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Absract 

Assuming a continuous ansatz for the metric we solve the Einstein equations for a thin wall with cylindrical 

symmetry. The Solution can correspond to a collapsing matter shell leading to a naked, without Jn y horizon, 

singularity. 
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The study of (2+1) dimensional thin walls is now very common; this is partly because 

of the role domain walls may play in cosmology [1- 81. Usually the authors are used to handle 

the problem in the Gauss-Codazzi formalism [9,10]. The work of Geroch and Traschen [11], 

however encourages OJle to tackle the problem directly using distribution-valued tensors. 

This has already been successfully done for plane- [12] and spherically symmetric [13] thin 

walls, with the same results as had been previously obtained by Gauss-Codazzi formalism. 

The axially symmetric case has not yet been considered in the literature. It should 

be noted that even domain walls could be in the shape of an infinite cylinder. Here we 

report on a new solution which we have found for the Einstein equations representing a 

thin infinite cylinder using our direct method [12,13]. 

Using coordinates p > 0 , 0 < y ~ 27T , and -00 < Z, t < 00 we write the metric in 

the form 

(1) 

\Vhere f, h, and ware functions of p and t . The components of the Ricci ten~ or are then 

calculated to be 

h h2 W tV 2 f /I f 12 hi!, Wi!, hj Ii}
Roo = - - - + - - -- - - + - - -- - -- - -- ­

2h 4h2 2w 4w 2 2 4f 4h 4w 4hf -'t!cf 

i1' hh' Wi ww' h!, w!' 
'2h - 4h 2 + 2w - 4w 2 - 4hf - 4wf 

(2) 
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h hj hI! 1 h2 1 wh hi f' h'2 hiWi 
R22 = - 2f + 4f2 + 2 + 4hf - 4w f + 4f - 4h + 4w 

Where dot and prime mean derivative with respect to t and p respectively. The corre­

sponding field equations for this general form is too difficult to be solved. Therefore we 

make the simplifing assumption that hand ware independent of time: 

(3) 

The 01 component of the Ricci tensor then vanishes identically. The other components are 

/' /2 h' / w' /
Roo = -- + - - -- -- ­

2 4f 4h 4w 

f" f'2 h" h'2 w" W'2 
(4)

Rll = 2f - 4f2 + 2h - 4h2 + 2w - 4w 2 

h" h' / h'2 h' W' 
R22 = 2 + 4f - 4h + 4w 

, 'f' '2 h"w w w W 
R33 = 2 + 4J - 4w + 4h 

Assuming the vacuum Einstein field equations, we obtain the following relations from 

R22 = 0 and R33 = 0 : 

(5) 

(6) 

\Vhere Cl and C2 are functions of time. Relation (5) shows that f can be mac: 1 independent 

of time through a sui table time transfonnation. That is we can choo~c c: (t) to be a 
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constant. In this new time coorclinate C2 must also be a constant since the left hand side 

of (6) is independent of time. Therefore we may write 

'2 W
h if; = Cl (7) 

w 
'2 i -h 

= C2 (8) 
W 

From the above equations we obtain 

(9) 

(10) 

where b = C2 and c' is an integration constant. Simple manipulations using the other field 
Cl 

equations leads to 

(11 ) 

w = p[2b(b + 1)/(b2 + b + 1)] (12) 

(13) 

vVe are looking for a solution representing the field in- and out-side of an infinite 

cylindrical thin mass shell. For the metric inside the shell to be nonsingular \ve have to 

requlfe 

C = 1 (14) 
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which leads to 

(15) 

w = f = 1 (16) 

Hence, assuming the shell to be at p = R(t) at the time t, we can finally write the metric 

in- and out-side the shell in the form 

p > R(t) (17) 


p < R(t) ( 18) 


To avoid terms quadratic in distributions and derivative of distributions in the com­

ponents of the Ricci tensor \ve consider the following transfonnations to make the metric 

continuous at the shell: 

t 
I 

=A(t,p,z) 

pi = B(t,p,z) (19) 

~ = D(t,p,z) 

carrying out the transformation and requiring the continuity at p = R( t). \ve obtain the 

following conditions: 
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...... . ..... 

AA-BB-DD=O (20) 

where equalities hold at p = R(t); w, h, and f are given by (11)-(13), and hat means 

derivative with respect to z. Here we are faced with 7 equations for the unknown functions 

A, B, and D. However, there is no overdetermination and the equations can be solved. It 

can be shown that w must be constant. 

Now, from (17), (IS), and (19) it is easily seen that in order to have continuity at 

p = R( t) we only need to make the transformations: 

t = A(t,p) p' =B(t,p) (21 ) 

which lead to 

(22) 

B = cR B + RB' = cR 
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where again the equations hold at p = R(t). These equations can be solved to obtain: 

•E == IA = 
R 

. 
1- R'2 

[/
c - V 1 + (1 + (c 2 -

. J1)R2 (23) 

Defining the functions 

u = A2 - B'2 

v = AA'- BE' (24) 

We can write the metric (17) and (18) for the case w 1 In the following closed and 

continuous form 

ds 2 = -[Ue(R - p) + e(p - R)]dt 2 
- 2Ve(R - p)dtdp 

This metric is now regular [ttl and can be differentiated formally. The fir :-; t derivative 

of the metric is proportional to the step function. Its second derivative ent prs linearly in 

the expressions for curvature and Ricci tensor, which are therefore just prop ortional to 

8(p - R). Hence it suffices to calculate just terms in the second derivative of t he metric 

which are proportional to 6. This leads to: 

( C' Q_'\)R 1·· 1 • ]

Roo = [ . - -uR + -U 
I 

- V 8(p - R)
2c 2 R2 2 2 
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(UQX) 1· 1.] 
ROI = [ - + - U - - W 5(p - R)

2c2 R2 2 2 


[ 2C2 R - (UQX)' ~Q.R V _ ~Q'] 5( - R) 
 (26). 2c2R2 + 2 + 2 P 

1 .. 

R22 = [2(X R + X') + c2 R]5(R - p) 


To specify the energy-momentum tensor, we proceed as in our previous paper [13]. 

The unit spacelike nonnal to the shell niA and the unit timelike vector field uP representing 

the fluid motion (shell matter) are given by 

R , 0 , 0) 


1 , 0 , 0) (27) 

Now, the surface energy-momentum tensor of the shell is given by 

(28) 


vVhere 

(29) 

is the induced three metric, and r: is the stress tensor, which would be proport ional to 5~ 

if the wall \vere isotropic. SJJV is related to the energy momentum tensor T -'V b\· 

(30) 
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vVhere l is the proper distance through ~ ,the support of the source, in the direction of 

the nonnal nil. Now from (27) and (30) 

(31 ) 

Substituting (25) - (29) into (31) , we get 

-RtJ 0 
1- RJ 
~ 0 
1- R2 (32) 

o -c2 R272 
o 0 

The Einstein field equations 

(33) 

combined with the contint:ity conditions (23) then lead to 

_ (UQX)R +~UR _ ~U' + 11 = I'\: 0-(1 + R2) + (R2 - 1)(72 + T3) 
2c 2 R2 2 2 2V1 _ R'2 

(UQ~"K) _ ~U + ~Q = -I'\: Ro­
2c2 R2 2 2 V1 - ie 

-2c2 R+(UQ_"KY 1 .. . 1 . 0-(1+R2)+(1-R2)(12 -13)
------- - - QR - V + - Q = I'\: --------;-:===---- (34)

2c'2 R'2 2 2 2V 1 _ R2 

~(XR+ X') + c'2 R = -I'\: 0- + 73 - 72 VI _ R2 c2 R2 
2 2 

From the last equation \ve get 

(35) 
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The remaining equations are not independent. Using (35), after some manipulations, we 

obtain two independent equations from (34) 

(36) 


Substituting from (24) in (36) we obtain 

dR 
= -Kr.,c­

~ ds 

and 

/ 2 (dR)2 / (dR)2V1 + c -d - cV 1 + - = KO"cR (37) 
s ds 

where s is the proper time of the observer u lA • From (27) we know that 

ds / . 
- = V 1 - R2 (38)
dt 

Assuming an equation of state, 0" = f( T), we can integrate (37) to get 

(39) 


1 
c = ~========================== (40)

J1 + 2/1 + (~~ )2 KO" R + K2 0"2 R2 

\Vhere Ro is a constant of integration and Ro = R(O"o). \Vhen the wall is stationary, 

~~ = 0, we have 

1 
c=--­

1 + KO" R 
(41 ) 

9 



In the case the energy density and stresses are proportional, '2 = aO", we obtain from 

(39) 

(42) 

The stability of the shell is easily checked by (37). From this equation one gets 

2
d R [1 1 1 (43)
ds 2 = --K'2 VI + (dR/ds)2 - Vl/c2 + (dR/ds)2 

Now, three cases can be differentiated: 

i) '2 = 0 , ~2j~ = 0, which corresponds to an unstale stationary configuration. 

ii) '2 < 0 ~2j ~ > O. In this case the final configuration of the thin \vall will be 

expanding. 

iii) '2 > 0 , ~'Jj~ < O. This case corresponds to a (finally) collapsing configuration. 

Outside the shell the space is (locally) flat. Therefore free observers \I:ill feel no 

acceleration. Therefore the acceleration of the observer with respect to th t~ \\":til is equal 

to - ~23~ , which has the same sign as 12' This means that the wall acts a~ <tIl a t ractive 

(a repulsive) source for'2 < 0 ('2> 0). This is in agreement with the sign ·)f r ~ it' effective 

density of source, 0" - '2 - '3 = -212' 

The defect parameter c can be obtained from the linear density f1 dt:':~ : ~ ,: d Ly 

f1 : = J(cRd<p)O" = 27rcRa- (44) 

10 



calculated at the moment when ~~ = O. Therefore, using (41), one obtains 

c = 1 - 4f.L (45) 

which holds for f.L < ~ If f.L ~ ~, the outer metric will aquire the form 

(46) 

Now , equation (45) also holds for f.L ~ ~ . Note that for f.L > ~ there is a singulari ty out of 

the wall. This singularity can be filled in by a suitable source having the linear density 

(47) 

Similar results have been obtained by Gott[l4.] for cosmic strings. Gott's results con­

ceming gravitational lensing effects also hold for our solution of cylindrical shells. 

Note that the collapsing solution in the case of 72 > 0 leads to a naked singularity 

without any horizon. 
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