Covariant representations of the Wigner "little group"
are constructed for single particle states of definite momentum.
The matrix elements of scalar operators between the covariant
spin states are shown to be invariant amplitudes. The corres-
ponding covariant Rarita-Schwinger wavefunctions are construct-
ed as functionals of the momentum four-vectors. These wave-
functions are used with Green's functions of Rarita-Schwinger
interpolating fields to study the kinematic singularities and
crossing properties of the invariant amplitudes.

The covariant spin states and the infinite momentum limit
are used to obtain a general representation of the local current
algebra. A representation in terms éf a set of single particle
states having a mass -~ spin relation is considered. The
current algebra implies a nonlinear relation between the invar-
iant form factors. The analytic structure of the form factors
as functions of the momentum transfer is shown to place a con-
straint on the spectrum of the single particle states used in

the representation.
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PART I: Formalism for Arbitrary Spin Calculations

Relativistic calculations involving éarticles with spin -
have often proved difficult, as the transformation properties
of the spin states under the Lorentz group are»usually quite
cémplicated. We will show that it is possible to parameterize
the relativistic spin states so that the states have simple
transformation properties under the Lorentz group. The method
involves the introduction of two four-vector quantities.

These four-vectors &ogether with the four-momentum of the state
will define the coordinate system in which the spin is quantizéd.
This would appear to introduce a great deal of arbitrariness.

We usually deal not with single particle states but with matrix
elements involving two or more particles. The four momenta
associated with these states are not arbitrary. We will, in
fact, use these four-vectors to define the quantization coord-
inate system for each of the states.

In Section A, we define the covariant spin states, describe
their properties, and show how they may be used to construct
invariant matrix elements. In Section B, we define the wave-
functions that may be used to discuss the kinematic singular-

ities and crossing properties of the invariant amplitudes.

Section A
We wish to consider a set of states which carry an irreduc-
1,2

ible representation of the Inhomogenous Lorentz Group (ILG).

The ten generators of the ILG satisfy the following commutation




relations.
L Q“\ Pv] *Q M0, 1,3

LY\IU‘\,\ ?Q“S = .“.\ 32)6“ Y’/u *‘ " %}J\(‘ ?V

(1-1)

Ur et % 350 M+ 1§00 Do = 19mr T 2 e T
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where %AW is the metric temsor %,,*\ %ou‘ %KQ‘ S A
A set of states { {Nkﬁ} will carry a representation of the

ILG if

SECENREVR B LT Iy < g

and : o (1-2)

Ulafal Ule a\ 1wy = U {els Nay MY LYY
where \JKQ\A\ is a Lorentz transformation given by

";p‘« ~';‘ Qkkvn.\
Uloyn) = e e - M (1-3)

We follow wignerl and label our states by the eigenvalue

of the momentum operator, Qﬁ’

9 v o
P 1Py = D ldwd (1-4)

/

The subgroup of the homogenous Lorentz group which leaves the



eigenvalue of ilﬁunchanged is called the little group. Its

generators are given by

] - 1 3 _
b\),ﬂ\{’\ D A E/u\)g‘}/ Pv r.\f"’\“ (I-5)

where &A&grﬁ, is the totally antisymmetric tensor with CQ,,SZI.

The operators h%Asﬁsatisfy the commutation relations

L W8y, L«)vki’g\] T - e RN (1-6)

0 %y
If ¢ is timelike, P Y0, the little group is a compact group

and is isomorphic to SU(2). This is most readily seen in the

-]

rest frame whera 3\3 (Wﬂ.Oﬁ%O\ . In this frame, the gener-

ators may be written as

So T Wolaa> 0 S'. = WA (1-7)

Equation (I-6) reduces to

£L9:. 873 = ii:Am S« (1-8)

Yy
which are the commutation relations for SU(2).

The basis vectors for the representation may now be defined
by the eigenvalue of the momentum and the eigenvalue of one of
the spin operators. One usually starts in the rest frame with
a representation of the spin operators, S; . The state is

given by

I nva 000 XD (1-9)

. . 3
A rotation transforms the state according to



’ $
UIRY {Am000 3) = L 14200 $8Y Dy (R
A
(1-10)

s b et e
kaum ® { € ' S)yx

where 5 is a (2s+1) x (2s+1) matrix representation of the
SU(2) algebra and <; represents the rotation.

A state of arbitrary momentum, P , is defined by

PPNy = Uty L avooo $AD . (I-11)

where L{#) is a given Lorentz transformation satisfying

0 - » . .
L e\ = &.[&m. An arbitrary Lorentz transformation is then

given by

I}

VANNTRDIS D) GEAY VELERYY tvaooo 50D
(1I-12)

CLLB UL A LY Yances 90Y

“®

CUREYRLLDY = &(EQ?\ is a rotation usually called a Wigner

rotation so that

5
VIR pgay = 3;\.', e 53 Dy (RGAen) (I-13)

These states.have complicated transformation properties

~ as the Wigner rotation is a complicated function of P and N .
We will show it is possible to define arstate by introducing
two four-vectors 4 and ¥ so that the Wigner rotation
reduces to + 1. We let the vector § represent the 3 axis

and ¥ represent the 2 axis. An arbitrary spin state will




be given by

LPEXaRY = LULLg, ) Lansoo a3 (1-14)

where \_(Rﬁ,m\ is a Lorentz transformation specified by

"

( L-‘ U),ehs(\ p \;‘“ (“'s‘\‘-'\ \ 0,0)0\

"

CMe,80 4 ) {09 0y 0,0, g'{p,«,nx\eh‘) (I-15)

RO 2 (a0, LB, 0)

with (P \ gy <o U Ky €0

This requires that the vectors P,§, satisfy the condition
P P = 4K O If ¢,9,K are linearly independ-
ent then the conditions in (I-15) specify L {P,%,K) to
within a rotation of 7T

A Lorentz transformation of this. state yields

DIV 1P A GKRY = UIAY UL oY Y TAam 000 $AY

2 UL S Y ULET O SO N PR s S X 3 (I-16)

3
T R OUAR S gneY Dm{L‘*&;\P,a',w\.m_(p,q,gq)

A
If we depart from the conventional use of a fixed coordinate
system, but instead allow the coordinate system to change with
the physical system, so that §'*A§ W'™>Ni, then the Wigner
rotation U'{a?,a%,nv}n L{P9K) 1is 1 or a rotation by LW .

Equation (I-16) becomes




VTP shsey = LAR o) Ay Ay (2T (1-17)

To check that all we have done is specify the quantization

coordinate system in a covariant way, we note that

GWIPY [0SR 91) T ey UL L) Vanm coo 3

T UL} CHea) S teiesa t) Imogoo <)) (1-18)

= ULy L= MNP0 Ry A &3\\«\\000 Y

Hence,
g WEYIPSXUO * et~ ﬁ‘i"l""E IPSNGIY AN S INY
Similarly, (I‘—-l9)
O WHEY 1P 932G 3 [ Loy \(‘9"]%' §‘ IPSY O (N S IAD
These equations show that the states I PsY\QuY are defined
such that the operators [ g e\~ C\‘P"']_‘%' EREAVALAY and
L Qv \(‘?‘3‘1\' Wiy are just the spin operators Sy
and Sl in an arbitrary Lorentz frame. We could, in fact,
use the equations in (I-19) to define the covariant spin states.
The normalization of the single particle states may be
taken to be

LRSIV QY RSN )

g

2%3.‘(?'»?\ CO VAl Psaqwd

10 $2005pY (v SN UL R Y U LG DA §0)

[

(1-20)

3
= APy 53“)"‘9\ 55’5 DXX“L\
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where R = l:l( P,‘i',%@(.\?.’\,\ﬁ is a rotation. If K'~K , then

R. is a rotation about the 2 axis; if §':*q , then R 1is a

rotation about the 3 axis; if L\': 4 and K'=y , then = 1.

Thus

3
CP'SN QI PeNqY T 2P (P-0Y Jys Sy (1-21)

The properties of these states under time reversal and

space inversion may be found by examining the equations of (I-19).

We use the relations for (Iu(?)
Pwamy et = =1 Wi
; (1-22)
e . -l - - -
VR CAT DR PR S 1 S
where [ is the parity operator, T~ is the time reversal

operator, and ;s( P, T"\ < (pq\ma\

From these relations follow

P qataiips A = T teant= ] TP IpsX AN TSI

- WU L 1 Py (1-23)
P orewiyipshq ® 2; Luept =10 e Y TIPONGY €N 150N

g = 0 WHEY ROIPSARRD



and

\
T g iPsagqyd = LU gat- t\‘i“"l\ T les¥ 1y <N \83\\)*
X‘

T LW UEY T Ieshawd (1-24)

L ¥
TOACWEY 1P ) ® Lo Lot = eV T ips v q i) NS
% ,

T L WD) T IPSNG KO

If we specify the transformation properties of the four-
vectors 9§ and K Land take 33 to be a real, diagonal matrix
and S\ to be an imaginary, hermitian matrix, the transformation
properties of the states are determined.

For example,

. ) . WA
P esxuid) = L3P S =N 4 =ik =Y M,
(1-25)

s

T e Ao ITeP 5 N 168 =ik p

where 7& and ?L{ are phase factoré, represents an acceptable
choice.

Two particle states may be constructed using these single
particle states. In particular, the covariant spin state
which corresponds to the helicity state of Jacob and Wick4 in

the center of mass frame is given by
IPshak !y qvep -k (1-26)

and satisfies

\
GWEIE 2 2 = P 1Y T Lt Y VY



These two particle states may be expanded in terms of eigen-

states of the total angular momentum.

lPshal ) qropr ? = i;': 1P+ 3 a0 g Ry (1727

The covariant spin states may be used to discuss the
partial wave expansions of the covariant scattering matrix
elements. We consider first the decay of a particle into

two others. The matrix element may be written

PSARN I T HaT @ UN G KAY §-0) (1-28)

with P K - e 2 o 2 PN O

This matrix element is an invariant function as

CPSAKM T &Tg N | KRY §=NY

PSR LU UINT UM L 4TE RN ) KR Q-0 (1-29)

TOCAC SN A AT VARG T et R Rt ) A RY NG - AND

We may use the operator ICGWEERY = WY ® = Wik to show that

P N R Therefore,
CPANUN T IQTE RN W RY q-n) = éawvn.q\‘i';s_w;* 33,1 (1-30)

If the T-matrix is invariant under space inversion, we have

CPSRNUN ITVSTEUNY 1 R 4=NY

PSNRNAR P T P L e | kRPE-0)
S4X
) (-\\ “]3 <\5(> S -\ ;51\’ "‘;35‘} [l ;5(%-?‘?7 ;-JK »;\'ﬂ;

. - g e
I SRR IR ’q‘_i'i\'qk

(1-31)
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which implies

Sehd T4 g '
- c - . . Yoo 1) -32
- }\)ﬁ' \‘ﬂ' 1'\). \(‘L\ = (_‘\\ fq.}*“l.r QR F“L.’ i (P, ‘9‘ ) i \ (1-32)

A two body amplitude may be written as

YNNG T RERATL e AN | T E PNy (-39)

This amplitude is also an invariant function depending only

\\.

upon the invariants §: (P« and :(?vak . The

v

amplitude may be expanded in partial waves using (I-27).

RSN g PRI TLPSNAN ) §TE P

i1

T ooHg 7/ %67 ' e L T 1Prg T AT g )
NRhy

[

RS SR R LR A VRV ARE NI (S TICR N
CIRRSY (1-34)

CP+a TR % W ANSA LTI PIG T e 3 N LR

=i dxs\s-"‘\ NG T Oy )Y

where X is the center of mass scattering angle and the reduced

matrix element of (I-20) is used.

We conclude this section with a review of the properties
of the covariant spin states.

a) The defining equations are

legrng Y = ULLPAIO ) tvaacs sAY

with (I-35a)

RS P E (A, 0,0,0)




b)

c)

d)

e)

£)

11

N .
U010 G = L wtqle, 0,0, ~ 1T
,. ) s
CHesale = O lede, o) =18%1, o)
and WP e - kg P

The Lorentz transformation properties of these states are
given by
VRN AR qued = TAR $X A& AW (1I-35b)

The transformation properties under the discrete symmetries
of space inversion and time reversal are

. - S“k
Parsxaid = VP SN 1y =t Y,

(I-35c¢c)
Tleanqd = | i ?

(74

J\ ;Sq ~‘,SK\) Art""

The spin equations are

)
QiR 1RSARKY 3 B pndt E, WO N 1Y XIS
A (1I-35d)
WY IRSNGIY = (L&) gtPSNﬁK><N15ﬂX§

The helicity states are given by

WSV\KHTif_'DvK“}‘—gZ P4g T & R OV (I7359)

A change in the quantization axes is given by

lPs\ary = L FPSW QU <PV G e PoAYKRD

Af
s (1-35f)
= Lopsnaiy Desdwd

4

=

CUERRY LLe i)
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Section B

In the previous section, we have shown that it is possible
to define single barticle states having covariant transform-
ation properties. These states may be used to express matrix
elements of various tensor operators. An important property
of these states is that the matrix element of a scalar operator
will always be an invariant function.

The matrix element of a scalar operator between two single

particle states has the form

RN -P T T P s X 0n v oy Fletteel @y (I-36)

The diagonalization of the spin dependence results from the
operator =~ PLY#Y* PYLIeN being diagonal on both states. We
have explicitly, using the defining equations for the spin

polarization in (I-35d).

i
Loy - TRtV O (PP i b Ttoy | Posx kD

t!

e - i H =Pty Tee) ~ Feoy Pt L psa e
. (1-37)
i EM‘JG"V:!PV (praty =P L L, TR SN

IL‘

14

-y
® 0

This implies the equation written in (I-36).
A similar analysis can be made for a vector density? It

is useful, at this point, to introduce a complete set of vectors
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which have simple transformations under the little group.

We define the following set of four-vectors.
b
Ua (PG d* 0,413

Ug a1y s p*

1N ! 'l
- I L s~
U:‘ “7(‘\ K\ = { "l(l}l [(qli}\)"‘ "‘SPI] C‘M \'\'\,K
(1-38)
\

e i} 'i

U1 {paw) = [ -—\(\.l K'“
-4

M .

Uy teaid = D= gt} 7 L oprg - qip p)

where we have taken '} =2 14 O . These vectors are norm-—
alized such that

%}A\) &):{\ U; : %J‘P P.L
(1-39)

o 128 Y o uy oL
% Uzl U’; - % ‘
We may use these vectors to define invariant spin oper-
ators.

e

Wo aiY T U wakd Weleh = o

(I-40)
g M
WERRI) = QO (PAI) W (7Y
These operators may be shown to satisfy the commutation
relations
. = M te . D -
L W R \a\)‘s 1 = P g TiN ‘.\);‘ (1-41)

If ¢ vo , the vectors in (I-38) are real and the operators
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defined by
N| 1 = bJ; / @1. (I-42a)
are hermitian and.satisfy the commutation relations

['3‘\“3‘51 ‘(e-mc Jk

The little group is therefore iscomorphic to SU(2).

If $740 , the vectors s and Uy are real, but Y, and

U, are imaginary. The operators defined by

Ty Wy et K -i W IRy, l T i TP (1-4zb)

are hermitian and satisfy the commutation relations

\‘.T’S\k\.} - ‘\(\ ) LT\,)]()_']'-'--"\I(.\ \ LK‘)‘C‘-"}:‘;\SB

The little group is therefore isomorphic to the group 0(2,1).
In the case 30 | the little group operators are given by

-~

}
I’s"" Qx/@" , L"'; C:)‘ Lp\") ) L\_“': C:)\_ L?\’] ~ (I-42¢)

P

These operators satisfy the commutation relations, with ﬁ1=‘3,

3, LY =ily, [T, W1+ -ik,, LL,t=o

The little group is therefore isomorphic to the Euclidian group
in two dimensions.

We consider the transformation properties of a vector
density under the little group operators. Under Lofentz trans-

formations, the vector density is rotated according to
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OB Yoy LAY = Ny 3,000 (I-43)

We use the vectors defined in (I-38) to define a set of covar-

iant vector densities

Joleauo) = LY P Juatoy (I-44)

Under Lorentz transformations, we have

V0N Jeteagoy U700 3 JoUReag, vy ) (I-45)

The commutation relations of the covariant vector densities
with the covariant spin operators of (I-40) are given by

L5 ea, Jecva; o)
(1-46)

L0 ey, Jy eigod T % P itipe ductean, o)

As the covariant vector densities are scalars under Lor-
entz transformations, their matrix elements between covariant
spin states are invariant functiomns. We could use the complete-
ness relation given in (I1-39) to expand the matrix elements of
the vector density in terms of these functions and the L):
vectors.

It is more convenient, however, to introduce linear com-
binations of the U:xvectors which transform as a spin basis
under the little group operators. These vectors are the
covariant polarization vectors. We label the polarization

AN
vectors by sn P4 yhere
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EA (Pay = &_)gl(\'\‘»i“g_\ “u, g.é}.k

’s

.
- M Iy R N ok
¢ o (L (\ 7, {)‘; B L {?ﬁ(",‘\\ - ;'.\;\ '\"\1 t 4L ( o 6. l'.(‘rl

{

R VN ' 1 . ) "
T CA TS - % U0 +31u)

i

A |

AL j‘l 1L ey T M
= -5 (5ol { Ly qtpt} 7 87 49K
oM }
(1I-47)
L A
B Uesy 2 8 Ly -0 \
L g T3 .
25 Ul tar -t e - T |
with P =0
These polarization vectors are normalized so that
LY A
o (Y oy ) B PN éx:,;s 5,\',->\
' (1-48)
A < SeX v
A 1 3 " \ o
AR ¢ };\ £ Lx (a0 og-n (PN

A change in the quantization axes may be calculated using the

completeness relation of (I-48).

m}\‘ﬂ,u. . . 24 o RN “
AL U I E;A, Eqnr RaxY V7 ey (PaKY Tap v} (1-49)
A transformation in which the ﬁ' vector is unchanged and

P =Pl 2K’ = $ 1k Q dis given by

-TAY

- ! e JA v
Teon LGk 7 Ly e € (1-50)
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where
-
: L
wa T = LIty
“" "1
- < T Y Y (o 1
s 7. Cgeie bl LG -
In general, we have
- e;)\"‘ﬁ “.\kw\_
Calerie) = & Eap (P & daaiey & (1-51)
where
-
R
v Pt~ e Loyl
' i - L
" ""!'“ o \‘
s w0 Eongp DM T LGe- Y]
aptpL ® T IO L RN
L .
. T R -
Syt Lowabn Lamievl T LG ]
. -1
. . —- “ . . AW
(oo s ek e - gy Leeat- oY) Y LGt 1]
. A -\ -}
LA 35 N AR ‘ 3 ~ § " - nJv L
cux® 7 £ 5PN T - V) Mg ~ gt LNt
- and MP‘ = t(:‘u Pc‘c\’
S
The function ¢45(€) is the spin rotation matrix. If
f'70 , the angle is real; if P*€0O , the angle © is
imaginary.
We may now define a covariant spin density by
(1-52)

Jatraico) + 0 €5 (RS L, Lo

The commutation relations of the spin density with the invar-

iant spin operators is given by
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Loy wa0, Sguagn = Z Joytemc ey vigilsy  (1-53)

where S; is a spin s, hermitian matrix representation of the
SU(2) algebra in which 53 is diagonal, S| real, S, imagin-
ary.

The covariant spin density is a scalar under Lorentz

transformations.

Ul j o\ (p

-4
=
- -
o
=
<
¢
s

AN S (s o) (I-54)

We use the completeness relation of (I-48) to expand the

vector densities in terms of the spin densities. We have
| e ) An ¥
Moy = = . . ¢
,‘. ey =« o ;;\ TR ,ng_\ CPai) 2oy Ly )le\
' (1-55)

SN

- 4 -
y vazi -0 €<w; CF Gk 5g\ (pan C\

Since the spin densities are scalar under Lorentz trans-

formations, their matrix elements between covariant spin states

are invariant functions.

S A B e AR SN RS

(1I-56)
©odWnaeY By (g et s |
The spin delta function follows from the little group

3 axis spin operators for the three states being related.

' Iy - o ’\'
Plowipy T (peopy= ppy)
= T AN I, (prep )y = -~ Fylote, ey i) (1-57)

To (PP = Watpri) [ ev
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Therefore, we have

rrstN-p ) - 3o mee, w) ;) & vlite ;J:{;;(ﬂ 1P sA P

Somw PN PR Sep i) Ve ey (1-58)
o . < crey mpp
(N-R) PPy -y Ira L e o) | esapid)

This implies the result of (I-56).
We use these polarization vectors and the results of (I-56)

to expand the matrix element of a vector density.

CotatNepic tintey b vaaendd

. TLgr o M

T LoD Copege LD, 000,00
-

CPaemie) Sy (ose, pepng ol 1 sy el
(1-59)
- REPADY ~

' o * LS [
G,_ p\"}_ T. (""\ LTOASN (P'P ) v ‘\’, *)(\

[}

y R @et e prs

The transformation properties of the spin densities under
space inversion, i? , and time reversal, | , may be deter-
mined from the transformation properties of the vector densit-

ies. The pelarization vectors satisfy the relations

- . - )\ [ e
AR LR A SN G AR PR SRR TS

')

<]

T4

o

\“ > ~o
(L S\ (‘. Cf\ E\Q\) S {\"“i\ (r:"}}»— 5, {aﬁ"‘i "-.\ ‘;}\' ? 9] (1—60)

Cooy (PG 140
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with K< 0 , (4P~ o P ©

Under the discrete symmetries, the vector densities trans-

form according to

B L PR oV ),
(1-61)

T ATt = i Jioy 7y

Hence; the spin densities transform according to
Platago) 271 3 ey P10 T4 J10Y Mg
3(\}% v EO s "l\l.s ¥
o <>_')\ (\'}‘), }S'\"“lf}‘;n ‘0) 1? .

- )\ e Y
SRS L N P R PR T AT AN

. - » . - ,
] ngk &K ;O\.T - E&x (P%\(,O\ ‘s 3l°\ »]T (1-62)

= My Jox Ligky iy s M o) P20

20 Yon i@, 18, -3 0) Preo

We are able to discuss the kinematic singularities and
crossing properties of matrix elements of the covariant spin
states. We consider, for example, a two body scattering
amplitude. We use the reduction formulas to express the
amplitﬁde in terms of a Green's function of Rarita--Schwinger

interpolating fields. We assume the Green's function has
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no kinematic singularities as a function of theAfour—vector
components. Therefore, the kinematic singularities can only
come from the pola?ization tensors used to define the states.
The effect of the.kinematic singularities can be found using
the explicit representation of the polarization vectors in
terms of the four-vectors in (I-47).

We consider the amplitude

(W§XRWQ“VT?W“H¢iT\V%X"Hﬁ;ﬁTﬁ'9“N§

(1-63)
S L TR A AL
The reduction formulas are used to obtain
(WSW@“N;%“VW'W"N‘T\ PSAKN) HTE NP
< LY « T Tl »
T o Eoy wany B (AT Bax (AN
Thyl
Ee VO { R A A NS AR ACSA TG A PA
. '\V'X(. 1'%~ PXy
(I-64)

<O { T‘ i ‘:\!b\,l\‘\ (~."{l\ ﬂf/u\\(x\\ ;‘C\TIL\..{{.(‘{:.\ Qr‘},“(m% ‘C{)}

N f)h‘ ‘:}'1'{ . ?,’*’3; 1}"‘(}
T Ty (R Cgr LSIRERY gy (pan) £+v (ad-i)
S'A §

3

GCprTmd, SUTmT s pipad ST

where PlAgt » DL and ¥ is a normalization factor.
' \
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The fields, R‘P‘(k R}Wwﬁhkx\ , are Rarita-Schwinger
fields, and

Lyos My

Vo

Can AP AN

1]

ixd
E--s,)‘ (eany
(I-65)
& 3 " » My Do\ oen r.;L,\s o
‘?}:‘h SR 0 N Y By L ™ (‘“f'sw 20
are the polarization tensors for a spin s particle: ((3\Ii)are

the usual SU(2) Clebsch-Cordon coefficients. The set of

functions
()‘ ( P'i}i»ﬂ ,.G\'i}(‘"d , i)?,‘;\g.i N (ﬁﬂ}«hﬁ\

are the Green's functions (four poinf fﬁnctions, M - functions)
for the process.

We assume the Green's functions have no kinematic singu-
laritjes as functions of the four-vector components? The
polarization tensors do have kinematic singularities. To
determine the effect of these singularities,‘we use the explicit
representation of the polarization vectors given in (I-47).

Mo
If the polarization vectors are denoted by CT3a{P&W) | the
kinematic singularities are square root singularities and

occur at the points
PI':. O (Q\‘p\\' - o1 RTINS . TREA)

The effect of circling the branch point may be determined
directly as .
a) Dbranch point at PLﬂ O

(1-66)

>

{an}
Tan ALY T )
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b) branch point at i‘fg-'?\\' -~ 4L PV = O

Y USRI P\
Eon (A~ (=1) £ ooy WP

¢) branch point at K“ - Q

f53 | L
Ty (PO =2 (™ Toy (740

Therefore the 'on the mass shell' amplitude, as defined in

(I-63), has kinematic singularities at the three points8

NY=0 (A 0V ptz o (PN WY o (1-67)

The effect of circling these branch points 1is given by

a) branch point at Wt Q

R A P
\r"’: NOatny ,‘3‘\'

s tT L P eNAN | AT P eND
NAg oo (1-68)

=) CPAMW AN qiTierpan L PShan | sTep =Y

b) branch point at \%"?‘\" - SR Q

CMN oy Tie b e TEYy

. AL et ., .
T A Colmy = AT SNTED
c) branch point at (2 P\~ 1Pr 20

CAN ATt Tl SN TR

StA T+
TTEN ey CERTIg T HS=)) 15D
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The crossing relations may also be obtained with the use of
the representation in (I-64). We assume the Green's function
may be continued in the four-vectors to the crossed channel.
We consider a confinuation in which

s | wra

’ Il 1 e - O
Pl P , PP , 4" -9 , 9 > - q
The Green's function in the crossed channel is then given by

C‘ <Wi/h‘} ! Z; }'/lu[i ') PS/M‘,‘S ) E;"i/u'a\\

continuation of G ORI, QY | PR QIR (T-69)

)

3!

C"( VH()“‘“) - z-"i,‘,"l\l_ ') Pi/u‘»-i 3 ‘FIP/U‘H\

We consider the continuation of the amplitude

o e

P/ X9 Ny qiTig P P vl eshawn P9 Py

y Tl o - T}.—(jgz ‘{Mﬂ
L an) B @) €l W0 Trg (0 (1-70)

()‘ ( Pimd ) G ?}!_{ﬂ ‘) e SIUBK y G U‘""‘G\

To make this continuation, we must continue the polarization

tensors. We again inspect the explicit representation of the
polarization vectors given in (I-47). If the kinematic singu-
larities are avoided, ie. the square roots do not change sign,

the continuation is given directly. For example,

U““. 03 - ~
Eon (pay == Tox (P -7 -7

1 L ) (1-71)
iS'u\ (qp-n) = Csy (C\‘P,-N)

o .
*

1f W T BV and Mo T L PP
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Therefore, for this continuation we have

CPISNAIN L TS PN ITEPSAS N ) G-

v 183 N T M43 - Thy?
) . R . . N -~
3 L 1, Tt OIS N i.‘:,x (e Gt (D -»N\

GoCPit, SfHad ) Pt qimgy )

« M . PN 3 ) (1-72)
= Eax (PR ) o ety Toy (P-Fn)

{ l\._"{ . .
@ - e -
Eve (G900 GOUoind, G IR ) @5t § )

-

~

SOCRION-FT ) G pen IV PeA-§-F g FIie PR
where '\J/" 3 3:),\ PR M = ‘l:)& froq

w 3 o T I el -
Py , Po= P , c‘\('_. - q %% G

and R:_, means the continuation of R .

The crossing reiation derived in (I-72) may be related
to that discussed by Trueman and Wick9 for the helicity
amplitudes. The amplitude on the L.H.S.(I-72) may be ident-
ified as the invariant helicity amplitude, Gyg¢rAs (S840} of
Trueman and Wick. The continued amplitude on the R.H.S.(I—?%)
is related to the crossed channel helicity amplitude by a
change er basis in the spin quantization frames. This trans-

formation is given by

CHS'N-Gl=1 ) e p - LT 1 Pox=8 =i | qpepsih ®
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The amplitude sn the R.H.S.(I-73) is the helicity ampli-
tude in the crcssed channel. The rotation angles % » and
the phase 41 may be determined from the reduced matrix
elements with the use of (I-35f). The continuation of the
invariant helicity amplitude expressed in terms of the
crossed channel helicity amplitude is found by the insertion

of (I-73) dinto (I-72). We have
COsINA WY o T/ Pen 1T PsXg ) o7 ;>—N>c_

- ~ Y T . S T
= 2 ) -y el C1) Lo i) ) e ) (1-74)
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This relation corresponds to the relation of Eq.(41l) of
. 49
Trueman and Wick?
The above analysis for the wavefunctions and the associ-
ated kinematic singularities has been done for integral spin

and non-zero mass. A similar analysis can be made for half-
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integral spin through the introduction of a set of covariant
spinor wavefunctions. We need only consider the spin one-half
case as arbitrary half-integral spin wavefunctions may be
constructed by veétor coupling the épiﬁ one-half wavefunctions
to the integral spin polarization tensors.

The spinor wavefunctions will be defined in terms of a
set of three linearly vectors as in the case of integral spin.

We write the wavefunction as
U, 51 (1-75)

The vectors are again to represent the quantization frame.

However, these vectors well only specify the frame to within

a rotation of . Therefore, under Lorentz transformations
we have
O (e A AMCY = SN OB Ry () (1-76)

where §(K\ 1s a spinor representation of the homogenous
Lorentz group.

The covariant spinor may be written as

U paur) = SLUrad) 0% w000, 2,4) (1-77)

where LR\ is a given Lorentz transformation from the frame
{va x4 to the frame (¥FAwW) . As we have said before, the
vectors (P%%Y will only specify the transformation to within

a rotation of 2T. However, we are usually interested in

matrix elements involving an even number of half-integral spin
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fields and states. We may choos2to define their wavefunctions
so that under Lorentz transformations the spinors change sign
at the same time.

The spinors will satisfy the following equations for the

little group operators.
- K. a/
Wy UV Py T LE- T T VTGO CTI S
\ (1-78)
et O (oo = L et = oueTt O (g <ol sy le Y
\ v G
where Weiey = L Yuuer P L
n.f‘ .

and i:“ is a spinor matrix representation of the homogenous

Lorentz group. ™~

A covariant spinor field may be defined by

/qs"\\‘fw; o) = G 1o) LT (PaK) (1-79)

If the half-integral spin wavefunctions are properly
matched, the matrix element of covariant spinors between covar-
jant spin states will be invariant functions. These wave-
functions will contain kinematic singularities as in the case
on integral spin. With a specific choice of representation
for the wavefunctions, these singularities may be analysed.

We next consider the wavefunctions which have smooth
limits to zero mass. The polarization vectors defined in
(1-47) are not correctly normalized for this limit, and the
little group. operators must be thosggiven in (I—42¢);

The covariant little group operators defined in (I-40)

satisfy the commutation relations
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LWy ey, Wy (e T = pV3 gy D

~
s

If we take Pi= 80 p-4¢ 0 , then we see, in the

enza

limit kaiol, all the UJ} vanish. If we define the little
group operators according to (I-42c¢), then these operators

become the correct little group operators in the limit

These operators are given by
! ~}
. B - i - = . . i - e - 1
-)'l"" (,\)3 T.'\)f} y LI" ‘”\}1\\“\\(\ {."ﬂ‘] i L\' ‘.\)\ ‘x?“} (1-80)

and satisfy the commutation relations

L.K]’ L\.‘\ = ‘\\-\_
LT’j,L'L.} :‘“.‘ \.‘ (1-81)

EL‘,L\W = ;P.‘.T'}

The polarization vectors are to be constructed from vectors
which also have smooth limits as PXWQO . We may define a set

n
of vectors V; by

o) = U;‘ (P = P

[} -l

o t
1) " [ tads- ]t £ 0K

<
i}
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r——‘
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(1-82)
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These vectors are normélized such that
vol < . \/;L - P\.
(1-83)
Ve W
We consider an arbitrary vector field fy.{¢) and the

covariant fields given by
- ‘l‘/‘ h »
Ripai oy = VA Rulo) (1-84)

The commutation relations of the covariant fields with the

little group operators are given by

LIy, B 2 iy LS., M7 % -1,
Lhoy Al = Ry Ll Ayl s = PNy (1-85)

{,L-z‘, Byl o= }R.& (_\_1) R.;] ~ ) pr Y%\_

with all other combinations commuting.

If the vector field contains a spin one, zero mass excita-
tion, thén the matrix elements of the fields will, in general,
have a singularity at Prao, If there is no spin zero, zero
mass excitation, then the divergence of the field will not
have the singularity.

We consider the amplitude given by

3 “’“px » ‘A‘ ’
T = P om0 el oM Rl WY (1s6)
)

If the vector [*= (™ | then the amplitude T}(P\ will have

no singularity at L If f*‘#fyw, then the amplitude
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should have a singularity of the form
TN = T AN e P20 (1-87)

The matrix elements of the covariant field may be calcu-

lated in this limit. We define the amplitude

, =19 .
T Sc;g«‘z e ¥ P | SHGEUGS AN
(1-88)

M
= (e P““ MV Ra) et 1A
Using (I-82) and the definition (I-84), the amplitudes of

(I-88) may be evaluated in the limit P o .

Lioa  Tol0¥ 7 L T, = O

P o P\ -; (1—89)
fow  Totoy = Tile pv=0) R

Prepe

The vectors \ﬂ and \/1' may therefore be used to con-
struct the polarization vectors for massless particles. In

the zero mass limit, the polarization vectors become

. )
By (PN = ~ F{ Ly +ivit

~

L ~ :
= F el tan) Toaecsigd @

o
! -3 - :
AT IR I L5 R SCTPRRTIN

3

A -
P AT

In the massless limit, the little group operators obey

the commutation relations

L:Y-;,L;) = “—\, ) Ls—g,L\‘l ="';L\ \L\"l;L\j =0 (1-91)
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The field operators defined by

-
\

Tt LA
Ny ey T L C* o) P Sﬁixe, Akl (1-92)

P20

satisfy the commutation relations
LI, PH-.] Rs L35, A-T1 2~ A- [L\,-L . Ay 170 (1-93)

The kinematic singularities of amplitudes with states
defined in terms of these polarization vectors may be deter-
mined. We consider.the amplitude for the emission of a
photon. We use thé reduction formulas to obtain

Gl PE GIC AND
(1-94)

g T P ] et Ty

- , o =iPK
% R L Sc—“~‘.< e

-0

where '% is a normalization factor and ﬂpkx\ is an arbitrary
interpolating containing the zero mass excitation. The matrix
element <A fWloV MY will have kinematic singularities

due to the polarization vectors used in defining the states

in (hﬂ)\mb . However, the only additional kinematic singu-
larities in the amplitude will come from normalization factors

in the polarization vectors. There are two of these:
a) . a square root singularity at itzo. The result of circling
the branch point is a change in sign of the polarization

vectors.

b) a pole at =0 .



33
The crossing properties of these amplitudes may be easily
determined. ‘ If the kinematic singularities are avoided, the
continuvation of the polarization vectors is given by

e ' Mo - -
Ee (PAK) = L tiq@) Po-F 19 (==
(1-95)

€y (PG ~ 5 WPERY PP q-7-§ W=2-F

Summary

We have tried to present a comprehensive study of spin in
the context of special relativity. We use covariant little
group operators to genefate states and wavefunctions which
transform as irreducible representations under the little
group, but which are covariant under the full Lorentz group.
While the single particle states and wavefunctions appear to
be more complicated than the usual formulation, their use in
discussing any physical question,as in the analysis of matrix
elements, avoids the introduction of extrareous parameters
as 3 axis quantization. The covariant wavefunctions also
provide a framework in which one may investigate and remove

the kinematic singularities of the invariant amplitudes.
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PART 1I: Representations of the Local Current Algebra

Gell4ﬂannlo has proposed that the current densities in-~
volved in the eleétromagnetic and weak interactions form a
closed algebra under equal time commutation. We consider
a representation of the algebra in terms of a set of states
of definite space momentum and total angular momentum. The
matrix elements of the current densities may be expressed in
terms of invariant functioms. The current algebra generates
relations which must be satisfied by these functionms.

In Section A, we consider a representation in terms of an.
arbitrary set of states. In Section B, we consider a repre-
sentation in terms of an infinite set of single particle
states. We show how it is possible for these states to gener-

ate the known analyticity properties of the form factors.
Section A

The assumption that the current densities form a closed

algebra under equal time commutation may be expressed as

. oLWpY
‘{_.p

'( e
LS@e , yaal = $wg-a Wy (aI-u
) ) “

.
where {Jo(Yﬁ\} are the time components of the currents and
-lf’\"ﬁ
{ ¢ are the structure constants of the algebra.

4
The isotopic spin currents satisfy (II-1) with TR {otx)

PEIEPRL S F*ﬁv
N

47113, The structure constants are given by ¢ 2 ¢
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(5
is the totally antisymmetric tensor with £ =1 .

If we define an integrated charge by

. v
~1X¥

R C AN Yo s
IEANE N S o (¥ %) (I11-2)

These operators satisfy relations corresponding to (II-1) as

- « he - . "l".\\‘ -Y -3 -d
Tetiga, RGN T = 1670 g Lictaie, ¢)  (T1-3)

The charge operators are given by
4 -
QN = \'*Q‘gO,J(\ ' (11-4)

In the following discussion, we will be interested in an
extension of equation of equation (II-1). We assume the
equal time commutator of the charge density with the current

density satisfies

SE\{ . N qv.’"
D)+ G (I-5)

- ot ¥
Clra, WEnNT= a4

It has been generally believed and proved by Meyer and
Suurall that in a sufficiently convergent theory C;? (i,q;*\
is symmetric in <4 and ¢ . We will thus ignore this term
when studying the antisymmetric part.

We consider a representation of the algebra, defined in

(I1-5), by a set of states of definite momentum and total

angular momentum. The states will be labeled by

Pl 4R (11-6)

where { 1is the four-momentum of the state, s is its total
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angular momentum, X\ is the spin projection in the frame (LT
as defined in (I-35), and “\ is a degeneracy parameter.

We use equations (II-2) and (II-5) to obtain
N R
(at el a-p LR Y, e T e sy
(11-7)
k4 ‘{>\‘ 3 Y
Pk S Brsv=on | 3t} I P sN PR
vhere  p T Eaver 0V BTRY g 2 (o) @)
We use the polarization vectors as defined in (I-47) to

express equation (II-7) in terms of the form factors of (I-56).

Equation (II-7) becomes
. . MR .Y . U
S \)\’_ Aﬁ-\%\ i {: ] X F}."k ‘\ﬁ,‘\l Vltsl’ g.\‘/’,»fsﬁ"‘ ‘.ﬂ\ ?\s\
Y oM . v "
= § T (0he, Pp, NY CRrN-n ) LoV RS PRY (11-8)
J XN - B n
B T (0L, Preg ) et e N =) LY, KoV I psh ey

We introduce a complete set of intermediate states in the com—
0(’»
mutator of (II-8). The integral S 5;“’0 is over the four-
momentum of the intermediate state. The summation Z\ - 1is
AMA

over all other degrees of freedom. We have

i Y
SO T P L w“s' (P T, AnETS )

I
= %_..';'s.g f’ fhe N\ Z ( LCG (U’\" 2;;
. =7

7, o ¢ ,
S{ P/ W-B) BN LA g 3 Y <t T SO AP

- (?'S‘)&Pﬁl%ﬁ?m laae, g Cm fan w9 RARIIATE } (11-9)
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Y
Lt “ - RendiR NN . \n
gl = (&L, BTN 96 = U (Y waay |

. 'h.
4 * \qq, $-0) %y = L unad x-w}“l

SNEIR A NLIE LU SN S I L

The reduced matrix elements < gl \> represent a

change in the quantization axes for the cowvariant spin states.

The transformation is given in (I-35f). For example, we have

SRS NH R NI Pfg,-’gj-a - c}x Y

II-1
o TUNTIRY | (II-10)
= Dye ey = ¢ dxs (0

where
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- vyt .
wa W - ey o il
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ws Yoy

Loy TR - Pr%‘\

N !
= Uphp 0q - ot e TL(N - 00 i) Lot prgny
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We use the relation of (I-59) to expand the matrix elements
of the currents in terms of the form factors. We also use the

relation of (I-50) to give

“ - M » =3 FP!
Cae 8, 249,0) ® Lre PR 00,0l @

) (IT-11)
w2 -y D) v
The relation in (II-8) becomes

S MY oV
Jut-n 9N £ Bl tveny (LT, ALprs)

. ~ 1 (=2t g’
*‘-Z.Z. Z { e,‘ A lwgr L))

MoTnn Refye

L ¢ Jd. ) '
s s-aiNG L St VM I TR N Y 180 ey W)

y , s L
Far BT, (N R, Y obea (K) (g

Reen :
-1 Cieneg Va4 F,440, 00 Ty (L9, e, N
| (11-12)
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The left hand side of (II-12) is an invariant function of
WE(“;WLV?T The right hand side must also be an invariant
function. However, the R.H.S.(II-12) is a sum over contri-
butions from various intermediate states. Each term in the
sum is not necessarily invariant under Lorentz transformations.
Gell—Mann12 has shown that if we evaluate the sum in the frame
in which the component of the momentum of the external states
perpendicular to the vector 'R is infinite, then each term in
the sum is, in fact, invariant.

In this frame, all the products of the four-vectors ?)¢ N,
q'8,¢  take on finite limits. To specify the limit more

precisely, we write

YR Y -y B .
Pt vyt \T"\ NI L 9\\ K=\ (I1-13)
«d wd wd .:3 . wd '} o
where PL'Pﬂ ~ P T Pl To

wd
The frame of interest is the one in which | \~v 0 . For

example, the four-vector Pu. becomes
o acd ) T', e ]
P]\\ K Wo,f’\ P = PL t P\\
(I1-14)
; ) .
Po— Pu 4 (0 WONRY| TP
The four-vector products of Q' and Q with the external
vectors may be expressed in terms of the products of the ex-

ternal vectors and qn')ﬂl‘ in the infinite momentum limit.

We have
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phgl = 1_\_ L c\t\ + pre -0

Pt = 4 TN v ™ = (Plek-p\v)

Gyl = pla T

X
STCUESE S (¢ DR ru S ptrr SO U Bl G U

pLo -, l\. [ c‘l 4 P - (P('HL"’Y"] (I1-15)
pea m LTl P =)

Kag = P = -

i
.
N PE R U IR NS R PR TR AN L I L A ST RV

All the terms in (II-12) involving four-vector products
may be evaluated directly with the use of the limiting values
in (LI-15). We note that the angles X and ¢ , the form

factors, and the productsof the polarization vectors are all of

this form. The remaining terms may be evaluated with the use

of the vectors Q'-p'-K and q- P +1¢ which have only

time components. We have

]
VRO SR AR VA BN CA I RS g U TN T

H

3 X
(G- pe V™ G srrr-g 1 3Ry Lan st s m' e

-\
L 29 e~ ') (11-16)
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In the infinite momentum frame, we have from (II-15),
294" (4= P-1) = gt~ (P
\C""\"p" - T

- Py~ —~ (Fre-o\-
‘ (I1-17)
LG Pr) = - g

Q- — (PP
(g=-p\- - WK™

In the infinite momentum frame, the relationm in (II-12)

becomes
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The relation in (II-18) may be written schematically as

TY | /
" ////\\\\ L = ckan. -ph
. ex P> Z { '711. q! RY

-pN s ’ P 2P

™

— -qS-'
Y/
-py P\ pia

where the external line propagators have the form

Dyer § RLANY

the internal line propagator

T -\
dam WAY  Logt = (e )

the vertex functions

&
JUN- ) Fype (v ets’, 1T, s )

the tadpole

L fut A ,
K Coree L5085V Lg= e 1)

11

the vector line propagator

[ S Ry
W=\ (=)

Tore (95-0, 449,00 EW( p-p, P47, NY
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We note that the form factors depend only on the mass
variables ﬂﬂ: Py, Py Lt ,(?@ﬂbf?’ and not on the energy
variable VY = ‘t {(P4PIek ¢t »=7) or the momentum transfer
£t = (999{‘ . ~ Further, the rotation angles ¥ , as
given in (II-12), depend only upon the products of

thus are also independent of the energy V .

Section B

In this sectioﬁ, we wish to consider a representation of
the isotopic spin currents in terms of a set of single particle
states having a mass-spin relationship. In particular, we will
be interested in the dependence of the form factors on the
momentum transfer.

The isptoPic épin current contributes as the isovector
part of the source of the electromagnefic field, but it may
also be used as an interpolating field for the rho meson. For
this to be the case, the form factors given in Section A must
contain a pole when continued in the momentum transfer to .

We will take the isotopic spin to be conserved. Therefore,
the spin zero form factor will be zero. For the form factors

to be consistent with the existante of a rho meson, we must have

[¥3
S Ut-ne ) Fyy s v e ) soev)
' (I1-20)

S .
= Tie (00, p0p ) KPR P LRty FRSRTIND
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o ¢
where %)\$O\ is the source of the rho meson and Gx\ is the
corresponding form factor. The form factors will also have
other kinematic and dynamic singularities.

We noted at the end of the last chapter that the R.H.S.

(II-18) had dependence on the momentum transfer only through
the kinematié functions. These functions have kinematic
singularities Eﬁt have no singularities corresponding to the
rho pole. The form factor on the L.H.S.(II-18) should have
a singularity due to the rho meson. If we assume that the
relation in (II-18) may be continued in the momentum transfer
variable, ¥ , then the rho pole must arise as a divergence
in the sum ovér states.

To see how this may happen, we consider a representation
in terms of single particle states. We take the mass to be
related to the spin in the form P\‘A“;; and let the mass go

to infinity with the angular momentum.
X . '
My =P J—7

The relation in (II-18) becomes

. dane oo ¥
DO T A A A C U SO



45

. AT s
= U e v (x{) Formr (8 pt 1y
Jung'e
-t

- L+
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? v e (11-21)
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e\ OV L S (6,800 + e e )

J

633 teean }

We have used cérrent conservation to eliminate the scalar
form factors anrd have surpressed the index R* 1 on the polar-
ization vectors. The mass dependence has been replaced by the
spin dependence, and the vector line masses are given by
A s CRNEhAN and /(.An‘ = O,

We are interested in the contributions of the high J
terms to the sum 6n the R.H.S.(II-21). TFor these terms, the

mass A~ becomes large. In this case, the angles may be

approximated by
t - \‘ r~\\_ YRR ‘l/\-
WAL B X, 0 LR e pl LRy prep 3
’ — - Sin -‘1"3 T YAy RSN TA Y p\:} \
Wikl T waXy = L=l G
(11-22)
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The tadpole contributions are given by

(Te) Tre (0, 259 1) L8010

Qo (phan{gl--ky = o
L fh AL 1 .-kL .
e oLl - pTen ] ™ Ut < (paiN]
K}

—P Qv [ - ()

T b
U - S Al R AT SRR, (11-23)

S PRty 4 3 Lt p-piek] B Lipten i - ((vip‘mc\‘]“‘
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[ |
"(\‘ii\'\l i(i’ﬂ")‘\(

—7 1

. wi? L
YL = Lyt l"i G T g (pldt]

The full tadpole contribution, in the large mass limit, may be

written
I~
) Cre (0-90) bty
] (I1-24)
Vig i) gy Tghe (0 )

where

Veu = O

Vie ® —)

=
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i

-t
+ ("'%_ L-epn) ™ { [p-t - it
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!
e -t it ) 1}
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The vector line propagator may also be calculated in the

large mass limit. We have

(T N Em- Cabp, gtep, M) 0 By (00, PR, )Y

-~y

= Oﬂcr Vv (PR, te S hat

ﬁoo;co 2 D\o;oo = { [t"/‘b\'\‘ +/.ﬂ] I/LA\"

J e
Dierjor = TR [.“EI,LA‘:\

. -l
Doovip Dw} oo !.L S\ tt//”‘f.] CCrpYe= pipy) b
’ . (11-25)

-

J. ' Y ol
Dinjie = 3 F (6000 [etpp TEptoM- ) A

. “\« g -l/\
Dooyitr = Diopaey = 2 T 4 Lenad Denpva (yoppd

¢ Sy
D;m;u,\ = :'Z, [U/V\‘]\' { L+ N Tpp-et ] etpea \\"\P\\"]‘}

The rotation matrices for the external line propagators
depend upon (T,W\}\ only through their angle dépendence.
Therefore, we use the limiting values of (II—ZZ). The .
internal line propagators depend on 'J' through the repre-
sentation matrix as well. We must evaluate this limit
more carefully. We have, in the limit JT— ¢ Mg=—? D

~' 5 N !
Ta™= et olpp LX)
(I1-26)
"‘;* I’\f-"-?‘« i?“‘;ﬂ‘j‘.‘ ok !:‘h )
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WAy, = = =Vt A
kY
ok 1yt h n A < (' t\ eiawr\ 20 Y

A R B W Y VY.

The rotation angle ¥~ becomes small as '\M}‘-w? W , For large
'J' and small angle, the rotation matrix may be evaluated in

terms of Bessel functions of the first kind. We have

h) - intni
Ay Y . e Toemy (T%) (11-27)

for T Y O

Expression (II-26) becomes

e
[:C'\ﬂ‘m (p(MQ'\X C‘(ﬁ'ﬁ"\ (’Y{\

o R T LY
d s LA = paio Y Y o, (e (11-28)

- innl

The contribution of the large mass, large 'J' states to

the relation in (II-21) becomes,

- I ¢
Sro Juae) TP By e o)

r = OENQY ! ¢! 3
= e L L Axs (el eqcrx\'tg\
O NI
_ (11-29)
- il -ud
{ E‘I ¢ "‘)in"m(x ; "\ INS'

r_ Fﬁ"n' (91 )3’\ VH‘_"-HQ }‘r\@“ (\9 /\ u\ Dg Reg! 1\,?
- F:,anl (S‘,U\ ] J\ D\@’-h")"r\f ic- (\),'M ’b\ \/ih-s.. }
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where
B _IA-
Wiy = LR eI L= eyl
' s “, vy Lppt - i ;\j“”"
wn Xy T Lpnp- PYI LR~ 0
\ ‘,’\_
et = L e et e ey = r-pneetn TR0
and Vie is given in (II-24)
DR@,T%' is given in (II-25).

As we have noted before, the form factor on the L.H.S.
(II-29) contains dynamic singularities in addition to the
kinematic singularities. On the R.H.S.(II-29), the dynamic
singularities may arise only through the divergence of the
sum for €¢Yte ; <%, representing the beginning of the dynamic
cuts. The only dynamic dependence uppn & on the R.H.S(II-29)
is in the argument of the Bessel function. Thus, the analy-
ticity properties of the L.H.S.(II-29) 'place restriction on
the mass spectrum on the intermédiate states.

If J/mag=0 as J-7u> , the argument of the Bessel
function goes to zero for all values of t . Hence, no

dynamic singularities can arise. Therefore, we must have

/\N\TIS“""’O I -7 D

)

If we define a new variable,

X = T A, [Aup B
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we may convert the sum in (II-29) to an integral over X . The

R.H.S.(II-29) becomes a Bessel transform.

ST

ST\ 5\;’-)3&9\ T ’ P 15, 4,5)

) (11-31)
- g? J.{S 3
= U yg vy Qg v, Y ey NZA
g/c W

where R;?;‘ g Lt)  is given by

&P - b = et L. =

Q 3"TF\Q k'{\ = Y%;:“ sxb C’L‘}’\ e. J“‘»"'r\’\‘ \X ,‘t’f‘:}-‘-‘_\

AT < o
S A 5 B M1V, st g (Tpegy  (11932)

- <
Dineirg = Frme Lsi s Pistniny Fue (&M V, rw‘i.

and X = I w A .

The Bessel transform may be continued to ¥?0 ., TFor
large values of the argument, the Bessel function becomes
. o n
:ﬂn&m(\( I?‘x\ = jin'-m\&.\x ﬁk}«{‘\ -7 e‘K R (11-33)
If the cut is to begin at %< %, , the integral must
converge for t¢%, and diverge for %> &g . This will
be the case if the argument of the Bessel transform behaves,

for large 'J' as

s — e |
-y Yt fAY - ‘4€o[f'vvx_\3‘, n
€ = e , et A (11-34)

The only significant 'J' dependence of the argument of the
Bessel transform resides in the form factors. Therefore, for

large 'J', we have
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- 3T Hicl'\v\}'

v}
Fowa, s — e (1I-35)
and My [T 7 0, Mg B, T ®
Summary

In Section A, we derived a representation of the equal
time current algebra in terms of the invariant form factors
of the currents and invariant kinematic factors. The method
involves the introd;ction of covariant states of definite
total angular momentum and the use of the infinite momentum
limit to evaluate the commutators.

In Section B, we discussed the possibility that a set of
single particle states having a mass - spin coanstraint be
responsible for the dynamic singularities of the form factors
as functions of the momentum transfer. The mass spectrum and
the form factor dependence on the spin were shown to be
restriéted by the conditions in (II-35) in order that the
‘current algebra generate the appropriate'analyticity propert-

ies.
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