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ABSTRACT 

SAC4, R) plays a role in theories involving gravity, including QCD-generated gravity-' 

like effects in hadrons. \Ve evaluate its single Casilllir invariant and that of its S A(2, R) 

and S A(3, R) subgroups. We study the group orbits and classify the unitary irreducible 

representations. 
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1. The Role of GA(4, R) and SA(4, R) in Gravity and Gravity-related Physics 

The Affine Groups, both the general affine GA(4,R) and its unimodular ("special") 

subgroup SAC4, R), with their double-covering groups GL(4, R) and SL(4, R) appear as 

symmetries of the spectrum of particle states in various gravity-related theories. The 

following list is not exhaustive: 

a) Theories in which spacetime is no more Riemannian, above Planck energies [1]. In 

such theories, the primordial local symmetry is either the Conformal group or its Homoth

ecy subgroup, i.e. the Poincare group combined with dilations, or alternatively, GL(4, R) 

(which also includes dilations) or its SL(4, R) subgroup (excluding the dilations). Here, 

we are interested in the latter case. The fields then carry non-unitary representations of 

SL(4, R) and the particle Hilbert space is that of SAC4, R). Under spontaneous symmetry 

breakdown, the local gauge group reduces to the Lorentz group and the Hilbert space 

becomes that of the Poincare group. Similar situations arise in Metric-Affine theories of 

gravity [2]. 

b) Einsteinian gravity, when interacting with hadron matter, in a phenomenological 

description in which quarks and gluons are replaced by baryons and their excitations. Such 

a description [3] involves manifields, i.e. de-unitarized [4] infinite-dimensional representa

tions of SL(4, R), the double covering of the special linear group. The Hilbert space here 

is then that of SAC4, R). 

c) This formalism can be extended (for any fields) to fit a semi-quantized description 

for particles under the effect of gravity, i.e. particles in a curved space. The Hilbert space 

group is then defined by the group of Diffeomorphisms, induced over S A( 4, R). 

d) An approximation to QCD in the (confinement) IR region [5] which emulates 

(Riemannian) gravity, with applications in particle [6] and nuclear [7] physics. Here again 

matter is represented by SL(4, R) Inanifields, with states classified by S A( 4, R). 

The field-particle algebraic relationship follows the prescriptions of Relativistic Quan

tum Field Theory, which at the classical level, at least, contains the tools for a smooth 

transition to General Relativity. The Principle of Covariance, for one, requires the fields to 

carry the action of the group of Diffeomorphisms. This action will generally be represented 

non-linearly, over the linear subgroup SL(4, R) or over its double-covering group SL(4, R). 

Therefore, even in Special Relativity, before the introduction of the gravitational field or 

of curved space, the fields carry non-unitary representations of SL(4, R) :J SO(1,3) or 

(for spinors) SO(1,3) = SL(2, C). The Hilbert particle space symmetry, on the other 

hand, is determined by the Principle of Equivalence, i.e. it is that of the Special Theory of 
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Relativity, i.e. the Poincare group P = SL(2, C) XS 'R4. Similarly, in the affine situation, 

when SL(4, R) replaces SL(2, C), we obtain, as Hilbert space of particle states that of 

SA(4,R) = SL(4,R) XS 'R4. (1) 

The elements of S A( 4, R) are given by 5 x 5 matrices (the Mobius representation) 

(2) 


2. The Casimir Invariant of SA(N, R) and the Group Orbits 

In a work treating the invariants of real low-dimensional Lie algebras, Patera et a1. 

[8] evaluated the Casimir invariant of SA(2,R) (named A5 ,40 in their list). Defining the 

elements of the Lie algebra in the 3 x 3 matrix form 

(3)a=(~ ~) 

where, as displayed in the 3 x 3 Inatrix, 1 E sl(2, R) is a traceless 2 x 2 matrix and p is a 

column vector (the momenta). The Casilnir invariant is qua.dratic in the translations pi 

and is altogether of cubic order (we denote t.he diInensions by numbering them from 0 to 

N - 1, in analogy with 11inkowski space), 

(4) 


The basic advance in the study of the Casinlir invariants of the affine and related 

groups followed the work of Sternberg [9]. M. Rais [10], NI. Perroud [11] and Demichev et 

a1. [12] showed finally that the SA(N, R) have a single such operator (and the GA(N, R) 

have none) which, using the Cartan-vVeyl basis in the related gl(N,R), 

(Ei)u _ cus::j
i . v - (Ii (Iv (5a) 

is given by 

(5b) 
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which is equivalent to the determinant 

C(N) = det(p, Ep, (E?p, .. , (E)N-I p). (5c) 

This involves powers of E (the basis in the related gl(N, R) algebra) going from 0 to N -l. 

C(N) is thus a polynomial of degree N in the translations p and of degree N(N - 1)/2 in 

the sl(N,R) generators; altogether it is thus of degree N(N +1)/2. The expression (5b) 

or (5c) automatically takes care of the tracelessness of the sl(N, R) generators, i.e. the 

diagonal generators appear in combinations Ej - EI. 
The group SA(N, R), acting on the space of momenta, has two orbits: 

OrbI = {O}, (6) 

For the null orbit, i.e. when we select states for which all N components of the 

momenta vanish, the Casinlir invariant vanishes, since it is a homogeneous symmetric 

polynomial of degree N in the 111onlenta.. In the second orbit (which, incidentally is invariant 

under the entire GL(N, R)), for sl11a11 values of the nl0111enta, the invariance of the Casilllir 

operator implies that the eigenvalues of the SL(N, R) homogeneous operators must grow 

fast. In an example treating SA(2, R) and due to S. Sternberg, putting the non-vanishing 

N-vector p at rest (i.e. pO i= 0, pI = 0), the "little group" (the stability subgroup) consists 

of matrices 

(7a) 

l,From (4) we have C(2) = q(pO)2, the product of the squared "energy" by q, a fake 

translation momentum of SA(l, R) and really a component of the SL(2, R) shear, pointing 

in the 0 direction. If we now use the coadjoint 111atrix 

(7b) 

to rescale the pO momentum by a factor A, we see that the q will be rescaled by a factor 

A-2, thus preserving the invariance of the Casil11ir operator. 

3. The Projective Representations and Cohomology 

The basic construction follows Wigner's [13] classical treatment of the Poincare group's 

Hilbert space and projective representations (for Quantum Mechanics). Let H be a Hilbert 

space with scalar product <, > and if the corresponding projective Hilbert space, i.e. 
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iI := [aw IwE H, a E C*] . (8) 

Measurable quantities, in QM, are invariant under phase transformations. Physical 

systems are therefore described by elements ~ E iI, the "ray" representations. For the 

same reason, should the group acting on spacetime possess a double-covering group, the 

latter may act as an isomorphisln (up to a phase) on the representations (e.g. Spin( N) 

instead of just SO(N), the geometrical orthogonal group). 

An SA(4, R) transformation A on spacetime (in the above sense) induces a transfor

mation f>( A) : iI ~ iI. This has to be an element of the set U(iI) of unitary operators on 

iI, as long as S A( 4, R) is assumed to be a symmetry of the system. Each homomorphism 

p from SAC4, R) to U(H) gives rise to a projective representation ?r(p) = f>. 
In the opposite sense, according to vVigner's theorem, each projective representation 

f> of SA(N, R) can be obtained from a representation p of a group G, i.e. we can find a 

group G and homomorphisms Jl and p such that the following diagram is commutative and 

that both sequences are exact sequences. 

1 ~ ]{ G SA(N,R) ~ 1 

!f> (9) 

1 ~ U(l) ~ U(H) U(iI) ~ 1 

The groups G and ]{ are deternlined by the second cohomology of the Lie algebra of 

SA(N,R), i.e. '}i2(sa(N,R)) [14]. 

For N = 1, we have '}i2(sa(N, R)) = {OJ and G is the covering group of SA(I, R), 

which is SA(l, R) ~ (R, +) itself. Hence G = SA(l, R) and ]( = 1. 

For N = 2, the 2-form dtl dt2 is left-invariant and closed, but the I-forms tl dt2 or 

-t2dtl are not left-invariant. Thus dim '}i2(sa(2, R)) = 1 and G is the central extension 

of the universal covering group of SA(2, R) (an infinite covering [15]) by n. Moreover, the 

lift of a certain projective representation is uniquely determined, since '}il(sa(2,R)) = O. 

For N = 3,4 we obtain '}i2 (saCN, R)) = 0 and G is equal to the universal covering 

group [16,17J of the group SA(N,R). For N = 4 we have ]( = -1,1, i.e. G is the 

double-covering group SAC4, R) [4]. 
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4. Induced Representations. 

The two orbits of (6) provide for a classification of the unitary irreducible represen

tations of SAC4, R). We have a hierarchy of stability subgroups over which the unirrep is 

constructed as an induced representation a la Wigner and Mackey. The 4-vector p either 

vanishes, p = 0 (case I) and C(4) = 0 or it doesn't, p =1= 0 (case II) and C(4) f"V (pO)4 = m4. 

Case I: physically, it is useful to think of this case as the very-low frequency limit of 

a massless particle, with its R.egge excitations. The little group is SL(4, R). The unirreps 

of this group have been classified [4,18]. They are rather unphysical in that the Lorentz 

subgroup will appear in unitary infinite representations, the unirreps of Gelfand and Ya

glom [19]. These contain all spins, and the action of the Lorentz boost on a state with 

spin j connects it with the j + 1 and j - 1 spins. Particles here are thus not charac

terized by definite spins, as phenomenologically required. These representations are also 

known as "infinite spin" representations. Still, there are problems in physics in which the 

SO(I, 3) C SL(4, R) is not the physical Lorentz group, and these unirreps may then prove 

useful. Note also that we do not encounter this difficulty with the fields and manifields, 

since these are construct.ed wit.h the de'l£nitarizing automorphi~r;m A [4]. In a non-unitary 

and finite representation, the Lorentz boosts stay anti-Hermitean and cancel. 

Case II: the little group is SA(3, RY. This affine group consists of the semi-direct 

product of the spatial SL(3, R) with a "fake" set of three "translation" momenta p', in 

fact representing contributions of the spatial shears to the 0 direction. We now have two 

subcases: 

Case IIA: all three components p' = O. The effective little group is then SL(3, R). 

The unirreps are induced over this subgroup, they can be reduced to infinite discrete 

sums of spins, fitting the hadron situat.ion and also providing an interesting model for 

primordial fermion fields (in fact manifields). This picture has been studied in [3,20]. It 

fits all applications mentioned in our introductory comments. Note that C(3/) = 0, and 

as a result C(4) = 0 as well, since the mllltiplyer of (pO)4 is precisely the C(3/) Casimir 

invariant of the stability subgroup defined by pO. 

Case IIB: the fake momenta p' =1= o. We can select a frame in which only p'o does not 

vanish, a fake energy-like component. C(3/) f"V (pO/)3 = (m /)3, rn' a mass-like eigenvalue. 

The new little group is SA(2, R)". Again, the "translations" are fake momenta p". We 

can have two cases. 

Case IIBl: all cOlnponents of p" = 0 and C(2") = O. In that case, we get again both 

C(3") = 0 and C(4) = O. The effective little group is SL(2, R) (i.e. the double-covering, 
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in an infinitely covered group). The unirreps have been classified by Bargmann [15) and 

are useful in a variety of physical contexts. 

Case IIB2: pit i= 0, G(2") I".; (p")2 = (n1")2. The little group is SA(l, R) as in (7a), 

with one fake momentum p"'. Again we have two possibilities; 

Case IIB2a: p", = 0, G(l"') = 0. This is a scalar representation. As a result, 

G(2") = G(3') = G(4) = 0. 
Case IIB2b: p", i= 0, G(l"') = q = mill (see (7a)). Note that here G(2") = (m")2 7n"', 

G(3') = (m')3(m")2m'" and G(4) = (m)4(m')3(m")2 m"'. 
To summarize, we have 5 classes of representations: I, IIA, IIB1, IIB2a, IIB2b; which 

are illustrated in the following diagram: 

SA(4,R) +- SL(4, R) I 

i 
SA(3, R)' +- SL(3, R) IIA 

i (10) 
SA(2, R)" +- SL(2, R) IIBI 

i 
SA(l,R) IIB2a, IIB2b 

Moreover 

G(4) = 0, for I, IIA, IIB1, IIB2aj G(4) = (m)4(m')3(m."?m"', for IIB2b. (11) 

5. Dynamical Considerations 

At first sight, the Casimir invariant (5b) appears to constrain the masses and spins in 

a wrong manner, as in the Majorana [19] infinit.e equation: the higher the spin, the lower 

the mass; this is the opposite of what we observe in hadron phenomenology and of what 

is assumed in the Chew-Frautschi plot for a R.egge trajectory. However, considering that 

in the general case (including the most useful case IIA the invariant vanishes (as seen in 

(11», the value of (m)4 stays unconstrained in all but case IIB2b. Instead, constraints 011 

the value of the masses may be derived dynamically [5], rather than kinematically as in 

(11). It is remarkable that an evaluation based on the pseudo-gravity approximation for 

QCD in the IR. region does reproduce the linear correlation between (m)2 and the spin j. 
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