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Abstract

This thesis is devoted to the study of neutrino physics in general and the study of
neutrino mixing and oscillations in particular. In the standard model of particle
physics, neutrinos are massless, and as a result, they do not mix or oscillate. How-
ever, many experimental results now seem to give evidence for neutrino oscillations,
and thus, the standard model has to be extended in order to incorporate neutrino
masses and mixing among different neutrino flavors.

When neutrinos propagate through matter, the neutrino mixing, and thus, also
the neutrino oscillations, may be significantly altered. While the matter effects
may be easily studied in a framework with only two neutrino flavors and constant
matter density, we know that there exists (at least) three neutrino flavors and that
the matter density of the Universe is far from constant. This thesis includes studies
of three-flavor effects and a solution to the two-flavor neutrino oscillation problem
in matter with an arbitrary density profile.

Furthermore, there have historically been attempts to describe the neutrino
flavor transitions by other effects than neutrino oscillations. Even if these effects
now seem to be disfavored as the leading mechanism, they may still give small
corrections to the neutrino oscillation formulas. These effects may lead to erro-
neous determination of the fundamental neutrino oscillation parameters and are
also studied in this thesis in form of damping factors.

Key words: Neutrino oscillations, neutrino mixing, matter effects, damping ef-
fects, the day-night effect, solar neutrinos, exact solutions, three-flavor effects, large
density, unitarity violation, neutrino decay, neutrino decoherence, neutrino absorp-
tion.
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Sammanfattning

Denna avhandling behandlar neutrinofysik i allmänhet samt blandningen och oscil-
lationerna mellan olika neutrinosmaker i synnerhet. I partikelfysikens standard-
modell kan neutrinerna inte ha n̊agon massa. Ett resultat av detta är att de
olika neutrinosmakerna inte blandas med varandra och därför kan inte heller n̊agra
neutrinooscillationer förekomma. Experimentella resultat verkar dock visa p̊a att
neutrinooscillationer faktiskt förekommer och standardmodellen måste därför utökas
p̊a n̊agot sätt för att även kunna behandla massiva neutriner med blandning mellan
olika neutrinosmaker.

När neutriner rör sig genom materia kan blandningen mellan neutrinosmakerna,
och därigenom ocks̊a neutrinooscillationerna, p̊averkas. Dessa materieeffekter kan
lätt studeras i ett scenario med tv̊a neutrinosmaker och konstant materiedensitet.
Vi vet dock att det existerar (minst) tre neutrinosmaker och att materiedensiteten
i universum är l̊angt ifr̊an konstant. Denna avhandling inneh̊aller studier av b̊ade
tresmakseffekter och en exakt lösning till neutrinooscillationer mellan tv̊a neutrino-
smaker i materia med godtycklig densitetsprofil.

Vidare har det historiskt funnits försök att beskriva överg̊angar mellan olika
neutrinosmaker med andra mekanismer än neutrinooscillationer. Även om neutrino-
oscillationer nu verkar vara en bättre beskrivning av smaköverg̊angarna s̊a kan dessa
andra mekanismer fortfarande leda till att neutrinooscillationsformlerna förändras
n̊agot. Dessa mekanismer kan därför leda till felaktiga bestämningar av de funda-
mentala neutrinooscillationsparametrarna och studeras i denna avhandling i form
av dämpningsfaktorer.

Nyckelord: Neutrinooscillationer, neutrinoblandning, materieeffekter, dämpnings-
effekter, dag-natt-effekten, solneutriner, exakta lösningar, tresmakseffekter, hög mat-
eriedensitet, unitaritetsbrott, neutrinosönderfall, neutrinodekoherens, neutrinoabs-
orption.

iv



Preface
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physics as well as a review of the standard model of particle physics and how it has
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in Sec. 2 and constructed Fig. 1.
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Chapter 1

Introduction

Ever since the beginning of human civilization, man has tried to describe and
understand Nature. In very ancient times, this was mainly done by referring to the
will of one or more gods. With Sir Isaac Newton [1], science, as we know it today,
was born.

Physics is a branch of science in which the fundamental behavior of Nature
is studied. In particular, the study of elementary particle physics is concerned
with exploring the very building blocks of which nuclei, atoms, molecules and -
ultimately - the Universe, consist. It is important to note that the intent of physics
is to describe how Nature behaves rather than to explain it in some deeper meaning.
The concepts introduced, such as particles and fields, are in no way assumed to be
real entities, but rather intended to describe what we can observe as accurately as
possible.

A very successful theory in elementary particle physics is the so-called standard
model. This model has made extremely good predictions, which is what signifies a
good theory, and contains all the particles that we know of today (and some others
which have not yet been seen). However, as will be discussed, there are indications
that the standard model may not tell the whole story.

This thesis deals with one very interesting type of particle, the neutrino. At
present time, we know of three different types of neutrinos, the electron neutrino
νe, the muon neutrino νµ and the tau neutrino ντ , each associated with the cor-
responding charged lepton (e, µ and τ , respectively). For a very long time, the
neutrinos were believed to be massless. However, in recent times, there have been
experimental progress which indicates that the neutrinos actually have non-zero,
albeit small, masses. The fact that the neutrino does have a mass is in direct
contradiction to the standard model, and thus, the standard model needs to be
revised or extended to incorporate neutrino masses and neutrino physics seem to
be a probe of the physics beyond the standard model.

5



6 Chapter 1. Introduction

1.1 Outline of the thesis

The outline of this thesis is as follows. In Chapter 2, the history of neutrino physics
is briefly reviewed. This is followed, in Chapter 3, by an introduction to the stan-
dard model and its extensions, as well as the incorporation of neutrino masses and
mixing into the theory. Chapter 4 is addressing the subject of neutrino oscilla-
tions, with which all the Papers included at the end of this thesis are concerned.
The experimental evidence for neutrino oscillations are discussed in Chapter 5. Fi-
nally, in Chapter 6, the introductory part of the thesis is summarized and the most
important conclusions of the Papers of the second part are given.



Chapter 2

History of neutrinos

The history of neutrino physics is very interesting and many brilliant physicists,
including many Nobel prize laureates, are involved in the story.

The early 20th century was an era of great achievements in physics. It witnessed
the birth of the theories of relativity and quantum mechanics (in fact, it is now
100 years since Albert Einstein1 published seminal papers [2, 3] for both of these
theories) but still, a lot of progress has been made since that time. For instance, our
knowledge of elementary particles has changed drastically. In 1930, the neutron had
not yet been observed. It was this year that the German physicist Wolfgang Pauli2

postulated the existence of the neutrino to describe some obvious discrepancies in
β-decays. Before the neutrino was introduced, β-decay was thought to be a two-
body decay, a nucleus decayed into another nucleus and an electron. However,
experiments indicated that the energy spectrum of the beta radiation electrons was
continuous rather than the peaked, single energy spectrum expected in a two-body
decay. In addition, there seemed to be a violation of the conservation of angular
momentum which could not be described by physics at that time. It had even been
suggested that the conservation laws only should hold statistically.

Pauli first introduced the neutrino in a letter to a gathering of physicists in
Tübingen, since he did not attend the meeting in person (he was going to a ball).
The particle Pauli postulated was a particle with a very small mass, spin 1/2, and
no electric charge, called a “neutron”. The name might have stuck if it were not for
the fact that two years later, in 1932, James Chadwick3 experimentally discovered
the nucleon that we today know as the neutron [4]. Instead, the Italian physicist

1Nobel prize laureate in 1921 “for his services to Theoretical Physics, and especially for his
discovery of the law of the photoelectric effect”.

2Nobel prize laureate in 1945 “for the discovery of the Exclusion Principle, also called the Pauli
Principle”.

3Nobel prize laureate in 1935 “for the discovery of the neutron”.

7



8 Chapter 2. History of neutrinos

n

p

e−

ν̄e

Figure 2.1. Fermi’s theory of β-decay as it would be described in terms of a
Feynman diagram.

Enrico Fermi4 gave the name “neutrino” to Pauli’s postulated particle in 1933, the
suffix “-ino” meaning “small” in Italian. The following year, Fermi presented his
theory of β-decay [5, 6], in which the neutrino had a fundamental role.

Fermi’s theory of β-decay was the foundation for the Glashow–Weinberg–Salam5

electroweak model [7–9], which unifies the electromagnetic and weak interactions
in one common framework. The theory of Fermi was a low-energy effective theory
with an interaction term which in today’s language of Feynman6 diagrams would
describe a vertex with one incoming neutron, one outgoing proton, one outgoing
electron, and one outgoing anti-neutrino, see Fig. 2.1. In 1934, Hans Albrecht
Bethe7 and Rudolf Peierls used Fermi’s theory to make the first predictions for
the neutrino interaction cross-sections [10]. The predicted cross-sections were very
small, which made many physicists doubt that neutrinos would ever be observed
by experiments. However, in 1946, Bruno Pontecorvo suggested that anti-neutrinos
may be detected through the inverse β-decay of Chlorine [11]:

ν̄e +
37Cl −→ 37Ar + e+.

4Nobel prize laureate in 1938 “for his demonstrations of the existence of new radioactive ele-
ments produced by neutron irradiation, and for his related discovery of nuclear reactions brought
about by slow neutrons”.

5The model was named after physicists Sheldon Lee Glashow, Steven Weinberg and Abdus
Salam - all Nobel prize laureates in 1979 “for their contributions to the theory of the unified weak
and electromagnetic interaction between elementary particles, including, inter alia, the prediction
of the weak neutral current”.

6Nobel prize laureate in 1965 together with Sin-Itiro Tomonaga and Julian Schwinger “for their
fundamental work in quantum electrodynamics, with deep-ploughing consequences for the physics
of elementary particles”.

7Nobel prize laureate in 1967 “for his contributions to the theory of nuclear reactions, especially
his discoveries concerning the energy production in stars”.
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A decade later, Clyde Cowan Jr. and Frederick Reines8 used this inverse β-decay
to detect the anti-neutrinos coming from the β-decays in a nuclear reactor [12,13].

The existence of a second type of neutrino, the muon neutrino νµ, was confirmed
by the Brookhaven National Laboratory in 1962 [14]. The third type of neutrino, the
tau neutrino ντ , was not detected until the beginning of 2001 when its detection was
announced by the DONUT collaboration [15]. However, its charged lepton partner,
the tau, was observed in 1975 by a collaboration led by Martin L. Perl9 [16], and
therefore, the experimental detection of the tau neutrino had been anticipated for
quite some time.

2.1 The history of neutrino oscillations

The idea of oscillating neutrinos was first discussed by Pontecorvo in 1957 [17,18].
However, since only one neutrino flavor was known at that time (the νe), Pon-
tecorvo discussed the oscillation between a neutrino and an anti-neutrino. The mo-
tivation for this was an assumed analogy between lepton number and strangeness,
the oscillations between neutrinos and anti-neutrinos would then correspond to the
oscillation between K0’s and K̄0’s, which had been observed.

When the muon neutrino had been discovered, the mixing of two massive neu-
trinos was discussed in work done by Maki, Nakagawa, and Sakata [19] as well as
Nakagawa et al. [20]. The idea of neutrino oscillations between two different neu-
trino flavors was first discussed by Pontecorvo in 1967. Two years later, Pontecorvo
and Vladimir Gribov published a phenomenological theory for the oscillations be-
tween νe and νµ [21]. However, the oscillation length presented by Pontecorvo and
Gribov differs with a factor of two as compared to the correct oscillation length. The
correct oscillation length was presented by Harald Fritzsch and Peter Minkowski in
1976 [22]. The oscillations among three different neutrino flavors was first studied
in detail by Samoil Bilenky in 1987 [23].

A most interesting part of the theory of neutrino oscillations is the matter effect
which appears when neutrinos travel through matter and is caused by coherent
forward scattering of the neutrinos. This was first discussed by Lincoln Wolfenstein
in 1978 [24] and elaborated on by Stanislav Mikheyev and Alexei Smirnov in the
1980’s [25, 26].

The first evidence for neutrino oscillations was published in 1998 by the Super-
Kamiokande collaboration [27]. The Super-Kamiokande experiment (a larger ver-
sion of the Kamiokande experiment, which was originally built to measure proton
decay), detected a suppression in the flux of muon neutrinos produced by cosmic
rays hitting the atmosphere. Since then, there have been many experiments which
seem to give evidence for oscillations of neutrinos produced by accelerators [28,29],

8Nobel prize laureate in 1995 “for the detection of the neutrino” (Cowan died in 1974).
9Nobel prize laureate in 1995 “for the discovery of the tau lepton” (Perl and Reines were

awarded half the prize each).
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neutrinos coming from the Sun [30–37], and neutrinos produced by β-decays in
nuclear reactors [38,39].



Chapter 3

The standard model and

beyond

3.1 Unification of physics

In the spirit of James Clerk Maxwell’s description of the electricity and magnetism
in a unified theory [40], it has been a dream of many physicists to describe all of
Nature’s interactions in one unified theory. The next large step towards the unifi-
cation of physics was the unification of the electromagnetic and weak interactions,
this was done by the Glashow–Weinberg–Salam (GWS) electroweak model [7–9],
which includes a lot of concepts that have become important in modern physics
such as non-Abelian gauge theories and spontaneous symmetry breaking. Today,
the standard model (SM) of particle physics describes also the strong interaction
and has a particle content which includes all observed (and some unobserved) par-
ticles. In this section, the GWS electroweak model and the SM will be briefly
introduced and the shortcomings of the SM will be discussed.

3.1.1 The GWS electroweak model

The GWS electroweak model is a non-Abelian gauge theory [41] based on the gauge
group SU(2)⊗U(1). The gauge symmetry is spontaneously broken by the introduc-
tion of a complex Higgs doublet with a non-zero vacuum expectation value (vev)
and the symmetry that remains after this is the U(1) symmetry of the electro-
magnetic interactions. Let us start by introducing the field content of the model.
Except for the gauge fields W i,µ (i = 1, 2, 3, or W µ in vector notation) and Bµ,

11



12 Chapter 3. The standard model and beyond

corresponding to the SU(2) and U(1) symmetries, respectively, we introduce the
left- and right-handed lepton fields

L` ≡
(
ν`L
`L

)

and R` ≡ `R.

The left-handed fields L` form a SU(2) doublet, while the right-handed field R` is a
SU(2) singlet. In general, we may introduce many different generations of leptons
similar to the one described above, this generalization is straightforward, we simply
denote each generation by a generation index (i.e., e, µ, τ).

We can now write down the Lagrangian density L0 for the GWS electroweak
model before the spontaneous symmetry breaking, it is given by

L0 ≡ −
1

4
FµνFµν −

1

4
Gµν ·Gµν + iL̄`γ

µDµL` + iR̄`γ
µDµR`, (3.1)

where Fµν ≡ ∂µBν − ∂νBµ is the field strength tensor of the U(1) gauge field,
Gµν ≡ ∂µW ν − ∂νW µ + gW µ ×W ν is the field strength tensor of the SU(2)
gauge fields, Dµ ≡ ∂µ − ig′(Y/2)Bµ − igτ ·W µ is the covariant derivative, g and
g′ are the coupling constants for the two symmetry groups, respectively, Y is the
weak hypercharge operator, and τ is a vector containing the SU(2) generators.

If we introduce the currents

j′µ ≡ L̄`γ
µY

2
L` + R̄`γ

µY

2
R` and jiµ ≡ L̄`γ

µτ iL`,

then the interaction part of the Lagrangian density is given by

L0,int = gjµ ·W µ + g′j′µBµ.

When we break the gauge symmetry, we want to break it in such a way that the
remaining symmetry is the U(1) symmetry of the electromagnetic interaction with
the charge operator Q given by the weak analogue of the Gell-Mann–Nishijima
relation [42,43]

Q = I3 +
Y

2
, (3.2)

where I3 is the third component of the isospin operator, holds. This is done by
introducing the linear combinations

Wµ ≡
W 1

µ − iW 2
µ√

2
, W †

µ ≡
W 1

µ + iW 2
µ√

2
,

Zµ ≡ cos(θW )W 3
µ − sin(θW )Bµ, and Aµ ≡ sin(θW )W 3

µ + cos(θW )Bµ,

where θW is the so-called Weinberg angle. We require that when the gauge symme-
try is broken, Aµ is the gauge field of the remaining U(1) symmetry. The current
associated with the gauge field Aµ is then given by

ejµEM = g sin(θW )j3µ + g′ cos(θW )j′µ,
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where e is the electromagnetic coupling constant, and should be identified with the
electromagnetic current. However, for Eq. (3.2) to hold, we must have the relation

jµEM = j3µ + j′µ =
∑

`

¯̀γµ`.

This relation results in e = g sin(θW ) = g′ cos(θW ) and the current associated with
Zµ becomes

j0µ =
∑

`

[ν̄`Lγ
µν`L − ¯̀

Lγ
µ`L + 2 sin2(θW )¯̀γµ`],

while the currents associated to the gauge fields W and W † are

j+µ =
∑

`

ν̄`Lγ
µ`L and j−µ =

∑

`

¯̀
Lγ

µν`L,

respectively. The Lagrangian density of the electromagnetic interaction is then
written on the well-known form

LEM = ejµEMAµ,

while the Lagrangian density of the remaining weak interaction is

Lweak =
g√
2

(
j+µWµ + j−µWµ

)
+

g

2 cos(θW )
j0µZµ.

Spontaneous symmetry breaking and the Higgs mechanism

So far, we have only considered the Lagrangian density of Eq. (3.1). What is
apparently lacking in this Lagrangian density is the appearance of mass terms, i.e.,
all of the fields in our theory are so far massless. In the GWS electroweak model,
masses for the weak gauge bosons are provided by the Higgs mechanism [44–47]
and masses for the charged leptons by Yukawa couplings to the Higgs field.

The Higgs mechanism introduces a new complex doublet field Ψ ≡ (ψ+ ψ0)T

with hypercharge Y = 1 along with an addition

LHiggs ≡ (DµΨ)†(DµΨ) + µ2Ψ†Ψ− λ(Ψ†Ψ)2

to the Lagrangian density. The potential part of this Lagrangian density has the
shape shown in Fig. 3.1 and the ground (vacuum) state obviously corresponds to a
non-zero value of the Higgs field. The minimum of the Higgs potential is −µ4/(4λ2)
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Figure 3.1. The shape of the Higgs potential as a function of |Ψ| for µ2 = 1/2 and
λ = 0.7.

and is obtained for |Ψ| =
√

µ2/2λ. Clearly, there is some freedom in choosing the
vacuum state (i.e., the vacuum is degenerate), we define the vacuum to be

Ψ0 ≡
(

0
v√
2

)

,

where v ≡
√

µ2/λ. With the total GWS Lagrangian density LGWS = L0 + LHiggs
and this non-zero vev of the Higgs fields, the Lagrangian density will include mass
terms for the weak gauge bosons, resulting in the masses

mW =
gv

2
, mZ =

gv

2 cos(θW )
, and mA = mγ = 0.

The charged lepton masses

The introduction of the Higgs field and the Higgs Lagrangian density solved the
problem of the masses of the weak gauge bosons. However, we still have to incorpo-
rate the masses of the charged leptons into our theory. This is done by introducing
Yukawa couplings between the fermion fields and the Higgs field of the form

LYuk,` ≡ −G`(L̄`ΨR` + R̄`Ψ
†L`),

where G` is a dimensionless coupling constant (known as the Yukawa coupling, the
constant is different for different lepton generations `), into the Lagrangian density.
Due to the non-zero vev of the Higgs field, this will introduce the terms

−G`
v√
2
(¯̀L`R + ¯̀

R`L)



3.1. Unification of physics 15

Fermions

Name SU(2) doublets SU(2) singlets
Leptons (νeL eL)

T , (νµL µL)
T , (ντL τL)

T eR, µR, τR
Quarks (uL d′L)

T , (cL s′L)
T , (tL b′L)

T uR, dR, cR, sR, tR, bR
Bosons

Name SU(3)⊗ SU(2) representation Fields
U(1) boson 1⊗ 1 Bµ

SU(2) bosons 1⊗ 3 W iµ, (i = 1, 2, 3)
Gluons 8⊗ 1 Giµ, (i = 1, 2, . . . , 8)
Higgs 1⊗ 2 (ψ+ ψ0)T

Table 3.1. The field content of the SM. The left-handed quark fields transform as
the 3 representation of the SU(3) gauge group, while the right-handed quark fields
transform as the 3∗ representation. The primed left-handed quark fields are linear
combinations of the left-handed quark fields that diagonalize the quark mass terms,
they are related by the CKM matrix [51,52]. The U(1) and SU(2) bosons are related
to the photon and the weak gauge bosons as described in Sec. 3.1.1.

into the Lagrangian density of the theory. This term is equivalent to a mass term
for the charged lepton ` with the mass given by

m` =
G`v√

2
.

3.1.2 The standard model

The SM of particle physics is builds upon the GWS electroweak model, but also
includes the strong interaction [48–50]. It has been a very successful theory and
even if it seems that the SM may not tell the whole story, it is still a very useful
approximation in many cases. The gauge theory which is the foundation of the SM
is built upon the gauge group SU(3)⊗SU(2)⊗U(1), where the group SU(2)⊗U(1)
is the gauge group from the GWS electroweak model and the SU(3) group is the
gauge group describing the strong interaction among quarks. The SU(2) ⊗ U(1)
symmetry is broken in the same way as in the GWS electroweak model, and so,
there is a Higgs doublet also in the SM. The SM includes three generations of
fermions, where each generation consists of two quarks (one with electric charge
+2/3 and one with electric charge −1/3) and two leptons (a charged lepton and a
neutrino). The total field content of the SM is presented in Tab. 3.1.

One important thing to note about the SM is that it does not include any right-
handed neutrino fields, and thus, cannot incorporate neutrino masses in the same
manner as it incorporates masses for the charged leptons. In a naive approach, one
might think that neutrino masses could arise from higher order loop corrections in
the quantized theory. However, this would break the accidental B − L symmetry
of the SM, and thus, cannot happen. There are many suggestions for extensions of
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the SM where the neutrinos do have mass, all of those models include the addition
of a right-handed neutrino field in one way or another.

3.2 Massive neutrinos and neutrino mixing

3.2.1 Dirac masses

There are a number of ways of extending the SM in such a way that the neutrinos
become massive. The most obvious of these ways is the simple introduction of
a right-handed neutrino field ν`R which transforms as a singlet under the SU(2)
gauge group. Neutrino masses can then be introduced into the theory in a manner
similar to charged lepton masses by the introduction of the Yukawa coupling

LYuk,ν` ≡ −Gν` [ν
c
`R(Ψ

c)†L` + L̄`Ψ
cνc`R],

where c denotes the charge conjugate and Gν` is the Yukawa coupling constant,
into the Lagrangian density. With this Yukawa coupling, the mass of the neutrino
becomes

mν` =
Gν`v√

2
.

The drawback of this approach is that, since the charged leptons are far heavier
than the neutrinos, Gν` ¿ G`, i.e., for this approach to work, the Yukawa cou-
plings of the neutrinos must be much weaker than the corresponding couplings for
the charged leptons. This difference in the Yukawa coupling constants is quite un-
aesthetic. For instance, if our theory was the effective theory of some more general
theory, then we would expect the Yukawa couplings to be of the same order of
magnitude unless there is some fine-tuning involved.

3.2.2 Majorana masses

Since neutrinos are neutral in terms of all quantum numbers that change under
charge conjugation, the neutrinos may be Majorana particles [53], i.e., the charge
conjugate particle is equal to the anti-particle up to a phase factor. This allows for
the introduction of a so-called Majorana mass term into the Lagrangian density,
this term is of the form

LM,ν`L ≡ −
1

2
mν`(ν

c
`Lν`L + ν̄`Lν

c
`L),

wheremν` is the Majorana mass of the neutrino ν`. The introduction of a Majorana
mass seems to be a nice way of evading the introduction of an extra right-handed
neutrino field, the only fields needed are the ones corresponding to the neutrinos
and anti-neutrinos.

Unfortunately, a Majorana mass term of this type cannot be invariant under
the SU(2) gauge group of the electroweak interaction. This clearly causes us some
trouble.
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3.2.3 Dirac–Majorana mass and the see-saw mechanism

There is a third way of introducing neutrino masses. This involves using both
Dirac and Majorana mass terms and gives rise to what is known as the see-saw
mechanism [22,54–58], which could account for the smallness of the neutrino masses.

Instead of introducing the Majorana mass term for the left-handed neutrinos,
we introduce right-handed neutrinos (as in the case of a Dirac mass term) and add
the Majorana mass term1

LM,νR ≡ −
1

2
M(ν̄Rν

c
R + νcRνR),

where M is the Majorana mass of the right-handed neutrino, to the Lagrangian
density. It is important to note that while the Majorana mass term for the left-
handed neutrino is not invariant under the SU(2) gauge group, the above term is.
This is due to the fact that the right-handed neutrinos are SU(2) singlets. Thus, the
introduction of this term is not as controversial as the introduction of a Majorana
mass term for the left-handed neutrino. The introduction of the Majorana mass
term for the right-handed neutrino does not prevent us from also introducing Dirac
mass terms. Thus, masses of this type are known as Dirac–Majorana masses.

Introducing the Majorana mass term along with a Dirac mass term as described
above, we will have a total mass term of the type

LDM = −1

2

(
νcL ν̄R

)
(

0 mD

mD M

)

︸ ︷︷ ︸

M

(
νL
νcR

)

+ h.c.,

where mD is the Dirac mass. If M À mD, then the Majorana fields νL and νR
are also the approximate mass eigenfields of this mass term. The masses of the two
fields will be given by the roots to the eigenvalue equation of the matrixM, i.e.,

m′
i(m

′
i −M)−m2

D = 0.

The solutions to this equation are

m′
i =

M

2
±
√

M2

4
+m2

D =
M

2

(

1±
√

1 +
4m2

D

M2

)

' M

2

[

1±
(

1 +
2m2

D

M2

)]

,

which gives

m′
R 'M and m′

L ' −
m2

D

M
.

Since physical masses are always positive, we take mi = ηim
′
i, where ηi = ±1, for

the physical mass,2 and thus, we obtain the masses

mR 'M and mL '
m2

D

M
.

1For simplicity, we will only consider the Dirac–Majorana mass in the case of one lepton
generation.

2The factor of ±1 will place conditions on the CP phases of the Majorana fields.
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Assuming that mD is of the same order of magnitude as the charged lepton masses
(i.e., requiring the Yukawa coupling constant of the neutrinos to be of the same or-
der as the Yukawa coupling constant of the charged leptons) and that the Majorana
mass M is of a magnitude corresponding to some higher physical scale (e.g., the
GUT or Planck scales), then the left-handed neutrino masses will be naturally sup-
pressed from the mass scale of the charged leptons by a factor of mD/M . However,
as the matrixM is not exactly diagonalized by the fields νL and νcR, this will imply
a small mixing between the left- and right-handed fields analogous to the mixing
of neutrino flavor eigenstates (see below). Since the right-handed neutrinos do not
participate in the weak interaction, this would then correspond to mixing with a
sterile neutrino. It should also be noted that the see-saw mechanism is not only uti-
lized to account for the small neutrino masses, it may also be the mechanism behind
the observed asymmetry between matter and anti-matter in the Universe through
leptogenesis requiring the existence of the heavy right-handed neutrinos [59].

3.2.4 Neutrino mixing

In general, with more than one neutrino flavor, there is essentially no reason why
the neutrino flavor eigenfields (the fields participating in the weak interaction along
with the corresponding charged lepton) should also be the fields which diagonalize
the mass terms. In general, a Dirac mass term including n neutrino flavors can be
written as

LD = −ν̄RMDνL + h.c.,

where νA = (νeA νµA . . .)T (A = L,R) andMD is a complex n× n matrix. As all
complex matrices, the matrixMD can be diagonalized by a bi-unitary transforma-
tion, i.e.,

MD = V †MDU

is a diagonal matrix for some unitary n× n matrices V and U . It follows that

MD = VMDU
†

and that the Dirac mass term can be written as

LD = −ν̄mRMDνmL + h.c.,

where we have introduced the mass eigenfields

νmL ≡ U †νL and νmR ≡ V †νR.

Since the matrix MD is diagonal, the fields in νmA (A = L,R) correspond to
neutrinos with definite mass. The matrix U , relating the left-handed mass and
flavor eigenfields is known as the leptonic mixing matrix3.

3The leptonic mixing matrix is also known as the Maki–Nakagawa–Sakata (MNS) matrix [19].
It is the leptonic equivalent of the Cabibbo–Kobayashi–Maskawa (CKM) matrix [51, 52] in the
quark sector.
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In the case of a Majorana mass term for n neutrino flavors, the addition to the
Lagrangian density is

LM = −1

2
νcLMMνL + h.c.,

where νL = (νeL νµL . . .)T and MM is the Majorana mass matrix. In this case,
the Majorana properties of the neutrino fields can be used to show that (see, e.g.,
Ref. [60])

νcLMMνL = νcLMT
MνL,

i.e., the Majorana mass matrix is symmetric. It follows that the Majorana mass
matrix can be diagonalized as

MM = UTMMU,

where U is some unitary n×n matrix. The Majorana mass term can now be written
on the form

LM = −1

2
νcmLMMνmL + h.c.,

where νmL ≡ U †νL is the left-handed component of a massive Majorana field.
Again, U is called the leptonic mixing matrix.

Number of mixing parameters

In general, any unitary n× n matrix can be parameterized by n2 real parameters,
n(n− 1)/2 mixing angles and n(n+ 1)/2 complex phases. However, in physics, we
are only interested in what is observable and for the leptonic mixing matrix U , the
total Lagrangian density does not change if we absorb some of the phases of U into
the fields [61, 62]. For any Dirac field ψ, we can absorb a constant phase exp(iφ)
by instead of ψ using the redefined field

ψ′ ≡ ψ exp(iφ),

By using such redefinitions of the charged lepton fields, we may absorb n complex
phases from the leptonic mixing matrix. This leaves us with n(n−1) mixing param-
eters (where n(n − 1)/2 are complex phases). In the case of Majorana neutrinos,
this is all we can do, since Majorana fields cannot absorb complex phases in the
same way as Dirac fields. On the other hand, in the case of Dirac neutrinos, also
the neutrino fields can absorb complex phases. At first sight, one may think that
it would be possible to absorb another n phases into the neutrino fields. However,
one of these phases just corresponds to an overall phase which may just as well
be absorbed into the charged lepton fields. Therefore, we can only absorb another
n− 1 phases into the neutrino fields, leaving us with a total of (n− 1)2 parameters
(of which (n − 1)(n − 2)/2 are complex phases) for the leptonic mixing matrix in
the case of Dirac neutrinos. The number of mixing parameters for different n are
given in Tab. 3.2. Clearly, in the one-flavor case, there are no mixing parameters
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Neutrino flavors Mixing angles Complex phases Total
1 0 0 [0] 0 [0]
2 1 0 [1] 1 [2]
3 3 1 [3] 4 [6]
4 6 3 [6] 9 [12]
...

...
...

...

n n(n−1)
2

(n−1)(n−2)
2 [n(n−1)

2 ] (n− 1)2 [n(n− 1)]

Table 3.2. The number of mixing parameters as a function of the number of
neutrino flavors. The numbers within the brackets are for the case of Majorana
neutrinos. It should be noted that the extra Majorana phases do not contribute to
the neutrino oscillation probabilities, see Ch. 4.

(as expected). However, one very interesting feature of the number of mixing pa-
rameters is that there are no complex phases in the case of two-flavor neutrino
mixing. Thus, for any two-flavor mixing of neutrinos, the mixing matrix can be
made real (even if this is true only for the case of Dirac neutrinos, only the Dirac
phases will influence the neutrino oscillation probabilities, see Ch. 4). It should also
be noted that the total number of mixing parameters grows very quickly (∼ n2) as
the number of neutrino flavors n increases, making the cases of many-flavor mixing
harder to study in detail.



Chapter 4

Neutrino oscillations

As was discussed in Ch. 2, there are now many experiments [27–39] which indicate
that neutrinos oscillate among different neutrino flavors. In this chapter, the back-
ground material to neutrino oscillations in both vacuum and matter, with which
this thesis is concerned (Papers 1–3), is presented. Historically, there have also
been other attempts (see, e.g., Refs. [63–84]) to describe neutrino flavor transitions
with mechanisms other than neutrino oscillations. Even if these scenarios now seem
experimentally disfavored, they may still contribute with small corrections to the
neutrino oscillation formulas. This is also discussed in this chapter and is what the
final Paper (Paper 4) of this thesis is concerned with.

4.1 Neutrinos oscillations in vacuum

For ultra-relativistic neutrinos, a neutrino flavor eigenstate (the state produced in
weak interactions) is given by [85]

|να〉 =
∑

i

U∗
αi |νi〉 ,

where U is the leptonic mixing matrix and |νi〉 is a neutrino mass eigenstate (i.e., the
state corresponding to one quanta of the quantized mass eigenfield νi, see Sec. 3.2.4).
In the above equation and in what follows, Latin indices (i.e., i, j, k, . . . ) will denote
indices belonging to the mass eigenstate basis (with the possible values 1, 2, . . . , n)
and Greek indices (i.e., α, β, γ, . . . ) will denote indices belonging to the flavor
eigenstate basis (with the possible values e, µ, τ , . . . ). The corresponding relation
for anti-neutrinos is

|ν̄α〉 =
∑

i

Uαi |ν̄i〉 ,

21
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i.e., the only difference is in the complex conjugation of the mixing matrix elements.
The time-evolution of the neutrino flavor eigenstate is given by

|να(t)〉 = exp(−iHt) |να〉 ,

where H is the Hamiltonian operator. We assume that the flavor eigenstate is
produced with a definite momentum, i.e., that all the mass eigenstates in the su-
perposition have the same momentum p. The mass eigenstates are also eigenstates
of the Hamiltonian operator with energy eigenvalues

Ei =
√

p2 +m2
i .

For ultra-relativistic neutrinos, this energy can be Taylor expanded to

Ei = p

√

1 +
m2

i

p2
' p+ m2

i

2p
.

It follows that the neutrino flavor eigenstate at time t is given by

|να(t)〉 =
∑

i

U∗
αie

−i

(

p+
m2
i

2p

)

t
|νi〉 .

The probability amplitude for detecting the neutrino in the flavor eigenstate |νβ〉
at time t is then given by

Aαβ(t) = 〈νβ |να(t)〉 =
∑

i

UβiU
∗
αie

−iEit

and the corresponding probability is therefore

Pαβ(t) = |Aαβ(t)|2.

We note that exp(−ipt) is a common phase factor of all terms in the probability
amplitude, and thus, will not influence the final probability. Because the neutrinos
we are discussing here are ultra-relativistic, it is common practice to put t = L and
use the length L travelled by the neutrino as a parameter instead of the time t.

There are a lot of ways of writing the neutrino oscillation probability Pαβ(L).
By just squaring the modulus of the probability amplitude, we obtain the expression

Pαβ(L) =
∑

i

∑

j

J ij
αβ exp

(

−i
∆m2

ij

2p
L

)

, (4.1a)

where ∆m2
ij ≡ m2

i −m2
j is the mass squared difference between the mass eigenstates

|νi〉 and |νj〉 and we have introduced the quantity

J ij
αβ ≡ UβiU

∗
αiU

∗
βjUαj .
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For simplicity, it is also common to make the approximation p ' E in the denomi-
nator of the argument of the exponential of Eq. (4.1a) and write

∆ij ≡
∆m2

ij

4E
L.

In this case Eq. (4.1a) can be written as

Pαβ =
∑

i

∑

j

J ij
αβ exp (−i2∆ij) . (4.1b)

By making use of the definitions of the sine and cosine functions in terms of the
real and imaginary parts of exp(ix), we find the form

Pαβ =
∑

i

J ii
αβ + 2

∑

i<j

Re
(

J ij
αβ

)

cos (2∆ij)− 2
∑

i<j

Im
(

J ij
αβ

)

sin (2∆ij) (4.1c)

for the neutrino oscillation probability. Using simple trigonometry, the neutrino
oscillation probability may also be written as

Pαβ =
∑

i

J ii
αβ + 2

∑

i<j

∣
∣
∣J

ij
αβ

∣
∣
∣ cos

(

2∆ij + arg J ij
αβ

)

. (4.1d)

If we instead study the anti-neutrino oscillation probabilities, we have to make
the substitution Uαi → U∗

αi according to what was stated in the beginning of
this chapter. Thus, the anti-neutrino oscillation probabilities are given by the
same expressions as the neutrino survival probabilities with the substitution J ij

αβ →
J ij

ᾱβ̄
= J ij∗

αβ . From Eqs. (4.1), we notice that

Re
(

J ij

ᾱβ̄

)

= Re
(

J ij
αβ

)

and Im
(

J ij

ᾱβ̄

)

= −Im
(

J ij
αβ

)

as well as ∣
∣
∣J

ij

ᾱβ̄

∣
∣
∣ =

∣
∣
∣J

ij
αβ

∣
∣
∣ and arg J ij

ᾱβ̄
= − arg J ij

αβ

implies that the neutrino and anti-neutrino oscillation probabilities differ (i.e., there
is CP violation in neutrino oscillations) only if there are complex entries in the
leptonic mixing matrix. It should also be noted that the survival probabilities of
neutrinos and the corresponding anti-neutrinos are always equal Pαα = Pᾱᾱ, since
J ij
αα is real.
In the same fashion, we notice that J ij

αβ = J ij∗
βα , and thus, the time-reversed

probability Pβα is given by
Pβα = Pᾱβ̄ (4.2)

and T violation only occurs if there are complex entries in the leptonic mixing
matrix. It should be noted that Eq. (4.2) is only valid for neutrino oscillations in
vacuum. When matter effects come into play, there are other mechanisms than the
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complex conjugation of the elements of the leptonic mixing matrix that can give rise
to CP or T violation. The need for a complex entry in the leptonic mixing matrix
for CP or T violation to occur implies that, since there are no complex phases in
a scenario with only two neutrino flavors, there must be (at least) three neutrino
flavors for these effects to occur. In fact, if we have only two neutrino flavors, say
νe and νx, then the unitarity relations

Pee + Pex = 1 and Pee + Pxe = 1

automatically implies that Pex = Pxe. This relation is clearly true even for the case
of neutrino oscillations in matter as long as no neutrinos are lost1. For a recent
review on CP and T violation in neutrino oscillations, see Ref. [86].

Majorana phases and neutrino oscillations

As was discussed in Sec. 3.2.4, there may be additional complex phases in the
leptonic mixing matrix if neutrinos are Majorana particles. However, as we will now
show, these phases do not influence the neutrino oscillation probabilities [61, 62].

The extra Majorana phases are added into the leptonic mixing matrix by the
disability of absorbing complex phases into the Majorana neutrino fields. It follows
that the elements of the leptonic mixing matrix in the case of Majorana neutrinos
can be written as

Uαi = U ′
αie

iϕi ,

where U ′ is a leptonic mixing matrix in the case of Dirac neutrinos and ϕi is
independent of α. It then immediately follows that

J ij
αβ = UβiU

∗
αiU

∗
βjUαj = U ′

βiU
′∗
αiU

′∗
βjU

′
αj = J ′ijαβ ,

which is independent of the Majorana phases. Thus, the neutrino oscillation prob-
abilities do not depend on the Majorana phases. This is also true in the case of
neutrino oscillations in matter (see, e.g., Ref. [87]).

4.1.1 The two-flavor scenario

In the simplest case of neutrino oscillations imaginable, we have only two neutrino
flavors. In this case, the leptonic mixing matrix will be real and unitary, i.e., it
will fulfill the relation UTU = 12, where 12 is the 2 × 2 unit matrix. This is the
relation defining the group of orthogonal 2×2 matrices (rotations in R2), and thus,
the leptonic mixing matrix can be parameterized as

U =

(
c s
−s c

)

,

where c ≡ cos(θ), s ≡ sin(θ), and θ is a real parameter known as the leptonic mixing
angle.

1A loss of neutrinos may be due to some decay-like damping signature (see Paper 4).
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Figure 4.1. The neutrino oscillation probability Pex as a function of L/Losc. The
leptonic mixing angle has been put to θ = π/8, i.e., sin2(2θ) = 0.5.

If we name the two neutrino flavors involved in the oscillations νe and νx, then
Eqs. (4.1) will now have the form

Pex = Pxe = sin2(2θ) sin2(∆) (4.3a)

and
Pee = Pxx = 1− sin2(2θ) sin2(∆), (4.3b)

where ∆ ≡ ∆21 is the oscillation phase and sin2(2θ) is the oscillation amplitude.
The oscillation phase ∆ can be rewritten as

∆ = π
L

Losc
, where Losc ≡

4πE

∆m2
21

is the distance over which a full period of oscillation takes place (known as the
oscillation length). The neutrino oscillation probability Pex is illustrated in Fig. 4.1.

It should be noted that while the two-flavor case serves as a very simple example
of neutrino oscillations and, as we will show in Sec. 4.1.2, can be applicable in some
special cases2, the existence of three neutrino flavors often makes it necessary to
use a full three-flavor scenario to accurately describe neutrino oscillations [88]. The
main advantages of using a two-flavor scenario is the large reduction of the number
of fundamental neutrino oscillation parameters (there are only two in the two-flavor
case, the leptonic mixing angle θ and the mass squared difference ∆m2

21).
2Historically, two-flavor cases have been and are still beeing applied by many experimental

collaborations.



26 Chapter 4. Neutrino oscillations

Parameter Best-fit 3σ confidence
∆m2

21 [10−5 eV2] 8.1 7.2-9.1
|∆m2

31| [10−3 eV2] 2.2 1.4-3.3
θ12 [◦] 33.2 28.6-38.1
θ23 [◦] 45.0 35.7-53.1
θ13 [◦] 0.0 ≤ 12.5

Table 4.1. The best-fit values along with the 3σ confidence intervals for the fun-
damental three-flavor neutrino oscillation parameters. There are no bounds for the
complex phase δ. The data have been taken from Ref. [90].

4.1.2 The three-flavor scenario

In the case of neutrino oscillations among three different neutrino flavors, the lep-
tonic mixing matrix U is parameterized by three mixing angles and one complex
phase. The standard parameterization of the leptonic mixing matrix is [89]

U =





c13c12 c13s12 s13e
−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13



 , (4.4)

where cij ≡ cos(θij), sij ≡ sin(θij), θij are leptonic mixing angles, and δ is the
complex phase. In addition to the four parameters of the leptonic mixing matrix,
there are two independent mass squared differences ∆m2

21 and ∆m2
31 (from the

definition of the mass squared differences follows that ∆m2
32 = ∆m2

31 − ∆m2
21),

this gives a total of six fundamental neutrino oscillation parameters in the case of
three-flavor neutrino oscillations. Most of the fundamental parameters are more or
less accurately determined by global fits to the results of the neutrino oscillation
experiments (see, e.g., Ref. [90] for which the results are presented in Tab. 4.1).

While three-flavor neutrino oscillation formulas cannot be written on a form
as simple as the corresponding two-flavor formulas, there are two special cases for
which the three-flavor formulas essentially have the same structure as the two-flavor
formulas, i.e., a neutrino survival probability is of the form

Pαα = 1−A sin2(∆)

and a neutrino transition probability is of the form

Pαβ = A sin2(∆).

These cases are:

1. Uαi = 0 : If any element of the leptonic mixing matrix, say Ue3, is equal to
zero, then J ij

αβ = 0 if α or β is equal to e and i or j is equal to 3. In this case,
we have

Pee = 1− 4J12ee sin2(∆21) = 1− 4|Ue1|2|Ue2|2 sin2(∆21)
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and
Peα = −4J12eα sin2(∆12) = −4U∗

e1Ue2Uα1U
∗
α2 sin

2(∆12),

where α 6= e. The generalization of this to any of the leptonic mixing matrix
elements being zero is straightforward, the reason to have Ue3 = 0 for the
example is that this element is known to be small [cf., Eq. (4.4) and Tab. 4.1].
It should also be noted that, unless there is another zero in the same column
or row as the first one, there will be neutrino oscillation probabilities which are
not of the two-flavor form, i.e., Pαβ where α, β 6= e in our example. However,
if two entries of the same row or column in the leptonic mixing matrix is zero,
then it follows that there is only mixing between two of the three neutrino
flavors and all neutrino oscillation probabilities are of the two-flavor form.

2. ∆m2

ij = 0 : If any of the mass squared differences are equal to zero, then the
other two mass squared differences will be equal up to a sign and it trivially
follows that all neutrino oscillation probabilities are of the two-flavor form.

In the above cases, the neutrino oscillation probabilities are of exact two-flavor
form. However, there are other cases for which the neutrino oscillation probabilities
are simplified as compared to the full three-flavor formulas. For example, if ∆31 '
∆32 À 1, then experiments will not be able to resolve the fast oscillations involving
the third mass eigenstate and the terms sin2(∆3i) will average out to 1/2. In this
case, the νe survival probability will be given by

Pee = c413P
2f
ee + s413,

where P 2f
ee is the νe survival probability in a two-flavor scenario with θ = θ12

and ∆ = ∆21.
3 In addition, it is also possible to make Taylor expansions of the

neutrino oscillation probabilities in the small parameters α ≡ ∆m2
21/∆m

2
31 (the

ratio between the small and large mass squared differences) and s13 to make the
expressions somewhat less cumbersome (see, e.g., Ref. [91]).

4.2 Neutrino oscillations in matter

As was first discussed by Wolfenstein [24] and later by Mikheyev and Smirnov
[25, 26], the presence of matter may strongly affect the neutrino oscillation proba-
bilities. In general, for low-energy neutrinos (giving center-of-mass energies lower
than the masses of the weak gauge bosons) the cross-sections for neutrino absorp-
tion in matter are very small, since they are proportional to the square of the
Fermi coupling constant GF . However, the neutrino oscillation probabilities may
be affected by coherent forward scattering, where the incoming and outgoing states
only differ by a phase factor (the momenta will be the same). In this case, there

3The exact same formula will arise in the case of a decoherence-like effect where there is
complete decoherence between the third mass eigenstate and the other two mass eigenstates, see
Paper 4 for details.
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e νe

νe e

W±

e e

να να

Z0

Figure 4.2. Tree level Feynman diagrams for CC (left) and NC (right) scattering
of neutrinos on electrons. The CC scattering is only allowed for electron neutrinos
νe, while the NC scattering can occur for any type of neutrino flavor.

will be interference between the leading order contribution (the free propagation)
and the first order contribution in GF , and thus, the effects will be of order GF

instead of G2
F . It should be noted that GF multiplied with the number density of

matter4 is still a very low energy scale. However, the scale set by the mass squared
differences and the neutrino energy [∼ ∆m2

ij/(2E)] is also a very low energy scale
and if the scale given by GF and the matter density is of the same order or larger,
then neutrino oscillations will be affected in a significant way.

4.2.1 Coherent forward scattering

As was stated above, coherent forward scattering on electrons is the main mecha-
nism behind matter effects on neutrino oscillations. Since neutrinos are weakly in-
teracting, they may interact either through charged-current (CC) or neutral-current
(NC) interactions. For the coherent forward scattering on electrons, only the elec-
tron neutrinos can have a CC contribution. This is simply due to the fact that the
incoming and outgoing particles of an interaction must be the same. The Feynman
diagrams for coherent forward scattering by CC and NC interactions are given in
Fig. 4.2.

At low center-of-mass energies, the effective contribution to the Lagrangian
density of the CC scattering of neutrinos on electrons is given by

LCC = −GF√
2
[ēγµ(1− γ5)νe][ν̄eγµ(1− γ5)e],

which, by means of a Fierz transformation, can be rewritten as

LCC = −GF√
2
[ēγµ(1− γ5)e][ν̄eγµ(1− γ5)νe].

Assuming coherent forward scattering and that the electrons in the medium in
which the neutrinos propagate are unpolarized with zero average momenta, this in-
teraction term results in an effective contribution HCC to the Hamiltonian operator

4More precisely, the number density of electrons, see below.
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given by
HCC |να〉 = δeαVCC |να〉 ,

where VCC ≡
√
2GFne and ne is the electron number density.

When treating the NC scattering in a similar fashion, we also obtain an effective
contribution to the Hamiltonian operator, this contribution is given by

HNC |να〉 = VNC |να〉 ,

where VNC ≡ −GFnn/
√
2 and nn is the neutron number density5. Apparently, the

NC scattering contribution is the same for all neutrino flavors. However, if taking
loop corrections into account, then the contributions among different flavors will
be somewhat different due to the different masses of the charged leptons.

4.2.2 Neutrino oscillation probabilities in matter

An interesting feature of the coherent forward scattering contribution to the Hamil-
tonian operator is that, while the Hamiltonian operator in vacuum is diagonal in the
basis of mass eigenstates {|νi〉}, the effective contribution from the interaction with
matter is diagonal in the basis of flavor eigenstates {|να〉}. The total Hamiltonian
H = Hvac+HCC+HNC, where Hvac is the vacuum Hamiltonian, can be written in
matrix form in either the basis of flavor eigenstates as (Hf )αβ ≡ 〈να |H| νβ〉 or in
the basis of mass eigenstates as (Hm)ij ≡ 〈νi |H| νj〉. The two bases will be related
by the leptonic mixing matrix as

Hf = UHmU
† and Hm = U †HfU,

respectively. The vacuum Hamiltonian in the basis of mass eigenstates is given by

Hvac,m ' p1n +
1

2p








m2
1 0 0 · · ·
0 m2

2 0 · · ·
0 0 m2

3 · · ·
...

...
...

. . .







,

where 1n is the n × n unit matrix, while the effective part coming from coherent
forward scattering in matter has the form

HCC,f +HNC,f = VNC1n + VCC








1 0 0 · · ·
0 0 0 · · ·
0 0 0 · · ·
...

...
...

. . .








in the basis of flavor eigenstates. The fact that the NC contribution is proportional
to the unit matrix means that it will only contribute with a common phase factor

5Neutrinos do not only NC scatter on electrons, but also on protons and neutrons. In an
electrically neutral medium, the electron and proton contributions to VNC will cancel, leaving
only the neutron contribution.
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to all neutrino states (in analogy with the term p1n of the vacuum Hamiltonian),
and thus, the NC contribution will not affect the final neutrino oscillation prob-
abilities. It is therefore common practice to leave out both the p1n term of the
vacuum Hamiltonian and the VNC1n term of the effective matter addition to the
Hamiltonian6.

We now introduce yet another basis for the neutrino states, which is useful
when studying neutrino oscillations in matter, namely the matter eigenstate basis
{|ν̃i〉}. This basis is defined by demanding that it diagonalizes the full Hamiltonian
operator in matter, i.e.,

(H̃m)ij = 〈ν̃i |H| ν̃j〉 = 0 if i 6= j.

As in the case of the mass eigenstate basis, the neutrino flavor states will be related
to the matter eigenstates by some unitary transformation7 Ũ as

|να〉 =
∑

i

Ũ∗
αi |ν̃i〉

and the Hamiltonian operator in the different bases will be related by the same
unitary transformation as

Hf = ŨH̃mŨ
† and H̃m = Ũ †Hf Ũ .

The unitary matrix Ũ is known as the (effective) leptonic mixing matrix in matter
and can be parameterized in the same manner as the leptonic mixing matrix, the
effective mixing parameters are then denoted by tildes (θ̃ij and δ̃). In addition,
the differences between the eigenvalues of the Hamiltonian in matter may not be
the same as the corresponding differences in vacuum. Thus, we define the effective
mass squared differences in matter to be

∆m̃2
ij ≡ 2E∆Eij ,

where E is the total neutrino energy and ∆Eij is the difference in energy of the ith
and jth neutrino matter eigenstates. With these definitions, the matter eigenstates
will play exactly the same role in neutrino oscillations in matter as the mass eigen-
states do in the study of neutrino oscillations in vacuum. If neutrinos propagate

6Sometimes it is also useful to subtract [m2
1/(2p)]1n or some other quantity proportional to

the unit matrix from the total Hamiltonian. Due to the same reasons as described, this will give
an overall phase contribution which does not affect the neutrino oscillation probabilities.

7Clearly, also the mass eigenstates will be related to the matter eigenstates by some unitary
transformation. However, this transformation is not as interesting, since it is flavor eigenstates
that are measured in experiments.
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through matter of constant density, then the neutrino oscillation probabilities will
be given by

Pαβ =
∑

i

∑

j

J̃ ij
αβ exp

(

−i
∆m̃2

ij

2p
L

)

,

where
J̃ ij
αβ ≡ ŨβiŨ

∗
αiŨ

∗
βjŨαj .

Neutrino oscillations in matter with varying density are more difficult to treat, since
the matter eigenstates and the effective leptonic mixing matrix in matter will vary
along the path of propagation. In that case, there will be transitions among the
various neutrino matter eigenstates. In particular, if we study the time evolution of
the probability amplitude φi = 〈ν̃i|ν(t)〉 of a neutrino with the initial state |ν(0)〉,
then we obtain

i
dφi
dt

= i

(
d 〈ν̃i|
dt
|ν(t)〉+ 〈ν̃i|

d |ν(t)〉
dt

)

=

(

−iŨ∗
αi

dŨαj

dt
+ H̃ij

)

φj ,

or, in matrix notation,

i
dφ

dt
=

(

−iŨ † dŨ

dt
+ H̃

)

φ, (4.5)

where φ ≡ (φ1 φ2 . . .)T . In this equation, the term H̃ is diagonal by definition
and the first term is a matrix with off-diagonal entries leading to transitions among
different matter eigenstates.

Oscillations of anti-neutrinos in matter

When treating anti-neutrino oscillations in matter, the effective potential VCC will
change sign, since the matter still contains electrons and not positrons. Thus, the
diagonalization of the total Hamiltonian will be quite different from the diagonal-
ization of the total Hamiltonian in the neutrino case. In particular, the effective
anti-neutrino matter eigenstates are not related to the anti-neutrino flavor eigen-
states by the adjoint of the leptonic mixing matrix in matter. Instead, we will have
to diagonalize the anti-neutrino mixing matrix separately with a change of sign in
the effective potential VCC. From this follows that there may be CP violation in
the neutrino oscillation probabilities in matter without any complex phases in the
leptonic mixing matrix U .

Sterile neutrinos

While discussing neutrino oscillations in matter, we should also note how the neu-
trino oscillations are affected if there are sterile neutrinos8 involved. These sterile

8Neutrinos which do not participate in the weak interaction, and thus, only interact through
gravitation or by mixing with the active neutrino flavors. A sterile neutrino mixing with the
active flavors could be the mechanism behind the LSND anomaly [92] which will be tested by the
MiniBooNE experiment [93].
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neutrinos may be of some unknown origin or be the right-handed Majorana neutrino
fields from the see-saw mechanism.

The important thing to note is that, while the active flavors νe, νµ, and ντ also
coherently forward scatter via NC interactions, sterile neutrinos do not coherently
forward scatter at all. Thus, the sterile neutrinos do not obtain an effective NC
potential VNC as the active neutrinos do. The result of this is that the effective
addition to the Hamiltonian in matter will be given by

HCC,f +HNC,f = diag(VCC + VNC, VNC, . . . , VNC
︸ ︷︷ ︸

n entries

, 0, . . . , 0
︸ ︷︷ ︸

m entries

),

if there are n active and m sterile neutrino flavors. In the remainder of this thesis,
we will only be concerned with the oscillations of active neutrino flavors.

4.2.3 The two-flavor scenario

As for the two-flavor neutrino oscillations in vacuum, the two-flavor effective lep-
tonic mixing matrix in matter is an orthogonal matrix, which is parameterized by
one real parameter only, it is given by

Ũ =

(
c̃ s̃
−s̃ c̃

)

,

where c̃ ≡ cos(θ̃), s̃ ≡ sin(θ̃), and θ̃ is the leptonic mixing angle in matter. The
effective Hamiltonian operator is of the form

Hf =
1

2

[
∆m2

2E

(
− cos(2θ) sin(2θ)
sin(2θ) cos(2θ)

)

+ VCC

(
1 0
0 −1

)]

,

where we have subtracted tr (H)12/2 from the Hamiltonian given in Sec. 4.2.2,
which does not change the neutrino oscillation probabilities as stated in that section.

The explicit diagonalization of the effective Hamiltonian gives the relation

tan(2θ̃) =
sin(2θ)

cos(2θ)−Q,

where Q ≡ 2EVCC/∆m
2, or, if we make use of the trigonometric relation sin2(x) =

tan2(x)/[1 + tan2(x)],

sin2(2θ̃) =
sin2(2θ)

[cos(2θ)−Q]2 + sin2(2θ)
.

From the difference between the eigenvalues of the Hamiltonian, we also obtain the
effective mass squared difference

∆m̃2 = ∆m2
√

[cos(2θ)−Q]2 + sin2(2θ).

It is apparent that when VCC → 0, then Q → 0, θ̃ → θ, and ∆m̃2 → ∆m2, which
means that we regain the two-flavor vacuum parameters in this limit in accordance
with what should be expected.
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The two-flavor neutrino oscillation probabilities in matter of constant electron
number density is given by

Pex = Pxe = sin2(2θ̃) sin2(∆̃)

and

Pee = Pxx = 1− sin2(2θ̃) sin2(∆̃),

where ∆̃ = ∆m̃2L/(4E). One apparent feature of the above formulas is that when

Q = cos(2θ),

then sin2(2θ̃) = 1 and the neutrino oscillations have the largest possible amplitude
leading to the neutrino transition probabilities Pex and Pxe being equal to unity
for some values of the neutrino path length L, even if the leptonic mixing angle θ is
small. This resonance phenomenon is known as the Mikheyev–Smirnov–Wolfenstein
(MSW) resonance [24–26]. For the resonance condition, we notice that if we choose
θ such that cos(2θ) > 0 (this corresponds to the ordering of the mass eigenstates),
then the resonance condition can be fulfilled for neutrinos (VCC > 0) only if ∆m2 >
0 and for anti-neutrinos (VCC < 0) only if ∆m2 < 0.

It is of particular interest to note that for matter effects on neutrino oscillations
to exist in a two-flavor scenario, one of the two neutrino flavors involved must
be the electron neutrino νe. In a two-flavor neutrino oscillation framework with
νµ and ντ , there would be no matter effects, since none of these neutrino flavors
undergo coherent forward scattering via CC interactions and the contribution from
NC interactions are equal.

Two-flavor oscillations in matter of varying density

Clearly, in most applications where neutrinos propagate through matter (i.e., neu-
trinos propagating in the Earth and/or in the Sun), the matter will be of varying
density, it is therefore important to study neutrino propagation in such matter. For
the evolution of the matter eigenstate components φi, Eq. (4.5) becomes

i
dφ

dt
=

(

0 −i ˙̃θ
i
˙̃
θ ∆m̃2

2E

)

︸ ︷︷ ︸

H̃′

φ

with φ = (φ1 φ2)
T . Since the matrix H̃ ′ is time dependent, this differential equation

cannot be solved by simple exponentiation. Instead, one often relies on approximate

solutions to this differential equation. For instance, if γ = |∆m̃2/(4E
˙̃
θ)| À 1, then

one can essentially disregard the transitions between the different matter eigen-
states [94–101]. This type of scenario is called adiabatic and occurs when the
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matter density is only slowly varying, the parameter γ is known as the adiabatic-
ity parameter. In the case of adiabatic neutrino evolution, the matter eigenstate
components simply evolve as

φ1(t) = φ1(0) and φ2(t) = φ2(0) exp[−iΓ(t)],

where the phase factor Γ(t) is given by

Γ(t) =

∫ t

0

∆m̃2

2E
dt.

The initial values φi(0) are given by φi(0) = 〈ν̃i|ν(0)〉, and thus, if the initial
neutrino state is |νe〉, then

φ1(0) = c̃(0) and φ2(0) = s̃(0).

The neutrino transition probability Pex will then be given by

Pex = | 〈νx|νe(t)〉 |2 =

∣
∣
∣
∣
∣

∑

i

〈νx|ν̃i〉 〈ν̃i|νe(t)〉
∣
∣
∣
∣
∣

2

=

∣
∣
∣
∣

(
−s̃(t) c̃(t)

)
(
φ1(t)
φ2(t)

)∣
∣
∣
∣

2

=
1

2

{

1− cos[2θ̃(t)] cos[2θ̃(0)]− sin[2θ̃(t)] sin[2θ̃(0)] cos[Γ(t)]
}

.

In many applications (such as in the treatment of neutrinos from the Sun), the
production or detection region is larger than the oscillation length of the neutri-
nos. For these cases, the cos[Γ(t)] term will effectively average out to zero. This is
also the case if we have any damping-like signature (see Paper 4) between the two
matter eigenstates, e.g., some decoherence between the wave packets of different
matter eigenstates9 or some energy averaging in the detector. If we produce elec-
tron neutrinos in a region with an electron density which is well above the MSW
resonance and let them propagate adiabatically to vacuum, then cos[2θ̃(0)] ' −1
and cos[2θ̃(t)] = cos(2θ), which gives the neutrino transition probability

Pex =
1

2
[1 + cos(2θ)] = cos2(θ).

Thus, for small θ, the neutrino transition probability will be large, this is known as
the MSW effect [24–26]. It should be noted that the smaller the leptonic mixing
angle θ, the slower we are allowed to change the matter density and still have the
adiabaticity condition fulfilled (see, e.g., Ref. [87]). The adiabatic propagation of
neutrinos in matter can be used, e.g., in treating the oscillation of solar neutrinos,
this is discussed in Paper 1. Another approximate solution to problem of neutrino

9Since the matter eigenstates have the same momentum, but different masses, they will propa-
gate at different velocities. After some time, the wave packets of different matter eigenstates will
no longer overlap, and thus, cannot create the interference term containing Γ(t).
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oscillations in matter can be given when the matter in which the neutrinos prop-
agate is not very dense, i.e., when we are far below the MSW resonance, this was
studied in Refs. [102,103].

The two-flavor neutrino evolution in matter can also be solved exactly, although
in a more cumbersome way. In Paper 2 of this thesis, an exact series solution to this
problem is presented for matter of arbitrary density. Essentially, this is done by
rewriting the neutrino evolution as a second order non-linear differential equation
for the neutrino oscillation probability and expanding the matter density along the
neutrino path in orthogonal polynomials.

4.2.4 The three-flavor scenario

In the same way as it is harder to treat three-flavor neutrino oscillations in vacuum
than two-flavor neutrino oscillations in vacuum, it is harder to treat the matter
effects on neutrino oscillations in a three-flavor scenario.

In the case of three-flavor neutrino oscillations in matter, there is no simple
mapping between the fundamental neutrino oscillation parameters as there is in the
two-flavor case (see, e.g., Ref. [104]). However, we can still introduce the leptonic
mixing angles in matter θ̃ij and the effective mass squared differences in matter
∆m̃2

ij and have the same kind of parameterization of the leptonic mixing matrix in
matter as for the leptonic mixing matrix in vacuum.

One explicit feature of three-flavor neutrino oscillations in matter is that there
are now two possible resonances10. Depending on the sign of ∆m2

31, both resonances
may be for neutrinos (∆m2

31 > 0) or there may be one resonance for neutrinos and
one for anti-neutrinos (∆m2

31 < 0).11 The Hamiltonian for three-flavor neutrino
oscillations in matter is given by

Hf =





VCC 0 0
0 0 0
0 0 0



+
1

2E
U





0 0 0
0 ∆m2

21 0
0 0 ∆m2

31



U †

in the flavor eigenstate basis. If we assume that ∆m2
21 ¿ |∆m2

31|, which is in
accordance with experiments (cf., Tab. 4.1), then the resonances will occur for
VCC ∼ ∆m2

21/(2E) and |VCC| ∼ |∆m2
31|/(2E). Let us examine these two regions

more carefully. First of all, we assume that VCC ∼ ∆m2
21/(2E) ¿ |∆m2

31|. With
this approximation the third mass eigenstate |ν3〉 will still be an approximate eigen-
state to the Hamiltonian (i.e., |ν̃3〉 ' |ν3〉) and decouple from the other two states.
There will still be interference between the third mass eigenstate and the remaining
states leading to oscillations with oscillation phases of the order |∆m2

31L/(2E)|, but
for the moment, we concentrate on the matter eigenstates involved in the resonance.

10If also including the loop level diagrams for the NC coherent forward scattering, there will be
three possible resonances.

11The mass squared difference ∆m2
21 is known to be positive, see Tab. 4.1.
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If constraining the Hamiltonian to the subspace spanned by the remaining states,
then we obtain the effective two-flavor Hamiltonian operator

H2f
m =

1

2

[

c213VCC

(
cos(2θ12) sin(2θ12)
sin(2θ12) − cos(2θ12)

)

+
∆m2

21

2E

(
−1 0
0 1

)]

.

This two-flavor system can be solved in a way analogous to the pure two-flavor
case, we obtain the resonance condition

c213Q21 = cos(2θ12),

where we have defined Qij ≡ 2EVCC/∆m
2
ij . If the condition VCC ¿ |∆m2

31| is
fulfilled for the entire propagation of the neutrinos and the fast oscillations cor-
responding to the decoupled third mass eigenstate are averaged out, then we will
have the familiar form

Pee = c413P
2f
ee + s413,

where P 2f
ee is the two-flavor νe survival probability computed with θ = θ12 and the

effective potential V 2f
CC = c213VCC, for the νe survival probability.

In order to examine the second resonance, we note that if VCC ∼ ∆m2
31/(2E)À

∆m2
21/(2E), then we may put ∆m2

21/(2E) ' 0 in a first-order approximation. The
result is that the matrix

V =





c12 s12 0
−s12 c12 0
0 0 eiδ





commutes with Hvac,m. Thus, if we introduce the new basis

|ν′i〉 ≡
∑

j

V ∗
ij |νj〉 ,

then the Hamiltonian in this basis will be given by

H ′ = V HmV
† = V U †HCC,fUV

† +Hvac,m.

By explicitly writing out this Hamiltonian, we obtain

H ′ =





VCCc
2
13 0 VCCs13c13

0 0 0

VCCs13c13 0 VCCs
2
13 +

∆m2
31

2E



 .

This matrix has an obvious eigenstate with zero eigenvalue, namely the state |ν ′2〉,
which decouples from the other two states in the same manner as the third mass
eigenstate decoupled near the first resonance. What remains is an effective two-
flavor scenario involving the states |ν ′1〉 and |ν′3〉, which can be solved to yield the
resonance condition

Q31 = cos(2θ13).

In both of the above cases, the adiabaticity condition can be derived from the
effective two-flavor cases, respectively.
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As was discussed in Sec. 4.1.2, three-flavor neutrino oscillation probabilities
become effective two-flavor probabilities if either ∆m2

ij = 0 for some i and j or if
Uαi = 0 for some α and i. This is also true for the case of three-flavor neutrino
oscillations in matter, but using the effective matter parameters instead of the
vacuum ones. Such a case is discussed in Paper 3, where the case 2E|VCC| À |∆m2

31|
is studied. In this case, the electron neutrino state |νe〉 becomes equal to the third
matter eigenstate |ν3〉, which means that Ũe3 = 1 and Ũe1 = Ũe2 = 0.

It is worthwhile to note that, in three-flavor neutrino oscillations, also the prob-
abilities of νµ ↔ ντ oscillations are affected. This is a pure three-flavor effect which,
as was noted, does not appear in the two-flavor case, since neither νµ nor ντ can
coherent forward scatter via CC interactions on electrons. This three-flavor effect
can lead to large errors if trying to analyze νµ ↔ ντ oscillations in matter using a
two-flavor scenario, especially close to the high resonance at Q31 ∼ VCC [105].

A more detailed review on three-flavor effects in neutrino oscillations can be
found in Ref. [86].

4.3 Damping effects in neutrino oscillations

As was mentioned in the beginning of this chapter, there may be corrections to the
neutrino oscillation probabilities given in Eqs. (4.1) due to neutrino wave-packet
decoherence [63–67], neutrino decay [68–75], or some other effect not included in
the standard neutrino oscillation scenario [76–84,106]. Generally, effects like these
will affect the mass or matter eigenstates and will alter the neutrino oscillation
probabilities to the form

Pαβ =
∑

i

∑

j

DijJ
ij
αβ exp

(

−i
∆m2

ij

2p
L

)

,

where

Dij = Dji = exp

(

−αij

|∆m2
ij |ξLβ

Eγ

)

are factors damping the corresponding terms and αij , β, γ, and ξ are characteristic
for the type of effect.

As it turns out, there are two main types of damping factors, the first of these
being of the form Dii = 1 (i.e., ξ = 0 or αii = 0) for all i. This type of damping is
essentially an effective averaging of the oscillating terms in the neutrino oscillation
probabilities, but preserves the overall probability, i.e.,

∑

β

Pαβ =
∑

α

Pαβ = 1.

The best example of such a damping factor is the factor arising due to the deco-
herence of wave-packets of different mass eigenstates, and therefore, this type of
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damping is known as “decoherence-like”. The second type of damping is of the
form Dij = AiAj , where Ai depends only on the mass (or matter, depending on if
we are studying neutrino oscillations in vacuum or in matter) eigenstate |νi〉. This
type of damping factor appears in, for example, neutrino decay and is therefore
known as “decay-like”. For decay-like damping, the overall probability is generally
not conserved.

Damping effects on neutrino oscillations are further studied in Paper 4 of this
thesis.



Chapter 5

Neutrino oscillations in

experiments

Without the means of experimental confirmation, even the most beautiful phys-
ical theory would be quite useless. In this chapter, the most important types
of experiments which indicate neutrino oscillations are discussed. These include
the atmospheric [27, 107], solar [30–37], and long-baseline reactor [38, 39] neutrino
experiments. Clearly, neutrinos can be (and have been) detected in other types
of experiments such as supernova [108, 109] and short-baseline reactor [110, 111]
neutrino experiments. However, neutrino oscillations have not been detected in
experiments of this type and they are therefore not included in this chapter.

5.1 Atmospheric neutrinos

As was mentioned in Ch. 2, the first evidence for neutrino oscillations [27] was
published in 1998 by the Super-Kamiokande collaboration and concerned the os-
cillation of neutrinos produced by cosmic rays hitting the atmosphere. One of the
products of the collisions of cosmic rays and particles in the atmosphere is charged
pions π±, which subsequently decay according to

π± −→ µ± +
(−)

ν µ

where the µ± then decays as

µ± −→ e± +
(−)

ν e +
(−)

ν µ.

At low energies, the muons always decay before hitting the Earth and the ratio
Rνµ/νe between the number of muon and electron neutrinos is therefore equal to two
at those energies. At higher energies (muon energies of about 5 GeV and higher),

39
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Figure 5.1. The 1998 results from the Super-Kamiokande collaboration. The
hatched regions correspond to the expected results without neutrino oscillations and
the solid lines to the best-fit expectancy with neutrino oscillations. There is an
apparent deficit in the muon neutrino flux at longer path-lengths due to νµ ↔ ντ
oscillations. Figure from Ref. [27].

the muons reach the Earth before decaying and lose energy due to interaction with
the Earth matter, and thus, the ratio Rνµ/νe is increased at high energies.

What was done by the Super-Kamiokande collaboration in 1998 was to observe
e- and µ-like events for different zenith angles (corresponding to different path-
lengths for the neutrinos). The Super-Kamiokande results are given in Fig. 5.1.
As can be seen from this figure, there are less muon neutrinos detected for longer
path-lengths than what is expected from a scenario where there are no neutrino
oscillations. This effect can be well described by neutrino oscillations where the νµ
survival probability Pµµ is equal to unity for short path-lengths and then evolves
with increasing path-lengths according to the neutrino oscillation formulas.

In more recent times, the Super-Kamiokande collaboration has also published
an analysis [107] where neutrino oscillations are compared to neutrino decay and
neutrino quantum decoherence as the mechanism behind neutrino flavor transitions.
What was found was that among these three options, neutrino oscillations are
strongly favored as the leading contribution1.

1As is discussed in Paper 4, neutrino decay and neutrino quantum decoherence can still affect
the neutrino oscillation probabilities by the introduction of damping factors.
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Figure 5.2. The neutrino energy spectra for different thermonuclear fusion reactions
inside the Sun. Figure from Ref. [113].

5.2 Solar neutrinos

According to the standard solar model (SSM) [112, 113], the solar energy comes
from thermonuclear fusion reactions in the Sun’s interior. The most abundant of
these reactions is the fusion of two protons

p+ p −→ 2H+ e+ + νe,

but there are also many other reactions that produce electron neutrinos. In Fig. 5.2,
the neutrino energy spectra predicted by the SSM for different reactions are shown.
Because of the high density of the Sun, the only direct information from the fusion
reactions in its center will be carried away by the neutrinos.

The first experiment to measure the flux of solar neutrinos was the Homestake
experiment [114] in which neutrinos were detected using the reaction

νe +
37Cl −→ 37Ar + e−

and then counting the number of Argon atoms produced. The Homestake experi-
ment did detect solar neutrinos. However, it did not detect as many as predicted
by the SSM, see Fig. 5.3. There were three possible reasons for this discrepancy,
known as the “solar neutrino problem”, between theory and experiment:

1. The SSM could be wrong.
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Figure 5.3. The fluxes of solar neutrinos for different neutrino experiments com-
pared to the fluxes predicted by the SSM. Figure from Ref. [115].

2. The calculations of the neutrino cross-sections in the detector could be wrong.

3. Electron neutrinos could be lost when propagating from the center of the Sun
to the detector at the Earth.

The first two reasons both seemed quite unlikely, since the SSM was in very good
agreement with other observations of the Sun and there was no reason why the
cross-section calculations should be wrong.

The Homestake experiment had two major drawbacks. First of all, neutrinos
could not be detected in real-time, since some exposure time was needed before it
was worthwhile to count the Argon atoms. Second, the reaction used has a threshold
energy of about 0.9 MeV, and thus, the Homestake experiment was unable to detect
the neutrinos from the fusion of two protons (the “pp-reaction”, see Fig. 5.2), and
thus, the largest part of the neutrino energy spectra was invisible to the experiment.

The second of the two drawbacks was solved by the Gallium experiments SAGE
[116] and GALLEX [117], which both utilized the reaction

νe +
71Ga −→ 71Ge + e−

in much the same way as Homestake utilized the capture of electron neutrinos on
Chlorine. The above reaction has an energy threshold of about 0.2 MeV, and thus,
the Gallium experiments had a threshold low enough to detect a significant part of
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the flux from the pp-reaction. Still, also the Gallium experiments detected a deficit
in the flux of solar neutrinos compared to the prediction of the SSM.

The first drawback of the Homestake experiment, the inability of real-time detec-
tion, was first solved by the Super-Kamiokande experiment [30–32], which detects
solar neutrinos by detecting the Cherenkov light in water produced by electrons
which have undergone elastic scattering

νx + e− −→ νx + e−

with the neutrinos. The drawback of Super-Kamiokande having an energy threshold
of about 5 MeV is compensated by the real-time detection and the information on
the neutrino energy and direction of propagation2. In addition, the elastic scattering
reaction can occur for both electron neutrinos and neutrinos of other flavors3. Also
for the Super-Kamiokande, the event rates were lower than the rates predicted from
the SSM, see Fig. 5.3.

Finally, the Sudbury Neutrino Observatory (SNO) [33–37], see Fig. 5.4, observed
solar neutrinos in a fashion similar to Super-Kamiokande. However, instead of using
normal water, the SNO experiment uses heavy water, which also allows the CC
reaction

νe + d −→ p+ p+ e−

and the NC reaction
νx + d −→ p+ n+ νx,

where the NC reaction is equally sensitive to all neutrino flavors. The results of the
SNO measurements are also given in Fig. 5.3. As can be seen from this figure, the
NC measurements are in excellent agreement with the predictions of the SSM. Thus,
the solution to the solar neutrino problem seems to be that neutrinos change their
flavor on their way from the Sun to the Earth, which is what would be expected
from neutrino oscillations.

5.2.1 The day-night effect

Both the Super-Kamiokande and the SNO experiments have the possibility of de-
tecting neutrinos in real-time. Thus, both of these experiments can tell if the
solar neutrinos have passed through the Earth (which happens during night) or not
(which happens during day) on their way from the Sun to the detector at Earth.
As was discussed in Sec. 4.2, the presence of matter may influence the neutrino
oscillation probabilities. It is therefore interesting to examine the possible effect
of the solar neutrinos passing through the Earth before detection and study the
different event rates during night and day, this is known as the “day-night effect”

2Strictly speaking, it is the energy and direction of the electron after the elastic scattering that
is measured. However, these quantities will be correlated to the corresponding neutrino quantities.

3However, the cross-section for electron neutrino scattering is about six times as large as the
cross-sections for the other neutrino flavors due to the fact that there are additional CC diagrams
which are only allowed for electron neutrinos.
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Figure 5.4. A schematic view of the SNO experiment. Courtesy of SNO.

and has been studied in the two-flavor case for a long time [118–124]. The first
three-flavor treatment was made in Paper 1 using a constant Earth matter density
and was generalized to an arbitrary matter density profile in Ref. [103]. The theo-
retical prediction is that there will be an increased flux of electron neutrinos during
night. However, the experimental uncertainties in this effect are still as large as the
effect itself [32, 35,37].

5.3 Reactor neutrinos

The nuclear power plants on Earth provide a quite abundant artificial source of
electron anti-neutrinos. In fact, as was mentioned in Ch. 2, the first neutrinos ever
observed were reactor electron anti-neutrinos.

There have been experiments which have tried to observe oscillations of reactor
neutrinos with relatively short path-lengths (e.g., the CHOOZ experiment [110,
111]). These experiments have so far only been able to put an upper limit on the
leptonic mixing angle θ13.

4 However, deficits in the fluxes of electron anti-neutrinos
from reactors have been observed in the KamLAND experiment [38, 39], which
observes anti-neutrinos coming from nuclear power plants in or near Japan with an

4The existence of damping effects (see Paper 4) could weaken those limits.
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from Ref. [39].

average path-length of about 180 km. The results of the KamLAND experiment
are shown in Fig. 5.5. As in the case of atmospheric neutrinos, the results of
the KamLAND experiment has also been fit to theories of neutrino decay and
neutrino quantum decoherence [39]. The result was similar to the result of the
atmospheric neutrinos, with neutrino oscillations clearly favored as the description
for the disappearance of reactor electron anti-neutrinos.
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Chapter 6

Summary and conclusions

In this Part of the thesis, we have introduced the framework in which the Papers of
Part II is set. We have introduced the SM of particle physics and discussed how it
can be extended to include massive neutrinos, which are a prerequisite for neutrino
oscillations to occur. The theory of neutrino oscillations in vacuum as well as in a
background of matter has been briefly reviewed and we have discussed the history
of neutrino physics, starting by its introduction by Wolfgang Pauli.

Throughout this introduction, it has also been mentioned where the Papers of
Part II come into context. The main conclusions of the Papers are listed below:

• The three-flavor effects on the day-night effect have been computed. Essen-
tially, the day-night difference in the νe survival probability scales as c613,
while the overall probability scales as c413. Therefore, the day-night asymme-
try scales essentially as c213.

• The day-night asymmetry could possibly be used as a complementary way of
setting bounds for the leptonic mixing angle θ13. This was further elaborated
on by Akhmedov et al. in Ref. [103].

• The two-flavor neutrino oscillation probability in matter has been exactly
solved in terms of a series solution with a recursive relation for the coeffi-
cients. This has been done by rewriting the differential equations describing
the Schrödinger equation for neutrino oscillations in matter as a second order
non-linear differential equation for the neutrino oscillation probability.

• The effective two-flavor case which arises in matter with very large densities
(2V E À ∆m2

ij) has been studied in detail. The accuracy of the approxima-

tion of infinitely dense matter (2V E/∆m2
ij → ∞) has also been examined

both numerically and analytically.

• The concept of general damping signatures altering the neutrino oscillation
formulas has been introduced along with examples of scenarios where they
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occur. The damping signatures have been divided into two main classes,
decoherence- and decay-like signatures.

• The alteration of the neutrino oscillation probabilities due to damping signa-
tures have been carefully examined in both the two- and three-flavor cases.

• The effect of damping signatures on the determination of the fundamental
neutrino oscillation parameters has been discussed. We have given an ex-
ample where damping signatures may lead to an erroneous determination of
the leptonic mixing angle θ13 and examined how one can distinguish among
different types of damping signatures.

In addition, more detailed conclusions are listed separately at the end of each
Paper.
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Matter and Damping Effects in

Neutrino Mixing and Oscillations

Mattias Blennow

Errata

The following typos have been found in the thesis:

� Page ii, first sentence “Akademisk avhandling f�or avl�agande av tek-
nologie licentiatexamen (TeknL) inom �amnesomr�adet teoretisk fysik.”
should be replaced by “Akademisk avhandling f�or avl�aggande av tek-
nologie licentiatexamen (TeknL) inom �amnesomr�adet teoretisk fysik.”

� Page v, List of papers, Paper 4 “JHEP (submitted)” should be re-
placed by “JHEP (to be published)”

� Page 7, second paragraph “It was this year that the German physicist
Wolfgang Pauli . . . ” should be replaced by “It was this year that the
Austrian physicist Wolfgang Pauli . . . ”

� Page 21, title of section 4.1 “Neutrinos oscillations in vacuum” should
be replaced by “Neutrino oscillations in vacuum”

� Page in front of Paper 4 “Journal of High Energy Physics (submitted)”
should be replaced by “Journal of High Energy Physics (to be published)”


