor (which will be described next)

was also sent to the 8LM to prevent events from overlapping. The 8LM determined if the

event was either a coincidence event, an HMS single arm event or a SOS single arm event.

The output from the 8LM was sent to the trigger supervisor where prescaling of the

single arm events could be accomplished to reduce the computer dead time. The trigger
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OUTPUT                 INPUTS

HMS PRETRIG = (HMS) & (EN1)
SOS PRETRIG = (SOS) & (EN1)
COIN PRETRG = (HMS) & (SOS) & (EN1)
PED PRETRIG = (PED) & (GO) & (NOT EN1)

HMS TRIG = (HMS) & (EN1) & (NOT BUSY)
SOS TRIG = (SOS) & (EN1) & (NOT BUSY)
COIN TRG = (HMS) & (SOS) & (EN1) & (NOT BUSY)
PED TRIG = (PED) & (GO) &(NOT EN1) & (NOT BUSY)

- Variable delay

- LEMO Cable

- ECL Cable

- ECL Cable
    (single ended)

8LM
HMS PRETRIG

SOS PRETRIG
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S

SOS PRE

COIN PRE
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more SOS (not shown).
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HMS PRE
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S

T

- Scaler

- TDC

FIGURE 2.12. 8LM, Trigger Supervisor, and asso
iated 
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iden
e trigger sig-nals.
and SOS TRIG signals are present during normal data taking only if the TriggerSupervisor is not busy. A 
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iden
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tive when the Trigger Supervisor is not busy. Note thatthe PRE signals are read out to s
alers even when the Trigger Supervisor is busyso that one 
an keep tra
k of the 
omputer dead time.

Figure 2-9: Configuration of the trigger supervisor and coincidence trigger electronics
(figure from Ref. [31]).

supervisor outputted two signals for the HMS and two for the SOS with very long gate

widths. The gate width was determined by the time required for the data acquisition and

was limited to a maximum of 100 µs. TRIG signals split off before the trigger supervisor

were delayed and then ANDed with the output from the trigger supervisor (only the delayed

HMS TRIG is shown). The ANDed signal for the HMS provided the TDC start signal for

the HMS TDCs, and the same procedure was used for the SOS. In this way, the start time

for the TDCs of each spectrometer did not depend on the timing of the coincidence gate.

The ANDed signals were also used to enable the readout of the ADC modules.

Signals from the photomultiplier tubes (PMTs), which were used on the fast scintillator

planes, Cerenkov detectors and lead-glass calorimeters, were sparsified. Dark current in

PMTs caused a DC shift in the current signal vs. time. The current integrated over the

time that the ADC was enabled was therefore the sum of the charge from the signal plus

the integral of the dark current over the gate width. The charge from the dark current in

a given event, the pedestal, was usually constant with time. To reduce the rate of data
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written to disk, signals from PMTs that were within the pedestal peak were not recorded

There was, however, a risk with sparsification that a detector may become very inef-

ficient, because real events may be identified as the pedestal. To limit this problem, the

pedestals of all the PMTs were checked at the beginning of each run (each run was usually

30-60 min). The first 1000 events of each run were triggered by an electronic pulser and the

ADCs were read out for each PMT. The pulser signal was called the pedestal trigger. Be-

cause no signal was expected in the current from a given PMT, the pedestal was measured

in these events. The measured pedestals were compared to those used in the sparsification

and the run was stopped if significant discrepancies were seen, and the pedestal positions

were updated if necessary.

2.5 Kinematic settings

The central kinematics of πCT are shown in Table 2.4. In addition to the kinematics

shown, data were taken with a hydrogen target and with the HMS (Section 2.4.1) rotated

from the central kinematics by an amount comparable to the spectrometer acceptance. The

spectrometer was rotated to both larger angles (plus side) and smaller angles (minus side),

however, some settings at the minus side could not be performed because the central setting

was already at the smallest possible HMS angle. The plus and minus side measurements

were performed to better constrain the fitting of the elementary pion cross section model.
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Q2 W −t Ee θSOS
e′ Ee′ θq θHMS pπ kπ ǫ x

1.10 2.26 0.050 4.021 27.76 1.190 10.58 10.61 2.793 0.23 0.50 0.21

2.15 2.21 0.158 5.012 28.85 1.730 13.44 13.44 3.187 0.41 0.56 0.35

3.00 2.14 0.289 5.012 37.77 1.430 12.74 12.74 3.418 0.56 0.45 0.45

3.91 2.26 0.413 5.767 40.38 1.423 11.53 11.53 4.077 0.70 0.39 0.50

4.69 2.25 0.527 5.767 52.67 1.034 9.09 10.63 4.412 0.79 0.26 0.54

2.16
∗

2.21 0.164 4.021 50.76 0.730 9.03 10.60 3.187 0.42 0.27 0.35

4.01
∗

2.14 0.441 5.012 55.88 0.910 9.50 10.55 3.857 0.71 0.25 0.52

2.16
†

1.74 0.374 4.021 32.32 1.730 19.99 19.99 2.074 0.65 0.63 0.50

Table 2.4: πCT central kinematics; θq is the angle between q and the beam direction
in the lab frame, kπ is the magnitude of the three momentum of the virtual struck
pion in the quasifree knockout picture, and x = Q

2
/(2Mν). Kinematics labeled with

* are the low epsilon points used for L-T separations and the setting labeled with †
is the W vs. kπ test point. The HMS and SOS are described in Section 2.4. Energy
is given in GeV, momentum in GeV/c, mass in GeV/c2 and angles are in degrees.
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Chapter 3

Data analysis

The goal of the πCT data analysis was to determine the normalized yields from the raw

data files produced during the experiment. The normalized yield is the number of events

that pass a given set of cuts divided by the cumulative charge delivered by the beam after

correcting for the efficiency of the detectors. The standard Hall C analysis code, called the

Engine, was used to process these raw data files. The Engine performs reconstruction of

events using the raw wire chamber and other detector signals and stores the output in a

summary file. The summary file contains the reconstructed kinematics for each event along

with other useful information such as the charge delivered by the beam. Corrections to the

data include kinematic corrections and normalization corrections. Kinematic corrections

are concerned with optimizing the accuracy of reconstructed quantities. Normalization

corrections are applied in order to determining normalized yields and absolute cross sections,

such as detector efficiencies and corrections to the target thickness. The steps involved in

determining the normalized yields will be described in this chapter.

3.1 Event reconstruction

The spectrometer quantities, x, y, x′
and y′, could be deduced from reconstruction of the

wire chamber data. These quantities are the vertical and horizontal positions of the track

at the midpoint between the wire chambers, and the gradients of the track with respect to

the spectrometer central ray. The target quantities, ytar, x′
tar, y′tar and δ were determined

from the spectrometer quantities by suitable transformation functions. These quantities
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are the horizontal position of the event, the horizontal and vertical gradients of the track

with respect to the spectrometer central ray and the momentum of the particle given as

a percentage above the central momentum setting of the spectrometer, respectively. The

transformations are given by

ytar = f1(x, y, x′, y′),

x′
tar = f2(x, y, x′, y′),

y′tar = f3(x, y, x′, y′), and,

δ = f4(x, y, x′, y′).

(3.1)

The transformation matrix can be determined theoretically based on the configuration

of the magnets in a given spectrometer. Another, more accurate, method is to optimize

the matrix with a specially prepared data set and surveys of the spectrometers. The latter

method cannot be performed, however, without some reasonable starting transformation,

which the theoretical transformation matrix provides. The transformation functions, fi, are

parameterized as a sum of polynomials of the spectrometer quantities, with up to 6th order

polynomials used. The coefficients of the polynomials comprise the optics matrix, M , given

by

xi
tar = fi(x, y, x′, y′) ≈

j+k+l+m≤6
∑

j,k,l,m

M i
jklm(x)

j
(y)

k
(x′

)
l
(y′)m. (3.2)

The parameterization for f1 can be optimized by a data set consisting of a series of

foil targets placed at well determined positions in the target region. The parameterization

for f1 can then be optimized to make a histogram of ytar as narrow as possible and close

to the foil position. Similarly, the parameterization of f2 and f3 can be optimized using a

data set consisting of sieve slit runs with the same foils used to optimize ytar. The sieve

collimators contain small holes and are placed in the zero-magnetic field region between the

target and the first magnet of a given spectrometer. Surveyed positions of the foils and the

sieve holes allow one to determine the angle of tracks at the target and optimize the angle

matrix elements. Following optimization of the angles, the parameterization of f4 can be

accomplished by a series of hydrogen elastic runs. The constrained kinematics allows one

to determine the momentum of the particles using x′
tar and y′tar, and therefore optimize the

δ matrix elements.

When fitting matrix elements, the zeroth order matrix elements (M i
0000) are always
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Matrix PSOS during PSOS during PSOS

name δ optimization (GeV/c) angle optimization (GeV/c) range (GeV/c)
900 0.9 1.65 0.1 to 1.1
Default 1.45 1.65 1.1 to 1.7
1740 1.74 1.65 1.7 to 1.8
1200 0.9 1.2 Not used

Table 3.1: Matrices available for the reconstruction of SOS target quantities, the
settings at which these matrices were optimized and the range in the central SOS
momentum setting (PSOS) over which the matrices produce the best agreement with
surveys of the hall.

discarded. The reason is that the zeroth order matrix elements represent a global offset of

the spectrometer, such as the out-of-plane spectrometer offset. These offsets can be more

accurately determined using hydrogen elastic coincidence runs (heep check), they can be

parameterized as functions of the central spectrometer settings, and parameterizations of

the offsets generally do not need to be changed when matrices are changed.

3.1.1 SOS optics matrix

A number of SOS matrices were available to transform the reconstructed spectrometer

quantities (x, y, x′
and y′) into target quantities (ytar, x′

tar, y′tar and δ). These matrices

were called 900, Default, 1740 and 1200, and the central momentum range over which these

matrices were used in the πCT analysis are described in Table 3.1. The 900, default and

1740 matrix share the same angle matrix elements. To help correct for saturation effects

(Section 3.1.2), a parameterization was developed by X. Chuncheng [66] to correct ytar,

x′
tar and y′tar for PSOS 6= 1.65 (GeV/c). This parameterization was used whenever the 900,

default or 1740 matrices were used.

The 1200 matrix was optimized as part of the πCT analysis, while the other matrices

were available before the experiment. This matrix was tested using optics data taken at

PSOS = 1.2 (GeV/c) and the standard deviation of the reconstructed in-plane scattering

angle was 0.88 mrad and the out-of plane scattering angle was 0.31 mrad. The standard

deviations of the in-plane and out-of-plane scattering angles using the Default matrix were

0.93 mrad and 0.20 mrad, respectively. The improvement using the new matrix was marginal

in the in-plane angle and worse in the out-of-plane angle, and so the 1200 matrix was not
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Figure 3-1: SOS field correction. The observed correction to the SOS central momen-
tum during πCT (squares) and 2003 (stars). The dotted line is the parameterization
of the 2003 data, and was not modified for πCT .

used.

3.1.2 SOS saturation corrections

The room temperature magnets in the SOS spectrometer contain iron cores that produce

saturation effects in the reconstruction for central momentum settings above approximately

1.1 (GeV/c). One such effect is the field correction, which is a correction to the SOS central

momentum setting, and is a parameterization of the zeroth order matrix element for f4.

The SOS field correction is determined from hydrogen elastic coincidence runs, where the

actual SOS central momentum can be compared to the value of the central momentum set

during the experiment. The deviation observed during πCT is shown in Figure 3-1, together

with the observed offset during 2003 [65]. The parameterization used for this correction

was

dP

P
[%] = −0.036 − 0.00632 × exp(PSOS

3.004
). (3.3)

The saturation correction is another artifact introduced by saturation of the iron cores

in the SOS spectrometer. This correction was needed because the optics matrix was used
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at central momenta other than the central momentum where the matrix was optimized.

This effect was not significant when using the 1740 and 900 matrices because the 1740

matrix was only used for PSOS close to 1.74 (GeV/c), while saturation effects were small in

the settings where the 900 matrix was used. Therefore, the saturation correction was only

applied to the Default matrix. One can see the effects of this problem in Fig. 3-2. The

missing mass minus the mass of the neutron should be zero if events were reconstructed

correctly, however, a dependence on x′
tar is seen. The first plot in Fig. 3-2 was made without

the saturation correction determined during the πCT analysis. The second plot was made

using this saturation correction, which was applied in addition to the existing correction.

The SOS saturation correction was applied to the δ matrix elements, and the πCT

parameterization is shown in Fig. 3-3. The form of the parameterization is a function of

PSOS and x′
tar, and is given by

d(δSOS)[%] = 0.0199 − 0.34515x′
tar + 12.82(x′

tar)
2
+ 212.492(x′

tar)
3

+ (−0.01602 − 0.27781x′
tar − 14.7455(x′

tar)
2
)PSOS

+ (−174.44 exp(138.856(x′
tar − 0.0755)) + 0.1113 + 6.1344x′

tar)

× (1.077 − 1.561PSOS + 0.3876PSOS
3
) exp(0.4756PSOS).

(3.4)

This parameterization can be seen to become almost zero at PSOS = 1.4 − 1.5 (GeV/c),

which is where the δ matrix elements of the Default matrix elements were optimized.

3.2 Event selection

The various cuts employed to select e-π+
coincidence events and the efficiency of these cuts

are outlined in this section. Acceptance cuts restricted events to well-understood regions

of the spectrometers, and at the same time, were not made too narrow as this affected the

statistical uncertainty. The nominal acceptance cuts are given in Table 3.2. The window

defined by the acceptance cuts for the quantities x′
tar and y′tar were made large enough such

that the collimators in each spectrometer defined the acceptance. The positions of these

cuts compared to the experimental and Monte Carlo distributions are shown in Figure 3-4.

The quantities x′
tar, y′tar and δ were defined in Section 3.1.

The boundaries of the phase space defined by δ, ytar, and y′tar in the SOS disagree with

the model of the SOS in some regions (see Section 5.5.3 in Ref. [33]). The acceptance in
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Figure 3-2: SOS saturation correction observed at PSOS = 1.73 (GeV/c) using
H(e,e′π+) and the Default matrix. On the left is x

′
tar [rad] vs. the missing mass

minus the mass of the neutron [MeV/c2] before applying the πCT saturation correc-
tion. The plot on the right is the same distribution after applying the correction.

Figure 3-3: SOS saturation correction parameterization determined during the πCT

analysis. The quantities ssdelta, ssxptar are the SOS target quantities δ and x
′
tar,

respectively, and spcentral is the central momentum setting of the SOS (PSOS).
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HMS SOS
|x′

tar| < 0.075 rad |x′
tar| < 0.04 rad

|y′
tar| < 0.04 rad |y′

tar| < 0.07 rad
|δ| < 8 % -10 % < δ < 15 %

Table 3.2: Nominal acceptance cuts in the HMS and SOS spectrometers.

the SOS was therefore reduced further using the cuts

y′tar > −125.0 + 4.25δ + 64.0ytar − 1.7δytar, and,

y′tar < 125.0 − 4.25δ + 64.0ytar − 1.7δytar.
(3.5)

Particle identification cuts were already discussed briefly in Section 2.4.3. The SOS

gas Cerenkov was used to select electrons and the efficiency of this cut, εscer, was deter-

mined using an unbiased sample of electrons that were identified using the SOS calorimeter.

Coincidence time cuts and acceptance cuts were also employed to select e-π+
coincidence

events from the unbiased sample so that the efficiency was determined for those events that

contributed to the experimental yields. The SOS gas Cerenkov cut and the efficiency of the

cut is shown in Table 3.3. The position of the cut was increased to 5 photoelectrons for

the December running period as a new SOS gas Cerenkov was installed. The pion rejection

ratio was 100:1 during the July running period and 300:1 during the December running

period. Even though there is a small chance that a pion may be misidentified as an electron

when determining normalized yields, the net effect of events with misidentified pions will

be reduced due to the subtraction of random coincidences, and this effect does not pose a

problem.

The aerogel and gas Cerenkov detectors in the HMS were used to select π+
particles.

The aerogel Cerenkov detector was used in the data cuts when the central momentum setting

of the HMS, PHMS, was less than approximately 3.2 (GeV/c). The gas Cerenkov detector

was used in the data cuts when PHMS & 3.2 (GeV/c). The aerogel Cerenkov detector was

not used when PHMS & 3.2 (GeV/c) because the additional particle identification was not

required (there was negligible reduction in the random coincidence background) and there

would be an additional systematic uncertainty due to the efficiency of the aerogel Cerenkov

detector.

An unbiased sample of pion events in the HMS was selected from coincidence events
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Figure 3-4: Experimental data (crosses) and Monte Carlo simulation (solid line)
for H(e,e′π+) at Q

2 = 1.1 (GeV/c)2. The Monte Carlo simulation is described in
Chapter 4. The quantities dx/dztar and dy/dztar are x

′
tar and y

′
tar, respectively. The

dashed lines show the positions of the acceptance cuts.

using tight coincidence time cuts, missing mass cuts and SOS particle identification cuts.

The efficiency of the HMS gas Cerenkov, εhcer, could be determined with an additional

cut on the unbiased sample of pions using the HMS aerogel detector to remove protons.

The efficiency of the HMS gas Cerenkov detector was then the number of events from the

unbiased sample that passed the HMS gas Cerenkov cut divided by the number of events

in the unbiased sample.

The HMS gas Cerenkov detector could not be used to remove proton events when

determining the efficiency of the HMS aerogel detector, εhaero, as both the pion and proton

events were also below the gas Cerenkov threshold. Therefore the unbiased sample of pion
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PSOS Nscer εscer(%)
1.190 1 99.77 ± 0.3
1.730 1 99.81 ± 0.3
1.430 1 99.93 ± 0.3
1.423 5 99.84 ± 0.3
1.034 5 99.83 ± 0.3
0.730∗ 1 99.16 ± 0.5
0.910∗ 1 99.69 ± 0.3
1.730† 1 99.81 ± 0.3

Table 3.3: Position of the SOS gas Cerenkov cut and the efficiency of this cut, εscer.
The cut is given by Nphotoelectrons > Nscer. Central momentum settings, PSOS, labeled
with * are the low epsilon points used for L-T separations and the setting labeled
with † is the W vs. kπ test point. The uncertainties shown are the normalization
uncertainties, the point-to-point uncertainties were estimated using different targets
at the same setting and were 0.2%.

events contained a small fraction of proton events due to random coincidences, and εhaero

determined using this sample of events will represent a lower limit of the true εhaero. The

accuracy of this method was confirmed by examining the dependence of εhaero on the target

nucleon number, A, and also by performing random coincidence subtraction (Section 3.5)

of the sample of pion events before and after applying the aerogel Cerenkov cut.

The position of the HMS aerogel and gas Cerenkov cuts and the associated efficiencies

are shown in Table 3.4. The parameterization for the HMS gas Cerenkov efficiency, ε(δHMS),

that is shown in the table is given by

ε(δHMS) = 1.031− 0.001654δHMS − 0.001272(δHMS − |δHMS|)− 0.3378/(δHMS + 10.0) (3.6)

This paramameterization of the efficiency was required because the efficiency was observed

to depend on δHMS. This dependence occured because the pions at negative δHMS are

closer to the momentum threshold of the HMS gas Cerenkov detector compared to those

pions at positive δHMS. A parameterization of the efficiency was not required for the L-

T separation kinematic setting at PHMS = 3.187 (GeV/c) because the δHMS acceptance

was predominantly populated at negative δHMS, and no dependence on this quantity was

seen. The efficiencies for both settings as a function of δHMS are shown in Figure 3-5. The

rejection ratio for the HMS gas Cerenkov was 50:1 at Pcentral = 3.2 (GeV/c) and 300:1 at
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PHMS Nhcer εhcer(%) Nhaero εhaero(%)
2.793 - - 0.7 98.84 ± 0.5
3.187 0.7 ε(δHMS) ± 0.5 - -
3.418 1.35 99.11 ± 0.5 - -
4.077 2.0 99.77 ± 0.3 - -
4.412 2.0 99.77 ± 0.3 - -
3.187∗ 0.7 98.18 ± 0.5 - -
3.857∗ 1.5 99.75 ± 0.3 - -
2.074† - - 0.7 98.93 ± 0.5

Table 3.4: The position of the HMS gas Cerenkov cut,Nhcer and the efficiency of this
cut, εhcer. The position of the HMS aerogel Cerenkov cut,Nhcer and the efficiency
of this cut, εhaero are also shown. The cuts are given by Nphotoelectrons > Nhcer and
Nphotoelectrons > Nhaero in the gas and aerogel detectors, respectively. Central momen-
tum settings, PHMS, labeled with * are the low epsilon points used for L-T separations
and the setting labeled with † is the W vs. kπ test point. The uncertainties shown
are the normalization uncertainties, the point-to-point uncertainties were estimated
using different targets at the same setting and were 0.2%. The parameterization for
ε(δHMS) is described in the text.

Pcentral = 4.4 (GeV/c). The rejection ratio for the HMS aerogel Cerenkov detector was

approximately 5:1 at Pcentral = 2.1 and 2.8 (GeV/c).

The coincidence time was calculated from the time difference between the SOS and

HMS triggers, and was used to help identify e-π+
coincidences. The raw coincidence time

is the time of the leading edge of the SOS trigger pulse minus the time of the retimed HMS

trigger pulse. The coincidence time is similar to the raw coincidence time except that it

includes corrections for the path length of the tracks through the magnetic elements of the

spectrometers, pulse height corrections for the signals from the scintillators, and subtraction

of the time required for light to travel in the scintillators from the event position to the

PMT. The purpose of these corrections was to make the coincidence time a constant value

over the acceptance of the spectrometers, assuming an electron was detected in the SOS and

a π+
in the HMS. To allow for the resolution in the timing of the hodoscope scintillators

and electronics, a wide (2 ns) cut was applied to the coincidence time. This cut is discussed

further in Section 3.5.

Coincidence blocking and synchronization errors can affect good events that would oth-

erwise fall within the coincidence time cuts. These errors affected both random and true

events alike, and attempts were made to select cuts that removed events with coincidence
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Figure 3-5: HMS gas Cerenkov efficiency for pions at PHMS = 3.2 (GeV/c). The
experimental efficiencies are the crosses and the dashed lines are the parameterizations
that were fit to this data. The first plot shows the parameterization for ε(δHMS) and
the second shows the efficiency for the L-T separation kinematic setting at PHMS =
3.187 (GeV/c).

blocking and synchronization errors. The fraction of events removed by these cuts was used

to correct the yields of true coincidence events. A discussion of these errors and the coinci-

dence blocking and synchronization cuts are described in Sections 3.3 and 3.4, respectively.

A background to our quasi-free pion production picture was double pion production.

An electron and π+
may be detected in coincidence with a second pion that is not detected.

Two pions may be produced at the vertex and/or by particles interacting with the residual

nucleons as they propagate out of the nucleus. These events can not be modeled very well,

and so missing mass cuts were used to exclude these events.

The nuclear missing mass, Mx, and nucleon missing mass, M ′
x, were defined in Sec-

tion 1.6. Cuts on either the nuclear missing mass or the nucleon missing mass were em-

ployed to exclude events where more than one pion was produced. The nuclear missing

mass has a well-defined threshold below which double pion production cannot occur, and is

given by (Mx)2π = Mπ0 + Mn + MA−1. However, this cut was very restrictive and resulted
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Q
2 (GeV/c)2 2H 12C 27Al 63Cu 197Au

1.1 2.00 11.35 25.275 59.35 183.57
2.15 2.04 11.375 25.325 59.40 183.63
3.0 2.025 11.40 25.35 59.40 183.63
3.9 2.04 11.40 25.38 59.45 183.67
4.7 2.08 11.425 25.40 59.50 183.74

Table 3.5: Above-threshold nuclear missing mass cut positions for all kinematic set-
tings and targets. The missing mass cut was Mx < Mcut, where Mcut [GeV/c2] is
displayed in the table.

Q
2 (GeV/c)2 2H 12C 63Cu 197Au

1.1 1.04 1.04 1.01 1.01
2.15 1.02 1.02 1.01 1.00
3.0 1.03 0.975 0.975 0.95
3.9 1.02 0.95 0.95 0.95
4.7 1.01 0.93 0.93 0.935

Table 3.6: Nucleon missing mass cut positions for all kinematic settings and targets.
The missing mass cut was M

′
x < M

′
cut, where M

′
cut [GeV/c2] is displayed in the table.

in an unacceptable loss of events, particularly at the highest Q2
setting. Two alternative

sets of cuts were used, nucleon missing mass cuts and above-threshold nuclear missing mass

cuts. The position of these cuts were determined using a multi-pion simulation discussed

in Section 4.8. The positions of the nuclear missing mass cuts are given in Table 3.5 and

the positions of the nucleon missing mass cuts are given in Table 3.6.

3.3 Coincidence blocking correction

Coincidence events can be blocked when a random event arrives in one of the spectrometers

just before the coincidence event. Not only can the wrong kinematics be assigned to the

coincidence event, but the retimed trigger pulse for the spectrometer will have the wrong

delay, which affects both the ADCs and TDCs. This effect only becomes significant at high

rates and can be made insignificant by suitable prescaling of the single arm triggers.

The coincidence blocking events can be identified in the raw HMS coincidence time,

(Traw)HMS, spectrum, since the blocked events lie outside of the coincidence trigger win-

dow and arrive earlier than real coincidence events. The coincidence blocking cut was
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Figure 3-6: Coincidence blocking correction for deuterium at Q
2 = 1.1 (GeV/c)2.

Events outside of the shaded region arrived earlier than the real coincidence events
and constitute 0.62% of the total events.

(Traw)HMS > 1170, and the coincidence blocking factor, fcoinblock, was the total events di-

vided by the number that pass this cut. This factor resulted in a correction of less than

0.7% for all runs. The uncertainty due to this correction was estimated using a previously

determined parameterization for fcoinblock [65], given by

1/fcoinblock = 1 − RSOSτSOS, (3.7)

where RSOS was the SOS pretrigger rate (Hz) and τSOS = 92 ns was an effective gate width.

The point-to-point systematic uncertainty, given by the deviation between the experimen-

tally determined correction and the parameterization, was 0.2%.

3.4 Synchronization correction

The ADCs and TDCs can be run in a buffered or unbuffered mode. When operated in

the buffered mode, up to 8 events could be stored in the internal buffers of the ADCs and

TDCs while the data acquisition computers were busy, which helped reduce the computer

dead time during runs with high rates. There was a small probability, however, that the

detectors within a spectrometer can be out of synchronization with the detectors of the
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Figure 3-7: Synchronization correction for deuterium at Q
2 = 1.1 (GeV/c)2. Events

outside of the shaded region have incorrect synchronization and constitute 0.93% of
the total events.

other spectrometer when the event is recorded to disk. When this occurs, a particle in

a coincidence event could be matched with the preceding or following event in the other

spectrometer.

During πCT , the ADCs and TDCs were generally run in the unbuffered mode. Checks

were performed using the buffered mode, and there was no observable difference in the

normalized yield after correcting for synchronization errors. A correction of less than 1%

for loss of synchronization was necessary in the unbuffered mode.

Events where a loss of synchronization occurred could be identified using a checksum,

Tcksum, defined as

Tcksum ≡ THMS,raw + TSOS,raw, (3.8)

where THMS,raw is the raw coincidence time measured with an HMS TDC, and TSOS,raw is

the raw coincidence time measured with an SOS TDC. The raw coincidence times are given

by

THMS,raw = (Ttrig)SOS − (Tretim)HMS , and,

TSOS,raw = (Ttrig)HMS − (Tretim)SOS ,
(3.9)

where (Ttrig)HMS(SOS) is the time of the leading edge of the electronic pulse in the trigger

electronics of HMS (SOS), and (Tretim)HMS(SOS) is the time of the leading edge of the retimed
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trigger pulse in the trigger electronics of HMS (SOS). The retiming delay is described in

Section 2.4.4. Therefore, the checksum is equal to a constant timing delay

Tcksum = (Ttrig − Tretim)HMS + (Ttrig − Tretim)SOS

= HMS retiming delay + SOS retiming delay.
(3.10)

Events with a loss of synchronization will not have a constant checksum, and can be

identified as those outside of the main peak in Figure 3-7. Coincidence events that passed

the coincidence blocking cut (Section 3.3) were used in this figure and in the calculation

of the synchronization correction described below. The shaded region represents the region

accepted as events with the correct synchronization. The synchronization cut was Tcksum >

3390, and the coincidence blocking factor, fsync, was the total events divided by those that

pass the synchronization cut.

3.5 Random coincidence subtraction

Figure 3-8: Coincidence time (ns) between the scattered electron and π
+. The true

coincidence peak has a FWHM of 0.61 ns and the smaller peaks are the random
coincidences. The 2 ns coincidence time difference between random coincidence peaks
is due to the beam microstructure.

The coincidence time spectrum for the carbon target at Q2
= 1.1 (GeV/c)

2
is displayed

in Figure 3-8. The large peak near the coincidence time of -59 ns contains true coincidence

events, where an electron and a pion were generated from the same vertex. The absolute
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Figure 3-9: Pion velocity (v/c) in the HMS vs. coincidence time (ns). The solid lines
show the cut used to select true coincidence events. The dashed lines show the cuts
used to select 6 random coincidence peaks. All the cuts described in Section 3.2 were
applied to this data.

position of the peak contains arbitrary, fixed delays and so has no physical significance. The

smaller peaks contain events where the electron and pion do not originate from the same

vertex and are random coincidences. Random coincidences also exist in the true-coincidence

peak and can not be separated with coincidence time cuts. These events are removed by

background subtraction, which is discussed below.

The coincidence time spectrum shown in Figure 3-8 is from the carbon target at Q2
=

1.1 (GeV/c)
2
, which had the worst background from random coincidences compared to the

number of events inside the true coincidence peak. Figure 3-9 shows the cuts used to select

true coincidence events. The positions of the cuts were fixed relative to large peak, and

were adjusted every run. Pions may interact strongly with nuclei in the scintillator material,

possibly knocking out a slower hadron, and producing reconstructed events that appear at

lower or even zero velocity and with a lower coincidence time. The velocity in the HMS

was determined from the time-of-flight between the scintillator planes that are separated

by 250 cm (Section 2.4.1). Graphical cuts shown by the solid lines in Figure 3-9 were used

to guarantee that all true events were inside the cut. The same analysis with graphical cuts

was not necessary in the electron arm (SOS) because electrons do not interact through the

strong nuclear force.

The width of the timing cut was equal to the period of the beam microstructure, 2.00 ns,
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and is shown in Figure 3-9. The width was large enough so that all true coincidence events

could be assumed to be inside the cut. The edges of the cut were 4.3 standard deviations

from the center of the coincidence time peak, and so this was a reasonable assumption.

There was, however, two corrections for true coincidence events that were excluded by

the coincidence time cut, the synchronization correction (Section 3.4) and the coincidence

blocking correction (Section 3.3).

The number of true coincidences, Ntrue, was obtained through background subtraction.

This was accomplished by

Ntrue = Npeak −
Nsides

6
, (3.11)

where Npeak was the number of events that passed the cuts represented by the solid lines

in Figure 3-9 and Nsides was the number of events that passed the cuts represented by the

dashed lines. Both Npeak and Nsides included all the cuts described in Section 3.2. The cuts

to select random events near the coincidence time of -75 ns could not be moved closer to

the large peak because a coincidence proton peak exists near -66 ns. The proton peak was

reduced using cuts on the number of photoelectrons in the HMS gas and/or aerogel Cerenkov

detectors, however, this region was avoided in the background subtraction procedure.

Random coincidence subtraction also needed to be applied when comparing a given

distribution of experimental data to the Monte Carlo. This was because the distribution

of random coincidences (in the missing mass for example) was not the same as the true

coincidence distribution. When comparing the experimental distributions to the Monte

Carlo, Equation 3.11 was changed to

Htrue = Hpeak −
Hsides

6
, (3.12)

where H is a histogram of a given distribution.

3.6 Scintillator 3-out-of-4 and trigger efficiency

The HMS and SOS spectrometers each contained four layers of scintillators and a require-

ment for a single-arm trigger was that 3 out of 4 layers must have a hit. The efficiency of

this requirement therefore needs to be considered. While individual planes certainly had

small regions of inefficiency, it was very likely that at least three planes had hits. The
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3-out-of-4 efficiency (P3/4) can be calculated from

P3/4 = P1P2P3P4 + P1P2P3(1 − P4) + P1P2(1 − P3)P4

+P1(1 − P2)P3P4 + (1 − P1)P2P3P4

(3.13)

where Pn represents the efficiency of the nth plane. The efficiency of the nth plane could be

determined using an unbiased sample, where the unbiased sample was selected by requiring

hits in the other three planes. The efficiency was then the fraction of events that had at

least one hit in the nth plane divided by the number of events in the unbiased sample.

Correlations can also occur between regions of inefficiency and affect P3/4. For example,

hodoscope paddles that had underperforming photomultiplier tubes were inefficient near

that end of the paddle. If such a region in a paddle was followed by an inefficient region in

another plane, then the trigger efficiency had the potential to be lowered in this part of the

acceptance. Therefore, the acceptance was divided spatially into a 2-dimensional grid at the

focal plane. The 3-out-of-4 efficiency was calculated for each bin using Equation 3.13. The

efficiency for each bin was combined into an average using the distribution of e-π coincidence

events as a weight. The 3-out-of-4 efficiency was found to be above 99.5% for all runs in

both spectrometers. The efficiency was therefore assumed to 100±0.5%.

For the HMS, P3/4 was the trigger efficiency. The SOS trigger was ELREAL, which can

be formed from either two hodoscope planes through the STOF condition or three planes

through the SCIN condition (Figure 2-8). The efficiency of the hodoscope planes in the SOS

trigger was therefore estimated to be P3/4, where the uncertainty, 0.5%, is a conservative

estimate. The SOS trigger efficiency also depends on the efficiency of the gas Cerenkov and

calorimeter. However, a Cerenkov cut is used for all experimental data, and the efficiency

of this cut using an unbiased sample was discussed in Section 3.2.

3.7 Dead time corrections

The computer dead time is due to the finite time required for the electronic modules and

computers to process an event, which is fixed by the “TS BUSY” signal in Figure 2-9, and

this dead time is non-paralyzable [67]. An event that reaches the trigger supervisor will

cause the 8LM to suppress all output for subsequent events that occur within a constant

time, τ , of the original event.
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Figure 3-10: The measured computer live time as a function of the rate of any type
of trigger (atrig). The solid line is a linear fit to the measured live time.

The computer live time, LTcomp, is the ratio of the measured counts to the true number

of counts. Using the notation in Figure 2-9, LTcomp is the ratio of the number of triggers

to the number of pretriggers, and is given by

LTcomp =
Ntrigger

Npretrigger
=

1

1 + Rτ
, (3.14)

where R is the rate of pretriggers. The computer live time can also be expressed as a

function of the rate of triggers, Rtrig, and is given by

LTcomp = 1 − Rtrigτ . (3.15)

The measured LTcomp = Ntrigger/Npretrigger is shown in Figure 3-10 as a function of Rtrig.

Although Equation 3.15 provides a reasonable description of the measured LTcomp, the

measured LTcomp was used to correct the data.

The electronic dead time arises from logic and discriminator modules preceding the

8LM (Figure 2-8). These modules output a digital pulse whenever the input signal(s) to

the module satisfy certain conditions and the duration of the digital pulse, the gate width,

determines the dead time of the module. Events that are separated in time by less than

the longest gate width in the chain of logic units in the trigger may cause that module to

ignore the second event or output one elongated digital pulse (rather than two pulses), and
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Figure 3-11: The measured electronic live time as a function of the the HMS and SOS
pretrigger rate.

the second event will be lost. The limiting gate width, τe, is approximately 60 ns, which is

very small compared to the average time between events, and therefore the electronic live

time, LTelec, can be approximated by

LTelec ≈ 1 − Rτe. (3.16)

The electronic live time was measured using the modules in the upper-right corner in

Figure 2-8. These modules had varying gate widths from 40 to 200 ns, and allows one to

extrapolate to zero gate width and the number of true events, Ntrue. The electronic live

time, given by

LTelec = Npretrigger/Ntrue, (3.17)

was calculated for all runs, and is shown in Figure 3-11. The experimental yields (Sec-

tion 3.10) were corrected for the electronic dead time using the correction factors

(felec)HMS,SOS = 1/(LTelec)HMS,SOS. (3.18)
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The uncertainty due to the dead time corrections were dominated by the computer dead

time, as the size of this correction was as large as 25%, whereas the correction due to the

electronic dead time was less than 1%. The uncertainty in the dead time corrections was

estimated from data runs taken at constant beam current, but varying computer dead time.

A point-to-point uncertainty of 0.5% was assumed in the dead time corrections based on

the observed variation in the dead time corrections with the trigger and pretrigger rates.

3.8 Tracking efficiency

The tracking efficiency, εtrack, is the probability of finding a track from experimental signals

from the wire chambers when a charged particle passes through them. As it is not always

clear if a particle did or did not pass through the wire chambers in a given event, the

determination of the tracking efficiency can be a subjective process. Typically εtrack is

determined by selecting a pool of events where one is convinced that a charged particle

passed through the wire chambers, and εtrack is the number of events where a track was

found divided by the number of events in the pool. The tracking efficiency depends on the

reconstruction software and the efficiency of the individual wires in the wire chambers.

The tracking efficiency depends on the event rate, which affects the probability of seeing

two tracks inside the ∼250 ns width of the TDC window. The reconstruction code only

returns a single track during such events, and the reduction in the event rate is corrected

for by the dead-time correction (Section 3.7). However, events with multiple tracks have

a greater chance of being reconstructed incorrectly and the πCT analysis includes the

correction worked out during the analysis of the Pion Form Factor Experiment [65]. They

found a bias in the reconstruction software due to the exclusion of two-track events. The

tracking efficiency is also different for electrons, pions and protons, and so identification

(PID) cuts are used to select electrons in the SOS (gas Cerenkov and calorimeter) and

pions in the HMS (gas and aerogel Cerenkov).

Events where the track should have passed through the wire chambers were selected by

requiring hits on particular TOF paddles that define a fiducial area in the wire chambers.

Events that hit the central paddle in each of the four scintillator planes in a given spectrom-

eter and produced at least a small signal in the calorimeter (Ecal > 0.02 × Pcentral) were

guaranteed by geometry constraints to pass through the wire chambers, and should have a
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track. The PID cuts described above were applied to this sample of events and εtrack was

the probability that the reconstruction code found tracks in this sample.

The tracking efficiency was improved by a new track selection method called the “Prune”

method. A tolerance time of 3 ns was used in both the HMS and SOS. The tolerance time

was a cut on scintillator times projected to the focal plane that excluded PMT signals that

were very different in time from the other PMT signals in the calculation of the coincidence

time and εtrack. Furthermore, if there were a number of possible tracks in a given event,

the Prune method excluded tracks with unreasonable reconstructed quantities (x′
tar, y′tar, δ,

etc.) and tracks that did not point toward the scintillators that were hit. More information

on the Prune method can be found in Refs. [68, 69].
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Figure 3-12: Tracking efficiency, εtrack, vs. the normalized scaler of the scintillator
plane closest to the wire chambers, R. The tracking efficiencies of the HMS (top) and
the SOS (bottom) are shown.

The tracking efficiencies in the HMS and SOS are shown in Figure 3-12. The efficiency

was averaged over 5-10 runs at a time, unless conditions, targets, and/or kinematics changed.

The average efficiency of each group of 5-10 runs was assigned to all runs in the group. Runs

that had trips were excluded from the average but were assigned the average efficiency of
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its group.

There were several hours during the December running period when the low outside air

temperature affected the mixing of the wire chamber gas and the HMS tracking efficiency

was reduced. These runs are marked with a star in Figure 3-12. These settings were

repeated after the hardware was operating normally and it was found that the normalized

yield, which included corrections for the tracking efficiency, was unaffected.

The tracking efficiency was 92-99% in the HMS and 96-100% in the SOS. Based on the

variation of εtrack with R in Figure 3-12, a point-to-point uncertainty of 1.0% and 0.5%

was assigned to the correction for the HMS and SOS tracking efficiency, respectively. A

normalization uncertainty of 1.0% and 0.5% was assigned to the HMS and SOS tracking

efficiency, respectively, due to the size of the correction and an estimate of how well one can

select a pool of events where a charged particle passed through the wire chambers.

3.9 Particle absorption in the spectrometers

When hadrons are detected in either the HMS or SOS, particles may interact though the

strong nuclear force with nuclei in the target material, the window of the scattering chamber,

the windows of the spectrometer, etc. The transmission, Th, through these materials was

calculated using the hadron-nucleus inelastic cross section and applied as a correction to

the normalized yield (Section 3.10).

Proton absorption was corrected for in the analysis of elastic H(e,e
′
p) data (Sec. 4.9), and

it was weakly dependent on the proton momentum. Measurements in Ref. [65, 31] indicate

that the transmission of protons in the HMS was 94.5% under spectrometer configurations

similar to what was used during πCT . The transmission was largely unchanged from earlier

transmission analyses, see for example Ref. [70]. The proton transmission was measured by

selecting electron cuts that guaranteed the proton was within the spectrometer acceptance

and the transmission was the measured coincidence rate divided by the electron single-arm

rate.

The transmission for pions is weakly dependent on the pion momentum between 2.1 and

4.4 (GeV/c). Based on the work in Ref. [65], the transmission for pions in the HMS was 95%.

The transmission was expected to change slightly between targets due to the absorption

in half of the thickness of the target material. Theoretically, the average absorption will
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change at most by 0.5% between the targets. The pion absorption correction will cancel

when we form the ratio between targets and in the L/T separation, but it was applied to

calculations of the absolute cross section. The uncertainty due to the pion absorption was

2% in the absolute cross section determination, which was estimated using the difference

between the calculated pion transmission and the measured proton transmission [65]. The

point-to-point uncertainty assigned to the pion transmission was 0.5%.

3.10 Charge-normalized yield

The charge-normalized yield, Ȳ , which is often called the normalized yield, is given by

Ȳ = Y/Q, (3.19)

where Y is the yield of a given run in counts and Q is the charge delivered by the beam in

mC. The charge delivered by the beam was measured using the beam current from BCM2

(Section 2.2) integrated over time for the duration of the run. The yield is given by

Y =
Ntrue

[εscerεtrack/felec]SOS [εhcerεhaeroεtrack/felec]HMS

Npretrigger

Ntrigger
fcoinblockfsync

1

Th
. (3.20)

A small modification to this equation was required when the π+
was below the HMS gas

Cerenkov threshold and a cut on this detector was not used. For these runs, εhcer was set

to one. The correction factors, (felec)HMS, (felec)SOS, fcoinblock, and fsync were all within 1%

of unity for all runs. The coincidence prescale factor was set to 1 during e-π data taking,

and therefore the yields did not require a correction for prescaling.

3.11 Target boiling check

The effects of localized boiling in the liquid targets due to the beam was checked using a

series of runs with varying beam current. This series of runs is called a luminosity scan

and the the beam current was varied between 15 µA and 90 µA. Luminosity scans were

made using the hydrogen and deuterium liquid targets and the carbon target. The results

from the luminosity scans are shown in Figure 3-13, and there was no observable change in

boiling in either the hydrogen or deuterium targets over the range of currents used in the
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Figure 3-13: Target boiling check of the liquid targets. The luminosity scan was
repeated for deuterium; the solid triangles are the first scan and the open circles are
the second scan. Only the statistical uncertainty is shown and the relative yield is
described in the text.

luminosity scans. More details on the luminosity scans can be found in Ref. [71]. Therefore,

no correction was necessary in the luminosity due to target boiling with an uncertainty of

0.6%.

The relative yield in Figure 3-13 is the normalized yield from the liquid target divided

by the normalized yield from the carbon target and multiplied by an arbitrary scale factor.

3.12 Cell wall subtraction for liquid targets

The liquid hydrogen and deuterium targets were enclosed by aluminum walls, and events

from beam interactions with the cell walls were subtracted from the liquid target yields.
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Figure 3-14: Histogram of the position of the experimental interaction point for the
liquid hydrogen target at Q

2 = 1.1 (GeV/c)2. zlab is the distance along the direction
of the beam from the center of the target to the reconstructed interaction point. The
shaded histogram comes from the aluminum cell walls and the unshaded histogram
from the liquid hydrogen. The dummy target was used to determine the shaded
histogram, and dummy target subtraction was performed to remove the contribution
of the cell walls from the unshaded histogram.

Aluminum ’dummy’ target data were taken whenever these targets were used. This target,

labeled “Al, foil 1” and “Al, foil 2” in Table 2.2, consisted of two aluminum foils located at

the same position and had the same separation as the aluminum walls of the liquid targets.

The dummy target foils were approximately 7 times thicker than the walls of liquid targets

to increase the event rate. The measured thickness ratios were 7.088, 7.711 and 7.757 for

loop 1, loop 2 and loop 3, respectively, where the loop numbers are described in Section 2.3.

The relative contribution of the cell walls to the yields from the liquid hydrogen is shown

in Figure 3-14.

The dummy target data were analyzed with the same cuts used to analyze the liquid

targets. Furthermore, the position of some cuts change (for example the missing mass cuts

used to exclude double pion production) when using a hydrogen target compared to using a

deuterium target. The dummy target data were therefore analyzed a number of times, with

each set of cuts, for proper target cell wall subtraction. The dummy target was our only

aluminum target, and so this data were analyzed again with missing mass cuts suitable for

aluminum to provide the aluminum normalized yields.

Dummy target subtraction was performed using the normalized yields measured using
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the liquid and dummy target. The dummy target subtracted normalized yield, ȲL is given

by

ȲL = ȲL+W − 1

rdummy
Ȳdummy, (3.21)

where ȲL+W is the normalized yield from the liquid and wall, rdummy is the ratio of the

dummy target foil thickness to the thickness of the cell wall, and Ȳdummy is the normalized

yield from the dummy target. Distributions from liquid targets that were properly normal-

ized, so that the sum of the events in the distribution was the normalized yield, H̄liquid,

were corrected for the contributions from the cell walls by

H̄L = H̄L+W − 1

rdummy
H̄dummy. (3.22)

The contribution of the cell wall to the liquid target yields was less than 5%. The uncertainty

in rdummy was 2%, and so the contribution to the uncertainty was at most 0.1%.
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Chapter 4

Simulation of the experiment

The standard Monte Carlo simulation code for Hall C, called SIMC, was used to simulate

the experimental data taken during πCT . As the solid angles of the spectrometers were

much smaller than 4π, events were generated in only the phase space marginally larger

than the acceptance of the spectrometers. The generation window was made larger than

the acceptance to allow for offsets, radiation and energy loss that may scatter events into

the acceptance. The pion electroproduction cross section was included as a weight that was

applied to the simulated particles.

After events were generated at the vertex, they were transported through the spectrom-

eter optics using COSY matrix elements. The COSY matrix elements were determined from

a COSY INFINITY [72] model of the spectrometers. Particles were transported into the

detector huts and thrown away if they passed outside of the active region of the detectors.

The properties of the particles that survived this requirement were recorded in the output

files.

Corrections were applied to the particles after they were generated at the vertex. These

corrections included pion decay, multiple scattering, energy loss, Coulomb corrections, final

state interactions, Pauli blocking and radiative corrections. The Monte Carlo equivalent

yield was formed and the cuts that were applied to the experimental data were applied to

the Monte Carlo events. The Monte Carlo was used to extract the bin-centered experimen-

tal cross section by iterating the model cross section until the Monte Carlo distributions

matched the data. Then the experimental cross section was determined by evaluating the

model cross section at the desired point within the acceptance.
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4.1 Pion decay, multiple scattering and energy loss

Pion decay, multiple scattering and energy loss are standard features in SIMC, and can

be turned on and off using flags in the input files. Descriptions of corrections for these

processes can be found in Ref. [31] and a short description is given below. The materials

traversed by the particles in each spectrometer are listed in Tables 4.1 and 4.2.

Pions (π+
) may decay in flight before they are detected in the HMS detector hut and

the main decay mode is into a µ+
and a νµ. Generally, the pion momentum was greater

than 2 GeV/c, and so the lifetime of the pion in the lab frame was at least 0.37 µs. The

time required to travel from the target to the HMS hut was ∼0.083 µs and, at the lowest

pion momentum setting, 20% of the pions were expected to decay in flight.

Pion events could not be separated experimentally from muon events, and so pions that

did decay could still produce a valid trigger and fall inside of the experimental acceptance.

Therefore, the path of the pion was divided into steps (the distances between apertures in

the HMS Monte Carlo), and the decay of the pion was simulated at each step. If the pion

decayed in a given step, then the muon kinematics were generated (the muon was produced

mostly at forward angles) and the muon was transported through the spectrometer. As the

central momentum of the HMS was not changed between target changes, the pion decay

correction will be the same and cancel in the ratio of yields from heavy targets to that of

the hydrogen target. This assumption is also true for the L-T separation analysis, where

the HMS central momentum settings are not very different between the high and low ǫ

settings. The systematic uncertainty due to pion decay comes from events where the pion

decayed inside either a quadrupole or a dipole in the HMS. These events are not modeled

very well because the COSY matrix elements for a given magnet describe the transport of a

particle with a single momentum. From the Monte Carlo simulation, 2.5% (1.4%) of events

at the lowest (highest) Q2
setting involved the pion decaying inside of a magnet, and the

difference between targets was at most ±0.1%. Therefore, a point-to-point uncertainty of

0.1% and an overall normalization uncertainty of 1.0% was assigned to this correction.

Electrons and hadrons may interact with the electrons that make up the material that

they traverse and undergo multiple scattering. After passing through a certain mate-

rial, a new scattering angle was generated using a parameterization fitted to the theory
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Absorber Material thickness density X0 (X/X0)
(cm) (g/cm3) (g/cm2) (%)

Target Chamber Window Al 0.013 2.70 24.01 0.292
Targets LH2 4.0 0.0723 61.28 0.468

LD2 4.0 0.165 122.6 0.538
Al Dummy 0.195 2.70 24.01 2.19

Carbon 0.294 2.27 42.66 1.56
Copper 0.089 8.96 12.86 6.20
Gold 0.0196 19.32 6.46 5.86

Chamber Window Al 0.0406 2.70 24.01 0.457
Chamber HMS Gap Air 15 0.00121 36.66 0.050
HMS Entrance Window Kevlar 0.0381 0.74 55.20 0.0511

Mylar 0.0127 1.39 39.95 0.0443
HMS Exit Window Titanium 0.0508 4.54 16.2 1.42
Dipole-DC Gap Air 35 0.00121 36.66 0.1155
HMS DC Windows Mylar 4(0.0025) 1.39 39.95 0.0178
HMS DC Gas Ar/C6H6 12(1.8) 0.00154 27.38 0.121
HMS DC sense wires W 12(5.89E-06) 19.30 6.76 0.020
HMS DC field wires Be/Cu 36(0.00018) 5.40 38.88 0.090
Aerogel entrance Al 0.15 2.70 24.01 1.687
Aerogel SiO2 9.0 0.071 44.054 1.45
Aerogel air gap Air 16.0 0.00121 36.66 0.0528
Aerogel exit Al 0.1 2.70 24.01 1.1245
HMS S1X polystyrene 1.067 1.03 43.80 2.51
HMS S1Y polystyrene 1.067 1.03 43.80 2.51
HMS Cer Windows Al 2(0.102) 2.70 24.01 2.28
HMS Cer gas (0.956 atm) C4F10 135 0.00972 34.72 3.78
HMS Cer gas (0.350 atm) C4F10 135 0.00356 34.72 1.38
HMS Cer mirror support Rohacell 1.8 0.05 40.88 0.220
Air gap DC-S2X Air 83.87 0.00121 36.66 0.272
HMS S2X polystyrene 1.067 1.03 43.80 2.51
HMS S2Y polystyrene 1.067 1.03 43.80 2.51

Table 4.1: Layer material and thicknesses traversed by particles exiting the target
cell detected in the HMS (Modified from Ref. [65]).
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Absorber Material thickness density X0 (X/X0)
(cm) (g/cm3) (g/cm2) (%)

Chamber Window Al 0.0406 2.70 24.01 0.456
Chamber SOS Gap Air 15 0.00121 36.66 0.050
SOS Entrance Window Kevlar 0.0127 0.74 55.20 0.0170

Mylar 0.0076 1.39 39.95 0.0260
SOS Exit Window Kevlar 0.0381 0.74 55.20 0.051

Mylar 0.0127 1.39 39.95 0.044
Dipole-DC Gap Air 15 0.00121 36.66 0.050
SOS DC Windows Mylar 14(0.0127) 1.39 39.95 0.062
SOS DC Gas Ar/C6H6 12(0.617) 0.00154 27.38 0.044
SOS DC sense wires W 12(35.4E-06) 19.30 6.76 0.121
SOS DC field wires Be/Cu 36(0.00018) 5.40 38.88 0.09
SOS S1X polystyrene 1.040 1.03 43.80 2.44
SOS S1Y polystyrene 1.098 1.03 43.80 2.58
∗SOS Cer Windows Al 2(0.05) 2.70 24.01 1.12
∗SOS Cer gas (1 atm) Freon-12 111 0.00510 24.53 2.152
∗SOS Cer mirror support Rohacell 1.8 0.05 40.88 0.22
†SOS Cer Windows Al 2(0.0762) 2.70 24.01 0.0171
†SOS Cer gas (1.41 atm) C4F10 99.4 0.0143 34.72 4.09
†SOS Cer mirror support Mylar 0.113 1.39 39.95 0.393
Air gap DC-S2Y Air 174 0.00121 36.66 0.574
SOS S2X polystyrene 1.040 1.03 43.80 2.44
SOS S2Y polystyrene 1.098 1.03 43.80 2.58

Table 4.2: Layer material and thicknesses traversed by particles detected in the SOS
(Modified from Ref. [65]). Layers marked with a (*) were used during the July running
period, and those marked with a (†) were used during the December running period.
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of Molière [42]. The scattering angle was generated with a width described by

θrms =
13.6

βp

√
t × (1 + 0.038 log10 t), (4.1)

where t is the thickness of the material in radiation lengths, β is the particle speed and p is

the particle momentum in MeV/c.

Electrons and hadrons lose energy through the ionization of atoms within the materials

that they traverse. The most probable energy loss for a relativistic particle traversing a

thin layer of material is given by the Bethe-Bloch equation

Eprob = K
Zt

Aβ2

[

ln
me

I2
+ 2 ln

P

M
+ ln

KZt

Aβ2
− δ − U + 1.06

]

, (4.2)

where K = 0.15354 cm
2/g, t is the material thickness in g/cm

2
, M , P and β are the mass,

momentum and speed of the incident particle, respectively, Z and A are the atomic number

and nucleon number of the material, I is the mean ionization energy of the material, δ is

the density effect correction, and U is the shell correction term. The energy loss assigned

to the particle was generated according to a Landau distribution with the most probable

value equal to Eprob.

4.2 Coulomb corrections

Coulomb corrections to the incoming and scattered electron were applied according to the

Effective Momentum Approximation (EMA) approach in Ref. [73]. No Coulomb corrections

were applied to nuclei with a single proton (hydrogen and deuterium), because this effect

was already included in the elementary pion cross section. Coulomb distortions are due to

the exchange of virtual photons with the remaining (Z − 1) protons in the nucleus.

The change in energy when an electron moves from infinity to a position, ~r, inside a

nucleus with (Z − 1) protons is

∆E(~r) = fC(|~r|)
[

α
(Z − 1)

R0

]

, (4.3)

where, R0 = [1.1A1/3
+ 0.86A−1/3

] fm is the radius of the nucleus, α is the fine structure

constant, and ~r = 0 is the center of the nucleus. If the electron moved to the surface of
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the nucleus, then fC = 1, and at the center of the nucleus, fC = 1.5. The EMA picture in

Ref. [73] uses an average potential

V̄ ∼ (0.75 − 0.8) × 3

2

[

α
(Z − 1)

R0

]

, (4.4)

which corresponds to fC ≈ 1.163 in Equation 4.3.

Assuming that there is no deflection of the incoming electron, with momentum ~ki, the

momentum at the vertex, (~ki)v, is

(~ki)v = ~ki(1 + ∆E/ki), (4.5)

which is called the eikonal approximation. The increased beam momentum is used in SIMC

in the calculation of the three momentum transfer, (~q)v = (~ki)v − (~kf )v. The outgoing

electron has a generated vertex momentum, (~kf )v, and is weighted by the cross section

calculated using (~q)v. The vertex momentum of the outgoing electron was then reduced

due to Coulomb effects to produce the momentum of the outgoing electron, ~kf , according

to

~kf = (~kf )v(1 − ∆E/(kf )v). (4.6)

This method is equivalent to using the effective momentum transfer, ~q eff
. In this picture,

~q eff
, is equivalent to what was defined as (~q)v, above. The effective momentum transfer can

be calculated from the incoming and outgoing electron momentum after Coulomb distortions

have been applied, and is given by

~q eff
= (~ki)v − (~kf )v

= ~qmeas + k̂i∆E − k̂f∆E

= ~qmeas +
~qmeas

kf
∆E + (

~ki

ki
− ~ki

kf
)∆E

= ~qmeas(1 + fC
α(Z−1)

R0

1
kf

) + fC
α(Z−1)

R0

~ki

ki
(1 − ki

kf
),

(4.7)

where, ~qmeas = ~ki − ~kf .

The incident and scattered electron plane waves are distorted due to the Coulomb field

leading to focusing of these waves in the nucleus and an enhancement in the cross section.

In the EMA prescription, the incident and scattered electron waves can be approximated
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by

ψki,f
(r) =

|(ki,f )v|
|ki,f |

exp(iki,f .r) =

(

1 + fC
α(Z − 1)

R0

1

|ki,f |

)

exp(iki,f .r), (4.8)

producing an enhancement in the cross section given by the focusing factor, F , with

F = (|ki||kf |)2v/(|ki||kf |)2. (4.9)

The enhancement due to the focusing of the scattered wave exactly cancels with the en-

hanced phase space factor that appears in the cross section

(dkf )v =
|(kf )v|2
|kf |2

dkf . (4.10)

The net enhancement in the cross section is given by

σ =

(

1 + fC
α(Z − 1)

R0

1

|ki|

)2

(σ)v. (4.11)

This version of the EMA approximation has been verified to be a good approximation,

compared to exact numerical calculations, when the energy of the final state electron is

above 200 MeV and Q2
is larger than about 0.09 (GeV/c)

2
[74]. The Coulomb corrections

to the equivalent Monte Carlo normalized yields for copper and gold, and the uncertainty

in this correction, are shown in Table 4.3.

Ebeam (GeV) Ee′ (GeV) (dY/Y )copper (%) (dY/Y )gold (%)
4.021 1.190 0.22 ± 0.05 0.87 ± 0.22
5.012 1.730 −1.08 ± 0.27 −1.57 ± 0.39
5.012 1.430 −1.24 ± 0.31 −3.49 ± 0.87
5.767 1.423 −1.78 ± 0.45 −3.27 ± 0.82
5.767 1.034 −2.17 ± 0.54 −4.36 ± 1.09

Table 4.3: Coulomb corrections to the equivalent Monte Carlo normalized yield. The
change in the equivalent Monte Carlo normalized yield ((dY/Y )) is shown for copper
and gold targets. Positive (dY/Y ) indicates that Coulomb corrections increase the
yield. The uncertainties shown are point-to-point uncertainties, and were assumed to
be 25% of the correction.

Coulomb corrections can be applied to the pion produced in A(e,e
′π+

) by increasing the

pion energy by V̄ , where V̄ was defined in Equation 4.4. These corrections probably should

not be used when the model for energy for the proton is given by the default model. This
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is because Em from the spectral function is the separation energy for the proton, which

already contains Coulomb effects for the hadron. However, these corrections were applied

when Em = 0 and proton-on-shell models for the energy of the proton were used.

4.3 Final-state interactions

In the quasifree model of the reaction A(e,e
′π+

), the pion is produced from a proton in the

nucleus, which produced a recoiling neutron, and the other nucleons are spectators. Final-

State Interactions (FSI) of the outgoing neutron with the spectator nucleons can affect the

quasifree cross section, and are called n-N FSI. The effects of n-N FSI are strongest when

the relative momentum between the recoil neutron and the spectator nucleon(s) is small,

which corresponds to nuclear missing masses near the single-pion production threshold (see

below). Therefore, n-N FSI is likely the cause of the disagreement between the experimental

and Monte Carlo distributions shown in Figure 4-1.

The Jost function prescription for n-N FSI is described in Refs. [31, 75]. This approach

assumes that the phase shifts from n-N scattering can be applied to the phase of the re-

coiling neutron wave function, leading to an enhancement of the neutron wave function at

the point where it was produced. It also assumes that the transition matrix element for

pion production factorizes into the matrix element for elementary pion production and the

secondary interaction due to n-N FSI. Although the Jost function was not used to correct

the Monte Carlo in πCT , the Jost function method that was tested with our data will be

summarized below.

The electroproduction cross section is modified by the Jost function, J(krel), according

to

σNN FSI
π =

[

1 + δ ×
(

1

|J(krel)|2
− 1

)]

σπ, (4.12)

where δ is a free parameter that is adjusted until there is reasonable agreement between

the Monte Carlo and experimental missing mass distributions. The quantity, krel, is the

relative momentum between the recoil neutron and a spectator nucleon in their center-of-

mass frame, and is given by

k2
rel = −2M2

n + (M2
x − M2

n − M2
A−1)/(A − 1), (4.13)
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Figure 4-1: The histograms in the top plot are missing mass distributions for D(e,e′π+)
at Q

2 = 1.1 (GeV/c)2. The experimental data are the crosses and the Monte Carlo
with the default model for the energy of the proton (Section 1.9) and without correc-
tions for n-N FSI are the lines. The bottom plot contains the same experimental data
(crosses) and histogram (a) is the Monte Carlo distribution for the default model
with the Jost function correction for n-N FSI with δ = 0.5. Histogram (b) is the
Monte Carlo distribution using the Em = 0 model without the Jost function correc-
tion. No arbitrary normalizations have been applied. The vertical, dashed line is at
Mx = 2Mn.
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where Mn is the mass of the neutron, A is the nucleon number of the target nucleus, and,

Mx is the nuclear missing mass. For A=2, this simplifies to

k2
rel = M2

x − 4M2
n. (4.14)

The Jost function can be written,

J(krel) =
krel − iβ

krel − iα
, (4.15)

where α = 172.099 MeV/c and β = −7.9391 MeV/c. Events with small Mx will therefore

have small krel and the enhancement in σNN FSI
π is very large in this region as J(0)

−2
= 470.

This method has been used in previous experiments that used
3
He and

2
H targets

[31, 65] to give better agreement between the experimental and Monte Carlo missing mass

distributions. However, the effect of the Jost function on the Monte Carlo normalization was

not important for these experiments. In πCT , the quantity Ȳexp/ȲSIMC for nuclear targets

is important and this quantity is affected by changes in the Monte Carlo normalization.

The increase in ȲSIMC was as large as 25% in deuterium with the Jost function approach,

and was obviously too large when compared to the experimental data. The enhancement in

the Monte Carlo yield was very sensitive to the choice of the free parameter, δ, leading to

a large uncertainty in this method. There was also no reliable way to extend this approach

to carbon and heavier nuclei.

It was found in this analysis that the Monte Carlo missing mass distributions had much

better agreement with the experimental data when the Em = 0 model (Section 1.9) was

used. This is shown in Figure 4-1. Therefore, in the πCT analysis, no corrections using

the Jost function were applied and the Em = 0 model was used. It is worthwhile to note

that n-N FSI predominantly affected the lowest Q2
setting in πCT and the Jost function

approach for correcting for n-N FSI, if it were used, would increase the slope of the nuclear

transparency with Q2
. More results using the Em = 0 model and other models for the

energy of the proton will follow in Chapter 5.
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Figure 4-2: Ideal Fermi Gas model of a nucleus. The nucleons occupy all momentum
states within a sphere of radius kF .

4.4 Pauli blocking

In the Ideal Fermi Gas model, the nucleons occupy all single particle states with momentum,

|k|, less than the Fermi momentum, kF . The nucleons fill a sphere in momentum space with

a radius equal to kF , which is shown in Figure 4-2. The Fermi momentum of infinite nuclear

matter is 260±10 MeV/c. The values of the Fermi momentum for the nuclei used in πCT are

shown in Table 4.4, which were determined using the values of similar nuclei in Refs. [76, 77].

Nuclide kF (MeV/c) k
′
F (MeV/c)

2H 55
12C 228 221
27Al 236 260
63Cu 241 265
197Au 245 265

Table 4.4: Fermi momentum, kF and k
′
F , of the target nuclei used in πCT . kF was

determined from similar nuclei in Ref. [76] and k
′
F from similar nuclei in Ref. [77].

The π+
particle detected in the HMS was produced from a proton in nuclear targets.

This produced a recoiling neutron which was forbidden to occupy any single particle state

that already contained a neutron. In the Ideal Fermi Gas model this is equivalent to the

requirement that the recoiling neutron momentum, |kn|, is greater than kF .

An alternative model to the Ideal Fermi Gas model includes interactions between the
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Figure 4-3: The distribution function, n(|kn|), of nucleons in nuclear matter.
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Figure 4-4: Pauli blocking correction to the Monte Carlo equivalent yield using the
CBF theory of Fantoni and Pandharipande [78]. The correction, CCBF, is equal to
(Ȳpb − Ȳ )/Ȳ , where Ȳpb (Ȳ ) is calculated from a simulation with (without) Pauli
blocking. Different targets have been offset in Q

2 for clarity.

nucleons that can induce correlations. These correlations deplete single particle states

below the Fermi momentum and populate single particle states above the Fermi momentum.

Fantoni and Pandharipande [78] calculated the distribution function using perturbation

theory in a correlated basis. The distribution function is shown in Figure 4-3, together with

the distribution function from the Ideal Fermi Gas model.

Pauli blocking was applied in the Monte Carlo as a weight factor. Each event was

assigned the weight 1−n(|kn|), where |kn| could be calculated from the generated quantities

using 4-momentum conservation. The effect of Pauli blocking was to decrease the Monte

Carlo equivalent yield (Section 4.7), and the relative changes in the yields are shown in

Figure 4-4. The correction, CCBF, was determined using the distribution function calculated

by Fantoni and Pandharipande [78] and using the unprimed Fermi momentum values in
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Table 4.4. The uncertainty in the Pauli blocking model, represented by the error bars in

Figure 4-4, were estimated using the primed Fermi momentum values in Table 4.4 and the

distribution function from the Ideal Fermi Gas model. The uncertainty was equal to the

largest deviations in the correction due to Pauli blocking with these changes.

4.5 Radiative corrections

The standard Hall C Monte Carlo includes radiative corrections based on the formalism

derived by Mo and Tsai [79], but modified for use in coincidence experiments. The model

for pion electroproduction was built from the procedure used in (e,e
′
p) experiments, and

two options exist. The first is to treat the initial hadron, which is a proton bound inside

the nucleus, as a virtual pion and the second is to treat the outgoing pion as an off-shell

proton.

The extended peaking approximation was used, where the photons were emitted only

in the direction of the incoming electron, outgoing electron, or outgoing pion. Furthermore,

the total radiated strength was preserved by splitting the non-peaked part of the angular

distribution between the incoming and outgoing electrons. The soft photon approximation

was used where the radiated photon energies were restricted to be much less than the

energies of the particles. Feynman diagrams for processes that contribute to radiative

corrections in the Monte Carlo are shown in Figure 4-5.

Radiative corrections affected both the cross section and momentum of the incoming

and outgoing charged particles. The first order pion electroproduction cross section was

modified by a multiplicative radiative weight factor, Rcorr, given by

Rcorr = (1 − δhard)RsoftΦ
ext
e Φ

ext
e′ , (4.16)

where, Rsoft represents the soft contributions (the first four diagrams in Fig. 4-5), and

(1 − δhard) the internal, hard contributions (the last two diagrams in Fig. 4-5). Con-

tributions from IR divergences in the soft contributions that are eliminated by the hard

processes were not included in either Rsoft or (1 − δhard). The soft correction factor, Rsoft,

included both internal and external soft corrections. External radiative corrections are

due to Bremsstrahlung from the interactions of incoming and outgoing electrons with nu-
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Figure 4-5: Feynman diagrams of processes contributing to radiative corrections in
the Monte Carlo. Figure from Ref. [31].

clei other than the one involved in the scattering process. The factors Φ
ext
e and Φ

ext
e′ in

Equation 4.16 corrected for hard external radiative processes.

The radiative tails in the experiment and Monte Carlo are shown in Figure 4-6. The

experimental events at low Em in H(e,e
′
p) are due to resolution effects and the events in

the radiative tail have good agreement. For H(e,e
′π+

), the Monte Carlo radiative tail is

slightly below the experimental data and this is discussed further in the next section.

The Monte Carlo was tested with the off-shell radiation option. There was no observable

change in the missing mass or other distributions and the Monte Carlo equivalent yield

changed by at most 0.5%. The largest source of uncertainty in the radiative correction

procedure comes from radiation due to the pion as the electron radiation is relatively well

known. The Monte Carlo equivalent yields changed by 2-4% when radiation from the pion

was turned off (2% was for the settings with low Q2
and 4% was for the heavy targets at
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Figure 4-6: On the left is the missing energy, Em, distribution for H(e,e′p) at Q
2 =

6.1 (GeV/c)2, and on the right is the missing mass, Mx, distribution for H(e,e′π+)
at Q

2 = 1.1 (GeV/c)2. Experimental data are the red crosses and the Monte Carlo
are the solid lines. No arbitrary normalization factors have been applied. Collimator
punch-through (Section 4.6) was turned off in the Monte Carlo and events where the
pion struck the collimator were stopped.

high Q2
). The point-to-point uncertainty in the radiative corrections was estimated from

the target dependence of the Monte Carlo equivalent yield when the pion radiation was

turned off. This was 1% at the low Q2
and 2% at high Q2

. The normalization uncertainty

was assumed to be 2%.

4.6 Collimator punch-through

The HMS collimator consisted of 2.5 inch thick Heavymet (Tungsten with 10% CuNi) and

was designed to remove particles that would otherwise hit magnetic elements and/or fall

outside of the phase space that could be accurately modeled with the Monte Carlo. The

collimator is very effective at stopping electrons, however, hadrons could pass through the

material and still contribute to the experimental yield. Pions were detected in the HMS

and the effect of pions punching through the HMS collimator was simulated in the Monte

Carlo.

The pions were transported through the collimator material in small (3 mm) steps

where they could undergo multiple scattering and energy loss using the same algorithms as
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Figure 4-7: Missing mass distributions for H(e,e′π+) at Q
2 = 1.1 (GeV/c)2 (left)

and Q
2 = 4.8 (GeV/c)2 (right). The experimental data (red crosses) are shown with

Monte Carlo simulations that do not include collimator punch-through events (blue
solid line). The shaded area shows the effect of including pions that pass through the
HMS collimator in the Monte Carlo.

described in Section 4.1. Pions that passed through the collimator typically lost 125 MeV in

energy. The transmission of pions through the collimator was also reduced due to hadronic

interactions with nuclei in the collimator material. The transmission was 53-56% for all

momentum settings in πCT .

The calculation of the pion transmission through materials is described in Section 3.8

of Ref. [65], where the choice of the pion-nucleus cross section was chosen carefully using

the total, elastic, reaction, inelastic and absorption cross sections. The total pion-nucleus

cross section encompasses all hadronic interactions, σtotal = σelastic +σreaction. The reaction

cross section includes channels where the pion is absorbed (no pions in the final state) or

undergoes an inelastic interaction, σreaction = σabsorption + σinelastic. Elastic scattering is

peaked at small angles and pions that undergo this type of interaction with nuclei were

still expected to produce a valid trigger. It is also possible that pions undergo an inelastic

hadronic interaction and produce a valid trigger. Therefore, the cross section that was used

to estimate the transmission of pions in the collimator was the average of the total and

absorption cross sections.

The effect of simulating events that punch through the HMS collimator is shown in

Figure 4-7. These events were sizable in the long tail of the missing mass distribution. The
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contribution of collimator punch-through events to the total Monte Carlo yield was 3-4%

with little variation (±0.5%) between targets and kinematic settings. Therefore, a point-

to-point systematic uncertainty of 0.5% is assumed due to the collimator punch through

events. To determine the systematic uncertainty for absolute cross sections, the Monte

Carlo code was run using σtotal in place of the average of the total and absorption cross

sections in the calculation of the pion transmission. It was found that the yields decreased

by 1.3% at all settings within the previously stated point-to-point uncertainty. Therefore,

the normalization uncertainty due to events that punch through the HMS collimator was

assumed to be 1%.

4.7 Monte Carlo equivalent yield

The Monte Carlo equivalent yield was formed using the number of events inside the accep-

tance of the detectors. The corrections described above (pion decay, Coulomb corrections,

etc.) were included to make the simulation as close to the conditions in the experiment as

possible. The Monte Carlo particles were weighted by the cross section multiplied by the

luminosity, where the luminosity, L, was given by

L =
QSIMC

e

tNA

M
, (4.17)

where QSIMC was the simulated cumulative charge delivered by the beam, t was the target

thickness in g/cm
2
, NA was Avagadro’s number and M was the target mass in amu. The

Monte Carlo equivalent yield, YSIMC, was the sum of the weights, w, of events,

YSIMC =

∑

i

wi =

∑

i

Lσi = L
∑

i

σi, (4.18)

where i represents the i’th event that passed the same acceptance cuts that were applied to

the experimental data (Section 3.2). The normalized Monte Carlo equivalent yield, ȲSIMC,

was given by

ȲSIMC =
YSIMC

QSIMC
(4.19)
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4.8 Multiple-pion production simulation

A multiple-pion production simulation was developed for deuterium and heavier targets for

the πCT analysis. An outline of the multiple-pion simulation was given in Section 1.13.4.

It was assumed that the mechanism for multiple-pion production was quasifree single-pion

production from a nucleon followed by a second process that was incoherent from the first,

where the pion produces one or more pions from a different nucleon. This process is shown

in Figure 4-8. Furthermore, the cross section for the second process was assumed to be

uniform over the acceptance of the HMS spectrometer.

The result from the standard Monte Carlo code was modified after the vertex quantities

had been generated in the quasifree model and before the pion was transported through the

materials in the target and HMS spectrometer. The N ′′
nucleon in Figure 4-8 was given a

random momentum using the spectral function. The pion that was detected outside of the

nucleus was generated uniformly over the HMS acceptance. The missing mass, Mm, was

calculated using the 4-momenta of the pion from the quasifree process (the first black circle),

the N ′′
nucleon and the pion detected outside of the nucleus. The event was discarded if Mm

was less than MN + Mπ, which corresponds to the threshold for multiple-pion production,

and/or the energy of the pion that was detected was greater than the initial energy involved

in the second interaction.

The single-pion and multiple-pion simulations are compared to the experimental data

from the carbon target in Figure 4-9 and the copper target in Figure 4-10. The threshold for

double-pion production for electroproduction on a nucleus of mass MA is Mx = MA−1+Mπ.

Ideally, we would like to place the double-pion Mx cut several MeV below this threshold

to guarantee that there is no contamination from double-pion events in our data samples.

However, this type of cut causes an unacceptable loss of statistics at the two highest Q2
set-

tings. The multiple-pion simulation shows that it is safe to increase the double-pion missing

mass cut above this threshold with minimal contamination. The double-pion missing mass

cut was placed at the position where there was not more than 0.4% contamination in the

Monte Carlo equivalent yield and the point-to-point systematic uncertainty was assumed

to be 0.4%. A surprising result was seen in the ratio of the multiple-pion production yield

over the single-pion yield. The ratio changed between targets but was almost constant at

all Q2
settings for the same type of target. This is shown in Table 4.5.
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Figure 4-8: The diagram corresponding to multiple-pion production in the model
developed for πCT . The interaction represented by the first black circle is described
by the quasifree model. The missing mass, Mm, is the invariant mass of the the N

′′′

nucleon and other particles produced in the interaction represented by the second
black circle. The π

+ particle is detected outside of the nucleus.

Q
2 (GeV/c)2 2H 12C 27Al 63Cu 197Au

1.1 0.07 0.14 0.25 0.21 0.24
2.15 0.10 0.18 0.26 0.23 0.36
3.0 0.07 0.20 0.21 0.18 0.33
3.9 0.12 0.16 - 0.18 0.30
4.7 0.09 0.17 - 0.11 0.21

Table 4.5: Yields for multiple-pion production divided by single-pion production.
This ratio was determined by fitting the single-pion and multiple-pion Monte Carlo
results to the data. Two settings with the 27Al target are marked with a “-” as there
were few experimental events at these settings.

The background due to ρ production and ρ → ππ+
was simulated. The ρ was produced

isotropically in the γ∗ N center of mass frame and the kinematics that were generated were

transformed into the lab frame. The ρ decay was simulated and the π+
produced from the

decay was transported through the target material. Most π+
particles were outside of the

acceptance of the HMS spectrometer and were discarded. Those π+
particles that were

inside of the acceptance were simulated inside the HMS spectrometer using the same meth-

ods used in the single-pion production simulation. The nuclear missing mass threshold for

ρ production was greater than the threshold in the multiple-pion simulation, and therefore,

the ρ production simulation was not used to determine the position of the multiple-pion

missing mass cut.
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(a) (b)

(c) (d)

(e)

Figure 4-9: Nuclear missing mass distributions (in GeV/c2) for 12C(e,e′π+), and (a)
at Q

2=1.1 (GeV/c)2, (b) at Q
2=2.15 (GeV/c)2, (c) at Q

2=3.0 (GeV/c)2, (d) at
Q

2=3.9 (GeV/c)2, and, (e) at Q
2=4.7 (GeV/c)2. The experimental data are shown

(red crosses) with the single-pion simulation (blue lines, or black in b/w) and the
multiple-pion simulation (green lines, or gray in b/w). The shaded (black) area
shows the sum of the single and multiple-pion simulation. The single-pion simulation
and multiple-pion simulation were normalized to match the experimental data. The
solid, vertical lines represent the position of the threshold for double-pion production
(11.34 (GeV/c2)). The dashed, magenta lines represent the position of the cut used
in πCT .
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Figure 4-10: Nuclear missing mass distributions (in GeV/c2) for 63Cu(e,e′π+). The
symbols used in this figure are the same as in Figure 4-9.
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Q
2

Ee HMS SOS pe θe pp θp

(GeV)2 (GeV) polarity polarity (GeV/c) (deg) (GeV/c) (deg)
4.511 4.021 + - 1.582 50.05 3.225 22.08
6.1 5.012 + - 1.703 50.05 4.111 18.67
7.47 5.767 + - 1.673 51.63 4.864 16.16

Table 4.6: Spectrometer settings for hydrogen e p elastic measurements.

4.9 e p elastic scattering

Normalized yields from the experimental data and the Monte Carlo were compared using

e p elastic scattering to verify the accuracy of the spectrometer acceptance in the Monte

Carlo. The “Rosenbluth” parameterizations of the elastic form factors determined by J.

Arrington in Ref. [80] were used in the simulation, and are given by

GE(Q2
) =

1
1+3.226Q2+1.508Q4−0.3773Q6+0.611Q8−0.1853Q10+0.01596Q12

GM (Q2
)/µp =

1
1+3.19Q2+1.355Q4+0.151Q6−0.0114Q8+0.000533Q10−0.000009Q12 ,

(4.20)

where µp is the magnetic dipole moment of the proton and Q2
values are in (GeV/c)

2
. Fur-

thermore, the parameterization for GE(Q2
) was set equal to GD(Q2

) = [1+Q2/(0.71 GeV
2
)]
−2

above Q2
= 6 GeV/c

2
, as described in Ref. [80]. Corrections for proton absorption (Sec-

tion 3.9) were applied to the experimental normalized yield. The central kinematic settings

of the spectrometers for the e p elastic measurements are given in Table 4.6.

The reconstructed angles and momenta of the two spectrometers for the e p elastic

setting at Q2
= 6.1 (GeV/c)

2
are compared to the simulated distributions in Figure 4-

11. The reasonable agreement between the distributions indicate the acceptance of the

spectrometers in the Monte Carlo is close to the experiment. The results for the ratio of

the experimental normalized yields over the equivalent Monte Carlo normalized yields for

all kinematic settings are shown in Figure 4-12 together with measurements of the H(e,e
′
p)

cross section from Refs. [81, 82]. These data were chosen because they were measured at

θe ≈ 50
◦
.

The point-to-point variation of the data in Figure 4-12 is small (< ±1%), which is an

indication that the acceptance is understood at the level of 1%. However, the experimental

normalized yield is on average 5% higher than the equivalent Monte Carlo normalized

yield. This is somewhat inconsistent with world data available at these kinematics. Since
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Figure 4-11: Monte Carlo and experimental H(e,e′p) distributions for the setting
at Q

2 = 6.1 (GeV/c)2 . Monte Carlo distributions are the blue, solid lines and
experimental data are the red crosses. Errors bars are statistical only. The dx/dz

distribution is often called “xptar” and is the gradient of tracks with the x-axis
pointing up and the z axis pointing from the target to the center of the spectrometer.
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Figure 4-12: Ratio of experimental and Monte Carlo H(e,e′p) normalized yields (black,
circles). The error bars for these data are statistical only. The dashed lines indicate
the point-to-point systematic uncertainty between the data points and the solid lines
indicate the overall systematic uncertainty. The estimated model uncertainty (2-
3% at the lowest Q

2 and 3-4% at the other two data points) has not been included.
Experimental data from Ref. [81] (red, triangles) and Ref. [82] (blue, squares) divided
by the H(e,e′p) cross section using the same parameterization for the elastic form
factors are shown for comparison.
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the detailed shapes of the various spectrometer reconstructed quantities match very well

with the simulations, the observed discrepancy could point to a normalization issue at the

level of ∼5%. It should also be pointed out that the SOS acceptance is known to be less

well understood at large angles and these data were taken at large angles.

4.10 Iteration of the model cross section

The Monte Carlo model of the elementary
1
H(e,e

′π+
) cross section was iterated to match

the data. The initial cross section (Section 1.7) was multiplied by a correction function,

CH(W, Q2, t, φpq), and the procedure is described in Ref. [31]. It was assumed that the initial

model used in this analysis (Equation 1.21) described the gross behavior of the cross section

over the acceptance, such as the Q−4
behavior of the Mott cross section. The normalization

and small deviations in the energy and angular distributions between the hydrogen model

and the hydrogen experimental data were corrected by CH(W, Q2, t, φpq), which is described

below.

The correction function was fit using a different function for each kinematic setting

(Table 2.4). It was assumed to be factorizable, such that

CH(W, Q2, t, φpq) = O(W )K(Q2
)T (t)F (φpq), (4.21)

which follows from our assumption that CH(W, Q2, t, φpq) only provides a small adjustment

to the model cross section. The iterated cross section was given by

(

d5σH

dΩe′dEe′dΩπ

)itr

= O(W )K(Q2
)T (t)F (φpq)

(

d5σH

dΩe′dEe′dΩπ

)model

. (4.22)

The correction functions, O(W ), K(Q2
), T (t) and F (φpq), each contained at most three

free parameters and were second order polynomials, with the exception of F (φpq). F (φpq)

was given by

F (φpq) = c1 + c2 × cos(φpq) + c3 × cos(2φpq), (4.23)

where c1, c2 and c3 are free parameters.

The iteration procedure began with making 1-dimensional histograms of W using the

experimental data and the Monte Carlo. The histogram from the experimental data was
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Figure 4-13: Iteration of the Monte Carlo cross section for H(e,e′π+) at Q
2 =

1.1 (GeV/c)2. The first three plots show the convergence of the coefficients of
O(W ) = c1+c2W +c3W

2 vs. the iteration number. The bottom plot shows the entire
correction function CH = O(W )K(Q2)T (t)F (φpq) evaluated at the central kinematics
of the spectrometers. This quantity was 1.415 after 10 iterations, which means that
the final Monte Carlo cross section at the central kinematics was 41.5% larger than
the inital cross section.
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divided, bin-by-bin, by the histogram from the Monte Carlo and the ratio was fit with the

correction function O(W ). The function with the new coefficients was called O1(W ). A

histogram of Q2
from the Monte Carlo data was produced where the model cross section

was modified according to

(

d5σH

dΩe′dEe′dΩπ

)itr

= O1(W )T0(t)F0(φpq)

(

d5σH

dΩe′dEe′dΩπ

)model

, (4.24)

where T0 = F0 = 1. The unmodified 1-dimensional histogram of the experimental data was

then divided by this histogram of Q2
and the resulting histogram of the ratio was fit with

K(Q2
). The function with the new coefficients was called K1(Q

2
). The model cross section

was modified again according to

(

d5σH

dΩe′dEe′dΩπ

)itr

= O1(W )K1(Q
2
)F0(φpq)

(

d5σH

dΩe′dEe′dΩπ

)model

, (4.25)

and was used in the fitting of T1(t). F1(φpq) was fit following the same procedure. The

iteration procedure then returned to fitting W , and the correction function for W from the

first iteration was removed. The model cross section when fitting W in the second iteration

was
(

d5σH

dΩe′dEe′dΩπ

)itr

= K1(Q
2
)T1(t)F1(φpq)

(

d5σH

dΩe′dEe′dΩπ

)model

, (4.26)

The procedure was repeated until the coefficients in the correction function converged and

the correction function upon completion of n iterations was given by

CH(W, Q2, t, φpq) = On(W )Kn(Q2
)Tn(t)Fn(φpq). (4.27)

The coefficients during an iteration procedure are shown in Figure 4-13. No significant

change in the value of the correction function evaluated at the central kinematics was seen

after 10 iterations.

The coefficients of the correction functions determined during the iteration of the ele-

mentary cross sections were the same parameters used in the model for targets with A > 1.

No transformation of the correction function was necessary due to the Fermi motion of the

proton as the variables W , Q2
and t were invariant and φpq did not change when it was

evaluated in the lab frame compared to the γ∗ N center of mass frame. Equation 1.17 was
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modified to include the iterations

d6σA

dΩe′dEe′dΩπdPπ
=

∫

dEmdpmS(Em, pm)

× CH(W, Q2, t, φpq)
d5σH

dΩe′dEe′dΩπ
δ (h(Em, pm) − Pπ)

(4.28)

The systematic uncertainty due to the iteration of the elementary cross section was a

point-to-point uncertainty as using an imperfect elementary cross section model will influ-

ence the Monte Carlo equivalent yields differently for each type of target. There is also

an uncertainty in the absolute cross section due to the iteration procedure, which will be

discussed in the next section. The point-to-point uncertainty was determined by changing

the iteration procedure, such as changing the initial cross section. The Mott cross section

and the parameterizations of the elementary cross section described in Refs. [33, 65] were

used in the iteration procedure. The Mott cross section resulted in inconsistencies between

the experimental data and the Monte Carlo distributions after the iteration procedure at

all Q2
settings and so was not used in the estimation of the uncertainty. The parame-

terizations of the elementary cross section in Refs. [33, 65] could not be used at some Q2

settings as they gave negative values, however, the parameterization in Ref. [33] resulted in

Monte Carlo distributions that had reasonable agreement with the experimental data for

Q2 ≤3 (GeV/c)
2
. The change in the nuclear transparency in this Q2

range was less than

1.2% with this new procedure.

The systematic uncertainty due to the iteration of the elementary cross section was also

estimated by changing the order in which the variables were iterated, using higher order

correction functions (up to 3rd order) and reducing the ranges over which the correction

functions were iterated. The nuclear transparency changed by at most 1.3% with these

variations in the iteration procedure. An extreme case was also considered where the pa-

rameterization in Equation 1.21 was used without iterations and the nuclear transparency

changed by less than 3%. This was considered an upper limit of the systematic error in the

iteration procedure and showed how well the initial parameterization described the elemen-

tary cross section. We assumed that the uncertainty in the nuclear transparency was 1.5%

due to the iteration procedure, and as the nuclear transparency involved the ratio of two

Monte Carlo yields (Chapter 5), the point-to-point uncertainty in the Monte Carlo yield

was assumed to be 1.1%.
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4.11 Bin centering and experimental cross sections

In addition to the iterations performed in the construction of the elementary cross section,

iterations were used for bin-centering the experimental data and extracting the absolute

experimental cross sections at some point, x0 = (ω0, Q2
0, θ0), near the center of the accep-

tance. The model for the cross section in the Monte Carlo was adjusted using correction

functions until the distributions of ω, Q2
, θpq and φpq from the Monte Carlo matched

the distributions from the experimental data. Separate iterations were performed for each

kinematic setting. We then assumed that the Monte Carlo model described the kinematic

dependence of the cross section across the acceptance, without necessarily having the cor-

rect normalization. The model cross section was scaled by the normalized yield, Yexp, and

for the hydrogen target, the bin-centered experimental cross section was given by

(

d5σH

dΩe′dEe′dΩπ

)exp

x0

=
Ȳexp

ȲSIMC
×

(

d5σH

dΩe′dEe′dΩπ

)model

x0

, (4.29)

where the subscript, x0, on the model cross section indicates that it was evaluated at a

particular point (ω0, Q2
0, θ0) in the acceptance. For targets with A > 1, the bin-centered

experimental cross section was given by

(

d6σA

dΩe′dEe′dΩπdPπ

)exp

x0

=
Ȳexp

ȲSIMC
×

(

d6σA

dΩe′dEe′dΩπdPπ

)model

x0

. (4.30)

The model cross sections at the particular point, x0, near the center of the acceptance,
(

d5σH

dΩe′dEe′dΩπ

)model

x0

and

(

d6σA

dΩe′dEe′dΩπdPπ

)model

x0

, were determined through what is called a

point Monte Carlo simulation. The point Monte Carlo simulation was performed with all

extraneous processes (radiation, multiple scattering, Coulomb corrections, etc.) turned off

and the scattered electron kinematics and pion angles generated randomly within a very

narrow phase space volume that corresponded to ω0, Q2
0 and θ0. The magnitude of the

pion momentum was not generated, even for nuclear targets, as its value was fixed after

generating Em and pm in the spectral function and by conserving four-momentum in the

quasifree picture. However, a narrow range of Pπ was selected using cuts on this variable.

The model cross sections at the particular point, x0, near the center of the acceptance, was
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given by
(

d5σH

dΩe′dEe′dΩπ

)itr

x0

=
Y itr

point

L × (∆Ωe′∆Ee′∆Ωπ)
, (4.31)

for the hydrogen target, and

(

d6σA

dΩe′dEe′dΩπdPπ

)exp

x0

=
Y itr

point

L × (∆Ωe′∆Ee′∆Ωπ∆Pπ)
, (4.32)

for the targets with A > 1, where L was the simulated luminosity and (∆Ωe′∆Ee′ ...) was

the volume of the narrow phase space region over which kinematics were generated (or

selected using cuts in the case of Pπ) in the point Monte Carlo simulation.
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Chapter 5

Results

The nuclear transparencies for
2
H,

12
C,

27
Al,

63
Cu and

197
Au targets are shown in this

chapter together with the super ratio of A>2 nuclei to deuterium and A>12 nuclei to car-

bon. The dependence of the nuclear transparency on the nucleon number will be presented

and the parameterization T = Aα−1
will be fitted to the results. Results from additional

kinematic settings that were used to check the quasifree model, the L-T separations at

Q2
= 2.15 (GeV/c)

2
and 4.0 (GeV/c)

2
and the W vs. kπ test setting, will be shown. Fi-

nally, a study of various options of the quasi-free pion electro-production model used in the

analysis will be presented.

5.1 Nuclear transparency

The nuclear transparency, T , was formed using the experimental charge normalized yield,

Ȳ , divided by the charge normalized Monte Carlo equivalent yield, ȲSIMC. For a given

target with nucleon number, A, the nuclear transparency was

T =

(

Ȳ /ȲSIMC

)

A
(

Ȳ /ȲSIMC

)

H

, (5.1)

where the denominator is the ratio of the yields for the
1
H target. The nuclear transparency,

shown as a function of Q2
in Figure 5-1, was determined under the following options of the

model:

• Nuclear missing mass cuts to minimize double-pion events
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Figure 5-1: Nuclear transparency, T, determined during the πCT analysis. The inner
error bars are the statistical uncertainties, the outer error bars are the statistical and
point-to-point systematic uncertainties added in quadrature. The solid and dashed
lines are theoretical calculations using end-point and asymptotic distribution ampli-
tudes, respectively [45]. The upper, middle and lower lines are for 12C, 63Cu and
197Au and are scaled by 1.09, 0.85 and 0.88, respectively.
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Figure 5-2: Nuclear transparency, T, vs. the magnitude of the outgoing pion momen-
tum in the laboratory frame, |Pπ|. The inner error bars are the statistical uncertain-
ties and the outer error bars are the statistical and point-to-point systematic uncer-
tainties added in quadrature. The solid lines are Glauber calculations and the dashed
lines are Glauber plus color transparency (both sets of curves are from Refs. [8, 83]).
The color transparency calculation assumed ∆M

2 = 0.7 (GeV/c2)2. The upper, mid-
dle and lower lines are for 12C, 63Cu and 197Au and are scaled by 1.13, 1.37 and 1.25,
respectively.
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Q
2 (GeV/c)2 2H 12C 27Al

1.10 0.963±0.013±0.033 0.651±0.010±0.022 0.478±0.014±0.017
2.15 1.007±0.015±0.034 0.652±0.010±0.022 0.516±0.017±0.018
3.00 0.997±0.022±0.037 0.695±0.017±0.026 0.575±0.032±0.022
3.91 1.045±0.021±0.044 0.793±0.020±0.033 0.604±0.053±0.026
4.69 1.030±0.033±0.043 0.724±0.032±0.030 0.728±0.144±0.031

Q
2 (GeV/c)2 63Cu 197Au

1.10 0.437±0.007±0.015 0.266±0.005±0.010
2.15 0.452±0.007±0.016 0.287±0.007±0.010
3.00 0.450±0.011±0.017 0.300±0.011±0.012
3.91 0.541±0.013±0.023 0.352±0.012±0.015
4.69 0.530±0.020±0.023 0.335±0.018±0.015

Table 5.1: The nuclear transparency values for 2H, 12C, 27Al, 63Cu and 197Au targets.
The first uncertainty quoted is the statistical uncertainty and the second is the point-
to-point systematic uncertainty.

• Em=0 for the model of the energy of the proton

• No correlations included in the spectral function

• Pauli blocking using the Fantoni and Pandharipande distribution function

• Coulomb corrections for the outgoing pion (Eπ was increased by V̄ )

is shown as a function of Q2
in Figure 5-1. The nuclear transparency is shown as a function

of Pπ in Figure 5-2 and the values for the nuclear transparency are given in Table 5.1.

The point-to-point and overall systematic uncertainties are discussed in Section 5.2. Cal-

culations of the nuclear transparency were scaled to agree with the experimental data at

Q2
=4.7 (GeV/c)

2
.

The results presented in Figure 5-1 suggest an enhancement in the nuclear transparency

that is consistent with the theoretical calculations shown in the same figure within the

experimental and model dependent uncertainties. The theoretical calculations in Figure 5-

1 use the pion distribution amplitude and models using an end point dominated [46, 47]

and a centrally dominated [48] model are shown. The pion distribution amplitude provides

insight into the nonperturbative structure of the pion. The centrally dominated model uses

the asymptotic limit of perturbative QCD to determine the pion distribution amplitude,

while the end-point dominated model uses measured moments of the pion distribution

amplitude to construct a parameterization for this function. The results of the nuclear

126



transparency vs. Pπ presented in Figure 5-2 also show an enhancement in the nuclear

transparency that is in good agreement with the theoretical calculation that includes CT

with ∆M2
= 0.7 (GeV/c

2
)
2

in Refs. [8, 83]. This calculation uses the quantum diffusion

model to describe the expansion of the pion, which is a perturbative calculation in the

quark basis. A reliable baseline in πCT will help to distinguish better between the various

CT predictions. A reliable baseline is lacking at the lower Q2
in Figure 5-1 and lower

Pπ in Figure 5-2 and awaits a better understanding of n-N FSI (interactions between the

recoiling neutron and the spectator nucleons), Pauli blocking and medium modification of

the nucleons.

The goodness of fit of the Glauber transparency in Figure 5-2 was determined after

normalizing these curves to match the data using the least squares method. The number of

degrees of freedom was 4 (5 data points - 1 fitted parameter) and the residual was 13.0, 11.1

and 8.8 for the gold, copper and carbon targets, respectively. The Glauber model is rejected

at the 98.9%, 97.5% and 93.4% confidence level for the gold, copper and carbon targets,

respectively. However, the 4.3-10.6% model dependent uncertainty in the experimental

results was not included in this goodness of fit calculation.

The nuclear transparency is plotted vs. the nucleon number, A, in Figure 5-3. The data

was fit with the parameterization T = Aα−1
and the values of α determined from the fit at

each Q2
are given in Table 5.2. This form of the parameterization is a direct consequence

of the parameterization of nuclear cross sections as σ = σ0A
α

and a positive slope of α

with increasing Q2
is considered a signal of CT. This parameterization represents a very

crude approximation which usually suffers from poor χ2
in fits to the data. However, the

parameter α seems to be a robust result over a wide range of energies and probes and is thus

a powerful technique for studying the effects of CT. The results for α can be compared to the

absorption cross section in π A scattering, which were parameterized with σ(A) = σ0A
α
.

The value of α determined in these experiments was α = 0.75 − 0.77 [51]. The value of α

in π A scattering is compared to the results from πCT in Figure 5-4.

The results in Figure 5-3 show a behavior that could be due to color transparency.

The dependence of the nuclear transparency on the nucleon number becomes curved with

increasing Q2
, with the nuclear transparency for small A nuclei rising further above the

fitted line. Furthermore, the fitted values for α increased by 6.6% over the Q2
range of

these measurements and were approximately 8.3% larger than the value determined from
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Figure 5-3: The nuclear transparency vs. the nucleon number, A, for
(a) Q

2=1.1 (GeV/c)2, (b) Q
2=2.15 (GeV/c)2, (c) Q

2=3.0 (GeV/c)2, (d)
Q

2=3.9 (GeV/c)2, and, (e) Q
2=4.7 (GeV/c)2. The lines are fits to the experimental

data using the parameterization T = A
α−1. The error bars are the statistical and

overall (point-to-point and normalization) systematic uncertainties added in quadra-
ture. The values of α determined from the fit at each Q

2 are given in the text.
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Q
2 (GeV/c)2

α

1.10 0.774±0.005
2.15 0.788±0.005
3.00 0.799±0.007
3.91 0.830±0.007
4.69 0.821±0.009

Table 5.2: The values for the parameter, α, which were determined by fitting the
experimental data with the statistical and overall (point-to-point and normalization)
systematic uncertainties added in quadrature.
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Figure 5-4: The parameter, α, vs. Q
2. The circles are from the πCT analysis and

the error bars represent the statistical and overall (point-to-point and normalization)
systematic uncertainties added in quadrature. The band shows the measured values
of α from π A scattering for pion momentum from several GeV/c to hundreds of
GeV/c.
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π A scattering.

The CT signal is reduced when we form the super ratio, RA,A′ , given by

RA,A′ =

(

Ȳ /ȲSIMC

)

A
(

Ȳ /ȲSIMC

)

A′

. (5.2)

This is because any enhancement of the experimental yield in the numerator will partially

cancel with the enhancement in the denominator. However, it can be useful to examine

the super ratio as the model uncertainty will be reduced, which is because errors due

to assumptions in the quasifree model will cancel to first order. The super ratio with

deuterium is shown in Figure 5-5 and with carbon in Figure 5-6. There appears to be a

small enhancement of the super ratio with deuterium with Q2
and the super ratio with

carbon appears to be energy independent for all targets with nuclei heavier than carbon.
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Figure 5-5: The RA,2 super ratio vs. Q
2. The inner error bars are the statistical

uncertainties, the outer error bars are the statistical and point-to-point systematic
uncertainties added in quadrature.
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Figure 5-6: The RA,12 super ratio vs. Q
2. The inner error bars are the statistical

uncertainties, the outer error bars are the statistical and point-to-point systematic
uncertainties added in quadrature. The upper, middle and lower horizontal lines are
fitted to the data for the 27Al, 63Cu and 197Au targets, respectively.
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5.2 Error analysis

The statistical uncertainties in the charge normalized experimental yields were calculated

for each run and were summed over the runs at a given kinematic setting to give the best

estimate for the charge normalized yield, given by

Ȳ =

(

n
∑

i

Ȳi
(

Ȳi/
√

Ni

)2

) (

n
∑

i

1
(

Ȳi/
√

Ni

)2

)−1

=

(

n
∑

i

Ni/Ȳi

)(

n
∑

i

Ni/Ȳ 2
i

)−1

,

where i represents the ith run of a kinematic setting and Ni the number of events inside the

experimental acceptance. The statistical uncertainty for the entire setting, dȲ , was

dȲ =

(

n
∑

i

Ni/Ȳ 2
i

)− 1

2

. (5.3)

The same acceptance and missing mass cuts that were applied to the experimental data were

also applied to the Monte Carlo events. The Monte Carlo statistical error was determined

in a similar manner, except Ni was replaced with the raw number of Monte Carlo particles

that passed these cuts. The statistical uncertainty in the transparency, dTstat, was given by

dTstat = T ×
√

(

[dȲ /Ȳ ]2 + [dȲSIMC/ȲSIMC]2
)

A
+

(

[dȲ /Ȳ ]2 + [dȲSIMC/ȲSIMC]2
)

H
. (5.4)

Three different types of systematic uncertainties in the normalized yields are shown in

Table 5.3. The distinction between these types of uncertainties was based on how they

contribute to the systematic uncertainty in the nuclear transparency. Point-to-point sys-

tematic uncertainties in the normalized yield contributed to both the normalization and

point-to-point systematic uncertainties in the nuclear transparency. dȲpt−to−pt, was the

point-to-point systematic uncertainty in the normalized yield that contributed to the point-

to-point systematic uncertainty in the nuclear transparency. dȲnorm, was the point-to-point

systematic uncertainty in the normalized yield that contributed to the normalization sys-

tematic uncertainty in the nuclear transparency. dȲpt−to−pt contributed to the numerator

and denominator in Equation 5.1 and the point-to-point systematic uncertainty in the nu-
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Correction
dȲ

.

pt−to−pt

Ȳ
dȲnorm

Ȳ

dȲabs,norm

Ȳ
Section

(%) (%) (%)
HMS Cerenkov 0.2 0.3-0.5 3.2
SOS Cerenkov 0.2 0.3-0.5 3.2

Charge 0.4-0.9 0.4 2.2
Target thickness 0.5-1.0 2.3

Coincidence blocking 0.2 3.3
HMS Trigger 0.5 3.6
SOS Trigger 0.5 3.6
Dead time 0.5 3.7

HMS Tracking 1.0 1.0 3.8
SOS Tracking 0.5 0.5 3.8

Pion absorption 0.5 2.0 3.9
Pion decay 0.1 1.0 4.1

Coulomb corrections 0.0-1.0 4.2
Radiative corrections 1.0-2.0 2.0 4.5

Collimator 0.5 1.0 4.6
Acceptance 1.0 2.0 4.9

Iteration procedure 1.1 4.10 and 4.11
Multi-π contamination 0.0-0.4 4.8

Total 2.4-3.2 0.7-1.1

Table 5.3: Systematic uncertainties in the normalized yields. The uncertainty,
dȲpt−to−pt, contributed to the point-to-point uncertainty in the nuclear transparency.
dȲnorm is the uncertainty that depends on the target nuclei and is independent of Q

2.
dȲabs,norm is the uncertainty in the overall normalization due to uncertainties that are
independent of the target nuclei and Q

2. In addition, there is a 4.3-10.6% model
uncertainty that is described in the text.

clear transparency was given by

dTpt−to−pt = T ×

√

(

dȲpt−to−pt

Ȳ

)2

A

+

(

dȲpt−to−pt

Ȳ

)2

H

. (5.5)

The normalization systematic uncertainty in the nuclear transparency was given by

dTnorm = T ×

√

(

dȲnorm

Ȳ

)2

A

+

(

dȲnorm

Ȳ

)2

H

. (5.6)

Normalization systematic uncertainties in the normalized yield, dȲabs,norm, contributed to

the systematic uncertainty in the absolute cross sections and canceled in the ratio between
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targets. Therefore, these uncertainties did not contribute to the systematic uncertainty in

the nuclear transparency.

The model uncertainty is an estimate of the uncertainty in the nuclear transparency due

to corrections for Pauli blocking and nucleon correlations in the spectral function. Correc-

tions due to Pauli blocking have a large impact on the lowest Q2
setting and less of an impact

on the higher Q2
settings (Figure 4-4). While we attempted to correct for these effects in

the πCT analysis, a better theoretical understanding of the nuclear transparency based on

traditional nuclear physics is desirable. The model uncertainty in the nuclear transparency

was estimated by summing in quadrature the uncertainty in the Pauli blocking correction

(Section 4.4) and the relative changes in the nuclear transparency when correlations were

included in the spectral function (Table 5.4). The model uncertainty was 10.6%, 8.7%,

7.5%, 5.7% and 4.3% at Q2
=1.1, 2.15, 3.0, 3.9, and 4.7 (GeV/c)

2
, respectively.

5.3 Results from additional kinematic settings

Longitudinal-Transverse (L-T) separations were performed at Q2
=2.15 and 4.0 (GeV/c)

2
.

The measured longitudinal and transverse virtual photon cross sections (d2σL/dΩπ and

d2σT /dΩπ) of a free proton may be different when compared to that of a proton inside

of a nucleus due to effects such as nucleon correlations in the spectral function, medium

modification of the nucleons and absorption of the outgoing pion. However, in the quasifree

picture, the ratio σL/σT is not expected to change, but in reality this may not be the case.

Preliminary results for this analysis from Ref. [84] do not show any inconsistency in this

ratio between hydrogen and nuclear targets and are shown in Figure 5-7.

The nuclear transparency for the W vs. kπ kinematic setting is shown in Figure 5-8. This

setting was designed to check for rescattering contributions in the experimental yields in nu-

clear targets. The central settings of the spectrometers corresponded to −t=0.374 (GeV/c)
2

for the W vs. kπ kinematic setting and 0.158 (GeV/c)
2

for the previous setting at the same

Q2
. Rescattering contributions, if they exist, will result in a t dependence of the nuclear

transparency. The results in Figure 5-8 show that there is no t dependence of the nuclear

transparency within the statistical and systematic uncertainties.

A check of the analysis method was performed by determining the nuclear transparency

for the low-epsilon settings that were used in the L-T separations. The central kinematics
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Figure 5-7: Preliminary results for the Longitudinal-Transverse (L-T) separations of
the pion electroproduction cross section from hydrogen and nuclear targets. Results
from different targets have been offset slightly in Q

2 for clarity. The error bars are
the statistical uncertainties.
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Figure 5-8: Results showing the nuclear transparency for the W vs. kπ kinematic
setting. These data for 2H, 12C and 27Al are shown at Q

2=2.15 (GeV/c)2 and are
offset slightly to larger Q

2 compared to the previous data.

of the low-epsilon settings had similar Q2
and Pπ compared to the high-epsilon settings,

and therefore, the nuclear transparency was expected to be the same. These data are shown

in Figure 5-9, and the agreement is reasonable for different settings.
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Figure 5-9: Results showing the nuclear transparency for the low epsilon kine-
matic settings. These data for 2H, 12C, 27Al and 63Cu are shown at Q

2=2.15 and
4.0 (GeV/c)2, and are offset slightly to larger Q

2 compared to the previous data.

5.4 Results using different analysis options

There were a number of different options in the analysis procedure, such as the model for the

energy of the proton, nucleon correlations in the spectral function, double-pion production

missing mass cuts, and Coulomb corrections for the pion. For the results in the preceding

sections, we selected the options that gave us the best agreement between the experimental

and Monte Carlo missing mass and other distributions. The results with changes in the

analysis options will be shown in this section.

The different models for the energy of the proton (Section 1.9) affected the Monte Carlo

missing mass distributions. This can be seen in Figures 5-10 and 5-11 for the deuterium
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Q
2 (GeV/c)2 ∆T

1.10 0.047
2.15 0.058
3.00 0.052
3.91 0.040
4.69 0.030

Table 5.4: Results after inserting correlations in the spectral function for carbon. ∆T

is the change in the nuclear transparency due to correlations.

and carbon targets, respectively. The Monte Carlo distributions in these figures contain

an arbitrary normalization so that one may compare the shapes of the distributions. It

can be seen that the Monte Carlo distributions are shifted to larger missing mass for the

default model and to smaller missing mass for the proton-on-shell model. The distributions

for carbon at Q2
=1.1 (GeV/c)

2
show inconsistencies between the experimental and Monte

Carlo distributions which could be due to the limitations of the Pauli blocking model and/or

n-N FSI. However, the Em = 0 model appears to provide better agreement for this setting.

Furthermore, the aforementioned limitations are expected to become insignificant for the

settings with Q2 & 2.15 (GeV/c)
2
, and the distributions for carbon at Q2

=4 (GeV/c)
2

show

that the Em = 0 model provides the best agreement. Therefore, the Em = 0 model was

used for all other results presented in this chapter.

The spectral functions used in this analysis did not contain nucleon correlations as we

did not have access to this type of spectral function for the targets in πCT other than
12

C.

The nuclear transparency for the carbon target using the spectral function with nucleon

correlations is shown in Figure 5-12. In this case, nucleon correlations produce an energy-

independent shift in the nuclear transparency. The values of the size of this shift is given

in Table 5.4.

Multi-pion events could be excluded using either nucleon or nuclear missing mass cuts.

The results for the nuclear transparency using nucleon missing mass cuts are shown in

Figure 5-13. The nuclear transparency is similar to the results using nuclear missing mass

cuts presented in Section 5.1, which gives us confidence in the analysis procedure.

Coulomb corrections for the pion were a large (up to 9.5%) effect, and the results

presented in section 5.1 have these corrections. The nuclear transparency without Coulomb

corrections for the pion are shown in Figure 5-14. These corrections affected the missing
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Figure 5-10: Experimental (crosses) and Monte Carlo (lines) nuclear missing mass
distributions for 2H(e,e′π+). The top, middle and bottom plots use the default,
Em=0 and proton-on-shell models in the Monte Carlo simulation, respectively. The
Q

2 settings for each plot are shown in the figure.
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Figure 5-11: Experimental (crosses) and Monte Carlo (lines) nuclear missing mass
distributions for 12C(e,e′π+). The top, middle and bottom plots use the default,
Em=0 and proton-on-shell models in the Monte Carlo simulation, respectively. The
Q

2 settings for each plot are shown in the figure.
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mass distributions and there was better agreement between the experimental data and the

Monte Carlo when these corrections were used. The changes in the Monte Carlo equivalent

yield without Coulomb corrections for the pion were 7-9.5%, 3-5.5% and 1-1.5% for the

gold, copper and carbon targets, respectively. Therefore, the Coulomb corrections for the

pion are energy independent within 1-2%.

142



0

0.2

0.4

0.6

0.8

1

1 2 3 4 5
Q2  [(GeV/c)2]

T

Figure 5-12: The effect of including correlations in the Monte Carlo for carbon nuclei.
The nuclear transparency is shown before (red, circles) and after (blue, squares)
nucleon correlations were included in the spectral function. The results for the latter
case are offset in Q

2 for clarity.
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Figure 5-13: Nuclear transparency results using the nucleon missing mass cut.
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Figure 5-14: Nuclear transparency results without Coulomb corrections for the pion.
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Chapter 6

Summary and Outlook

The nuclear transparency of pions in the reaction A(e,e
′π+

) was measured from
1
H,

2
H,

12
C,

63
Cu and

197
Au targets at Q2

of 1.1, 2.15, 3.0, 3.9 and 4.7 (GeV/c)
2
. The results for

the nuclear transparency were presented in Figure 5-1 and the parameter α was shown

as a function of Q2
in Figure 5-4. The results suggest an enhancement of the nuclear

transparency as a function of Q2
and Pπ that is in reasonable agreement with theoretical

predictions of color transparency in Refs. [45, 8]. However, these data do not provide

conclusive evidence for the color transparency effect.

It was found that reasonable agreement between the experimental and Monte Carlo

distributions was achieved using nuclear missing mass cuts, where the position of the cut

was based on a multi-pion production simulation. Shifts observed between the experimental

and Monte Carlo missing mass distributions appear to be explained by the Em=0 model

for the energy of the proton. A model of Pauli blocking of the recoiling neutron was

employed in this analysis, which had a large impact on the nuclear transparency at low

Q2
. However, inconsistencies remain between the experimental and Monte Carlo missing

mass distributions at Q2
=1.1 (GeV/c)

2
. A better theoretical understanding of the nuclear

transparency based on traditional nuclear physics is desirable and will help to distinguish

color transparency effects from conventional nuclear physics effects. In particular, a reliable

model of the operator for the elementary process would be useful to predict the absolute

cross sections in deuterium and estimate the effects of Pauli blocking using nuclear wave

functions. Spectral functions that include nucleon correlations would be useful to remove

the effect of correlations on the nuclear transparency.
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Larger energies will soon be available at JLab and the color transparency effect will

be probed at larger Q2
and Pπ compared to πCT , where the enhancement of the nuclear

transparency is expected to be larger. The results from this experiment will provide a

baseline from which the enhancement at larger energies will be examined. The pion form

factor will also be extracted at Q2
=2.15 (GeV/c)

2
using results from the L-T separation in

πCT . Furthermore, a large sample of kaon data was taken parasitically during πCT . With

the good particle identification described in Chapter 2, it may be possible to determine the

nuclear transparency from A(e,e
′K+

) reactions. The data from πCT may also be used to

measure the cross section for multi-pion production.

148



Appendix A

Experimental and Monte Carlo

distributions

The distributions from the experiment and Monte Carlo are compared in this Appendix.

The error bars in the following figures indicate the statistical uncertainties. The ends of the

Monte Carlo error bars are joined forming a double line in each figure. The Monte Carlo

distributions are normalized to have the same area as the experimental distributions.
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Figure A-1: Experimental (crosses) and Monte Carlo (lines) distributions for the
hydrogen target at Q

2=1.1 (GeV/c)2. The vertical line shows the position of the
double-pion production missing mass cut.
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deuterium target at Q

2=1.1 (GeV/c)2. The vertical line shows the position of the
double-pion production missing mass cut.
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target at Q
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Figure A-6: Experimental (crosses) and Monte Carlo (lines) distributions for the
hydrogen target at Q
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Figure A-8: Experimental (crosses) and Monte Carlo (lines) distributions for the
carbon target at Q

2=3.9 (GeV/c)2. The vertical line shows the position of the double-
pion production missing mass cut.
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Figure A-9: Experimental (crosses) and Monte Carlo (lines) distributions for the
copper target at Q

2=3.9 (GeV/c)2. The vertical line shows the position of the double-
pion production missing mass cut.
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