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Abstract

The decay channel leading to two or several tangent and later separated spherical
fragments assuming volume conservation and neck formation while keeping quasi-spherical ends
has been investigated. The potential energy has been determined within a generalized liquid-drop
model including a proximity energy term, the decay asymmetry, an accurate nuclear radius and
the temperature dependence. The calculated fission barrier characteristics, half-lives of
radioactive nuclei emitting heavy clusters, fragment kinetic energies, critical angular momenta of
light nuclei and rotating super and hyperdeformed state properties are in agreement with the
available experimental data. The formation of evanescent quasi-toroidal systems and
fragmentation with emission in a plane seem possible in very heavy-ion collisions at intermediate
energies.

1. Introduction

New observed phenomena like cold and asymmetric fission of 22t [1-2], cluster
radioactivity [3-4], formation of nuclear molecules in 24Mg [5], asymmetric fission of
intermediate mass nuclei [6] and quasi-fission of heavy dinuclear systems [7] have
renewed interest in investigating the fusion-like fission valley which leads rapidly to two
touching spherical fragments and quasi-molecular shapes. Furthermore, the rotating
super and hyperdeformed states as well as the very heavy and possible superheavy
elements are and will be formed in heavy-ion collisions for which the starting
configuration is two close quasi-spherical nuclei. In more violent heavy-ion reactions (a
few tens of MeV per nucleon), hot and compressed nuclear systems are produced and
their fragmentation in several relatively cold and spherical intermediate mass fragments
is observed [8-9].

The earlier fission studies assumed that the balance between the repulsive
Coulomb forces and attractive surface tension forces governs the evolution of the
nuclear shapes [10-11]. The often used radius development in Legendre polynomials led
to elongated one-body configurations which have been able to explain the bulk of our
knowledge on nuclear fission. Nevertheless, this development fails to reproduce strongly
distorted configurations [12] with deep and narrow necks and, consequently, it is
difficult to link the two sheets of the potential-energy surface corresponding respectively
to one-body shapes and to two separaied fragments [13]. This problem remains in the
microscopic approaches [14-15].

Later on, the inefficiency of the pure Coulomb barrier to reproduce the fusion cross
sections has led to the introduction of a proximity term [16-17] in the development of
the liquid drop model energy in order to smoothly describe the transition from two
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almost spherical nuclei to one-body shapes in properly taking into account the finite-
range effects of the nuclear force in the gap or crevice between the incoming nuclei. As
an example, for two touching spherical heavy nuclei, the proximity energy reaches
around - 40 MeV while the fission barrier height of the compound nucleus is only 5-10
MeV. Dynamical studies have pointed out the possibility of fission processes through
compact shapes [18] and, at least, cluster emission, cold and asymmetric fission and
fragmentation are exit modes exploring these distorted shapes where the necks are not
shallow. Consequently, it is important to study the role that the proximity forces might
play also in the nuclear fission process.

The study of the compatibility with the available data of a decay through quasi-
molecular shapes is presented here, starting from the viewpoint that a degeneracy may
exist between the energy of elongated shapes found by the liquid drop model without
proximity energy term and the energy of compact and necked shapes for which the
lowering of the potential energy is due to the proximity interaction in the neck. A
generalized liquid drop model is firstly defined in section 2 while in section 3 the shape
sequence selected to describe the transition from one sphere to two tangent spheres is
displayed. The ability of these adopted liquid drop model and shape sequence to
reproduce the fusion data has been checked [19-20]. The main characteristics of the exit
channel via these quasi-molecular shapes are compared with symmetric and asymmetric
fission barrier data in sections 4 and 5, with new results on cluster radioactivity in
section 6 and with fragment kinetic energies in section 7. The existence of rotating super
and hyperdeformed states and the critical angular momentum that a nucleus is able to
sustain against centrifugal forces in this peculiar deformation valley are investigated in
section 8. The shape sequence has been generalized to study the ternary fission and
results are presented in section 9. Finally, the temperature effects have been introduced
in section 10 and the rapid fragmentation process with emission in a plane or in the
whole space has been compared with the formation of toroids and bubbles in section 11.

2. Generalized liquid-drop model

For an arbitrary deformed nucleus, the macroscopic total energy is defined as [21-

23]
E::ERLDM-!—EN’ (1)
where Eg;py and Ey are respectively the rotational liquid-drop model energy and the

nuclear proximity energy [16-17]. Constant density and volume conservation are
assumed.

Epipy = Ev + Eg + Ec + Ep,, . (2)
For one-body shapes, the volume Ey, surface Eg and Coulomb E . energies are given

by :

E, = —a,(1-kJI*)A, 3)
Es = a,(1 - kJI*)AY3(S [ 4nR2), 4)
Ec =0.6e*(Z* /Ry) x o.sj(we )/ Vo )(R(8)/R,)* sin0do (5)

where A, Z and I = (N - Z )/A are the mass, charge and relative neutron excess of the
compound nucleus. V (0) is the electrostatic potential at the surface of the shape and V,,

the surface potential of the sphere. The volume and surface coefficients a,, a, and the
effective sharp radius R, have been chosen as :
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a,(T) = 15.494(1 + 0.00337T?) MeV (6)
a,(T) = 17.9439(1 + 1.5T / 17)(1 = T / 17)** MeV, (7)
R, (T) = (1.28A"3 - 0.76 + 0.8A7"3)(1 + 0.0007T?) fin. (8)

This later formula proposed in Ref [16] allows to reproduce the small increase of the
ratio r, = R, /A"? with the mass ; for example, ry =111fm for »Ne and 7, = 118 fm

for **°Pu.
For comparison, the set of parameters used in the original version of the liquid drop
model [21] was : a, =17.9439MeV and r, =1.2249fm. The potential defined by

Krappe, Nix and Sierk [24] assumes a; =21.7MeV and r, =118fm while the recent
version of the Thomas-Fermi model [25] supposes a, =18.63MeV and r, =114 fin.
The surface and volume asymmetry coefficients take on the values :

k, =2.6 and k, = 1.8. )
When the two fragments (or the two colliding nuclei) are separated :
By = —a,[(1= kI A + (1= K12 A, (10)
Es = a[(1 = kD) AY® + (1 - k,13) A", (11)
E, = %823 / R, + %&zg | Ry + €2, Z, | r (12)

where A;, Z;, R; and [; are the masses, charges, radii and relative neutron excesses of the
fragments and r the distance between the mass centres.

The discontinuity of a few MeV which appears at the contact point when Z;/A;
and Z,/A, are very different has been removed linearly from the contact point to the
sphere since it is due to the progressive rearrangement of the nuclear matter. _

The surface energy E takes only into account the effects of the surface tension
forces in an half space and does not include the contribution due to the attractive nuclear
forces between the surfaces in regard in the neck or the gap between the nascent
fragments. The nuclear proximity energy term E, allows to take into account these

additional surface effects when crevices appear in the deformation path [16,17,19].
h
Ey =2yjh"““¢(1)/b)2nhdh. (13)

h is the ring radius in the plane perpendicular to the fission axis and D the distance
between the infinitesimal surfaces (see Fig. 1).

Fig. 1. Area of the proximity force influence and definition of D and h.
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b is the surface width fixed at the standard value of 0.99 fm. The ¢ function is taken
with the parametrisation of Feldmeier [17]. The surface parameter Y is given by a
geometric mean between the surface parameters of the two fragments :
Y = 095171 -k, I2 )1k, IZ )MeV. fim™. (14)
In this generalized liquid drop model the surface diffuseness is not considered in the
surface energy term and the proximity energy vanishes when there is no neck as for
ellipsoids for example.

The rotational energy has been determined within the rigid body ansatz. Indeed, it
has been shown that corrective terms arising from the orbital motion and the spin
degrees of freedom roughly cancel each other, particularly at large deformations.

R+ 1)
Epy = —F—
21

(15)

3. Quasi-molecular shapes

A two parameter shape sequence has been defined [19,22] to describe the
continuous transition from one initial spherical nucleus to two tangent spherical
fragments (see Fig. 2).

5 azsinze-i—clzcosze 0<8=<mn/2)
R(®)" =

azsinze-!—c%cosze (m/250< 1t)'
¢; and c, are the two radial elongations and a the neck radius. This family of shapes is

derived from the elliptic lemniscatoids obtained by inversion of axially symmetric
ellipsoids [26]. Assuming volume conservation, the two parameters s; = a / ¢; and

s, = a / ¢, completely define the shape. For a given decay channel, the ratio

N = R, / R, between the radii of the future fragments allows to connect s, and s, :

2
51

st +(1-sim?

(16)

55 = (0 < s,5,n<1) (17)

OOC
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Fig. 2. Symmetric and asymmetric shapes leading to binary quasi-molecular configurations and generalization to
ternary fission.
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When s; decreases from 1 to O the shape evolves continously from one sphere to
two touching spheres with the natural formation of a deep neck while keeping almost
spherical ends.

Using the axial symmetry, analytical expressions have been obtained for the
various shape-dependent functions : volume, surface, moment of inertia, distance
between the mass centres of each fragment and quadrupole moment [19].

4. Symmetric fission barriers

Assuming volume conservation, the volume energy is constant during the
symmetric fission process. The different varying contributions to the potential energy
are given separately together with the deformation energy of the 160Dy nucleus in Fig. 3.
The slope of the E; and En curves changes drastically at the contact point since the
surface is constant after the separation of the two spherical fragments and since the
nuclear attraction is greatest at the contact point. Nevertheless, the total energy varies
gently even around the contact point.

/R

Fig. 3. Variation of the surface energy E,, the Coulomb energy E,, the nuclear proximity energy Ey and the
deformation energy E (in MeV) for the '*°Dy nucleus plotted against the reduced distance between the mass
centres in the fusion-like fission valley. The dashed line corresponds to the separation into two equal spherical
fragments.

The deformation energies of the ***U nucleus corresponding to different shape
sequences with and without proximity energy contribution are compared in Fig. 4. The
dotted curve is the potential energy calculated using quasi-molecular shapes without
taking into account the finite range effects of the nuclear forces. This shape sequence is
then very energetically unfavourable. The thick full curve includes the proximity energy,
on the same shape sequence, and may be compared with the thin full curve representing
the deformation energy of the liquid drop model without proximity for usual elongated
and little or not creviced shapes [10].
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This- figure shows clearly that the comparison between the two shape sequences
must be re-examined when the additional proximity energy term is introduced [22]. Nix
and Swiatecki [27] using a two-spheroid model and no proximity contribution were
already able to reproduce correctly the most probable values and widths of the
experimental fragment mass distributions as well as the total kinetic energy for nuclei
lighter than radium. The fission barrier heights were a few MeV too high and this model
was considered as a rough approximation. Most of the subsequent studies [28] have used
the development of the nuclear radius in terms of Legendre polynomials which,
implicitly, is unable to generate shapes with deep necks. However, if the proximity
energy is introduced, the difference between the two spheroid model (which is a
generalisation of the two separated sphere model) and the more general parametrisations
for one-body shapes is reversed because, for the two-spheroid model, the proximity
energy is large due to the deep gap while this energy is negligible for the usual elongated
one-body shapes. This can be seen in Fig. 4 where the chain curve (taken from [11])
gives the energy of two separated oblate spheroids (the proximity energy being not
introduced). For 1/R, < 2, this shape is soon favourable and this shape would be highly
competitive with regard to the usual elongated shapes if the proximity energy was
included.

{ ey
40

0

Deformation energy (MeV)

10 15 20
r/R,

Fig. 4. Deformation energies of the **U nucleus as a function of the relative distance between mass centres 1/Ro.
The thin full curve is the energy given by the original liquid drop model and for elongated shapes with shallow
necks. The chain curve gives the energy of two separated oblate spheroids [11] with no proximity contribution.
The thick full curve and the dotted curve are respectively the potential energies using our shape sequence with
and without proximity energy.

The macroscopic fission barriers of five nuclei are plotted in Fig. 5. The proximity
energy progressively introduces an inflection in the curve. for A < 215 there is one
saddle point corresponding to two separated spherical fragments maintained in unstable
equilibrium by the balance between the repulsive Coulomb forces and the attractive
nuclear proximity forces. For A > 215, there are two maxima. The inner is close to the
sphere while the outer always has the same configuration ; between them a second
minimum occurs due to the proximity effects in the neck which strongly lowers the
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deformation energy. The main characteristics of these barriers are the permanence of an
outer peak which slows down the fragment separation and the appearance of
macroscopic double-humped barriers for actinides. Norenberg [29,30] has called any
maximum in the potential energy which occurs after the fragment separation a scission
barrier. For light-medium nuclei, the introduction of the proximity forces on such a
shape sequence leads to the identification of fission and scission barriers, since the
rupture of the neck between the fragments is assumed before the barrier is crossed. For
heavier nuclei, double humped barriers have effectively been observed experimentally.
The understanding of the nature of these complex structures needs to go beyond the
mere minimisation of a liquid drop model energy with respect to deformations. Two
main improvements have been widely advocated . Strutinsky [31] found double-humped
barriers when taking into account shell and pairing corrections on elongated scission
configurations without any proximity contribution. Nérenberg et al [29,30,32] and
Wilkins et al [33] restricting themselves to the interaction of two fragments have shown
also the occurrence of an outer barrier when introducing the proximity interaction and
the shell and pairing corrections ; this scission barrier allowing to explain the angular
momentum distribution of fission fragments. Our study points out the possibility to
identify the scission barrier of Norenberg et al with the outer peak of the double-humped
barrier appearing in the actinide region.

15
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Fig. 5. Macroscopic fission barriers for '**Hg, *'*Po, **Th, **°Pu and 2°2Cf as a function of the relative distance
between mass centres. The dotted line corresponds to the contact point between the nascent spherical fragments.

The macroscopic fission barrier heights are displayed in Fig. 6. For the heaviest
nuclei, the fission barrier height corresponds to the height of the second peak relatively
to the second well minimum. The fission barrier heights in the deformation valley
through quasi-molecular shapes agree remarkably well with those obtained by Krappe et
al [24] ; the differences in the macroscopic energy definition being compensated with
the differences between the shape parametrisations. When compared with the pure
liquid-drop estimations, which are recognised experimentally as being overestimated for

the medium systems, the proximity energy strongly lowers the barrier height (typically
10 MeV for A = 100).
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Fig. 6. Comparison of macroscopic fission barrier heights of B-stable nuclei. The dotted curve and the chain curve
give respectively the predictions of the Liquid Drop Model [21] and of the Yukawa plus exponential Liquid Drop
Model [24]. Our results within compact and necked shapes are shown by the full curve.

The shell corrections have been introduced as defined in the Droplet Model [34]
with an attenuation factor given by

Egy = EX're1-20.2 ) exp(-a?) where a2 =(8R)? /a?. (18)
The distortion oa is the root mean square of the deviation of the surface from a sphere,
a quantity which incorporates all types of deformation indiscriminately. The range a has
been chosen to be 0.32ry. Using this approach, shell corrections only play a role near the
ground state of the compound nucleus and not at the saddle-point (where they are
expected to be of the order of 1 MeV or smaller). It has been clearly demonstrated
within a single-particle model with pairing correlations [29,30] that, for two separated
spheroids, the shell effects are strongly diminished since they are properties of valence
nucleons and that the orbitals of which are strongly perturbed by the nuclear proximity
potential. Thus, as soon as the shape is creviced, the application of the standard shell
corrections to the liquid drop model energy seems to overestimate the veritable shell
effects which are, really, partially destroyed by the proximity forces.

In Table 1, the macroscopic-microscopic fission barrier heights obtained in the
quasi-molecular deformation valley within our generalized liquid drop model are
compared with the results of the Droplet Model [34] and the experimental data. The
agreement is fair in the whole range of nuclei considered. For the intermediate mass
nuclei, this version of the Droplet Model gives too high barriers.

The double-humped barrier obtained for *°py within the present generalized liquid
drop model and the compact and creviced shapes is compared in Fig. 7 with the barrier
determined by Moller and Nix [38]. The first minimum is quite similar in the two
studies. The second barriers have the same height but do not lie at the same position.
Experimentally, the quadrupole moment of the second minimum is around 36 b. We
obtain 46.7 b but the well is very flat. A deformation leading to 36 b lies only 0.5 MeV
above the calculated minimum.

The main result is the purely macroscopic origin of the second barrier and well for
the quasi-molecular shapes. In contrast, for elongated shapes, shell effects must be
introduced to generate a second barrier at large deformations.



Table 1. Comparison of experimental [35,36] and theoretical [22,34,37] fission barrier heights. For the actinide

nuclei, only the outer barrier height is included.

9

Symmetric fission barrier heights (MeV)
Nucleus | Exp. data Present Droplet Nucleus | Exp. data Present Droplet
study Model study model

Cd 34.0 40.8 - “PBj 21.9-25.5 25.0 224
"Eu 32.5+2 33.7 40.4 22p 19.7 21.4 -
B2Th 29.0+1 32.0 37.1 Bat 14.3-17.2 19.5 16.9
STHo 26.5+2 31.3 34.5 21°Rn 13.1+1.0 16.1 13.5
Opy 27.4 33.9 i “Ac 8.0 9.0 5.3
Ly 27.1-31.5 30.0 30.4 “%Ra 8.1 99 -
PTq 25.4-29.2 27.9 27.1 B2Th 6.0 8.3 -
oy 23.9-28.7 26.7 25.6 alt] 6.0 6.9

®Re 24.0-26.4 25.5 23.6 23y 5.1-5.8 7.0 49
%05 24.0 24.2 - py 5.7 5.7 -
Plir 20.6-23.7 22.7 21.9 “2Am 6.4 5.2 4.4
™ Au 18.6-21.6 21.1 20.9 24py 5.4+0.3 5.7 4.6
*Hg 21.8 21.9 - 7%Cm 47 4.7 -
Ly 19.5-23.5 22.8 21.3 2Bk 5.8 42 4.1
206pp, 26.0-26.8 25.4 23.0 2 5.3+0.3 3.7 3.9

15 T T T T

Potential energy (MeV)

r/Ry

Fig. 7. Macroscopic-microscopic potential energy for **°Pu as a function of r/R,. The double-humped potential
barrier obtained in the quasi-molecular shape valley is given by the full curve [22]. The chain curve shows the
barrier obtained using the folded Yukawa shell model potential and elongated shapes [38]. The arrow gives the
experimental position of the second well.

The macroscopic-microscopic potential barriers existing for very heavy and
superheavy elements in the fusion-like fission valley are displayed in Figs 8 and 9. The
macroscopic contribution to the first peak diminishes continuously and vanishes for the
heaviest nuclei ; their stability being therefore due uniquely to shell effects. The second
peak progressively vanishes also for the heavy nuclei because the attractive nuclear force
can no longer equilibrate the repulsive Coulomb force. The second peak disappears
completely for the superheavy elements due to the dominant Coulomb repulsion. No
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isomeric state can exist for these systems and they only survive in their ground state. If
such a barrier reproduces the physical reality, the hope of forming these superheavy
elements in fusion reactions is strongly reduced. The slope of the potential barrier to
pass for reaching the almost spherical compound nucleus is very pronounced and the
barriers are thinner than those found in other studies.

T T T T

Fission Barrier (MeV)

¢ 18 20

l‘/R(}

Fig. 8. Macroscopic-microscopic potential energy for 2**U, 2**Cm, ***Fm and **°Rf as a function of r/R,.
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Fig. 9. Macroscopic-microscopic potential energy of the superheavy nuclei 75gSh, 5Sh, 372Sh and 355 Sh .

Different characteristics of the double-humped barriers for actinides are
summarised in Table 2. The second barrier heights are systematically too high for the
light actinides but the same difficulty has been encountered in other studies before
assuming asymmetry. Nevertheless, these results remain inside the precision that we

may expect from a one parameter shape sequence and without adjustment of the liquid
drop model coefficients.
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Table 2. Comparison between calculated and experimental barrier characteristics of six actinide nuclei. The
experimental data are taken from [39]. v, v, and Ej are respectively the first peak height, the second peak height
and the energy of the second potential minimum relatively to the ground state (in MeV).

Isotope v, €Xpt v, theory Ej expt Ey theory Vp €Xpt v, theory
¥Th 5.8 3.7 <4.5 2.9 6.2 11.2
Z4Th 6.1 3.9 3.1 6.5 11.5
U 5.6 3.8 2.2 5.5 9.1
U 5.7 42 2.6 2.7 5.7 9.7
“Opy 5.6 4.3 2.4 1.7 5.1 7.4
“Cm 5.7 45 0.8 42 5.5

5. Asymmetric fission barriers

In this section, the compatibility of an asymmetric decay process through these
quasi-molecular shapes [40] is checked with experimental data . In Fig. 10 calculations
on the asymmetric breakup of '*Tb are compared with recent results. It is known that
the original version of the LDM [28] predicts too high fission barrier heights for light
and intermediate mass nuclei. Here, the difference with the data is only 10%. In contrast,
the experimental barriers are 37% greater than those determined by the YEFRLDM [24]
which, nevertheless, reproduces generally accurately nuclear masses and fission and
fusion barrier heights. Our calculations agree well with the data Fig 11 shows that our
approach reproduces also fairly well the recent data for **Mo (except for the lighest
fragments) while it overestimates slightly the barriers for the In nucleus. In all cases, our
asymmetric fission barrier heights lie between the predictions of the LDM and
YEFRLDM models.

50 T T T T T T

40

30

20

10 -

Barrier Height (MeV)

0 0.2 0.4 0.6 0.8 1.0
(A=A, /(A +A,)

Fig. 10. Comparison of experimental data [6] and theoretical fission barrier heights for "**Tb versus the fission
asymmetry. The solid and dashed lines correspond respecuvely to the YEFRLDM [24,42] and LDM [28] while
our results are given by the dashed-dotted curve [40].

It is also important to know whether, in this fusion-like fission valley, the
Businaro-Gallone point [43] where nuclei become unstable with regard to asymmetric
breakup is also correctly localized in the nuclear mass range. The potential surfaces seen
by the fissionning **Kr and **’At nuclei are displayed in Fig. 12. As expected, for the
light nucleus the barrier is maximal for symmetric fission and decreases monotically
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with asymmetry. Thus, the potential favours decay by light fragment emission. On the
other hand, the heavy nucleus shows the opposite behaviour. The symmetric fission path
corresponds to the exit channel which minimizes the potential energy. The barrier
heights reach a maximum for a very asymmetric configuration. For still greater
asymmetry, the barrier decreases again. For this intermediate mass range, decays by
symmetric fission and light charged particle emission are favoured. For actinide nuclei,
the macroscopic fission barrier heights (around 5 MeV) are of the same order as the
shell effects and, consequently, the dependence on the mass asymmetry is not smooth.
Furthermore, for the heaviest elements, the decay via alpha particle emission is the most
important one.
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Fig. 11. Same as Fig. 10 but for **Mo and '"*'?In and as a function of the fragment charge [40].
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Fig. 12. Potential energy surface versus the mass asymmetry (A;-A;)/A and the distance between the mass centres
for typical light and heavy nuclei.
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The so-called ‘conditional’ saddle-point (CSP) corresponds to the.barrier for a
fixed mass asymmetry. When all these CSP are plotted in a single curve, they form a
ridge line summarising the main information (see Fig. 13). The often used fissility
coefficient x = Ecow/2Esurs gives the interplay between the Coulomb and the surface
energies. It can lead to some confusion since the different macroscopic models do not
use the same surface coefficients and the selected nucleus should always be specified.
For light nuclei, the curve is monotonic and reaches its minimal value for very
asymmetric splitting. As the nucleus becomes bigger, the symmetric configuration
barriers decrease. For a fissility value between 0.4 and 0.5 the curve is a plateau and all
the exit channels have very similar CSP values. For still heavier nuclei, the symmetric
splitting turns out to have the lowest CSP. The ridge curve in this case reaches a
maximum for very asymmetric configurations and then drops again for the most
asymmetric decays. This is exactly the Businaro-Gallone picture. More precisely, the
BG point falls in the mass interval 81-145 in our study in agreement with the
experimental estimations which locate the BG point between 85-145 [44].
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Fig. 13. Ridge lines for different 3 stable nuclei. The conditional saddle-point energy is normalized to the surface
energy of the corresponding compound nucleus.

6. Emission of C, O, Ne, Mg and Si nuclei

The half-lives of nuclei emitting heavy clusters like C, O, Ne, Mg and Si through
this very asymmetric fission valley leading rapidly to two spherical touching nuclei at
the early stage of the tunneling process have been calculated [45] and compared with
recent data relative to the so-called cluster radioactivity [3,4]. In such an unified fission
approach, the decay constant of the parent nucleus is simply A =vyP. There is no

adjustable preformation factor. The assault frequency v, can be evaluated from the zero
point vibration energy E, =1/2hv, and, in the harmonic oscillator approximation,
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Vo =2.5% 102° 57! The barrier penetrability P is calculated within the general form of
the action integral

2 R, 172
P= exp{—g [ [2B(rXE(r)= E(R, )] dr}, (19)
with E(R,)=E(R,)=0.

The expression proposed for the inertia B(r) in this new fusion-like fission valley [46]
has been used

272 128
B(r)=,u{l+f(r)TS—exp[—§-((r—Ra)/RO)]}, (20)
Rcont r 2
; r S RCOPZI
where f(r)=\ R.,.. — R, and R, =R +R,. (21)
0; r=R

- cont

The partial half-life time is related to the decay constant A by T, =_lr172. No

parameter used to determine the potential energy has been changed.
The predictions within the macroscopic LDM barrier tunneling and the
experimental partial half-lives are compared in the table 3 (first and third columns). The

macroscopic part of the total energy leads to a reasonable agreement for the heaviest
clusters but fails to reproduce the °0 and *C emission.

Table 3. Time characteristics (in s) of the cluster radioactivity. The first and second columns indicate respectively
the theoretical half-lives without and with taking into account the microscopic corrections. The last column gives
the experimental data.

Theoretical 77/, : Theoretical 77, :
Emitter . . . Experimental
and varior tonncling | microseopis baricr Ty )
cluster -
tunneling

22 Ra S C+2% pp 2.7x10% 2.0 x 10" 1.2 x 10"
B Rra 54 Cc+? pp 1.6 x10>* 12 x10" 2.0x10"
2% Rg 5 C+210 pp 1.1x10% 1.9x 10" 7.4 10"
26 pa 51 4212 pp 43%x10% 6.8 x10% 1.8 x10%
21 520 04+2% pp 1.3 x10% 43 x10% 75 %1020
Bo07p 52 Ne+2% Hg 1.1x10% 3.7 x10% 4.4 x10*
Blpg 52 Ne+27 711 29x%x10* 1.2 x10% 1.7x10%
B2 5% Ne+2%® pp 9.6 x10%* 13x10* 2.5x10%°
By 5 Ne+® pPb 33x10% 4.7x10% 6.8 x10%
B4y 5% Ne+210 pp 12 x10% 9.4 x10%’ 1.6 x10%
B4y 58 Mo +2% Hp 7.6 x 10% 14 x10% 35%10%
U ™ Mg+ Hg 5.1x10% 4.6x10°° 2.8x10%
Bopy 528 Mo +2% pp 2.0x10% 1.7x10% 4.7 x10%
8Py 2 Mg+ Pb 6.2 x10% 8.0x10% 5.0 x10%
B8py 32 i 429 Ho 13x10% 8.4 x 10% 1.9x10%
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In order to simulate the microscopic corrections such as shell effects and pairing in
this very asymmetric decay case, the difference between the experimental Q-value and
the theoretical one deduced from the present LDM has been added at the macroscopic
potential energy of the initial spherical nucleus with a linear attenuation factor vanishing
at the contact point of the nascent fragments. The theoretical estimates agree very well
with the data for all the C, O, Ne, Mg and Si clusters when the microscopic
contributions are included (second column in the table).

Therefore, it seems that the emission of clusters by heavy nuclei may be viewed as
the limiting case of very asymmetric fission via compact and creviced shapes. It is
important to emphasize that the main explanation of the good reproduction of the
experimental data is the ability of the present model to reproduce the height and width of
the potential barriers with the help of the experimental Q-value. The physical process
which leads to two tangent spherical fragments may be an adiabatic fission process or,
alternatively, the emission of a preformed cluster. Whatever the physical process is, the
role of the proximity energy and the microscopic corrections is emphasized since their
introduction is sufficient to reproduce the potential barrier characteristics which govern
the half-lives of the compound nuclei.

7. Fragment kinetic energy

The fragment kinetic energy is the potential energy at the scission point plus the
possible pre-scission kinetic energy. The total energy released from saddle point to
infinity is the sum of that kinetic energy and of the fragment excitation energy due to
dissipation and deformation. The question then arises of the definition of the scission
point. In the usual fission valley, the breaking of the matter bridge occurs for shallow
necks between long touching fragments [47]. Then, the nuclear proximity forces are very
weak and these rupture points between the fragments are chosen as scission points. Such
a definition is impossible for quasi-molecular shapes since at the contact point between
the spherical nascent fragments the proximity energy reaches 30-40 MeV. Norenberg
[29,30] has defined the scission point as the top of the scission barrier where the
deformations are small since the repulsive Coulomb forces are approximately cancelled
by the attractive proximity forces. For #9py, the proximity energy is still -18 MeV ; the
distance between the equivalent sharp surfaces being 1.1 fm. Wilkins et al [33] have
arbitrarily fixed the scission point as the point where the distance between the surfaces
is 1.4 fm for all nuclei. For A > 100 and along the B stability valley, we have found that
the distance between the equivalent sharp surfaces at the saddle point of the fission
barrier is given by -0.00647A+2.587.

The range of the nuclear friction is strongly correlated with the range of the nuclear
force and the dissipation vanishes when the nuclear force effects disappear. Thus, the
scission point where the fragments become free is more outer and lower than the saddle
point. It is difficult to define its position precisely because it is located in the tail of the
proximity energy and where the slope of the deformation energy is very pronounced. In

Figs. 14 and 15, the Coulomb energy at the point where |E N| <0.5MeV is compared

with the kinetic energy of the intermediate mass fragments produced during the
asymmetric fission of 'Tb and '"Hg. The similarity between these two energies
confirms that the definition of the scission point as the point where the proximity energy
vanishes is reasonable.
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(dashed and dotted curve) is based upon the interaction Coulomb energy at the scission point defined by an
absolute value of the proximity energy lower than 0.5 MeV. The experimental data are extracted from [48].
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In table 4, the dependence of the predicted total kinetic energy on the selected
threshold value for the nuclear proximity energy is displayed and the predictions are
compared with experimental data.

Table 4. Comparison of the experimental fragment kinetic energies estimated from [47] and theoretical total
kinetic energies taken as the Coulomb interaction energies when the nuclear proximity energies are lower than
0.1, 0.2 and 0.5 MeV in the case of symmetric fission.

Nucleus Z*/A" | Empirical TKE TKE TKE TKE
(MeV) |Ex| <01MeV | |Ey| <02MeV | |Ey|<0.5MeV
STFm 1573 193 214 220 229
2%Ra 1271 158 171 177 184
P2pp 1027 133 137 141 147
Dy 799 104 105 109 113
7r 356 50 45 46 49
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The assumed limit value for Ey plays an increasing role with the mass. There is a
tendency for heavy nuclei to overestimate the data. The energy stored in nucleon
emission, the collective modes such as vibrations, rotations and charge polarisations
could partially fill this gap. Let us recall that the two-spheroid model correctly
reproduces the total kinetic energy.

8. Rotating hyperdeformed quasi-molecular states and critical angular momentum

Rotating hyperdeformed states have been recently observed in Dy [50]. Ridges
were found in p-y-y coincidence spectra corresponding to an extremely high dynamic

moment of inertia of 130 A%. MeV ., suggesting the existence of strongly deformed
prolate shapes of B > 0.9 in a high spin range of about 75-98 7. Very high dynamic

moment of inertia of 140 h%. MeV ™' has been also observed in Gd [51]. These
experiments have been repeated and the data are still debated [52].

Calculations [53] based on the cranking Strutinsky method with a deformed
Woods-Saxon potential had predicted the existence of hyperdeformed nuclear states but
not for so high spins. Furthermore it had been rather assumed for Dy that hyperdeformed
shapes would not likely be found because these states would not be populated below 70
h, while above the fission decay mode would be dominant.

These rotating hyperdeformed states are populated in heavy-ion reactions (for

example, Te!Pgy 13 *Dy +1p+3n) and the starting configuration is two interacting

spheres. Consequently, it is important to know the rotational dependence of the potential
energy in the quasi-molecular shape valley which is particularly adapted to describe the
entrance channel in heavy-ion collisions [54,55]. The 1-dependent barriers for Dy are
displayed in Fig. 16. A scission barrier survives to spin 115 # and macroscopic
hyperdeformed states appear in a very spin range of about 70-110 #. The geometrical
characteristics of these rotating isomeric states are for 1=70h, [=0.3,

I, = 94h*> MeV~™ and Q=20eb. For a spin of 110 %, the values are B=0.96,

[, = 118%%*. MeV ™" and Q =30eb. The high values of the moment of inertia and

curvature at the saddle-point explain that the centrifugal forces can remove the potential
pocket only for very high angular momenta. The possibility to conciliate low fission
barrier heights and high maximal angular momenta against fission is really a specificity
of this deformation valley through quasi-molecular shapes. The first experimental data
on hyperdeformed states in Dy are in agreement with these theoretical results but the
knowledge of the lifetime and quadrupole moment is highly desirable and further
experiments are needed.

The shell corrections are not included and one cannot obtain a potential well for
= (.6 explaining the superdeformed states observed experimentally. Nevertheless, these
theoretical barriers seem also compatible with the available data on the superdeformed
states in Dy : extension in spin from 22 £ to 60 £, top transition at an excitation energy
of 30 MeV and bands close to yrast at spins greater than 55 7. Furthermore, the stability
against fission of these superdeformed states at 60 7% is ensured by a barrier of 14 MeV
in this deformation valley.
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Fig. 16. Sum of the deformation and rotational energies as functions of the deformation and angular momentum
(7 unit) for Dy. The dashed line indicates the separation into two equal spherical fragments.

In Fig. 17, the l-dependent deformation energies are plotted for the **Mg, "*Se,
132Ce and "'Hg nuclei. The external barriers are high and thin and upto B=0.7-0.8 the
deformation energy profile is very flat at medium spins. The shape variation occurs at
relatively constant energy and it is not surprising that, at intermediate angular momenta,
shell rearrangements generate shallow wells where superdeformed states may survive.
For lower spins and 3 < 0.7 the slope of the potential energy curve is more pronounced
and the shell effects will find it more difficult to dig a well. This might be the
explanation for the observed sudden disappearance of the superdeformed states.
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With decreasing spins the external minimum located at the foot of the scission
barrier moves to intermediate positions. Their geometrical characteristics are compared
in Table 5 with data relative to the superdeformed states of Ce, Eu, Dy and Hg. There is
no evident contradiction and the macroscopic well at intermediate spins give a first
rough indication on the superdeformed well emphasizing the importance of the
underlying macroscopic potential surface.

Table 5. Experimental and theoretical quadrupole moment and moment of inertia for superdeformed states. The
theoretical values correspond to the limit positions where the wells are still deeper than 0.5 MeV .

nucleus  (Exp Q(eb) | Theor Q (eb) Exp I (h%. MeV™") Theor I (h*.MeV™)
Ce 8.8 10.4 55 60.5
Eu 13 12.3 68 69.5
Dy 19 14 85 79
Hg 18 21.5 110 121

To study the super and hyperdeformed states, the spheroidal configurations are
often chosen even at very large deformations since the calculations of shell effects are
easier. In Fig. 18, the characteristics of the deformation paths through compact and
creviced shapes and prolate ellipsoidal shapes are compared. It is striking to observe that
upto B = 0.8 — 0.9 the differences between the values of /|, and Q in the two valleys
are very small even though these two paths are so different [55]. Therefore, the values of
I, and Q deduced from experimental data lead to a poor understanding of the nucleus

elongation and neck development and the ellipsoidal and one-body nature of the strongly
deformed rotating states is not proved.
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Fig. 18. Relative perpendicular moment of inertia, quadrupole moment and inverse effective moment of inertia of
the elliptic lemniscatoids (full curve) simulating the quasi-molecular shapes and prolate spheroids (broken curve)
as a function of the deformation. S, is the ratio between the neck radius and half the elongation of the
lemniscatoids while Sy, is the ratio between the axes of the ellipsoidal shapes.
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The ‘critical angular momenta that light nuclei are able to sustain against the
centrifugal forces have been obtained experimentally recently [56]. They are compared
in Fig. 19 with calculations within the original version of the Liquid Drop Model [28],
the Finite Range Liquid Drop Model [42] which uses a Yukawa plus exponential
potential for the surface and proximity energies and the present generalized LDM
applied to quasi-molecular shapes [57]. The pure liquid drop model overestimates the
fission barrier heights and consequently the critical angular momentum. The 1., derived
from the two approaches taking into account the nuclear proximity energy are in
agreement with the experimental results.
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Fig. 19. Comparison of the experimental [56] critical angular momenta with theoretical predictions ( dashed
curve [28], solid curve [42], triangles [57]) for light nuclei.

The question of the maximal angular momentum that medium and heavy nuclei are
able to sustain against rotation is an old and still debated problem put forward once more
by the new and questionable results at very high spins. In Fig. 20, three predictions of
the critical angular momentum for 3-stable nuclei are compared. Most of the studies [28,
42,58] predict a maximum of 1. of around 80-90 #, except Neergard and Pashkevich
[59] who obtained around 110 # . Within our shape sequence and energy definition, the
maximum of the critical angular momentum is approximately 130 % for mass around
190. The question of the experimental value of 1 is not simple since it can be reached
only indirectly in fission processes following fusion reactions which are needed to bring
enough angular momentum to the compound nucleus or via decay of hyperdeformed and
superdeformed states. Nevertheless, the fast fission of semi-equilibrated fused systems at
[ =140 h has been observed [60].

The agreement with the first data on hyperdeformed rotating states seems to
confirm that the deformation valley through compact quasi-molecular shapes might be,
really, a nuclear deformation valley.
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Fig. 20. Critical angular momentum (7 unit) for nuclei along the B stability valley. The values obtained for
quasi-molecular shapes are given by the full curve [22] while the theoretical predictions of Cohen et al [28] and
Broglia et al [58] correspond respectively to the chain curve and the dotted curve.

9. Ternary fission

At low energies, the symmetric nuclear tripartition has an upper limit of 2 X 107°
relatively to binary fission, while for a lightest fragment in the mass range A =30, the

ratio is 8 x107%. In contrast, very asymmetric ternary fission with the emission of an o

particle occurs with a relative yield of 3-6x107° [61,62]. Ternary fission was also

expected in the reaction 22U+2*U— #7¢Sh but has not been observed.

At intermediate energies (10-100 MeV/A), highly excited systems are obtained by
partial fusion of the projectile and the target and a large amount of thermal excitation
energy and rotational energy is deposited. Besides particle emission and binary fission,
the nuclear ternary fragmentation is also an important decay mode for these hot systems
[63].

The ternary fission valley through elongated shapes with wide necks where the
proximity forces are negligible has been extensively investigated [64]. On the other
hand, the family of quasi-molecular shapes previously used in the binary case has been
generalised to describe and study [65-67] the prolate ternary fission (see Fig. 2). It
covers the whole deformation range from the sphere to three aligned tangential spherical
nuclei ; the two external fragments being identical.

The different contributions to the potential energy are given separately together
with the deformation energy in Fig. 21 for the symmetric and extreme asymmetric
ternary fission for *'*Po. In Fig. 22, the barriers are given for a light nucleus and an
heavy one for different asymmetries [68]. As in the binary case, the total energy varies
gently even around the contact point where the slope of the E; and E, curves changes
drastically and the nuclear attraction is the greatest. For light nuclei and for all the mass
asymmetry values, the saddle point corresponds to three separated fragments held
together by the proximity forces which counterbalance the Coulomb repulsion and the
potential barrier is a scission barrier. For heavier nuclei, the saddle point shape has the

same configuration, except for very high asymmetries (o particle emission for example)
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where the barrier top corresponds to a one-body compact shape encountered before the
formation of the necks since the proximity energy is not sufficient to introduce an

inflection in the potential curve. The height of the barrier depends strongly on the decay
asymmetry.
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Fig. 21. Variation of the surface energy E,, the Coulomb energy E., the nuclear proximity energy Ey and the
deformation energy E (in MeV) for the "*Po nucleus plotted against the reduced distance between the mass
centres (of the two halves of the system [65]) in the path of the ternary fission through compact and creviced
shapes. The broken line corresponds to the separation into three spherical fragments. The central nucleus is an
alpha particle for the asymmetric configuration (right column).
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Fig. 22. Ternary fission barriers as a function of the distance r between the mass centres for the *°Ca and **°Pu
nuclei. The central fragment is indicated on the curves and the separation point by a vertical bar.

In Fig. 23, binary and ternary symmetric fission barriers are compared. The two
barriers have the same structure : one peak for medium nuclei and two peaks separated
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by a deep minimum for heavier nuclei. A greater elongation in the ternary case causes
the outer peak of tae ternary fission barrier to be always further out than in the binary
case. In this mass range, the ternary fission barrier is much higher than the binary one
and ternary fission is very energetically unfavourable, although the formation of three-
body isomeric states corresponding to the deep minimum of the ternary fission barrier
seems possible. For Z > 102, the ternary fission barrier is lower than the binary one but
it remains further out. The height of the second peak relatively to the second minimum is
important for Z < 110 but this second barrier lies well below the first peak. The
hypothesis that the fragment kinetic energy corresponds to the interaction Coulomb

energy at the external scission point where lE N] <0.2MeV allows to roughly reproduce

the kinetic energy of the three comparable fragments detected in the U+Ne and U+Ar
reactions [65, 69].
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Fig. 23. Binary (dotted curves) and ternary (full curves) symmetric fission barriers for the nuclei 2'?Po, 23*Th,

2#0py, 23Sh and }92Sh plotted against the reduced distance between the two halves of the fissioning system.

The shell effects have been introduced for the superheavy elements within the Droplet model prescription. The
vertical bars indicate the contact point.

The macroscopic fission barrier heights for binary and ternary fission are compared
in Fig. 24. The ternary fission may occur only for very heavy and very light nuclei. For
heavy systems the two tails of the curve show that the whole structure of the double-
humped ternary fission barrier must be examined and not just the barrier height
relatively to the ground state.

Recently, the fission of “8Cr formed in fusion reactions has been reported [70] and
the 1-dependent binary and ternary fission barriers are compared in Fig. 25. It is quite
striking to observe that the deformation energy of the minimum in the 25-40 % range is
of the same order or lower in the symmetric ternary decay channel than in the binary one
and that its position is more external (hiﬁgher moment of inertia). Then, one may not
exclude the occurrence of prolate '°0O+°0+'°0 molecular configurations following
fusion reactions in this spin and excitation energy range [71]. Analyses of experimental
results to test this hypothesis are in progress [72].
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10. Influence of the temperature and rotation

The new generation of accelerators built in laboratories such as GANIL, GSI,
MSU, TexasAM, HMI and SATURNE provides heavy-ions in the intermediate energy
domain (10-100 MeV/A) allowing the study of highly excited nuclei. These systems are
obtained by partial fusion of the projectile and the target and a large amount of thermal
excitation energy and rotational energy is deposited. Pairing effects vanish around T=1
MeV while shell effects disappear at T=2-3 MeV. Particle emission is enhanced with
excitation energy. It has been clearly established that fusion still exists at 60 MeV/A and
that nuclear systems can be formed in thermal equilibrium up to temperature as high as 5
or 6 MeV [73] ; the binary and ternary fission mode remaining an important decay
channel. Consequently, the knowledge of the dependence of these two exit channels on
the temperature, angular momentum, mass and asymmetry is important [41,68].

The dependence on the temperature of the binary and ternary fission barrier heights
are displayed in Fig. 26. The heating of a nucleus strongly lowers its fission barrier and
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the lowering is all the more important as the system is heavy since the main temperature
effect is to diminish the surface tension. At T =5 MeV, the binary fission barriers vanish
for A ~ 200. In the ternary fission valley, due to the high external peak persisting for
high masses, quasi-molecular isomeric states are able to sustain high temperature.
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Fig. 26. Barrier heights (MeV unit) for the symmetric binary (left part) and ternary (right part) fission of nuclei
along the [ stability valley as a function of the temperature (MeV unit) and the mass number (1=0). The broken
curves correspond to the height of the external peak relatively to the second minimum of the barrier.

The decrease of the binary fission barrier heights when a nuclear system is heated
and rotates is shown for four selected typical nuclei in Fig. 27. The differences between
mass inertia explain that the barrier height for light nuclei vanishes rapidly for low
angular momenta, while for heavy systems, centrifugal forces compensate for the
deformation energy only for very high angular momenta. For all systems, the
temperature dependence of the barrier height diminishes when the angular momentum
increases.
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The ridge-line potentials for the four above mentioned nuclei located below and
above the Businaro-Gallone point are displayed in I'ig. 28. The lowering of the surface
energy and, then, of the fission barrier height by the temperature increases with the
symmetry of the system and with its mass. The incorporation of temperature maintains
essentially the same topology of the Businaro-Gallone picture : below the BG point the
ridge line shows a maximum at symmetry while above the symmetric saddle-point is
stable with respect to the mass-asymmetry mode and is the ordinary fission saddle-point.
Nevertheless, there is a shift of the BG point toward lower fissility values as the
temperature increases and also as the angular momentum increases. High temperature
and rotation favour symmetric fission.
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Fig. 28. Binary fission barrier heights (MeV unit) as functions of the temperature and the decay asymmetry for
the *°Ca, '®°Cd, '’ Au and 2*° nuclei. A, and A, are the masses of the two nascent fragments.

11. Fragmentation and formation of bubbles and toroids

In heavy-ion collisions at 30-100 MeV/nucleon, although binary and ternary
fission remains an important exit channel, quaternary, quinary,... decays have been
observed at high excitation energies [74]. The interpretation of this multifragment
production is still elusive. Several explanations have been advanced [75,76] including :
dynamically induced density fluctuations, expansion of an initially compressed source,
statistical decays and rapid sequential binary fission. Starting from the idea that the n
fragments are emitted by an almost thermalized system, the fragmentation barriers into
several spherical fragments emitted in a volume-like manner [77] and in a ring-like
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manner [78] have been calculated within symmetric quasi-molecules. The selected
geometric coniigurations are respectively for the fragment mass centres : equilateral
triangle, tetrahedron, square, spheres along three cartesian axes, hexagon, cube and
octagon. The starting configuration is n touching spheres.

These barriers of fragmentation in n nuclei are compared in Fig. 29 for **°Pu.
Obviously, the binary and oblate ternary decay paths are the same in the two
geometrically different fragmentations. In all cases, the barrier tops correspond to n
separated fragments maintained in unstable equilibrium by the balance between the
repulsive Coulomb forces and the attractive nuclear forces and so generalising the
picture observed for the binary decay through quasi-molecular shapes. The
fragmentation barriers are lower when the emission is focalized in a same plane since
the proximity forces act at larger deformations and, then, for smaller Coulomb repulsion.
Then, even if crude hypotheses have been asserted, our calculations indicate that the
emission of the fragments in the same plane is somewhat favoured. In the case of the
three dimensional emission, the barrier heights increase strongly with the number of
fragments even for very high temperature. For the plane multifragment emission, the
situation is reversed [78] for the heaviest systems (obtained as evanescent residues in
reactions such as Gd+U, Pb+Au, Au+Au). Indeed, apart from the binary fission mode,
the potential barrier heights become comparable and even decrease slightly with the
number of fragments.
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Fig. 29. Fragmentation barriers (potential energy relatively to the initial sphere energy) as functions of the
number of fragments and the temperature (MeV unit) for the 2*°Pu nucleus. The left column a) corresponds to the
emission of fragments in the whole space while the right column b) is relative to the fragment emission in a
plane.

From recent experiments for intermediate mass systems, it has been suggested [9]
that a statistical competition between the various multifragmentation channels occurs.
For all the excitation energies, the n event probabilities decrease with the fragment



28
number but the yield of threefold, fourfold and fivefold events increases with the
excitation energies. This behaviour can be understood looking at the fragmentation
barriers. At low excitation energies, the barrier height plays the major role and binary
and ternary fission is dominant. In contrast, for high excitation energies, only a small
part of the available energy is absorbed during the heating of the residual system while
the other remaining and non-thermalized part is so important that the investigation of all
the fragmentation channels is possible. The situation is different for the heaviest
systems. All the multifragmentation events in the same plane seem to have roughly the
same probability even for low excitation energies. Nevertheless, the problem to form
these very evanescent heaviest mixtures of matter with no binary fission barrier is not
simple since it is necessary to overcome the deep-inelastic regime and low excitation
energies are perhaps not sufficient.

Some recent experimental data [79] and simulations within the Boltzmann-
Uehling-Uhlenbeck model [80] seem to point out that effectively, for very violent
collisions of intermediate mass systems, the thermal source expands rather in a plane
perpendicular to the line connecting the centres of projectile and target. This transverse
focalization is mainly due to the initial compression which induces strong oblate
deformations in which Rayleigh instabilities develop allowing the plane multifragment
emission.

When the compression effects and the Coulomb repulsion are extremely important
as in violent central collisions of very massive nuclei, calculations have shown that a
depression of matter might occur in the centre of the distribution of nucleons just after
the most violent phase of the reaction [81-83]. Recently, first experimental signatures in
very massive collisions like Pb+Au [84,85] seem to indicate that evanescent and strongly
deformed shapes intermediate between toroidal and bubble configurations develop
before the fragmentation in several intermediate mass fragments. These exotic
topologies were early on suggested as being metastable long time ago.

The energy of a nuclear system evolving in the deformation path leading
continuously from an initial spherical shape towards toroidal configurations and bubbles
has been studied within the above described generalized liquid drop model and selected
shape sequences [86,87]. The toroidal deformation barriers and barriers of plane
fragmentation are displayed for 322128 in Fig. 30 while, in Fig. 31, the comparison also
includes the bubble deformation barriers and barriers of three dimensional emission for
4147 For these very heavy systems, a wide and deep potential pocket appears in the
toroidal deformation path. Furthermore, this well is located below the potential barriers
for the n fragment emission in some deformation range. This might perhaps allow to
such exotic toroidal shapes, generated by the dynamics in the first phase of the most
massive heavy-ion collisions, to survive in a metastable state before decaying in the
multifragment exit channels due to the effects of the surface tension forces which
clusterize the matter distribution to minimize the nuclear surface. The angular
momentum transfer accompanying the formation of these toroidal shapes in heavy-ion
reactions might also slightly increase their stability. In contrast, the three dimensional
fragmentation barriers are well below the bubble-like deformation barriers whatever the
mass and the temperature of the system are. So, if the dynamics in the most massive
central heavy-ion collisions leads the nuclear system to very distorted rotating hollow
bubble configurations after the compression phase, the system will afterwards evolve
rather to evanescent toroidal matter distributions while clusterising under the action of
the surface tension and proximity forces.
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Fig. 30. Comparison between the toroidal deformation barrier (full curve) and barriers of plane fragmentation
into 2, 3, 4, 6 and 8 fragments (dashed curves) for **2128.
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Fig. 31. Comparison at T= 0 and 7 MeV between the bubble deformation barriers (full curves) and barriers of
three dimensional emission (dashed curves) in the upper part of the figure and between the toroidal deformation
barriers (full curves) and barriers of plane fragmentation (dashed curves) in the lower part for “°147.

12. Conclusion

The decay path which leads an initial spherical nucleus through compact and
creviced shapes with almost spherical ends and to two or more spherical tangent
fragments which later go away has been investigated within a generalized liquid drop
model taking into account both the proximity energy, an accurate sharp radius, the decay
asymmetry and the temperature effects. The original value of the surface coefficient has
been maintained.
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Within this approach of the nuclear deformation energy, this exit channel through
quasi-molecular shapes is compatible with most of the experimental data : symmetric
fission barrier heights in the whole mass range, asymmetric fission barrier heights of In,
Tb and Mo, Businaro-Gallone point, double-humped barriers of actinides, fragment
kinetic energies, partial half-lives of radioactive nuclei emitting heavy clusters and
critical momenta for light and medium nuclei. The rotational hyperdeformed states
recently observed might also come up and survive in this fusion-like fission valley. The
rotation as well as the thermal excitation favour the symmetric splitting. In this peculiar
decay path, the fission barrier is a scission barrier hindering the rupture of the neck
between the nascent fragments. The nature of the saddle-point is unusual, it corresponds
to separated fragments maintained in metastable equilibrium by the balance between the
attractive proximity forces and the repulsive Coulomb forces. Analytical formulas given
the fission barrier characteristics in this deformation path will be provided in a close
future [88].

The fragmentation barriers for emission in a plane or in the whole space as well the
deformation energies of toroids and bubbles have been determined. For very heavy
systems, minima lying below the barriers of plane fragmentation exist in the toroidal
deformation valley allowing some stability and relaxation of the excited toroidal system
before its decay in several fragments emitted in a plane due to the surface tension and
proximity forces.
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