
ABSTRACT 

Covariant representations of the Wigner "little group" 

are constructed for single particle states of definite momentum. 

The matrix elements of scalar operators between the covariant 

spin states are shown to be invariant amplitudes. The corres-

ponding covariant Rarita-Schwinger wavefunctions are construct-

ed as functionals of the momentum four-vectors. These wave-

functions are used with Green's functions of Rarita-Schwinger 

interpolating fields to study the kinematic singularities and 

crossing properties of the invariant amplitudes. 

The covariant spin states and the infinite momentum limit 

are used to obtain a general representation of the local current 

algebra. A representation in terms of a set of single particle 

states having a mass - spin relation is considered. The 

current algebra implies a nonlinear relation between the invar-

iant form factors. The analytic structure of the form factors 

as functions of the momentum transfer is shown to place a con-

straint on the spectrum of the single particle states used in 

the representation. 
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PART I: Formalism for Arbitrary Spin Calculations 

Relativistic calculations involving particles with spin · 

have often proved difficult, as the transformation properties 

of the spin states under the Lorentz group are usually quite 

complicated. We will show that it is possible to p;irameterize 

the relativistic spin states so that the states have simple 

transformation properties under the Lorentz group. The method 

involves the introduction of two four-vector quantities. 

These four-vectors together with the four-momentum of the state 

will define the coordinate system in which the spin is quantiz~d. 

This would appear to introduce a great deal of arbitrariness. 

We usually deal not with single particle states but with matrix 

elements involving two or more particles. The four momenta 

associated with these states are not arbitrary. We will, in 

fact, use these four-vectors to define the quantization coord-

inate system for each of the states. 

In Section A, we define the covariant spin states, describe 

their properties, and show how they may be used to construct 

invariant matrix elements. In Section B, we define the wave-

functions that may be used to discuss the kinematic singular-

ities and crossing properties of the invariant amplitudes. 

Section A 

We wish to consider a set of states which carry an irreduc-

1 2 
ible representation of the Inhomogenous Lorentz Group (ILG). ' 

The ten generators of the ILG satisfy the following commutation 
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relations. 

l ~"' ' ~ ~ 1 .. 0 ,v. o, l)'t,"3 

t n,u\11 Pi:: l 
. 

~ \)() ?;.~ 
. 1 M~ Pv -: - \ r \ 

(I-1) 

t \\;'""•\\~~-) 1. ; ~ ~~ f M v.ir- -+ i1wr li~~ - ;1iU~ \lv4· -~1\/{' l\"'1" \I. I 

nl·'" 

where ~Mv is the metric tensor ~oo"!. \ 1 ~O\\.-: 11<Q-:. 0 iH.t." - J\~.~- • 
A set of states { \ \_\) l will carry a representation of the 

ILG if 

and (I-2) 

where U\e., 1 l\ \ is a Lorentz transformation given by 

(I-3) 

We follow Wigner1 and label our states by the eigenvalue 

of the momentum operator, PJA. 

0 0 - {) \ "} ........ 
T \M \~I 

I 

(I-4) 

The subgroup of the homogenous Lorentz group which leaves the 
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eigenvalue of .P;..·· unchanged is called the little group. Its 

generators are given by 

! 
'). 

(I-5) 

where (. 1,,_.., &·f' is the totally antisymmetric tensor with ( 01 t.\ ~ I . 

The operators (.JI'"'~~) satisfy the commutation relations 

(I-6) 

0 ~ \. 
If f' is tirnelike, ? ) () , the little group is a compact group 

and is isomorphic to SU(2). This is most readily seen in the 
!) 

rest frame where p, : / \Y\ o o o) 
I'' \ I I') 

In this frame, the gener- . 

ators may be written as 

(I-7) 

Equation (I-6) reduces to 

(I-8) 

which are the commutation relations for SU(2). 

The basis vectors for the representation may now be defined 

by the eigenvalue of the momentum and the eigenvalue of one of 

the spin operators. One usually starts in the rest frame with 

a representation of the spin operators, S j . The state is 

given by 

1 ~ ..... 0 0 0 (I-9) 

A rotation transforms the state according to
3 
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(I-10) 

where Si is a (2s+ 1) x (2s+ 1) matrix representation of the 

SU(2) algebra and ~; represents the rotation. 

A state of arbitrary momentum, P , is defined by 

(I-11) 

where L.\ P) is a given Lorentz transformation satisfying 

L ,. .. 
0 
l~\ -: ~l• /.\~\, An arbitrary Lorentz transformation is then 

given by 

(I-12) 

:=Vt L\t-\'\)\Jl l~ 1
\M·\~\.1.\'\\ \ 1\\\0CQ )>-.) 

l: 1 \f\'/)f\\.t\l\ 'i f~{H\·;:\ is a rotation usually called a Wigner 

rotation so that 

(I-13) 

These states have complicated transformation properties 

as the Wigner rotation is a complicated function of ? and f\ 

We will show it is possible to define a state by introducing 

two four-vectors 1 and K so that the Wigner rotation 

reduces to + 1. We let the vector 1 represent the 3 axis 

and I< represent the 2 axis. An arbitrary spin state will 
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be given by 

(I-14) 

where Ltl\~)\I..\ is a Lorentz transformation specified by 

with 

This requires that the vectors P 
1

<\ 1 \( satisfy the condition 

If P, <1 1 I<. are linearly independ-

ent then the conditions in (l_-15) specify '- l r, ·:; 1 I<\ to 

within a rotation of "). \T • 

A Lorentz transformation of thj'_s state yields 

If we depart from the conventional use of a fixed coordinate 

system, but instead allow the coordinate system to change with 

the physical system, so that °i'-:. f\<\ \\.1 .,.1\\t.., then the Wigner 

rotation l-' { r. il. t\~1, 1'.'.<) (\ u .. 11<; \<. \ is 1 or a rotation by 1. t\"' • 

Equation (I-16) becomes 
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(I-17) 

To check that all we have done is specify the quantization 

coordinate system in a covariant way, we note that 

(I-18) 

Hence, 
'I 

~-Wl\>'tl\>~~<'t\<.')' t\<;•v\""'~'~'] \.[' l?~>.'<>it<.'> (>:\S'?.'1'">. 
).' 

Similarly, (I-19) 

l(.t,H\1 \ lt>~)..C\\t) ~ ll\(.-~\i.._\(1 \}t1
11

"l IP'SXGK) ()\1 ~.~\)..) 
.,... 

These equations show that the states I ? ~ \ ~ \<. '> are defined 

such that the operators 

- l 

- .I. 
l l~·P\'-- \"r>"1 ,, l'W~\>\ and 

l~V-·'i'\'-- \t"\''J"' H•Wl\l) are just the spin operators s~ 

and S1. in an arbitrary Lorentz frame. We could, in fact, 

use the equations in (I-19) to define the covariant spin states. 

The normalization of the single particle states may be 

taken to be 

~ \>I $I >..' ~I \(.' \ \) <,) ). ~ \{) 

: ~\>() ~·-\v!..v) (''i" ~'>.'\\V{l:'lP'\ 1 11.')V\Lt~l\!<.\\ l"N\ ~~)(I-ZO) 

s 
~ ~\>o S 1 U>'~P\ 5.>'s Ox~ lR.\ 



R. is a rotation about the 2 axis; if q'-:. '1 

rotation about the 3 axis; if t\'~ c1 and I<'-:. IC 

Thus 

7 

If 1<'"-1< , then 

then ft is a 

then it = 1. 

(I-21) 

The properties of these states under time reversal and 

space inversion may be found by examining the equations of (I-19). 

We use the relations for <..0,.,,, l?) 

(I-22) 

where 2 is the parity operator, -r is the time reversal 

operator, and j\ { r~ I p \ ': 
From these relations follow 

I 

:: l. t(~·P\"· ~'t~\l ~ .E IPs~"\1</<.X\~1\~) 
'),,' 

: - '~ (I-23) 



8 

and 

(I-24) 

If we specify the trnnsformation properties of the four-

vectors q and I( and take 5~ to be a real, diagonal matrix 

and $\ to be an imaginary, hermitian matrix, the transformati9n 

properties of the states are determined. 

For example, 

(I-25) 

where 17~ and 1(.1 are phase factors, represents an acceptable 

choice. 

Two particle states may be constructed using these single 

particle states. In particular, the covariant spin state 

which corresponds to the helicity state of Jacob and Wick4 in 

the center of mass frame is given by 

(I-26) 

and satisfies 

I 

q.wl\)\l ) -:.. - P·~\ll(\\ \) ': t t~·?\'--,'tr>'1'° U..-<s-) \ ') 



9 

These two particle states may be expanded in terms of eigen-

states of the total angular momentum. 

(I-27) 

The covariant spin states may be used to discuss the 

partial wave expansions of the covariant scattering matrix 

elements. We consider first the decay of a particle into 

two others. The matrix element may be written 

<PS >. I< N I T:- I '1 I :s- l<. N (I--28) 

with 

This matrix element is an invariant function as 

(I-29) 

We may use the operator I<' W~\·\ -::. \< • \,H\\-: - C\ ·W\\~\ to show that 

Therefore, 

If the T-matrix is invariant under space inversion, we have 

::. <P~}.1u'11e+ ~ Y x:-~r 1CL"rc~i<tv;1<.R'f'"\-N) 

'S '+). 

-:: (-\) "'h 
(I-31) 
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which implies 

(I-32) 

A two body amplitude may be written as 

(I-33) 

This amplitude is also an invariant function depending only 

upon the invariants $:: ~p~q\"\. and -C ~ l?!...\))'\. • The 

amplitude may be expanded in partial waves using (I-27). 

- L <P'-11' "!' 'J.!-r;' 9' l') \A'I!'\ \ ~\ \ \'t1 :r A-~ ~ \\l ~>,<\·\) 
;} I .J" 

(I--31+) 

where Y.- is the center of mass scattering angle and the reduced 

matrix element of (I-20) is used. 

We conclude this section with a review of the properties 

of the covariant spin states. 

a) The defining equations are 

with 

-.. 
(I-35a) 
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b) The Lorentz transformation properties of these states are 

given by 

(I-35b) 

c) The transformation properties under the discrete symmetrie~ 

of space inversion and time reversal are 

s->-
J: \f>s>...~K)::. \i1 )) \··A \~°t-\~\() l-1\ '"'/i> 

(I-35c) 

d) The spin equations are 

I 

': t( 1),\')"-<\1\1
'1J\ L, H:.-sx~1t) <tf·~·dX) 

~ (I-35d) 

~ Ll\L·li'{-t<t\::\) [ ti'S~1 q1<7 <~lSi\>.) 
).' 

e) The helicity states are given by 

f) A change in the quantization axes is given by 

(I-35f) 
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Section B 

In the previous section, we have shown that it is possible 

to define single particle states having covariant transform-

ation properties. These states may be used to express matrix 

elements of various tensor operators. An important property 

of these states is that the matrix element of a scalar operator 

will always be an invariant function. 

The matrix element of a scalar operator between tr,,;o single 

particle states has the form 

(I-36) 

The diagonalization of the spin dependence results from the 

operator .. fi·k\\r'\ ~~ ~'·t•H\'\ being diagonal on both states. We 

have explicitly, using the defining equations for the spin 

polarization in (I-35d). 

(I-37) 

':. i t,v.-.iir"l-'\:~:rv (\''S')..'- (>\( l t ''~'{"1 J\o\.j\t')AV'I<.) 

: 0 

This implies the equation written in (I-36). 

A similar analysis can be made for a vector density~ It 

is useful, at this point, to introduce a complete set of vectors 
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which have simple transformations under the little group. 

We define the following set of four-vectors. 

,v.. 
lJ o{ l p Ci\(' 

u~ l\>t'.1\<.\ ~ P"" 

,,, u, t\'(1\\.\ ":. 

pl. l ~ l 

l. =t<."\. l '\. [ ~q1~')"- '\I p't'] " c."'' l\ \>\( 
(I-38) 

t~ 

Ui.lrr1\() ::. 

I - -

These vectors are norm-

alized such that 

(I-39) 

We may use these vectors to define invariant spin oper-

ators. 

.. - <) 

These operators may be shown to satisfy the commutation 

relations 

[ w- ~)· 1 
I . ) 1 

(I-40) 

(I-1++) 

If \•1 1 O , the vectors in (I-38) are real and the operators 
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defined by 

j· 
I (I-42a) 

are hermitian and satisfy the commutation relations 

The little group is therefore isomorphic to SU(2). 

If l,'l..( 0 , the vectors O.o and U3 are real, but U, and 

u'l.. are imaginary. The operators defined by 

\~\ :- - i W\. I p \. (I-42b) 

are hermitian and satisfy the commutation relations 

The little group is therefore isomorphic to the group 0(2,1). 

In the case \,-t.: 0 , the little group operators are given by 

I 

I L' : ~} \ L ~\')• \ ' 
1 

t.'--:: W1. t P"l .. \. 

These operators satisfy the commutation relations, with p"\ ~ 0 , 

The little group is therefore isomorphic to the Euclidian group 

in two dimensions. 

We consider the transformation properties of a vector 

density under the little group operators. Under Lorentz trans-

formations, the vector density is rotated according to 
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(I-43) 

We use the vectors defined in (I-38) to define a set of covar-

iant vector densities 

(I-44) 

Under Lorentz transformations, we have 

(I-45) 

The commutation relations of the covariant vector densities 

with the covariant spin operators of (I-40) are given by 

'i Wi t\H\\(l' J 0 ( ? C\ \(. ; bl •] ~· 0 \. 

(I-46) 

[W;l\it\1'-)> J j \? ('{\( i Q \ '1 '= p"l.jti\'<. «\ H {~H\I(, l 0\ 
~I 

As the covariant vector densities are scalars under Lor-

entz transformations, their matrix elements between covariant 

spin states are invariant functions. We could use the complete-

ness relation given in (I-39) to expand the matrix elements of 

U.~ the vector density in terms of these functions and the ~ 

vectors. 

It is more convenient, however, to introduce linear com-

)..• 

binations of the Vo1 vectors which transform as a spin basis 

under the little group operators. These vectors are the 

covariant polarization vectors. We label the polarization 

vectors by 
M 

£. '5.>. l \l ''i \( \ where 



p"I. 1 f -~ ! 
i·~ l ::\c1-J '- I l t <i ·i-1)'- - \°'1

1 1)·1] -... e·' <\ v I< 

. 1 . ... ... ~ \. 

J. 
h: . 

+ i I(~~ 1 

These polarization vectors are normalized so that 

,-· .. ' ' (• ' . \ 
<'_,111(11.''(.\' I<-'(\'''-•'\' 
,,~ .. !\' \ "·~'.-"" ~' 
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(I-47) 

(I-48) 

A change in the quantization axes may be calculated using the 

completeness relation of (I-48) • 

. ~ t A transformation in which the ., vector is unchanged and 

P·l('::.f,I{-= Ct•I<'~ 9·!-:.~-o is given by 

(I-50) 
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where 

In general, we have 

~ i~'f, - i >. 'f 'I.. 
€ ·;x l V'\ I() 1.:. c.\ '>..' ~ ~ (J\ e. . (I-51) 

where 
I ......... 

rJ · t< t t-j'\ 1(\ l '\,.. 

I 

•··· 1 <' r,J t 1\} "\. 1c.1 \. ·i'. \... 

I -1 

t Ci·\' t/.\' -· c1.q 1 \Ji) L t(i 1 ·0'i"·~ e/1v-i.:1· ~ l lSr)'-... q\. fl 1 \. 
I .\ -1 

~ v ... 0 ~ 'C. ()I 'H; l'J r I '1'?)\.~ c;\ p\-j\. t \ q1·r)' -1'\?\.1 ~ t- N'l.J t 

and ~J .,_ '(. i> 'i cl I 
}A ,u 

I ) I - ) The function C<).'>.' (:; . h . t. . 3 is t e spin rota ion matrix. 

f'1 ) 0 , the angle is real; if p1. ( 0 , the angle fJ is 

imaginary. 

We may now define a covariant spin density by 

If 

(I-52) 

The commutation relations of the spin density with the invar-

iant spin operators is given by 
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(I-53) 

where Si is a spin s, hermitian matrix representation of the 

SU(2) algebra in which 5~ is diagonal, S 1 real, sl. imagin-

ary. 

The covariant spin density is a scalar under Lorentz 

transformations. 

(I-54) 

We use the completeness relation of (I-l18) to expand the 

vector densities in terms of the spin densities. 

\·\" j ··,\ ._;. \ l· 

We have 

(I-55) 

Since the spin densities are scalar under Lorentz trans-

formations, their matrix elements between covariant spin states 

are invariant functions. 

(I-56) 

The spin delta function follows from the little group 

3 axis spin operators for the three states being related. 

- !.. 
P'·\.v\\1 \ L lr 1,(i\'\..·- v''\~'-1 '-

I' l'. "I'\ '•'1 r' y I k ..,. r • 

(I-57) 
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Therefore, we have 

(I--58) 

This implies the result of (I-56). 

We use these polarization vectors and the results of (I-56) 

to expand the matrix element of a vector density. 

== ~ i: y';t. l:, 
i ~· 

( \:i' c:,t >> ;:· I<. I .. h :i. ( \71..'~» \''·l.\)) \( j o\ \ \'~ ~ \)1 K) 
(I-59) 

The transformation properties of the spin densities under 

space inversion, ? , and time reversal, T , may be deter-

mined from the transformation properties of the vector densit-

ies. The polarization vectors satisfy the relations 

... •.. 

(I-60) 
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with I(\..< 0 

Under the discrete symmetries, the vector densities trans-

form according to 

(I-61) 

Hence, the spin densities transform according to 

(I-62) 

We are able to discuss the kinematic singularities and 

crossing properties of matrix elements of the covariant spin 

states. We consider, for example, a two body scattering 

amplitude. We use the reduction formulas to express the 

amplitude in terms of a Green's function of Rarita--Schwinger 

interpolating fields. We assume the Green's function has 
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no kinematic singularities as a function of the four-vector 

components. Therefore, the kinematic singularities can only 

come from the polarization tensors used to define the states. 

The effect of the kinematic singularities can be found using 

the explicit representation of the polarization vectors in 

terms of the four-vectors in (I-47). 

We consider the amplitude 

(I-63) 

The reduction formulas are used to obtain 

t,1;.., 1 

E. -.>.>.. U' '\ ,\J \ 

\ c\.'(1 \ r},8 \. ) ot"t-... t. 
i ~ 'x1 

(I-64) 

< o t ·r \ '~~/, 1\Vt.1\ \'t 1,t~,,h1.\ H.ir-\~\\'<\\ f.\u., 1\~lo1~ lo)l 

\1~''·1> r .\ 

and l: is a normalization factor. 



22 

The fields, R\/-''\ <.x\:: M,1.-11 •.•• ~ 1 ... 1...x\ , are Rarita-Schwinger
6 

fields, and 

),-1,·. ,v, \ 
t:~,>. \\'~tS) 

are the polarization tensors for a spin s particle: C.~S.\ 1 ii,-1.)are 

the usual SU(2) Clebsch-Gordon coefficients. The set of 

functions 

are the Green's functions (four point functions, M - functions) 

for the process. 

We assume the Green's functions have no kinematic singu-

7 larities as functions of the four·-vector components. The 

polarization tensors do have kinematic singularities. To 

determine the effect of these singularities, -we use the explicit 

representation of the polarization vectors given in (I-47). 

If the polarization vectors are denoted by 

kinematic singularities are square root singularities and 

occur at the points 

The effect of circling the branch point may be determined 

directly as . 

a) br2nch point at 

(I-66) 
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b) branch point at t-' u\\. 
\·\I r J -

t,u \ 
s "> \ ~ \> ~\ \('\ ---~'~ 

c) branch point at 

Therefore the 'on the mass shell' amplitude, as defined in 

(I-63), has kinematic singularities at the three points
8 

(I-67) 

The effect of circling these branch points is given by 

a) branch point at 

b) branch point at 

c) branch point at 

• l" , ... , ; r- ! ~)I·-"' I ·- \ ' \ I ; I ~ ,., I 

< '~'A.1 
I i 1T 1 \ T \ )\. T:i'""/ 
} 
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The crossing relations may also be obtained with the use of 

the representation in (I-64). We assume the Green's function 

may be continued in the four-vectors to the crossed channel. 

We consider a continuation in which 

P'~-·) p I 
' 
r~ r 

} 

The Green's function in the crossed channel is then given by 

-- continuation of 

We consider the continuation of the amplitude 

~V1 ~ \µ~1 

{~ s.\ \\)(!1\')\ 'Z:.Ti .. li'1L1~} (I-70) 

To make this continuation, we must continue the polarization 

tensors. We again inspect the explicit representation of the 

polarization vectors given in (I-47). If the kinematic singu-

larities are avoided, ie. the square roots do not change sign, 

the continuation is given directly. For example, 

l)·•,l J}Ai 

t. s" ~?,.I I~\ --·-·'> ~- S.X \P 1 -e~ ,-fJ) 

1,L•( 6l ~}...(~ 
(I-71) 

'(_ $ }. ( c1 P - I~ \ ·--~ ~.s\ C~ 1 P,-i3) 

if and 
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Therefore, for this continuation we have 

~ f).\1l u·.,1 lp~~ 

s 'TI 'I" I ~ q"i p f - N) <£. ),.\ ( \> - ~ A )'.)) 

(I--72) 

= 

where 

and i=\c.. 

t_5'A' \p'~~'-N\ 

..)# f ,l1·11 
t ~ (i' ( ~·. v-l'J\ 

fl I •) I r -::. I J t, 

-<.,., ( v11r,,\ • s V\·"'' 

.. 
~(.. ·: •• ('1 

means the continuation of R . 

The crossing relation derived in (I-72) may be related 

to that discussed by Trueman and Wick9 for the helicity 

amplitudes. The amplitude on the L.H.S.(I-72) may be ident-

ified as the invariant helicity amplitude, (,. >!~' )...r; ts, ~,v\ of 

Trueman and Wick. The continued amplitude on the R.H.S.(I-72) 
. '· 

is related to the crossed channel helicity amplitude by a 

change of basis in the spin quantization frames. This trans-

formation is given by 
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< v~)l,. ·~".'\\ i\ \l':~.\-·~·-ij'J (i:\
1

·r 1 ~'1v--N 1\c; 1·(tr'? 1-r37 
(I-73) 

(I ,... '.'> lt 

0\ ~le t."c1 ~\ ~-·i· \ 'l."\ cZ ~'\. ~ x._'$ \ cl·r''.r · \ ··y l,\ 

The amplitude on the R.H.S,(I-73) is the helicity arnpli-

tude in the cr0ssed channel. The rotation angles )'.: and 

the phase 1
'/ may be determined from the reduced matrix 

elements with the use of (I-35f). The continuation of the 

invariant helicity amplitude expressed in terms of the 

crossed channel helicity amplitude is found by the insertion 

of (I-73) into (I-72). We have 

I I 
.,. .._ vi• ''''•1 f\ I ., .. , '\ ' \ '.. ) C-1-· /, ... , p .... ' I I u ,·-N / 

This relation corresponds to the relation of Eq.(41) of 

Trueman and Wick? 

The above analysis for the wavefunctions and the associ-

ated kinematic singularities has been done for integral spin 

and non-zero mass. A similar analysis can be made for half-
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integral spin through the introduction of a set of covariant 

spinor wavefunctions. We need only consider the spin one-half 

case as arbitrary half-integral spin wavefunctions may be 

constructed by vector coupling the spiri one-half wavefunctions 

to the integral spin polarization tensors. 

The spinor wavefunctions will be defined in terms of a 

set of three linearly vectors as in the case of integral spin. 

We write the wavefunction as 

(I-75) 

The vectors are again to represent the quantization frame.· 

However, these vectors well only specify the frame to within 

a rotation of 

we have 

Therefore, under Lorentz transformations 

(I-76) 

where S \~,\ is a spinor representation of the homogenous 

Lorentz group. 

The covariant spinor may be written as 

(I-77) 

where L l\'t:\ \<.\ is a given Lorentz transformation from the frame 

As we have said before, the 

vectors lD•1%' will only specify the transformation to within 

a rotation of 1.1\. However, we are usually interested in 

matrix elements involving an even number of half-integral spin 
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fields and states. We may choos~to define their wavefunctions 

so that under Lorentz transformations the spinors change sign 

at the same time. 

The spinors will satisfy the following equations for the 

little group operators. 

~ 
\.. Ii' 

°\•WU)\ U\ \\H1\<.) = t (q·?\"- v'\1.-J \) (pr,i() ('JI\ 5::, \{fJ 

l (I-78) 

\(.i .• )'S\Ur\\)(\1<.\-: ( (!<·1'1\~fl''ll(1.j\ tJf'\ViK\ {ll" 1 \s:>\~') 

where 
~·t- . 

and ~ is a spinor matrix representation of the homogenous 

Lorentz group. ·· 

A covariant spinor field may be defined by 

~ lO\ \..)~ \P "" \<.\ (I-79) 

If the half-integral spin wavefunctions are properly 

matched, the matrix element of covariant spinors between covar-

iant spin states will be invariant functions. These wave-

functions will contain kinematic singularities as in the case 

on integral spin. With a specific choice of representation 

for the wavefunctions, these singularities may be analysed. 

We next consider the wavefunctions which have smooth 

limits to zero mass. The polarization vectors defined in 

(I-47) are not correctly normalized for this limit, and the 

little group operators must be thosegiven in (I-42c). 

The covariant little group operators defined in (I-40) 

satisfy the commutation relations 
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If we take , then we see, in the 

limit p't. •. ~ 0 , ali the Wj vanish~ If we define the little 

group operators according to (I-42c), then these operators 

become the correct little group operators in the limit 

These operators are given by 

and satisfy the commutation relations 

[ l 1 l -:. •\ n1. \"'" 
•I 1 I..\. I' "' .> 

(I-81) 

The polarization vectors are to be constructed from vectors 

which also have smooth limits as p'L~ 0 • 
}A 

of vectors vi by 

I 

We may define a set 

-1 
M -l -. v:-:_ U1l\A11. ':: t-1<.\) l. ( \ ~ 1\\'- - pi.~"\ 1 \. t /J.. ~, ~ l( 

(I-82) 

_, -l 
'/' .... - \)~ lii'\.1 '- ':.. l~ \('\. l \. \<"""' \ -"\. 



30 

These vectors are normalized such that 

(I-83) 

We consider an arbitrary vector field l\. ... \o\ and the 
' 

covariant fields given by 

(I-84) 

The commutation relations of the covariant fields with the 

little group operators are given by 

t, J ~ R,l "!. '-' l :r 1 j ~),_ ~] °' ·~;A I 'f\\. .. 
I 

t t~1 fi·\ ·~ ~· ; t-'h LL,if\\1 ... - \ ·~\, f\ '\.. (I-85) ) 

l l r::, 
...... t. 

- i f\i t. \..1., li,l i ? l. \.\\.. ' < ":.. 
·~·t I 'I '\ J 

with all other combinations commuting. 

If the vector field contains a spin one, zero mass excita-

tion, then the matrix elements of the fields will, in general, 

have a singularity at p"l.::. 0 . If ther~ is no spin zero, zero 

mass excitation, then the divergence of the field will not 

have the singularity. 

We consider the amplitude given by 

... - (I-86) 

If the vector rM:. f>•t... , then the amplitude lp\ \'>\ will have 

no singularity at pi., C> • If r'.A 1 p.A'-' then the amplitude 
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should have a singularity of the form 

(I-87) 

The matrix elements of the covariant field may be calcu-

lated in this limit. We define the amplitude 

(I-88) 

Using (I-82) and the definition (I-84), the amplitudes of 

(I-88) may be evaluated in the limit p"L~ o . 

J.,\.v-...._ Tc lP'-\ ~ 0 T-s IJ>"-\ ':.. 0 ,v'.,y ..... 

(l"'.;-10 ?'"\-) 0 (I·-89) 

tvv-. Ti (\)·1 \ ":.. Ti \p ?"1..-:o) ~ : \ 'L 
r-~~o 

I ) 

The vectors V1 and 'h .. may therefore be used to con-

struct the polarization vectors for massless particles. In 

the zero mass limit, the polarization vectors become 

·"'' E.+ l (H\ \( \ ~ 
l. 

- IT. l Vt + i V\v. 1 

-... I .. .L. - l 
R_ l-lt"l.1'- ~ (Gr~1 ~ .. ,C\P\( +i\\1.•1 (I-90) 

' ' .1.. \.- l\J(\IC\ .. ... f~ l-ll1:f \.. { t c\·?f' tJ..<H1< -i \~1.. l 
In the massless limit, the little group operators obey 

the commutation relations 
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The field operators defined by 

(I-92) 

satisfy the commutation relations 

t ·1· A l .~ c 
•41 I +" - r11' [ l,)"\. l At 1-= 0 (I-93) 

. 
The kinematic singularities of amplitudes with states 

defined in terms of these polarization vectors may be deter-

mined. We consider the amplitude for the emission of a 

photon. We use the reduction formulas to obtain 

> 

<·v\' P :t q l< ·\!\) 

-::. i-. ,Q.,.'. .__ ... 
~"\:._~ 0 

(I-94) 

where 1: is a normalization factor and F\,.,,h\ is an arbitrary 

interpolating containing the zero mass excitation. The matrix 

element <),_"'' \ f'.,,.~OI l'•\) will have kinematic singularities 

due to the polarization vectors used in defining the states 

However, the only additional kinematic singu-

larities in the amplitude will come from normalization factors 

in the polarization vectors. There are two of these: 

a) a square root singularity at l<-"\.: O. The result of circling 

the branch point is a change in sign of the polarization 

vectors. 

b) apoleatqd'-:.O. 
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The crossing properties of these amplitudes may be easily 

determined. If the kinematic singularities are avoided, the 

continuation of the polarization vectors is given by 

µ M 

f.. !. \ \l (\ \(. \ ~ tr. t~'iIT\ ~ ~~ -f> c,-~ ~ i< ~ -·K ---·· 
(I-95) 

M 
t,'.~ \pt')i(\ ~ __, -· \ 'C..t l?S!l\ --~ P-~ p \<-"- R 

Summary 

We have tried to present a comprehensive study of spin in 

the context of special relativity. We use covariant little 

group operators to generate states and wavefunctions which 

transform as irreducible representations under the little 

group, but which are covariant under the full Lorentz group. 

While the single particle states and wavefunctions appear to 

be more complicated than the usual formulation, their use in 

discussing any physical question,as in the afialysis or matrix 

eiements, avoids the introduction of extraneous paremetcrs 

as 3 axis quantization. The covariant wavefunctions also 

provide a framework in which one may investigate and remove 

the kinematic singularities of the invariant amplitudes. 
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P~t_lI: Representations of the Local Current Algebra 

10 Gell-Mann has proposed that the current densities in-

volved in the electromagnetic and weak interactions form a 

closed algebra under equal time commutation. We consider 

a representation of the algebra in terms of a set of states 

of definite space momentum and total angular momentum. The 

matrix elements of the current densities may be expressed in 

terms of invariant functions. The current algebra generates 

relations which must be satisfied by these functions. 

In Section A, we consider a representation in terms of an. 

arbitrary set of states. In Section B, we consider a repre-

sentation in terms of an infinite set of single particle 

states. We show how it is possible for these states to gener-

ate the known analyticity properties of the fonn factors. 

Section A 

The assumption that the current densities form a closed 

algebra under equal time commutation may be expressed as 

(II-1) 

where f J; lx ,t\ 1 are the time components of the currents and 

r ,.ir""i I r I are the structure constants of the algebra. 

The isotopic spin currents satisfy (II-1) with 1:0.l.( x)-:. i;I..'<\ 
~"-'W -'r"<' 

The structure constants are given by t ' ~ t. ; 
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is the totally antisymmetric tensor with t 1 I 

If we define an integrated charge by 
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(II-2) 

These operators satisfy relations corresponding to (II-1) as 

(II-3) 

The charge operators are given by 

(II-4) 

In the following discussion, we will be interested in an 

extension of equation of equation (II-1). We assume the 

equal time commutator of the charge density with the current 

density satisfies 

It has been generally believed and proved by Meyer and 

11 ~ >l~ I J i..' ..1.\ 
Suura that in a sufficiently convergent theory ~f '~ 1 \>' 

is symmetric in "1.. and \3, We will thus ignore this term 

when studying the antisymmetric part. 

We consider a representation of the algebra, defined in 

(II-5), by a set of states of definite momentum and total 

angular momentum. The states will be labeled by 

(II-6) 

where P is the four-momentum of the state, s is its total 
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angular momentum, ~- is the spin projection in the frame lP'i t--J\ 

as defined in (l-35), and 11\ is a degeneracy parameter. 

where 

We use equations (11-2) and (lI-5) to obtain 

I
,, \..~ 

. 'l-' 

(II-7) 

We use the polarization vectors as defined in (l-47) to 

express equation (11-7) in terms of the form factors of (l-56). 

Equation (11-7) becomes 

We introduce a complete set of intermediate states in the com

J~~ 
mutator of (11-8). The integral ) )lo is over the four-

momentum of the intermediate state. The summation L is 

over all other degrees of freedom. We have 
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where 

<\ ~ -:. t 
_.., '\. 

( \~'+ \t.\ '\. ·\~\"t-1 
11..._ 

t -.......> "\. 
1/L 

<?\ .. -:... t 9-\(\ t ".,\<r] '· . 

The reduced matrix elements < · \I ) represent a 

change in the quantization axes for the covariant spin states. 

The transformation is given in (I-35£). For example, we have 

where 

-... <' 
D;~., \R\ 

'Y.. I :: v.r .. ~·1 

(II-10) 

= 

I _! 

-:; ( p1.p p1q'- (1'1.p,91]t~v'·\'\''--r''v1i-1:hr'~r)'°·~'")f'-l\. 
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We use the relation of (I-59) to expand the matrix elements 

of the currents in terms of the form factors. We also use the 

relation of (I-50) to give 

•"'- M - l ·:rtpt 
't l ~ { '(I. \1 

) ? ! ~ \• ) ,,J ) ': [ 'T ~ l v ~ ~\ v '+ ~ I N : \ €,. 

(II-11) 

The relation in (II-8) becomes 

\~ ' . ~ I _!_ Ft'\ rr ~'\\\ q11 :r 1 \ q L?)'- \{) ·\\ \) \ S) o.l 'f"A_ ~it.~) \ °l'~\)\\. 

\lt~ ... ~\1 

~-\) t-\tn-u& \(\ 1~\~ 1 ~ 1-1P1 N/l tT'f l\)L?> \J 1{·r) N:) 
(II-12) 

::; I 

cl t11 
'" l'1. ·1.) ~ti (\ •. \ 1 ~r \' - \> N , I ~ ~ ( O\ \ P s 'S' ~ \\J,) 

where 

"t, ~ ~ \v', .. ~ >~c,); 'V·t-: 'kt(\1 ~~&·P\; '1/.l ~?L<~1 ~,f'1) 

-1 -t 
., N~~ Ct-)°1.N:tj ~ t.;.-"~\f ~ - N1'.}, t.t-J1..rJ;t1 
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The left hand side of (II-12) is an invariant function of 

~ 1~ \>'\ l'V'.·VI"-: The right hand side must also be an invariant 

function. However, the R.H.S.(II-12) is a sum over contri-

butions from various intermediate states. Each term in the 

sum is not necessarily invariant under Lorentz transformations. 

Gell-Mann
12 

has shown that if we evaluate the sum in the frame 

in which the component of the momentum of the external states 

perpendicular to the vector 
.... 
I< is infinite, then each term in 

the sum is, in fact, invariant. 

In this frame, all the products of the four-vectors P:P,Nl 

take on finite limits. To specify the limit more 

precisely, we write 

(II-13) 

where 
<~ .J 

p J. I I< 
. 
~ 0 

.... 
The frame of interest is the one in which I P.1.\-J C.O • For 

example, the four-vector Pr- becomes 

..-.J _, J 

r - Pi.. 1- \)\\ 

(II-14) 

The four-vector products of C\ 1 and C\ with the external 

vectors may be expressed in terms of the products of the ex-

ternal vectors and '\1\. 1 ~ \. in the infinite momentum limit. 

We have 
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I ( ' ~I :: p I· I<- 1" \<.'-

\ 

tJ·<1'::. i t((i'·\l\'1.\t'\.- ~tt>'·\)\•\<.\"-1\. \.q 1\...-\~ 1 -tll)"\,1 

(II-15) 

I<.,<\ p. \{ - \<."\.. 

1 
N ·~ -:. ~ l. \\>'-v'i"'\<.'\. -- \ UAv\'lc..\..,_ 1 \. t (','-.. tr·\{)"J 

All the terms in (II-12) involving four-vector products 

may be evaluated directly with the use of the limiting values 

in (II-15). We note that the angles ":l and 'f , the form 

factors, and the product~of the polarization vectors are all of 

this form. The remaining terms may be evaluated with the use 

of the vectors <\'-\>'-1( and '}- Pt 1( which have only 

time components. We have 

-:::. (q'~y'-·KS'-"- (.\\!11 '·~,~- 1 - 01'f'J,'l )~to\ \-'-·"'' 11\
1 :!\\

1
fl 1 l'V{) 

t J..<\ 1 V\ 1-t,'-1<.)1 - \ 
(II-16) 

-\ 
~E. ~'-i1' (p'-'1', P1-+0.. 11 Ni')· l'l'-P'-\L) l 1'1 1 tr1 1 -?~\<.)] 
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In the infinite momentum frame, we have from (II-15), 

I <Cl n \ .. _,. a.I'\. _ I tH+ll\.'I.. ?.C\, \-r-K --... , \r \ 

(II-17) 

,___..) \('-

In the infinite momentum frame, the relation in (II-12) 

becomes 

s - i \!1,'·->..t-'t\~' '!>' .( 
L ( e, c-h:~1\'k,'\ ~'M1(\,,~,i.~1, 

"~\ tt1 n.~ 1~ ~·n'h 

I \I.''\\\..,~. 
fl' K"\. • f\ .... , <-/\~ \ (I<'\)- t-') E ~v ~'-11• ~ ptq1' p1,q1, rJi'). { ~ '~ P'-1t\ 

_, ;r ~ 

C '1 ''"~ t V~\<\" 1 o-\n 111 \'r{ \ F,w t'\--~~·'-:r 
1 

t ~··1<-?\\Rl ~'?'Ls.\ 

s _, '\):i ~~lj\ 
~IS">. l°1:\'\ [ l~'.,tt-~1"'-] {~1\ Er(~~~- t ~\~ 1 Qt'\~,1\1 :), ( T\f {9~r, r~e,10;) (II-18) 

-it>..'-}. .. lC!W s. I - ~ 
- e o~Xir·' n:1) l"o-·r;' (·'.•,tv•'ls', lP'-nl·n"'R., "'·°',.,c\1~) 

R "tt\l.I\ I 
t l'Y1-tK-9)\."°f\ {-\\ f_R~Ii-1•\~!1 1 \ 1141 1 1~ 1)' t_T'f li>l..? 1 f1

1-!P 1l'J1\ 

t ~"-t~·-K\\'f' c1·~:!i·t.·~h'1 F1~1'\·\t\c\~tJ'> K'R>"·°'P~1 ·s) c\:>.l";<3) 
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The relation in (II-18) may be written schematically as 

T'f 

AP'~· 
'1' 

(II-19) 

where the external line propagators have the form 

the internal line propagator 

the vertex functions 

the tadpole 

the vector line propagator 
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We note that the form factors depend only on the mass 

variables '\''", P''\.. , p"\. , \('\. , {r 1+t~ ·~)'\.. and not on the energy 

variable V ~ ~ li''i-\)\l"tf(. t ¥'· \l\ or the momentum transfer 

. · Further, the rotation angles )!. , as 

given in (II-12), depend only upon the products of 

thus are also independent of the energy \) • 

Section B 

In this section, we wish to consider a representation of 

the isotopic spin currents in tenns of a set of single particl~ 

states having a mass-spin relationship. In particular, we will 

be interested in the dependence of the form factors on the 

momentum transfer. 

The isotopic spin current contributes as the isovector 

part of the source of the electromagnetic field, but it may 

also be used as an interpolating field for the rho meson. For 

this to be the case, the form factors given in Section A must 

contain a pole when continued in the momentum transfer to 

We will take the isotopic spin to be conserved. Therefore, 

the spin zero form factor will be zero. For the fonn factors 

to be consistent with the existance of a rho meson, we must have 

(II-20) 

--



~ 

where J, ,}O\ 
I ' 

./ 
is the source of the rho meson and 6~\ is the 

corresponding form factor. The form factors will also have 

other kinematic and dynamic singularities. 

We noted at the end of the last chapter that the R.H.S. 

(II-18) had dependeqce on the momentum transfer only through 

the kinematic functions. These functions have kinematic 

singularities but have no singularities corresponding to the 

rho pole. The form factor on the L.H.S. (II-18) should have 

a singularity due to the rho meson. If we assume that the 

relation in (II-18) may be continued in the momentum transfer 

variable, t , then the rho pole must arise as a divergence 

in the sum over states. 

To see how this may happen, we consider a representation 

in terms of single particle states. We take the mass to be 

related to the spin in the form P'~ ,,,,: and let the mass go 
.) 

to infinity with the angular momentum. 

The relation in (II-18) becomes 

44 
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I ~ti'·~' 
L-\\ t.ll''-t-11 lv'-C\') P1t'i', rvi'\ •\q' .. \)'~K) 

(11-21) 

s 1~ ~~\"\ 

cl 1r>.. \ "t~ ') ~)-11 f' \-\\ '~\I·~ { c,1..~) C.. 1'+ ~, i~/\ · €.1 1r l ~~ ~, y 1-t·~, h}:\ 

We have used current conservation to eliminate the scalar 

form factors ar~d have surpressed the index R ~ \ on the polar-. 

ization vectors. The mass dependence has been replaced by the 

spin dependence, and the vector line masses are given by 

and IA'\... ':.. \<\.... • 

We are interested in the contributions of the high J 

terms to the sum 6n the R.H.S.(11-21). For these terms, the 

mass t{(... becomes large. 
,j 

approximated by 

In this case, the angles may be 

(II-22) 

-~ 

~ ( t?1"l-vc'1 Kl.~"-v\~(?:i-'il.K\r'+?\l [N,.c:r~~)\Jl. 
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The tadpole contributions are given by 

00 

10 

111 (II-23) 

The full tadpole contribution, in the large mass limit, may be 

written 

(II-24) 

where 

Vo'.) = o 



The vector line propagator may also be calculated in the 

large mass limit. We have 

{l-~ 

(f'1Y' (-1, E.1tl'S" l °''-{>} E1 1+\'} Ni'\ . tnf l~L\>l P't\\ tJ,'\ 

D 00 I 10 ";. 
) 

On.r,-- ~''f ~r:l>\ l<. > 11\.\ 

:t J. 
f:\'.. 
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' ' . 

D1t1i\1.\ -:" ~l. L~lf\i.Ji l \-t l±)(t) tP'·\J-\'ft][pr'l~'- .. \~ 1·~\\i 1 } 

The rotation matrices for the external line propagators 

depend upon (~ 1 '\t\\}\ only through their angle dependence. 

Therefore, we use the limiting values of (II-22). The 

internal line propagators depend on 'J' through the repre-

sentation matrix as well. We must evaluate this limit 

more carefully. We have, in the limit J'~ cl> l\..-44-? 00 

(II-26) 
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The rotation angle '}'..iTr becomes small as '\.\\?'~ ~ • For large 

'J' and small angle, the rotation matrix may be evaluated in 

terms of Bessel functions of the first kind. We have 

(II-27) 

for 

Expression (II-26) becomes 

(II-28) 

The contribution of the large mass, large 'J' states to 

the relation in (II-21) becomes, 

$' ~ 

C'~).1~ 1 l%~\ 0~()).. \):~'\ 

(II-29) 



where 

vn 'If..: :: C \>'· P - 1)1'\ 1 t \ 'Y 'v\i'· - v11·~"' i '.l 
_,, 

un't-;.'::' tP'·P- j)'\~l(P~Pl'"-r1~p\) '-
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·'1 
u.~-) '-r' -= -t l l ~~ii\\ t« n1~t>) - ul"·-~ 1'"' t(t ?!.-~\ 1 t rv"\.t~ 1·v\\) '-

and is given in (II-24) 

is given in (II-25). 

As we have noted before, the fonn factor on the L.H.S. 

(11-29) contains dynamic singularities in addition to the 

kinematic singularities. On the R.H.S.(II-29), the dynamic 

singularities may arise only through the divergence of the 

sum for 1: ")to to representing the beginning of the dynamic 

cuts. The only dynamic dependence up~m t on the R.H. S (II-29) 

is in the argument of the Bessel function. Thus, the analy-

ticity properties of the L.H.S.(11-29) place restriction on 

the mass spectrum on the intermediate states. 

If "J/;...v,r-'iC as J'-1 M , the argument of the Bessel 

function goes to zero for all values of· "t . Hence, no 

dynamic singularities can arise. Therefore, we must have 

If we define a new variable, 

(II-30) 
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we may convert the sum in (II-29) to an integral over X • The 

R.H.S.(II-29) becomes a Bessel transform. 

(II-31) 

where is given by 

(II-32) 

and 

The Bessel transform may be continued to t) 0 • For 

large values of the argumen~ the Bessel function becomes 

(II-33) 

If the cut is to begin at i.: <' ~ 0 , the integral must 

converge for + <. ~o and diverge for t "> ~ o This will 

be the case if the argument of the Bessel transform behaves, 

for large 'J' as 

-. (II-34) 

The only significant 'J' dependence of the argument of the 

Bessel transform resides in the form factors. Therefore, for 

large 'J', we have 
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(II-35) 

and 1\/\\"! / :r --~ o 1 
r::./"> . ) 

Summary 

In Section A, we derived a representation of the equal 

time current algebra in terms of the invariant form factors 

of the currents and invariant kinematic factors. The method 

involves the introduction of covariant states of definite 

total angular momentum and the use of the infinite momentum 

limit to evaluate the commutators. 

In Section B, we discussed the possibility that a set of 

single particle states having a mass - spin constraint be 

responsible for the dynamic singularities of the form factors 

as functions of the momentum transfer. The mass spectrum and 

the form factor dependence on the spin were shown to be 

restricted by the conditions in (II-35) in order that the 

·current algebra generate the appropriate analyticity propert-

ies. 
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