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Abstract 

The influence of the multi-boson effects on pion multiplicities, single-pion spectra 
and two-pion correlation functions is discussed in terms of a.n analytically solvable 
model. An approximate scaling with the phase space density is demonstrated in 
the low density (gas) limit. This scaling and also its violation at high densities due 
to the condensate formation is described by approximate analytical formulae which 
allow, in principle, for the identification of the multi-boson effects among others. It 
is argued that spectacular multi-boson effects are likely to be observed only in the 
rare events containing sufficiently high density fluctuations. 

Introduction 

In future heavy ion experiments at RHIC and LHC one expects to obtain thousands 
of pions per a unit rapidity interval. Since the pions are bosons there can be multi ­
boson effects enhancing the production of pions with low relative momenta thus increasing 
the pion multiplicities, softening their spectra and modifying the correlation functions. 
Though the present data does not point to any spectacular multi-boson effects, one can 
hope to observe new interesting phenomena like boson condensation or speckles in some 
rare events or in eventually overpopulated kinematic regions with the pion density in the 
6-dimensional phase space, f = (27r)3d6 n/d3 pd3 x, of the order of unity (see, e.g., [1]-[8]). 

In the low-density limit (f « 1), the mean phase space density at a given momentum p 
can be estimated as the mean number of pions interfering with a pion of momentum p (ra­
pidity y and transverse momentum Pt) and building the Bose-Einstein (BE) enhancement 

3in the two-pion correlation function [7, 8]: (f)p rv 7r /
2 N(p )/V, where N(p) = d3 n/d3 p 

and V = rxryrz is the interference volume defined in terms of the outward (rx), sideward 
(ry) and longitudinal (rz) interferometric radii. Typically (f)p 0.1 for mid-rapiditiesrv 

and Pt (Pt) [7]. The data are also consistent with the phase space density of pions nearrv 

the local thermal equilibrium [9]. 
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At AGS and SPS energies the interference volume V seems to scale with dnj dy (see, 
e.g., [10, 11]) pointing to the freeze-out of the pions at a constant phase space density.! If 
this trend will survive then there will be no spectacular multi-boson effects in the ordinary 
events at RHIC or even at LHC. In such a situation the standard two-particle interferom­
etry technique could be used to measure the space-time intervals between the production 
points also in the future collider experiments. The corresponding interferometric radii for 
lead-lead collisions at LHC would be however rather large - about 20 fm. 

The multi-boson effects can show up however in certain classes of events. An example 
is a rapidly expanding system with the entropy much smaller than in the case of total 
equilibrium. Then a strong transversal flow can lead to rather dense gas of soft pions 
in the central part of the hydrodynamical tube at the final expansion stage (see, e.g., 
[13]) .. Another reason can be the formation of quark-gluon plasma or mixed phase. Due 
to large gradients of temperature or velocity the hydrodynamicallayer near the boundary 
with vacuum can decay at a large phase space density and lead to pion speckles even at 
moderate transverse momenta [14]. 

The dramatic difference in behavior of Boltzmann-like gases and dense multi-boson 
systems can lead to serious problems for transport models like RQMD, VENUS, etc., 
ignoring actually the statistical properties of the particles both in intermediate and final 
states. In these models the most intensive particle production happens at relatively early 
evolution (expansion) stage when rather large pion phase space densities can be achieved 
at RHIC or LHC energies. 

Generally, the account of the multi-boson effects is extremely difficult task. Even on 
the neglection of particle interaction in the final state the requirement of the BE sym­
metrization leads to severe numerical problems which increase factorially with the number 
of produced bosons [3, 4]. In such a situation, it is important that there exists a simple 
analytically solvable model [5] allowing for a study of the characteristic features of the 
multi-boson systems under various conditions including those near the Bose condensation. 
In this paper we use this model to demonstrate the influence of the multi-boson effects on 
pion multiplicities, spectra and two-pion correlation functions. Besides the original pa­
pers [5, 6], similar studies can be found also in [15, 16, 17]. Particularly, some of the new 
aspects of the multi-boson effects, like the scaling behavior with the phase space density 
or the behavior of the (semi- )inclusive correlation functions near the condensation limit 
were studied in our unpublished paper [15]. The present work represents an elaborated 
version of the latter. 

In Section 2 we introduce the space-time description of particle production in terms 
of \Nigner-like densities and discuss their physical meaning and the conditions of their 
factorization in the model of classical one-particle sources. The multi-boson formalism in 
the factorizable case is set forth in Section 3. Using this formalism and the simple Gaussian 
ansatz for the emission function, we present in Section 4 the analytical solutions (partly 
in terms of the recurrence relations) for the multi plici ty distri bu tion, single-boson spectra 
and two-boson correlation functions. In Section 5 we compare the results of numerical 
calculations with the analytical approximations accounting for the approximate scaling 
behavior in the low density (gas) limit as well as for the condensate formation at high 
densities. The results are discussed and summarized in Section 6. 

1Similar effect was observed also for protons produced in hadron- and electron-nucleus interactions 
[12]. 

2 




2 Space-time picture of particle production 

2.1 Wigner-like density 

Let us first consider a process in which, besides others, just n non-identical particles of 
given types are produced with the 4-momenta Pi = {Ei , pd and Lorentz factors /i = 
E;fmi (to simplify the notation, we assume that particles are spinless). The inclusive 
differential cross section of this process is described by the invariant production amplitude 
Tn(P1, ... ,Pn; a) : 

where the sum over the quantum numbers a, describing the rest of the produced sys­
tem, contains also an integration over the momenta of the other produced particles with 
the energy-momentum conservation taken into account. The non-invariant production 
probability Pn is normalized to unity as: 

(2) 


If the particles are identical spinless bosollS, then the production amplitude has to satisfy 
the requirement of Bose symmetry. Formally, this can be achieved by the substitution 
of the non-symmetrized amplitude Tn(P1, ... ,Pn;a) (corresponding to the "switched off" 
effect of quantum statistics) by a properly symmetrized one: 

(3) 
(7 

where the sum is over all n! permutations (J of the sequence {I, 2, ... n}. 
In the following we will neglect particle interaction in the final state? Then the non­

symmetrized amplitude Tn(P1 , ... ,Pn;a) is related to the amplitude in the space-time 
representation Tn(X1 " '" Xn; a) (describing production of the particles in the space-time 
points with the 4-coordinates Xl, ... , xn) by the usual Fourier transform: 

(4) 

Inserting (4) into (1) and introducing the space-time density matrix [19]: 

Pn(X1""'X;X~ " ",X~) = LTn(X1,,,.,Xn;a)~*(x~, ... ,<;a) (5)
Ct 

and its partial Fourier transform (emission function) - an analogy of the Wigner density 
[20]: 

(6) 
_Jd4fd4f iP I01+···ipno n (- +1f - +If.- 1f - 1f)- U1 U2e pn X1 "2ut, ... ,xn "2Un,X1-"2Uh·· · ,Xn-"2un, 

2This is more or less valid assumption for neutral pions but not for the charged ones. For the treatment 
of multi -boson effects in the case of interacting pions see, e.g., [18] . 
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where Xi = HXi + xD, Oi = Xi - X;, we can rewrite the production cross section (1) in the 
absence of BE effects as: 

(7) 

Since Dn is a real (though not posi ti vely defined) function normalized to uni ty, in accor­
dance with Eq. (7) it can be considered as an approximation to the emission probability 
of the particles with given 4-momenta Pi in the average space-time points Xi = HXi + x;). 

The insertion of the symmetrized amplitude (3) into the cross section formula (1) leads 
to the substitution of the probability Pn by a BE modified one P~ . For example, in the 
case of a two-boson production process, instead of Eq. (7) we have: 

where P = ~(Pl +P2), q = PI - P2 and x = Xl - X2 . Clearly, for n > 1 the probability P~ is 
no more normalized to unity. The integral over this probability yields the BE weight Wn of 
an n-boson event produced in the absence of the effect of quantum statistics (wo = WI = 1, 
Wn > 1 for n > 1); 

Jd3 
pI .•. d3PnP~( PI" ' " Pn) = W n· (9) 

We will also use the differential BE weights defined as 

(10) 

The multi-boson problem greatly simplifies (see Section 3) in the factorizable case when 
the n-particle emission function and, as a consequence, the non-symmetrized production 
probability can be written as products of the single-particle ones: 

Dn(PI,Xl ; .. ·;Pn,Xn) = D(Pl, Xl)···D(Pn,xn), Pn( Pl" " ,Pn) = P(pJ) ·· ·P(Pn). 
(11 ) 

Consenquently, the BE weights are expressed through a universal function F ij (see, e.g., 
[18]): 

(12) 


where 
( 13) 

Pij = Hpi +Pj) and % = Pi - Pj· The sum in Eq. (12) is over n! possible permutations 
(j of the sequence {I , 2, .. . n}. For example, in the two-boson case, we have 

(14) 

where J(~2) = F12F21 is so called differential cumulant (see Section 3). 
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2.2 One-particle sources 

To clarify the physical meaning of the emission function and the factorization assumption 
(11), let us follow Kopylov and Podgoretsky (see, e.g., [1]) and assume that particles 
1,2, ... are emitted by one-particle sources A, B, ... which are considered as classical 
so they can be treated by parameters and not by amplitudes. Thus the 4-coordinates 
of the source centers XA, XB,'" and other source characteristics in the model can be 
considered as a part of the quantum numbers a == {XA' XB, ... a'}. It was pointed out by 
Kopylov and Podgoretsky that the BE effect is mainly determined by the phase factor 
exp( iPIXA + iP2XB + ...) contained in the amplitude Tn(PI, ... ,Pn; a). 

Let us first consider the production of only one boson. Assuming the translation 
invariance of the decay amplitudes U, we can write the single-boson amplitude in the 
4-coordinate representation as: 

(15) 

where a = {xA,a'} and a' = {A, .. . } . Inserting (15) into (4) and introducing the Fourier 
transform 

t(p; a) = Jd4~eipCi(~; a) == u(p; a')v(a), ( 16) 

we obtain the Kopylov-Podgoretsky ansatz: 

T(p; a) = eipXAt(p; a) == eipXAu(p; a')v(a). 	 (17) 

For the production probability we have 

2PC(p) = P(p) == Jd4xA W(p, XA) = Jd4xA L t(p; {XA' a'}) 1 , (18)1 

ex' 

where we have introduced the (true) emission probability W(p, XA). Similarly, if two 
bosons are produced, the production probability takes on the form: 

PHPI, P2) = Jd4x Ad4xB 2: {I t(Pl,P2; a) 12 +Re[t(PI,P2; a)t*(p2,PI; a)eiqx ]}. (19) 
ex' 

Note that here 	x = XA - XB and, as usual, q = PI - P2. 
The emission function D can be expressed through the Kopylov-Podgoretsky ampli­

tudes t(p; a) continued off mass-shell. Substituting Eq. (15) into Eq. (5) and using the 
inverted Fourier transform in Eq. (16), we get from Eq. (6) [18]: 

D(p, iJ) = (2;)4 	2: Jd4xAd4fCei"(XA-xtl . t(p + ~fC; {XA, a'} )t*(p - ~fC; {XA' a'}) 
ex' (20)

= (2;)4 2:J d4xAd4fCei"(XA-xtl. u(p + ~fC; d)u*(p - ~fC; a')lv(a)12. 
ex' 

It is clear from Eq. (16) that the momentum dependence of the amplitude t(p; a) is 
determined by the space-time extent of the one-particle source. For example, assuming 
that the source emits a particle independently of the quantum numbers a' except for the 
source type A: u(~; a') = u(~; A) and that the distribution of the emission points in the 
source rest frame is given by a simple Gaussian 

_ 	 e2 ~~ 
u(~; A) '" exp( --22 - -22)' 	 (21) 

rATA 
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the parameters r A and TA characterizing the proper space-time sizes of the source A, we 
obtain in the case of a source at rest: 3 

(22) 


The probability \V(o:)\2 describes the production of particle sources and depends on the 
4-coordinates XA of the source centers. In the following we will take it also in a simple 
Gaussian form: 

2 2 
2 X A X OA

\v(o:)1 "'exp(-2::2-2-2 )' (23) 
ro TO 

where the parameters ro and To characterize the space-time distribution of the sources. 
Comparing Eqs. (18) and (20), it can be seen that the emission function D is more 

spread in space and time than the emission probability W. In particular, the Gaussian 
parametrizations in Eqs. (21) and (23) yield: 

2 2 2 2) (x
2 

Xo 
2 

() ( (24)ltV p, x '" exp -rAP - TAPO exp - 2::2 - 2-2 ) 
ro TO 

and 
2 X2 

D(p, X) '" exp( _r~p2 - T~p~) exp( - ::2X 2 _ 0) (25)
2ro + r A 2TJ +Tl . 

In the case of independent one-particle sources characterized by the same parameters 
and on the condition of a negligible relative motion of the sources (to avoid the modifi­
cation of the decay amplitudes due to the Doppler shifts)' the emission function takes on 
the factorized form as in Eq. (11). VVe then get, for example, in the two-boson case (see 
Eq. (8)): 

(26) 

It is interesting to note, that in this factorizable case the BE correlation effect is deter­
mined solely by the characteristic space-time distance between the centers of the one­
particle sources. In terms of the Kopylov-Podgoretsky emission amplitudes, this result 
immediately follows from Eq. (19), or directly, from Eqs. (1) and (3). 

The space-time extent of the one-particle sources can be usually considered much 
smaller than the characteristic space-time distance between their centers (rA « ro, 
TA «To), The 4-momentum dependence of the one-particle amplitudes is then negli­
gible when varying the particle 4-momenta by the amount rOl, Tal characteristic forI"V 

the interference effect. On such a smoothness condition there is practically no difference 
between the emission function D and the emission probability Wand both Eqs. (8) and 
(19) yield the well known result of Kopylov-Podgoretsky for the production probability 
of two identical bosons: 

(27) 

3Note that Eq. (22) is valid also off mass-shell when Po t E. 
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3 Multi-boson formalism in the factorizable case 

The multi-boson effects can be practically treated provided that we can neglect particle 
interaction in the final state and assume independent emission of non-interfering parti ­
cles (a valid assumption for heavy ion collisions), supplemented by the requirement of 
a universal single-particle emission function D(p, x), independent of the origin of single­
particle sources. We can then use Eq. (11) expressing the n-particle emission function as 
a product of the single-particle ones. Then, similar to refs. [5, 6] it is convenient to define 
the functions 

G1(P1,P2) Jd4XD(~(pl + P2),X)· exp(i(PI - P2)X), 

Gn(P1,P2) Jd3k 2 ... d3k nGI(PI, k 2) ... GI(kn' P2) 

Jd3k 2Gn_1 (P1, k2)GI(k2, P2), 

Jd3 pGn (p, p). (28) 

The function GI at equal momenta is just the original (not affected by the multi-boson 
effects) single-boson spectrum normalized to unity: 

(29) 


The related quantities are so called cumulants 

n-1 
K~2)(P1' P2) (n - 2)! L G i (P1, P2)Gn- i (P2, pd j [P(pdP(P2)], 

i=1 

K~1)(p ) (n - 1)!Gn (p, p) j P(p), 

Kn (n - 1)!gn- (30) 

It can be shown that the BE weight of an event with n identical spin-zero bosons is 
determined through the cumulants K j by the recurrence relation [18]: 

C n-I T..r Cn-1 T/ cn-1 T/'Wn = 0 L\ IWn-1 + 1 H2Wn-2 + ... + n-1 HnWO (31) 

with Wo = W1 = 1; C;,-1 = (n - 1)!j[i!(n - 1 - i)!] are the usual combinatorial numbers. 
For example, W2 = 1 + K2 and W3 = 1 + 3K2 + K 3 • One can check that Wn = n! provided 
that all the elementary one-particle sources are situated at one and the same space-time 
point so that all the single-boson states are identical and K j +1 = j!.4 In the other extreme 
case of a large phase space volume and n2K2 « 1, we can neglect the contribution of the 
higher order cumulants except for the first power of K2 and write: 

(32) 


4This situation is similar (flat correlation function) though different from the case of the emission of 
so called coherent bosons for which there is no enhancement factor, In fact, when the one-particle sources 
become closer and closer, so that their distances are less than the wave length of the emitted bosons, they 
can no more be considered as independent ones and a multi-particle source of non-interfering bosons has 
to be introduced [21]. To quantify the transition to the non-interfering bosons a concept of the coherence 
length can be used [22], 
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Given the original multiplicity distribution w(n), the BE affected one is easily ca.lcu­
lated using the BE weights Wn: 

(X) 

w(n) = wnw(n) j Lw(j). (33) 
j=O 

Particularly, assuming the original Poissonian distribution with the mean multiplicity rJ: 
w(n) = e-'rJrJnjn!, we get: 

rJn rJj00 

w(n) = wn-, j LWj~. (34) 
n. )'=0 J. 

Similarly, the BE affected single- and two-boson spectra, respectively normalized to nand 
n(n - I), can be written as 

(35) 

and 
(36) 

where the differential BE weights w~1)(p) and W~2)(Pl' P2) are expressed through the dif­
ferential cumulants f{~I)(p) and f{~2)(Pl' P2) [15]: 

n-l 
d3(1)( ) = J '(2)( ')P( ') - ~ cn -. 1 } .,(I) ( ) .Wn P - pWn p,p P - ~ j 1j+l P Wn-l-), 

j=O 

(37) 

The differential weight w~2) (PI, P2) can be considered as a two-particle correlation 
function measuring the BE effect on the original uncorrelated two-particle spectrum 
N~2)(Pl' P2) = n(n - I)P(pt)P(P2), with the normalization 

(38) 

Usually the correlation function is normalized to unity at a large Iql. Such a normalization 
is approximately satisfied for the correlation function defined as: 

(39) 

In practice, the two-particle correlation function is defined through the observable spectra 
as: 

Rn(Pll P2) = CnN~2)(Pl' P2) j [N~1)(Pl)N~1)(P2)l· (40) 

Similarly, the (semi- )inclusive correlation function is defined as 

(41 ) 

where 

n n 
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are the corresponding (semi- )inclusive single- and two-particle spectra, w( n) is the nor­
malized multiplicity distribution accounting for the BE effect according to Eq. (33). 
Later on, using an analytical Gaussian model for the emission function, we show that the 
normalization constant Cn can be expressed through the BE weights as: 

(43) 

and that C = 1 for the inclusive correlation function provided a Poissonian multiplicity 
distribution of the original uncorrelated bosons. 

As one can see from formulae (35)-(37), the multi-boson correlations lead to distortions 
of the original single- and two-particle distributions. Such distortions are small in the case 
of interference of only two or three identical particles. However, they can become essential 
for the events with a large number of identical bosons due to factorially increasing number 
of the correction terms [3] (see also [1] and [5]). For the processes characterized by a high 
(> 0.1) phase space density of the identical bosons at the freeze-out time the multi-boson 
effects can no more be considered as a correction [3]. 

To account for the multi-boson symmetrization effect in the event simulators, a phase 
space weighting procedure was used with weights in the form of a normalized square of 
the sum of n! plane waves [3,4]. This procedure however appears not practical for a large 
n due to the factorially large number of the terms to be computed to calculate the weight 
and, due to large weight fluctuations. These fluctuations can be substantially reduced by 
weighting only in the momentum space. The corresponding BE weights are given in Eq. 
(12). They are expressed through the universal function (13) which is simply related with 
the function G1 : 

Fij = G1(Pi,Pj)j [P(Pi)P(pj)p/2. ( 44) 

On the condition of sufficient smoothness of the single-particle spectra, we can put 

(45) 

where Pij = ~ (pi +pj) and % = Pi - Pj· This function can then be calculated as sugges ted 
in [18]: 

(46) 

where the averaging is done over all simulated phase space points {Pk, xd such that Pk 
is close to a given 3-momentum Pij . However, there is still the problem with factorially 
large number of the terms required to calculate the weight according to Eq. (12). 

Fortunately, when calculating only single- or two-particle distributions according to 
Eqs. (35) or (36), this number is strongly reduced (eaten by the combinatorial numbers 
Cj in Eqs. (37)). We should however perform integration over momenta of one or more 
particles to determine the integrated cumulants K~2)(Pl' P2), K~l)(p) and Kn. 

The numerical averaging of the cumulants of all orders is a difficult task. In the case of 
large multiplicities of identical bosons (n > 20) this is practically possible in the models 
with a symmetric emission function (allowing to use a special Monte Carlo technique) 
[3J or with a simple analytical parametrization of this function [5, 6J. For example , 
in ref. [6] the corrections to multiplicity distributions, single-particle spectra and two­
particle correlation functions were calculated using the relativistic Bjorken model [23J 
for the emission function. To compute cumulants up to tenth order) the integration was 
performed analytically over the space-time coordinates and numerically over the momenta. 
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Generally, for realistic models used to predict particle production in ultra-relativistic 
heavy-ion collisions, the numerical limitations allow to determine only a few lowest Of­
der cumulants (up to about the fourth order) [18]. Fortunately, since the interferometry 
measurements point out to a moderate pion freeze-out phase space density of rv 0.1, the 
lowest order cumulant approximation is reasonable fOf present and likely also for future 
heavy-ion experiments. At the same time, the multi-boson effects can be important for 
realistic simulations of heavy ion collisions. As shown in ref. [18] (see also Section 5), 
for neutral pions they can lead to substantial distortions of the multiplicity distributions 
(increasing the original mean multiplicity by several tens per cent), of the single-pion 
spectra (enhancing production of the pions with low Pi and small Iyl) and, to a lesser ex­
tent, of the two-pion correlation functions (the correlation function at a given multiplicity 
becoming lower and wider) . For identical charged pions these effects are expected to be 
suppressed due to the repulsive Coulomb interaction. 

Analytical model 

To study the multi-boson effects in a dense pion gas we use a simple model assumlllg 
independent particle emission (see Eq. (11)) with the Gaussian ansatz for the single­
boson emission function D (p, x) [5]: 

(47) 

Note that this ansatz corresponds to the independent one-particle sources of Kopylov 
and Podgoretsky, all of the same type, characterized by a universal size of 1/2tJ., 
with the centers distributed according to a Gaussian of a dispersion r6 = r6 -

rv 

(2tJ. t2 
(see Eq. (25)). Then, in the low density limit but regardless of the validity of the 
smoothness condition ro » 1/2tJ. (see, however, the footnote after Eq. (31) concerning 
the independence assumption), the correlation function of two non-interacting identical 
particles measures the dispersion of the relative 4-coordinates xof the centers of the one­
particle sources as the inverse width squared of the correlation effect seen in the relative 
momenta q = PI - P2 [1]. For spin-D bosons 

(48) 

In this model the original boson phase space density (not affected by the BE effect) 
is given by 

(49) 

The mean densities at a fixed boson momentum P and averaged over all phase space are 

n p23 3
(jn)p == Jd x(jn)2 / Jd xln = (V2r tJ.)3 exp( - 2tJ.2) (50) 

o 

and 
(51 ) 

respectively. Similarly, the original inclusive densities j(p, x), (j)p and (j) are given by 
Eqs. (49)-(51) with the multiplicity n substituted by the original mean multiplicity. 
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It is worth noting an approximate equality (see also a model independent prove in [7]) 
between the mean phase space density in the low density limit: 

_ rt p2 . 1f3/2 
(52)U)P=(J21'O~)3exp(-2~2)= 1'6 N(p) 

and the mean number of pions building the BE enhancement in the two-pion correlation 
function: 

(53) 

PI,2 = P ± q/2. This equality is valid up to relative corrections O((1'o~)-2) and O( (i)p), 
the latter representing an impact of the BE correlations on the single-boson spectrum 
(see Section 5.2). 

It is important that the Gaussian ansatz in Eq. (47) allows to express the functions 
Gn(PI, P2) and the integrals gn (see Eqs. (28)) in simple analytical forms [15]: 

Gn(PI, P2) (21f~2Ant3/2exp( -b~(PI + P2)2 - b~ (PI - P2)2), 

gn = (8~2Anb~t3/2 , (54) 

where An, b~ and b;: are given by the recurrence relations: 

An 2~ 2 An- I(b~_1 + b~_1 + bi + bj), 

l/b,~ 1/(b~_1 + bi) + 1/(b~_1 + bj), 

(55) 

with Al = 1, bi = 1/(8~2) and b1 = 1'6/2. The recurrence relations of this type allow for 
the analytical solution [17]. In our case it reads as: 

b~ = bi(-I(1- pn) / (1 + pn), An = j'J2n/3((1_ p2n), gn = j'J-n(1- pn), (56) 

where c l = 21'O~, P = (1 - ()/(1 + () and the parameter 

j'J = (1'O~ + 1/2)3 (57) 

can be considered as a characteristic phase space volume. 
For example, for n = 2 and 3, we have: A2 = (1 + (-2)/2, A3 = (1 + 3C2)2/16, 

bt = 2bi /(1 + (2), bt = 3bi(1 + (2/3)/(1 + 3(2), g2 = (3, g3 = [4(2/(3 + (2)]3. Recall that 
the cumulants related to g2 and g3 are (see Eq. (30)) [{2 = g2 and [{3 = 2g3. 

It follows from the recurrence relations (55) or their analytical solutions (56) that 
the slope parameters b~ and b~ approach each other with increasing n. In the large-n 
(n > 1'O~) limit we then have [15]: 

b~ -+ b~ -+ 1'o/(4~) , An -+ j'J2n/3 / (21'O~), gn -+ j'J-n (58) 

and 

(59) 

In very large-n (n > ej'J) limit, using the large-n behavior of the parameters gn, we 
can get from the recurrence relation (31) the following behavior of the BE weight [15]: 

Wn -+ c(j'J)n! / j'Jn, (60) 
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where c((J) is a function factorially increasing wi th (J, c( 1) = 1. 5 

It is worth noting that the large-n limits become equalities at (J = 1 (roll = 1/2) 
when gn = An = 1, Kn = (n - I)!, Wn = n! and b~ = b~ = ro/(4ll). Recall that 
(J = 1 corresponds to the minimal possible phase space volume when all the particle 
emitters are situated at one and the same space-time point so that the size 1/2ll of the 
elementary source determines not only the width of the single-particle spectrum but also 
the characteristic distance between the production points (see however the footnote after 
Eq. (31) and also ref. [18J for a more detailed discussion). In such a case TO = 0 and the 
correlation function equals 2 for any value of q. 

In the low-n (n < roll) limit, i.e. in the case of a large phase space volume, it 
follows from Eqs. (55) or (56) that the slope parameter b~ increases linearly with n up 
to the corrections O((2roll)-2) and that, at n > 2roll, this increase saturates at ro/(4ll). 
Similar behavior shows the parameter An/(J2n/3. Thus, at n « 2roll, we have: 

b+n= b+b-/b-'11 n=nb+
1 , An == n(ro ,,)2(n-I), gn == n-3(ro L.l,,)-3(n-I). (61 ) L.l 

Comparing the low-n approximations (61) for the parameters b~, An and gn with the 
large-n ones in Eqs. (58), we can see that they tail each other at n = 2roll, roll/2 and 
roll respectively. Correspondingly, the low-n approximation for the Gn-function 

Gn(Pl , P2) == r03(ro~r3n(27rnr3/2 exp( _p2n/2ll2 - q2r02/2n) (62) 

tails with the large-n one in Eq. (59) at 1/2 < nt/(roll) < 2. 
Consider now the correlation function Rn defined in Eq. (40). To determine the 

normalization constant Cn, it is convenient to rewrite the single- and two-boson spectra 
at a fixed multiplicity n as 

N(I)(p) = "n-I wn-I_i!(n-l- j )!G. (p p) = ",:,-1 w(n-l-j)G. (p p) . n L-)=O Wn/n! )+1, - L-)=O w(n) )+1, , 

N (2)( ) - "n-2 wn-2-i/(n-2-j)! "j [G ( )G· ( )+n Pl,P2 - L-)'=O wn/n! L-I=O 1+1 Pl,Pl )-1+1 P2,P2 (63)
G1+1(PI, P2)Gj- I+1 (P2, PI)J 

- "n-2 w(n-2-j) "j [G ( )G ( ) + G ( )G ( )J= L-j=O w(n) L-I=O 1+1 PI,Pl )-1+1 P2,P2 1+1 Pl,P2 )-1+1 P2,PI , 

vvhere w(n), defined in Eq. (34), coincides with the BE affected multiplicity distribution 
arising from the Poissonian one characterized by the original mean multiplicity TJ and 
Gi(Pl,P2) = TJ i Gi(Pl,P2)' Noting further that b~ approaches the limiting value ro/(4ll) 
from below, while b;; does it from above, we can see from Eq. (54) that, at large q, all 
terms in Eqs. (63) for N~I)(Pl,2) and N~2)(PI' P2) (PI ,2 = P ± q/2) can be neglected 
except for those containing the lowest slope bi. For the normalization constant Cn = 
limq-+(X)[N~1)(pdN~1)(P2) / N~2)(Pl , P2)l in Eq. (40) for the correlation function we thus 
get [15J: 

Cn = [w(n - 1)]2 / [w(n)w(n - 2)J == nW~_l / [(n - l)wnwn-2J. (64) 

Regarding the (semi- )inclusive single- and two-boson spectra, they can be written in 
a form similar to Eqs. (63) only in the originally Poissonian case: 

n-l 

N(1)(p) = LLw(n-1-j)G)+I(P,p)/Lw(n), 


n j=O n 

5 A good approximation is c(f3) == f3d((3) , d(f3) = a 1 + a2f3aJ 
, al = 0.617, a2 = 0.621 and a3 = 0.788 . 
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n-2 J 

2:: 2:: w( n - 2 - j) 2::[01+1(PI, pdOj-l+l (P2, P2) + 
n j=O 1=0 

n 

The normalization constant in Eq. (41) for the (semi- )inclusive correlation function is 
then [15]: 

c = [2:: w(n - 1)]2 / [2:: w(n) 2:: w(n - 2)]. (66) 
n n n 

Clearly, in the completely inclusive case (when the sums include all n from 0 to 00 and 
Ln w(n - j) = 1), we have c = 1 and 

00 

(n) 2::gj+l == g, 
j=O 
00 

2:: OJ+l (p, p) == O(p, p), 
j=O 

00 J 

2:: 2::[01+1(PI, pdOj-l+l (P2, P2) +01+1 (PI, P2)Oj-l+l (P2, pd] 

(67) 

where gn = rtgn. For the correlation function we have [15]: 

(68) 

Thus, in the considered case of the originally Poissonian multiplicity distribution, the 
intercept R(p, p) == R(O) = 2 in agreement with the result generally valid for thermaJized 
systems [8]. 

5 Results 

5.1 Multiplicity distributions 

We will consider here the multiplicity distribution (34) resulting due to the BE effect on 
the originally Poissonian one with the mean multiplicity T]. In accordance with the large-n 
behavior of the BE weights in Eq. (60) it takes on the following limiting form at n > ej3 
[15]: 

w(n) -+ const'· C, ~ = T]/j3. (69) 

The large-n behavior of the multiplicity distribution in Eq. (69) indicates that it 
approaches the BE one: 

(70) 
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with the mean multiplicity v. 6 This is demonstrated in Figs. 1 and 2. Thus, at ro = 2.1 
fm and 6 = 0.25 GeV Ic, the BE effect transforms the original Poisson ian multiplicity 
distribution with ry = 30 (dotted curve in Fig. 1a) to the one with much higher mean 
and dispersion values (solid curve in Fig. 1a). The exponential tail expected for the BE 
distribution is clearly seen in Fig. 1b where the results are presented in logarithmic scale 
for ry = 10, 6 = 0.25 GeV Ic and ro = l.5 fm. The slope parameter b in the exponential 
fit w(n) = const . exp( -bn) of this tail at large n should be, according to Eq. (69), only 
a function of the variable~: b = -In(O. Such a scaling is demonstrated in Fig. 2a 
for various values of ry, 6 and roo Note that ~ = 0.95 and 0.72 for Figs. 1a and 1b, 
corresponding to b = 0.02 and 0.27, respectively.7 

It should be noted that the experimental data point to a moderate value of the density 
parameter~. Thus, taking 0.2 as an estimate of the inclusive phase space density at 
p = 0 from AGS and SPS experiments and using Eq. (52), we get (see the last Section) 
~ ~ 0.4 - 0.5. 

Using Eq. (67) for (n) and tailing the large- and small-n approximations of the inte­
grals gn at nt = ro6 (see Eqs. (54) and (62)), we can approximate the mean multiplicity 
as 

(n) - [1 + D23 + ... + ~nt-l Int3] ry + C'v 

(n)g + (n)el (71) 

where ~ ryl(ro6)3 > ~; the density parameters ~ and ~ coincide at ro6 » l. At 
large phase space volumes, (ro6)3 » 1, the two terms in Eq. (71) can be considered 
as contributions of the BE gas and BE condensate respectively. It can be seen that the 
condensate dominates on condition (n) > {3. 

Note that in the rare gas limit ~«1, we have (n) == [1 + D23
] ry == ry+ I<2ry2, i.e. the 

increase of the mean multiplicity is dominated by the contribution of the second order 
cumulant I<2 = (2ro6)-3. The corresponding multiplicity distribution then becomes 
wider than the Poissonian one (see Eqs. (32), (34)): w(n) = const· (1 + C;I<2)rynln!. 

In Fig. 2c we demonstrate the approach of the mean multiplicity (n) to the limiting 
scaling value v = U (1 - 0, though only for ~ very close to the explosion point ~ = 1 
(~ > 0.99). Instead, in the region of ~ < 0.9 indicated by present experiments, we can 
see, in agreement with Eq. (71) an approximate ~-scaling of the ratio (n)/ry (Fig. 2b). 

Note that the approximate ~-scaling gives a possibility to overcome technical prob­
lems with factorially large numbers at high multiplicities. Thus some quantities can be 
calculated at small or moderate values of ry or n and then rescaled to large ones provided 
the density parameter ~ = ry I{3 or ~n = n I{3 is keeped t he same. 

Since, in the realistic event generators, the multi-boson effects can be accounted for 
only in the lowest order cumulant approximation [18], it is instructive to study the satu­

6This is in accordance with the appearance of the Bose-condensate in a dense ideal Bose gas [24]. 
The fluctuations of the number of particles in the condensate are very large - they are described by the 
well-known Einstein formula for identical bosons in the same quantum state. The corresponding BE 
multiplicity distribution in Eq. (70) turns to the Reley one for very large mean multiplicities. This type 
of BE condensate should not be mixed up with the multi-boson coherent (laser) state in which the BE 
correlations are absent and the multiplicity distribution corresponds to the Poisson law. 

7At the explosion point ~ = 1 the t ail of the multiplicity distribution becomes a constant (b = 0) 
so that the mean multiplicity (n) would go to infinity provided that there are no energy-momentum 
constraints. Note that the corresponding critical original mean multiplicity 7)cr = /3 == (roD. + 1/2)3 is 
close but different from that given in Eq. (9) of ref. [5] . 
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ration of these effects with the increasing number Ncum of the contributing cumulants. In 
Fig. 3 we show Ncum-dependence of the ratio (n)/ry of the BE affected mean multiplicity 
to the original one for different values of the density parameter r For example, at ~ = 0.8 
this ratio saturates at Ncum rv 10 (rv 40% increase of (n)). At Ncum = 4, representing a 
practical limit due to the numerical problems [18], the effect is underestimated by rv 25% 
((n) /ry :::::i 1.3 instead of 1.4). The situation is more optimistic for lower densities. Thus 
at ~ = 0.5 the effect (rv 15% increase of (n)) practically saturates at Ncum = 4. 

5.2 Single-particle spectra 

The influence of the BE effect on the single-boson spectrum for a given boson multiplicity 
n, can be seen from Eqs. (30)-(35), (37) and (54). At sufficiently large momenta, when 
the local density (fn)p remains small even at large n, this spectrum is dominated by the 
contribution !3nP(p), !3n = nWn-dwn, of the original spectrum. In such a rare gas limit, 
~n,p == ~nexp(-p2/2,6,2)« 1, we can write (see Eqs. (30), (37) and (32)): 

-=- nWn-l G 1 (p, p) +n( n - 1)Wn
-2 G2(p, p)

Wn Wn 
-=- n[l - (n -1)I<2JG1 (P, p) +n(n - 1)G2(p, p) 

- nP(p) + n(n -1)I<2[23
/ 
2p(21

/ 
2p) - P(p)J. (72) 

Otherwise, at large local densities, Nn(p) is determined by the asymptotic large-density 
spectrum [15J: 

(73) 

associated with the BE condensate and corresponding to the asymptotic (large-n) value 
ro/(4,6,) of the slope parameters b;. Note that Pc(p) is normalized to unity and that, at 
!3 = 1, it coincides with the original distribution P(p). 

It is clear from Eqs. (59), (60) and (63) that for small momenta, p < ,6,(ro,6,-1/2t l
/

2
, 

the condensate regime in Eq. (73) sett les on condition ~n > e. For larger momenta, we 
must take into account that the condensate contribution vanishes much faster than that 
of BE gas, thus leading to much stronger condition of the condensate dominance: 

(74) 


Similar to the fixed multiplicity case, the inclusive single-boson spectrum at small local 
densities tends to ryP(p) == G\ (p, p) and, at large ones, it approaches the asymptotic high­
density spectrum (see Eq. (73)): 

N(p) -7 (n)Pc(p), (75) 

The transfer of the original spectrum to the high-density one is demonstrated for the 
inclusive distribution in Fig. 4a and, more clearly, for ~ closer to the explosion point 
~ = 1, in Fig. 4b. 8 

8These results agree with those obtained in refs. [5, 6] (see also [8, 18] and refe rences therein) except 
for a wrong conclusion [5] that the width of the narrow peak due to the BE "condensate" is of l/ro. 
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Tailing the large- and small-n behavior of the Gn-functions at nt ro6 (see Eqs. (59) rv 

and (62)) , we can approximate the inclusive single-boson spectrum in Eq. (67) as 

1 2N(p) - [1 + ~p /23
/ 

2 + ... + ~pnt- / nt 3
/ ] 1]P(p) +C'vPc(p) 

Ng(p) + Nc(p), (76) 

where ~p = (27f?/21]P(p)/ro 3 == ~exp(-p2 /262). Clearly, for large phase space volumes, 
(ro6)3 » 1, the two terms in Eq. (76) can be interpreted as contributions of the BE 
gas and BE condensate respectively. Like in the fixed multiplicity case, the condensate 
dominates on condition (74) with the substitution n -7 (n) (~n-7 (n)/{3). 

In Fig. 4 we compare the inclusive single-boson spectra with the approximate formula 
(76). A good agreement is obtained despite the calculations were done for not very large 
phase space volurnes. Experimentally the effect of BE "condensate" was searched for at 
SPS CERN as a low-pt enhancement , however, with rather uncertain results (see, e.g., 
[25]) . 

It follows from Eq. (76) that for sufficiently large (nt = ro6 » 1) and not very dense 
(~ « 1) systems, similarly to the ~-scalil!g of (n)/1] (see Fig. 2b), the ratio N(p)/[1]P(p)] 
scales with the local density parameter ~p, It appeares that analogical scaling takes place 
also at fixed multiplicity n.9 In Fig. 5 we show the ratio of the single-particle spectrum at 
fixed n to the dominant large-p contribution (3nP(p) of the original spectrum calculated 
at p = 0 as a function of ~n for various multiplicities n. An approximate ~n-scaling is 
seen up to ~n of the order of unity. At larger ~n this ratio approaches the condensate 
limit (2ro6)3/2~n which no more scales with ~n (see the corresponding curves in Fig. 5b). 
What scales at large ~n is not the ratio of the two contributions but the ratio of their 
integrals, n/{3n, the limiting value of which is just equal to ~n = n/{3 since, according to 
Eq. (60) , {3n = nwn-I/wn -7 (3 for n > e{3. 

5.3 Correlation functions 

It follows from Eqs. (40) and (54)-(64) that, for a given multiplicity n, the correlation 
function intercept Rn(p , p) == Rn(O) decreases and the correlation function width increases 
with the increasing n or decreasing momentum p, both corresponding to the increasing 
local density parameter ~n,p. 

In fact , for large local densities (see Eq. (74)), the condensate behavior is achieved 
(see the curves in Fig. 5 b) and the correlation function tends to uni ty not only at large 
but also at small q2. Indeed, in this limit the normalization constant en -7 1 (see Eqs. 
(43) and (60)) and the nominator and denominator of the correlation function (40) consist 

n 2of about the same number rv of the condensate terms (ra/K!:!.? exp[-(4p2 + q2)ra/2!:!.] 
(see Eqs. (59) , (60) and (63)).10 The well known [3,4, 5] lowering and widening of the 
correlation function with the increasing multiplicity is demonstrated, in the considered 
model, in Fig. 6. 

9In this case, due to the explicit dependence of the particle spectra on the complicated BE weights 
W n , there is no analytical approximation similar to Eq. (76). 

lOOf course, the absence of the correlation in the condensate limit at fixed multiplicity has nothing to 
do with the coherence effect which is absent in the considered model. See the footnote after Eq . (31) 
and the discussion of the inclusive correlation function which appears to be different from 1 at whatever 
large densities . 
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Note however that in the rare gas limit, ~n,p « 1, the change of the form of the 
correlation function with the increasing density is rather weak. Thus, writing in this limit 

N,~2)(PI,P2) == n(n -1)W
n 
-2[G1 (Pl,pdG1(P2,P2) + G1(Pl,P2)G1(P2,pd] 

Wn 

+n(n -l)(n - 2)W
n 
-3[G 1(Pl,PI)G2(P2,P2) + G 1 (PI,P2)G2(P2 , Pr) 

Wn 

+G2(PI, pr)GI(P2, P2) + G2(PI, P2)GI(P2, pr)] 

== n(n - 1)[1 - (2n - 3)K2]P(pdP(P2) [1 + exp( -ro2q2)] 

+n(n - l)(n - 2)23/2 K2{P(pdP(2 1
/ 
2p2) [1 + exp (_~F02q2 + :~;)] 

+P(p2)P(21/2pr) [1 +exp (_~ro2q2 - :~;)]}, (77) 

ro2 = ro2[1 - (2ro~t2], we get for the correlation function intercept an n-independent 
value close to 2: Rn(O) == 2(1 - Ed. Here we have introduced the density parameter 

(78) 


It should be noted that the correlation function Rn( q) becomes less than unity at 
intermediate q-values and approaches the limiting value of 1 from below. This behavior 
and also the related suppression of the intercept value is caused by the BE correlation 
effect on the single-particle spectra entering the denominator of the correlation function. 
Sometimes this distortion is corrected for by a special iterative procedure. Its result can 
be described by a simple low-q2 correction factor: II 

(79) 


In the low density limit of our model, we have 

An = 1 + En-I, (80) 

where 7jJ is the angle between the vectors P and q. At small q2, the corrected correlation 
function (properly normalized to unity at large q2) is then 

(81) 

and can be represented in the usual single-Gaussian form: 12 

R~or(pl, P2) = 1 + An exp( -rn2q2), 
(82) 

liThe iterative correction procedure is usually used for small-acceptance detectors triggered by the 
requirement of at least two identical pions in the detector . The mixed reference sample then differs from 
the product of the single-particle spectra, being much more influenced by the residual BE correlations . 
The residual correlations can substantially affect also single-particle spectra in the case of a small effective 
emission volume , e.g .. , in e+e- -collisions . There are also other reasons for the low-q2 correction factor, like 
energy-momentum constraints or presence of dynamical correlations (e.g .. , in jets) which a re destroyed 
in the mixed reference sample. For this reason the correction factor similar to that in Eg. (79) is often 
introduced as a pure phenomenological one with An = 1 and E n treated as a free parameter. 

12Note that in [17] a similar parametrizat ion was used for the uncorrected correlation function. This 
led to different estimates of the interferometric parameters An and T"n in the considered model. 

17 




We see that with the increasing n the effective interferometric parameters An and Tn 

respectively increase and decrease slightly, starting from the zero density values of 1 and 
TO· 

In the low-density limit, simple Eqs. (81), (82) or directly Eqs. (72) and (77) allow 
one to determine the radius parameter TO by fitting the correlation functions R~or or Rn. 
At higher densities, however , there is no simple analytical expression for the correlation 
function Rn and the eventual fit would require the use of rather complicated Eqs. (63) . 
Another possibility is still a simple single-Gaussian fit at sufficiently small q, giving the 
effective interferometric parameters A~J J < 1 and T~ff < TO, both vanishing with the 
increasing local density. The low-density radius TO and the density can then be determined 
comparing A;"ff and T;"ff with the model predictions as functions of TO and 6. 

In Fig. 7 we show the intercept as a function of the multiplicity n and the local density 
parameter en,p for several values of the mean momentum: p = 0,0.1,0.2 and 0.4 GeV Ic. 
As expected , the intercept is practically constant at low local densities (small n or high 
p). As condensate develops, the intercept sharply falls down. The sharpness of this drop 
is however less pronounced at higher momenta even if plotted as a function of the local 
density parameter en,p' Clearly, this lack of density scaling is related to a strong decrease 
of the condensate contribution with the increasing momentum. In fact, for the momenta 
p > 6(To6 - 1/2t1/2 the low-density parameter en,p strongly overestimates the local 
density in the region of the condensate dominance (see Eq. (74)). To demonstrate the 
possibility of the observation of the condensate effect for soft pions produced in certain 
high multiplicity events not following the ordinary proportionality rule between the freeze­
out phase space density and pion multiplicity, in Fig. 7 we indicate by the arrows the 
intercept values corresponding to en = 3e = 1.5 (n ~ 3(n)). 

In the inclusive case corresponding to the original Poissonian multiplicity distribution, 
the correlation function intercept is equal to 2 for any local densities (see Eq. (68)). At 
very large local densities the two-boson spectrum approaches twice the product of the 
single-boson ones (see Eqs. (59) and (67)) so that the inclusive correlation function tends 
to the limiting value of 2 even at rather large relative momenta. The corresponding 
increase of the width of the correlation function with the increasing density parameter e 
is demonstrated in Fig. 8. 

Note that at high local densi ties both the nominator and denominator of the correlation 
function at small q2 are dominated, like in the case of a fixed multiplicity, by the universal 
condensate terms , there numbers being about (n(n - 1)) and (n)2 respectively. The 
difference between the inclusive and fixed multiplicity correlation functions, R -+ 2 and 
Rn -+ 1, is due to the fact that at high densities the originally Poissonian multiplicity 
distribution approaches a much wider BE one, for which (n(n - 1)) = 2(n)2. 

Using the approximate equations (59) and (62) for the On-functions, we can analyti­
cally follow the behavior of the inclusive correlation function for large systems ((2To~)2 » 
1) at q -+ O. Thus the function G(pt, P2) determining the two-boson inclusive spectrum 
(see Eq. (67)) can be approximated as a sum of the BE gas and BE condensate terms: 

(83) 

where Tc 2 = To/(2~) and 

nt n r 

Tg2 == T02 2..= [pnn-5/2I 2..= [pnn-3/2. (84) 
n=l n=l 
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Note that at low local densities ([p « 1) the effecti ve radi us I g coincides with fo == 
'0 . With the increasing local phase space density it slightly decreases. The maximal 
reduction factor of 1/V2 is achieved for large (,O~ » 1) and dense (~ ---7 1, P ---7 0) 
systems. Considering the limit q ---7 0 and 10~ » 1, we can neglect the q-dependence of 
the condensate term (Ie « Ig) and of the product of the single-particle spectra in the 
denominator of the correlation function and, using Eqs. (68) and (83), write 

(85 ) 

It follows from Eq. (85) that the condensate contri bu tion leads to an additional red uction 
of the interferometric radius squared (defined as a 10w-q 2 slope of the correlation function) 
as compared with the case of a pure BE gas. In the case of a dominant BE condensate 
the interferometric radius tends to zero whatever large is the geometric size of the system. 

Note however that, due to the non-Gaussian character of the correlation functions at 
large phase space densities, their real width is determined by the large-q 2 behavior which 
reads as: 

. (Ne(p))2 ( 2 2)R( Pl,P2 ) =1+ Ng(p) exp-'eq· (86) 

Requiring R(qeff) = 1 + lie, we get for the corresponding effective radius squared: 

(87) 

Thus, compared with the vanishing of the 10w-q 2 slope of the correlation function (as 
(1 - ~)), the effective radius squared vanishes at large phase space densities much slower 
(as 1/1ln(1 -~)I) (see Fig. 8). 

It should be noted that Eqs. (67) and (68) assume that the original Poissonian multi­
plicity distribution extends to any arbitrarily large number of bosons. In reality, however, 
this number is limited due to the finite available energy. It is therefore interesting to 
see how fast the semi-inclusive spectra approach the inclusive limit with the increasing 
number n max of the included pions. In Fig. 9 we demonstrate the nmax-dependence of the 
semi-inclusive correlation functions for a fixed value of the density parameter ~ = 0.95 
and, in Fig. 10 - the nmax-dependence of the correlation function intercepts for different 
~-values. We can see that the width of the semi-inclusive correlation function increases 
with the increasing n max , while its intercept decreases at small n max , reaching a minimum 
at n max ;:::j (n), and then approaches the limiting value of 2 roughly as log n max . The 
inclusive behavior is practically saturated at a moderate number of the included pions 
n max = k(n), where k increases with the density parameter ~ from about 3 at ~ = 0.89 to 
about 5 at ~ = 0.99. 13 It thus justifies the neglect of the energy-momentum constraintss 
in Eqs. (67) and (68) provided (n) « y1Slm, e.g., in the usual case of a logarithmic 
increase of the mean multiplicity with the c.m.s. energy y1S. The situation can change 
in the case of very large and dense systems dominated by a soft condensate. Then the 
regime (n) ~ yIS can settle, the energy-momentum constraints leading to the reduction 
of the maximal effective number of produced pions to n ma.x ~ (n) and, as a result, to 
the suppression of the measured inclusive correlation function. Clearly, such an eventual 
suppression has nothing in common with the coherence effect. 

13This increase is related with the increasing condensate contribution which, for the ideal BE gas, is 
charecterized by very large multiplicity fluctuations. 

19 



6 Discussion and conclusion 

We have illustrated an approximate scaling of multi-boson effects with the density pa­
rameters ~,~n' .. . (see, e.g., Figs. 2 and 5). It means that though our numerical results 
were obtained for typical AGS or SPS multiplicities of the order of tens or hundreds of 
pions, they are approximately valid also for higher multiplicities expected at RHIC or 
LH C energies. 

The value of the density parameter ~ can be estimated with the help of Eq. (53) 
relating the phase space density in the rare gas limit with the integrated correlation 
function . Thus using the usual Gaussian parametrization for the correlation function in 
the longitudinally co-moving system (LCMS): 

(88) 


where x, y (y II z x p) and z denote the outward, sideward and longitudinal directions 
respectively and parametrizing the single-particle spectra as 

N(p) = dn exp( -(mt - m)/T) (89)
dy 2rrT(T + m)mt cosh y' 

we arrive at the mean pion phase-space density 

= )'rr
3

/ 
2 N( ) osh =). yI7r exp( -(mt - m)/T) dn(f) (90) 

p V p c Y 2 VT(T+m)mt dy' 

where V = rxryrz is the LCMS interference volume. For soft pions (Pt ~ 0 and y ~ 0) 
at SPS energies this quantity is typically '"'-' 0.2. Since this value is sufficiently small, 
we can compare it with the model phase space density in the rare gas limit (])p=o ~ 
'1]/( v'2ro~)3 (see Eq. (52)) and get ~ ~ 004-0.5. For such values of the density parameter 
our calculations point to rather small multi-boson effects in the ordinary events. These 
effects can show up however in the events containing sufficiently high density fluctuations. 
Particularly, the condensate effects could be seen in certain high multiplicity events (see, 
e.g., Fig. 7) in which the phase space volume "-' (ro~)3 does not follow the increasing 
multiplicity (as it presumably does in the ordinary events) and remains sufficiently small 
to guarantee a nonvanishing factor eat. determining the condensate size (see Eqs. (71) 
and (76)). 

Since at present energies the LCMS interference volume V seems to scale with dn/dy 
the freeze-out of the pions occurs on average at approximately constant phase space den­
sity (see Eq. (90)). In the rare gas regime, based on the density scaling one can then 
expect about the same relative size of the multi-boson effects also at RHIC and LHC 
energies, up to a slight increase in ~ due to the vanishing of the finite-size corrections with 
the increasing phase space volume of the emitting system. At the same time, the grow­
ing phase space volume will lead to suppression of the average condensate contribution, 
determined by the factor eat.. 

Considering the multi-boson effects in the low (BE gas) and the large (BE condensate) 
density limits, we have obtained simple analytical formulae accounting for the finite size 
of the phase space volume and allowing to follow the dependence of the mean multiplici­
ties, single-boson spectra and two-boson correlation functions on the phase space density 
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parameters. In principle, these formulae provide a possibility to identify multi-boson ef­
fects among others. Particularly, the width of the low-pt enhancement due to the BE 
condensation decreases with the size of the system as r~1/2 and this narrowing makes the 
observation of the effect easier. 

The results of the considered simple model should not be taken, however, too literally 
Slllce: 

a) due to its static character, the model does not explicitely account for the experi­
mental indications on a constant freeze-out phase space density and the related expansion 
of the emission volume. The qualitative application of our model to heavy ion collisions is 
however possible in the limited regions of the momentum space. For example, the pions 
with a rapidity difference greater than about unity have to be considered as originating 
from different static sources; 

b) the inclusive spectra at sufficiently high mean multiplicity are dominated by the 
condensate contributions of high multiplicities in both extreme cases of very narrow or 
very wide multiplicity distributions (compared with the Poissonian one) of the originally 
uncorrelated bosons. Thus the intercept of 2 of the inclusive correlation function in the 
Poissonian case is likely to be a maximal one. Since the original multiplicity distribution 
for pions from the effective static source can be in fact wider than the Poissonian one (e.g., 
due to the fluctuations of the mean multiplicity), we can expect the intercept less than 2 
not only for the correlation functions at fixed multiplicities but also for the inclusive ones; 

c) when estimating the freeze-out phase space density from the experimental data, the 
multi-boson system is considered as a homogeneous medium. However, there can be large 
local density fluctuations (not present in the model) which can give rise to noticeable 
multi-boson effects even at a moderate value of the mean phase space density; 

d) on the other hand, the multi-boson effects can be somewhat suppressed due to a 
possible violation of the factorization assumption in Eq. (11) or due to the lack of the 
reflection symmetry of the emission volume. In latter case the functions Gn(Pl, P2) are 
no more real; 

e) for identical charged pions, the BE effects are also suppressed due to the Coulomb 
repulsion. Since this repulsion is important only in a weakly populated region of very 
small relative momenta, the suppression of the global BE weights Wn is rather small. For 
example, for W2 this suppression, being about (aro~2)-1, is usually less than one per mill. 
The Coulomb distortion of the global multi-boson effects is therefore negligible in the 
rare gas limit. Nevertheless, since the Coulomb repulsion destroys the formation of the 
condensates made up from positive and negative pions in the disjoint phase space regions, 
it can lead to noticeable differences between charged and neutral pions in dense systems. 
Particularly, we can expect a decrease of the charge-to-neutral multiplicity ratio with the 
increasing phase space density. 

Because of large numbers of positive and negative pions produced in heavy ion colli­
sions, one could also raise a question about importance of the Coulomb screening effects 
violating the standard two-body treatment of the correlations in the low density limit. 
There are however arguments showing that the screening will be of minor importance 
even at LHC [15] (see also [26]). Note that in the scenario with a constant phase-space 
density the corresponding Debye radius 

(91 ) 

where e2 = 1/137 and p+ + p_ is the total density of charged pions in the configuration 
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space, will be also constant, up to a weak energy dependence due to the temperature T. 
Assuming that pions with a rapidity difference greater than unity come from spatially 
disjoint regions of phase-space, we can put [15] 

_ (_A_) 1/2 dn+/dy _ J2 T 3 ( ) (92)p+ - (27f)3 V - y1"7f2 f+ y 

and obtain rD ~ 15 fm at U+)y ~ 0.1 and T ~ 200 MeV /c (rD l/T). Thus at LHCr-.J 

energies we can expect the characteristic distances between the pion production points 
comparable or larger than the screening radius rD leading to a suppression of the usual 
two-particle Coulomb effects. In fact, two charged pions produced at a distance r* > rD 

start to feel their Coulomb field only after some time when the density decreases to a 
value corresponding to Debye radius smaller than r*. During this time the vector of the 
relative distance between the pion emission points increases approximately by [15] 

k* 3 (r* )2/3~r* = _V 1/ [ - - 1]. 	 (93)
T rD 

Substituting r* by r* + ~r* in the argument of the Coulomb wave function, we can see 
however that the suppression of the Coulomb effect can be substantial only in the region 
of large relative momenta k* > T where the correlations due to QS and FSI are already 
negligible (see, e.g., [19, 27]) . 

In conclusion we summarize the results. The influence of the multi-boson effects 
on boson multiplicities, single-boson spectra and two-boson correlations, including an 
approximate scaling behavior of some of their characteristics with the phase space density, 
has been demonstrated using the analytically solvable Gaussian model. The approximate 
analytical formulae are given allowing to follow the dependence of these quantities on 
the phase space density parameters thus providing a possibility for the identification of 
the multi-boson effects among others. Though these effects are hardly to be observable 
in typical events of heavy ion collisions in present and perhaps also in future heavy ion 
experiments, they can show up in certain classes of events containing sufficiently high 
density fluctuations. 
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Figure 1: The multiplicity distribution of neutral pions for a) D. = 0.25 GeV Ic, TO = 2.1 
fm, rJ = 30 and b) D. = 0.25 Ge V Ic, TO = 1.5 fm, rJ = 10, where rJ is the mean multiplicity 
of the original Poissonian distri butions (dotted curves). 
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Figure 2: The slope parameter b of the exponential tail c· exp(-b· n) of the multiplicity 
distribution (a), the ratio of the mean multiplicity to the original Poissonian one (b) and 
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Figure 4: The inclusive single-particle spectra corresponding to the density parameters 
a) ~ = 0.89 and b) ~ = 0.95, 0.99 and 0.998 (the corresponding radius ro slightly varies 
near 2 fm) . The full curves are calculated according to the tailing approximation (76), 
the dotted ones represent the contributions of the two (BE gas and BE condensate) terms 
in Eq. (76), the dashed curves, 1]P(p), correspond to the rare gas limit. 
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correlation function. The conditions are the same as in Fig. 8 for the density parameter 
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