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Abstract 

The decay channel leading to two or several tangent and later separated spherical 
fragments assuming volume conservation and neck formation while keeping quasi-spherical ends 
has been investigated. The potential energy has been determined within a generalized liquid-drop 
model including a proximity energy term, the decay asymmetry, an accurate nuclear radius and 
the temperature dependence. The calculated fISsion barrier characteristics, half-lives of 
radioactive nuclei emitting heavy clusters, fragment kinetic energies, critical angular momenta of 
light nuclei and rotating super and hyperdeformed state properties are in agreement with the 
available experimental data. The formation of evanescent quasi-toroidal systems and 
fraglnentation with elnission in a plane seem possible in very heavy-ion collisions at intermediate 
energies. 

1. Introduction 

New observed phenolnena like cold and asymmetric fission of 252Cf [1-2], cluster 
radioactivity [3-4], formation of nuclear Inolecules in 24Mg [5], asymmetric fission of 
intennediate Inass nuclei [6] and quasi-fission of heavy dinuclear systems [7] have 
renewed interest in investigating the fusion-like fission valley which leads rapidly to two 
touching spherical fragments and quasi-molecular shapes. Furthermore, the rotating 
super and hyperdeformed states as well as the very heavy and possible superheavy 
elements are and will be fonned in heavy-ion collisions for which the starting 
configuration is two close quasi-spherical nuclei. In more violent heavy-ion reactions (a 
few tens of MeV per nucleon), hot and compressed nuclear systems are produced and 
their fragmentation in several relatively cold and spherical intermediate mass fragments 
is observed [8-9]. 

The earlier fission studies assumed that the balance between the repulsive 
Coulomb forces and attractive surface tension forces governs the evolution of the 
nuclear shapes [10-11]. The often used radius development in Legendre polynomials led 
to elongated one-body configurations which have been able to explain the bulk of our 
knowledge on nuclear fission. Nevertheless, this development fails to reproduce strongly 
distorted configurations [12] with deep and narrow necks and, consequently, it is 
difficult to link the two sheets of the potential-energy surface corresponding respectively 
to one-body shapes and to two separated fragments [13]. This problem remains in the 
Inicroscopic approaches [14-15]. 

Later on, the inefficiency of the pure Coulomb barrier to reproduce the fusion cross 
sections has led to the introduction of a proximity term [16-17] in the development of 
the liquid drop Inodel energy in order to smoothly describe the transition from two 
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almost spherical nuclei to one-body shapes in properly taking into account the finite­
range effects of the nuclear force in the gap or crevice between the incoming nuclei. As 
an example, for two touching spherical heavy nuclei, the proximity energy reaches 
around - 40 MeV while the fission barrier height of the compound nucleus is only 5-10 
MeV. Dynamical studies have pointed out the possibility of fission processes through 
cOlnpact shapes [18] and, at least, cluster emission, cold and asymmetric fission and 
fragmentation are exit modes exploring these distorted shapes where the necks are not 
shallow. Consequently, it is important to study the role that the proximity forces might 
play also in the nuclear fission process. 

The study of the compatibility with the available data of a decay through quasi­
molecular shapes is presented here, starting from the viewpoint that a degeneracy may 
exist between the energy of elongated shapes found by the liquid drop model without 
proximity energy term and the energy of compact and necked shapes for which the 
lowering of the potential energy is due to the proximity interaction in the neck. A 
generalized liquid drop model is firstly defined in section 2 while in section 3 the shape 
sequence selected to describe the transition from one sphere to two tangent spheres is 
displayed. The ability of these adopted liquid drop Inodel and shape sequence to 
reproduce the fusion data has been checked [19-20]. The main characteristics of the exit 
channel via these quasi-molecular shapes are compared with symmetric and asymmetric 
fission barrier data in sections 4 and 5, with new results on cluster radioactivity in 
section 6 and with fragment kinetic energies in section 7. The existence of rotating super 
and hyperdeformed states and the critical angular mOlnentum that a nucleus is able to 
sustain against centrifugal forces in this peculiar defonnation valley are investigated in 
section 8. The shape sequence has been generalized to study the ternary fission and 
results are presented in section 9. Finally, the temperature effects have been introduced 
in section 10 and the rapid fragmentation process with emission in a plane or in the 
whole space has been compared with the formation of toroids and bubbles in section 11. 

2. Generalized liquid-drop model 

For an arbitrary deformed nucleus, the macroscopic total energy is defined as [21­
23] : 

E ERWM+EN , (1) 
where ERWM and EN are respectively the rotational liquid-drop model energy and the 
nuclear proximity energy [16-17]. Constant density and volume conservation are 
assumed. 

ERWM = Ev +Es +Ec +ERot · (2) 

For one-body shapes, the volulne Ev , surface Es and Coulomb Ec energies are given 
by: 

2Ev = -a (1 - kv / ) A, (3)v 

Es = a (l- k / 2 )A2/3(S / 4ltR~), (4)s s 

Ec =0.6e2(Z2 / Ra) x 0.5 f (V(S) /Vo)( R(S) / Ra)3 sinSdS (5) 

where A, Z and I = (N - Z )/A are the mass, charge and relative neutron excess of the 
cOlnpound nucleus. V (e) is the electrostatic potential at the surface of the shape and Vo 
the surface potential of the sphere. The volume and surface coefficients av ' as and the 
effective sharp radius Ro have been chosen as : 



3 

av(T) = 15.494(1 + O.00337T2 )MeV, (6) 

as (T) = 17.9439(1 + 1. 5T 1 17)(1 - T 1 17)3/2 MeV, (7) 

Ro(T) = (1. 28A 1I3 - 0.76 + O. 8A-1/3 )(1 + O.0007T2)fin. (8) 
This later fonnula proposed in Ref [16] allows to reproduce the small increase of the 
ratio ro = Ro / A 113 with the Inass ; for example, ro = 1.11fin for 20Ne and ro = 1.18frn 
for 240pU. 
For cOlnparison, the set of parameters used in the original version of the liquid drop 
model [21] was : as =17.9439MeV and ro =1.2249 fin. The potential defined by 
Krappe, Nix and Sierk [24] assumes as = 21.7MeV and ro =1.18fin while the recent 
version of the Thomas-Fermi model [25] supposes as =18.63MeV and ro = 1.14fin. 

The surface and volulne asymmetry coefficients take on the values: 
k s = 2. 6 and kv = 1. 8 . (9) 

When the two fragments (or the two colliding nuclei) are separated: 

Ev = -av[(I- kvI?)Al + (1- kv1i)A2 ], (10) 

2 ) 2/3 2) 2/3 ]Es = as [ (1 - ksll Al + (1 - ksI2 A2 , (11) 

322 1 322 1 2 1Ec = - e 21 Rl + - e 22 R2 + e 2122 r (12)
5 5 

where Ai, Zi, Ri and Ii are the masses, charges, radii and relative neutron excesses of the 
fraglnents and r the distance between the Inass centres. 

The discontinuity of a few MeV which appears at the contact point when Zl/Al 
and Z 2/A2 are very different has been removed linearly from the contact point to the 
sphere since it is due to the progressive rearrangement of the nuclear Inatter. 

The surface energy E s takes only into account the effects of the surface tension 
forces in an half space and does not include the contribution due to the attractive nuclear 
forces between the surfaces in regard in the neck or the gap between the nascent 
fraglnents. The nuclear proxilnity energy tenn EN allows to take into account these 
additional surface effects when crevices appear in the deformation path [16,17,19]. 

rh 
l7llUEN =2"( JJ cprD / b )21thdh. (13)

hmin 

h is the ring radius in the plane perpendicular to the fission axis and D the distance 
between the infinitesilnal surfaces (see Fig. 1). 

Fig. 1. Area of the proximity force influence and definition of D and h. 
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b is the surface width fixed at the standard value of 0.99 fm. The <I> function is taken 
with the parametrisatton of Feldmeier [17]. The surface parameter y is given by a 
geometric lnean between the surface parameters of the two fragments : 

y = 0.9517~(1- ksll )(1- ksli )MeV. fm-2. (14) 

In this generalized liquid drop model the surface diffuseness is not considered in the 
surface energy term and the proxiInity energy vanishes when there is no neck as for 
ellipsoids for example. 

The rotational energy has been determined within the rigid body ansatz. Indeed, it 
has been shown that corrective terms arising from the orbital motion and the spin 
degrees of freedoln roughly cancel each other, particularly at large deformations. 

1i2Z(Z + 1)
E Rol = ---- (15)

21J.. 

3. Quasi-molecular shapes 

A two parameter shape sequence has been defined [19,22] to describe the 
continuous transition from one initial spherical nucleus to two tangent spherical 
fraglnents (see Fig. 2), 

2 
2 {a 2 sin2 a+ cl cos a (0 ~ a~ 1t 12)

R(a) = . (16)
2a2 sin2 a+ ci cos a (1t/2 ~ a~ 1t) 

c 1 and c2 are the two radial elongations and a the neck radius. This family of shapes is 
derived froln the elliptic lelnniscatoids obtained by inversion of axially symmetric 
ellipsoids [26]. Assuming volume conservation, the two parameters sl = a / andc1 

s2 = a / c2 completely define the shape. For a given decay channel, the ratio 
11 = R2 / R1 between the radii of the future fragments allows to connect sl and s2 : 

S2
(.2 _ 1 (17)"'2 ­

sl + (1 - sl )11 2 
. 

000 

DDCP 


Fig. 2. Symmetric and asymmetric shapes leading to binary quasi-molecular configurations and generalization to 
temary fission. 
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When S1 decreases from 1 to 0 the shape evolves continously from one sphere to 

two touching spheres with the natural formation of a deep neck while keeping almost 
spherical ends. 

Using the axial syrrunetry, analytical expressions have been obtained for the 
various shape-dependent functions : volulne, surface, moment of inertia, distance 
between the lnass centres of each fragment and quadrupole mOlnent [19]. 

4. Symmetric fission barriers 

Assuming volume conservation, the volume energy is constant during the 
symmetric fission process. The different varying contributions to the potential energy 
are given separately together with the deformation energy of the 160Dy nucleus in Fig. 3. 
The slope of the Es and EN curves changes drastically at the contact point since the 
surface is constant after the separation of the two spherical fragments and since the 
nuclear attraction is greatest at the contact point. Nevertheless, the total energy varies 
gently even around the contact point. 

550 

500 

160 
Dy 

r/Ro 

Fig. 3. Variation of the surface energy Es. the Coulomb energy the nuclear proximity energy EN and the 
deformation energy E (in MeV) for the 160Dy nucleus plotted against the reduced distance between the mass 
centres in the fusion-like fission valley. The dashed line corresponds to the separation into two equal spherical 
fragments. 

The defonnation energies of the 234U nucleus corresponding to different shape 
sequences with and without proximity energy contribution are cOlnpared in Fig. 4. The 
dotted curve is the potential energy calculated using quasi-lnolecular shapes without 
taking into account the finite range effects of the nuclear forces. This shape sequence is 
then very energetically unfavourable. The thick full curve includes the proximity energy, 
on the saIne shape sequence, and Inay be cOlnpared with the thin full curve representing 
the defonnation energy of the liquid drop model without proxiInity for usual elongated 
and little or not creviced shapes [10]. 
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This' figure shows clearly that the comparison between the two shape sequences 
Inust be re-examined when the additional proximity energy tenn is introduced [22]. Nix 
and Swiatecki [27] using a two-spheroid Inodel and no proximity contribution were 
already able to reproduce correctly the Inost probable values and widths of the 
experilnental fragment mass distributions as well as the total kinetic energy for nuclei 
lighter than radium. The fission barrier heights were a few MeV too high and this model 
was considered as a rough approxitnation. Most of the subsequent studies [28] have used 
the developlnent of the nuclear radius in terms of Legendre polynomials which, 
implicitly, is unable to generate shapes with deep necks. However, if the proximity 
energy is introduced, the difference between the two spheroid model (which is a 
generalisation of the two separated sphere model) and the more general paratnetrisations 
for one-body shapes is reversed because, for the two-spheroid model, the proximity 
energy is large due to the deep gap while this energy is negligible for the usual elongated 
one-body shapes. This can be seen in Fig. 4 where the chain curve (taken from [11]) 
gives the energy of two separated oblate spheroids (the proximity energy being not 
introduced). For rlRo < 2, this shape is soon favourable and this shape would be highly 
cOlnpetitive with regard to the usual elongated shapes if the proximity energy was 
included. 
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Fig. 4. Deformation energies of the 234u nucleus as a function of the relative distance between mass centres r/Ro. 
The thin full curve is the energy given by the original liquid drop model and for elongated shapes with shallow 
necks. The chain curve gives the energy of two separated oblate spheroids [11] with no proximity contribution. 
The thick full curve and the dotted curve are respectively the potential energies using our shape sequence with 
and without proximity energy. 

The Inacroscopic fission barriers of five nuclei are plotted in Fig. 5. The proximity 
energy progressively introduces an inflection in the curve. for A < 215 there is one 
saddle point corresponding to two separated spherical fraglnents Inaintained in unstable 
equilibritun by the balance between the repulsive Coulolnb forces and the attractive 
nuclear proxilnity forces. For A > 215, there are two lnaxima. The inner is close to the 
sphere while the outer always has the SaIne configuration ; between theln a second 
IninilntUn occurs due to the proximity effects in the neck which strongly lowers the 

2.0 
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defonnation energy. The Inain characteristics of these barriers are the permanence of an 
outer peak which slows down (he fragment separation and the appearance of 
lnacroscopic double-humped barriers for actinides. Norenberg [29,30] has called any 
InaxiInUln in the potential energy which occurs after the fragment separation a scission 
barrier. For light-Inediuln nuclei, the introduction of the proximity forces on such a 
shape sequence leads to the identification of fission and scission barriers, since the 
rupture of the neck between the fragments is assumed before the barrier is crossed. For 
heavier nuclei, double humped barriers have effectively been observed experimentally. 
The understanding of the nature of these cOlnplex structures needs to go beyond the 
Inere minimisation of a liquid drop model energy with respect to deformations. Two 
lnain improvements have been widely advocated. Strutinsky [31] found double-humped 
barriers when taking into account shell and pairing corrections on elongated scission 
configurations without any proximity contribution. Norenberg et al [29,30,32] and 
Wilkins et al [33] restricting thelnselves to the interaction of two fragments have shown 
also the occurrence of an outer barrier when introducing the proxiInity interaction and 
the shell and pairing corrections ; this scission barrier allowing to explain the angular 
lnomentum distribution of fission fraglnents. Our study points out the possibility to 
identify the scission barrier of Norenberg et al with the outer peak of the double-humped 
barrier appearing in the actinide region. 

15 20 
rlRo 

Fig. 5. Macroscopic fission barriers for 198Hg, 212pO, 232Th, 240pU and 252Cf as a function of the relative distance 
between mass centres. The dotted line corresponds to the contact point between the nascent spherical fragments. 

The lnacroscopic fission barrier heights are displayed in Fig. 6. For the heaviest 
nuclei, the fission barrier height corresponds to the height of the second peak relatively 
to the second well IniniInuln. The fission barrier heights in the defonnation valley 
through quasi-Inolecular shapes agree remarkably well with those obtained by Krappe et 
al [24] ; the differences in the lnacroscopic energy definition being compensated with 
the differences between the shape parru.netrisations. When cOlnpared with the pure 
liquid-drop estiInations, which are recognised experilnentally as being overestimated for 
the lnediuln systelns, the proxilnity energy strongly lowers the barrier height (typically 
10 MeV for A =100). 
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Fig. 6. Comparison of macroscopic fission barrier heights of ~-stable nuclei. The dotted curve and the chain curve 
give respectively the predictions of the Liquid Drop Model [21] and of the Yukawa plus exponential Liquid Drop 
Model [24]. Our results within compact and necked shapes are shown by the full curve. 

The shell corrections have been introduced as defined in the Droplet Model [34] 
with an attenuation factor given by 

2 2 2EShell =E~1:7!e (1 - 2a2 
) exp(-a ) where a =(8R) 2 

/ a . (18) 
The distortion aa is the root mean square of the deviation of the surface froln a sphere, 
a quantity which incorporates all types of deformation indiscritninately. The range a has 
been chosen to be 0.32ro. Using this approach, shell corrections only playa role near the 
ground state of the cOlnpound nucleus and not at the saddle-point (where they are 
expected to be of the order of 1 MeV or slnaller). It has been clearly demonstrated 
within a single-particle Inodel with pairing correlations [29,30] that, for two separated 
spheroids, the shell effects are strongly diminished since they are properties of valence 
nucleons and that the orbitals of which are strongly perturbed by the nuclear proxitnity 
potential. Thus, as soon as the shape is creviced, the application of the standard shell 
corrections to the liquid drop Inodel energy seems to overestimate the veritable shell 
effects which are, really, partially destroyed by the proximity forces. 

In Table 1, the Inacroscopic-microscopic fission barrier heights obtained in the 
quasi-lnolecular deformation valley within our generalized liquid drop model are 
cOlnpared with the results of the Droplet Model [34] and the experimental data. The 
agreement is fair in the whole range of nuclei considered. For the intermediate mass 
nuclei, this version of the Droplet Model gives too high barriers. 

The double-hulnped barrier obtained for 240pU within the present generalized liquid 
drop model and the compact and creviced shapes is compared in Fig. 7 with the barrier 
determined by Moller and Nix [38]. The first minimuln is quite similar in the two 
studies. The second barriers have the srune height but do not lie at the srune position. 
Experitnentally, the quadrupole InOlnent of the second minimuln is around 36 b. We 
obtain 46.7 b but the well is very flat. A defonnation leading to 36 b lies only 0.5 MeV 
above the calculated lninimuln. 

The main result is the purely lnacroscopic origin of the second barrier and well for 
the quasi-molecular shapes. In contrast, for elongated shapes, shell effects Inust be 
introduced to generate a second barrier at large defonnations. 
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Table l. Comparison of experimental [35,36] and theoretical [22,34,37] fission barrier heights. For the actinide 
nuclei, only the outer barrier height is included. 

Symmetric fission barrier heights (MeV) 
Nucleus Exp. data Present 

study 
Droplet 
Model 

Nucleus Exp. data Present 
study 

Droplet 
model 

lU9Cd 34.0 40.8 - 209Bi 21.9-25.5 25.0 22.4 
I 49Eu 32.5±2 33.7 40.4 :ll:lpO 19.7 21.4 -
15Vrb 29.0+ 1 32.0 37.1 213At 14.3-17.2 19.5 16.9 
mHo 26.5+2 31.3 34.5 216Rn 13.1±1.0 16.1 13.5 
16°Dy 27.4 33.9 - uOAc 8.0 9.0 5.3 
173Lu 27.1-31.5 30.0 30.4 :l:ltsRa 8.1 9.9 -
179Ta 25.4-29.2 27.9 27.1 23ZUl 6.0 8.3 -
180W 23.9-28.7 26.7 25.6 234U 6.0 6.9 
185Re 24.0-26.4 25.5 23.6 238U 5.1-5.8 7.0 4.9 
1860S 24.0 24.2 - 240pu 5.7 5.7 -
191Ir 20.6-23.7 22.7 21.9 242Am 6.4 5.2 4.4 

19)Au 18.6-21.6 21.1 20.9 244pU 5.4+0.3 5.7 4.6 
198Hg 21.8 21.9 - 246Cm 4.7 4.7 -
20l Tl 19.5-23.5 22.8 21.3 25°Bk 5.8 4.2 4.1 
206Pb 26.0-26.8 25.4 23.0 2)

3Cf 5.3+0.3 3.7 3.9 

15p-----~----~------~----~----_. 
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Fig. 7. Macroscopic-microscopic potential energy for 240pU as a function of rfRo. The double-humped potential 
barrier obtained in the quasi-molecular shape valley is given by the full curve [22]. The chain curve shows the 
barrier obtained using the folded Yukawa shell model potential and elongated shapes [38]. The arrow gives the 
experimental position of the second well. 

The Inacroscopic-Inicroscopic potential barriers eXisting for very heavy and 
superheavy elelnents in the fusion-like fission valley are displayed in Figs 8 and 9. The 
Inacroscopic contribution to the first peak dilninishes continuously and vanishes for the 
heaviest nuclei; their stability being therefore due uniquely to shell effects. The second 
peak progressively vanishes also for the heavy nuclei because the attractive nuclear force 
can no longer equilibrate the repulsive Coulomb force. The second peak disappears 
cOlnpletely for the superheavy elelnents due to the dOlninant Coulolnb repulsion. No 
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isomeric state can exist for these systems and they only survive in their ground state. If 
such a barrier reproduces the physical reality, the hope of forming these superheavy 
elelnents in fusion reactions is strongly reduced. The slope of the potential barrier to 
pass for reaching the almost spherical compound nucleus is very pronounced and the 
barriers are thinner than those found in other studies. 

u 


rlRo 
Pig. 8. Macroscopic-microscopic potential energy for 238U, 246Cm, 258Pm and 26~f as a function of rlRo. 
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Different characteristics of the double-hlunped barriers for actinides are 
sUlnmarised in Table 2. The second barrier heights are systelnatically too high for the 
light actinides but the same difficulty has been encountered in other studies before 
assulning asymmetry. Nevertheless, these results relnain inside the precision that we 
Inay expect from a one parameter shape sequence and without adjustment of the liquid 
drop model coefficients. 
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Table 2. Comparison between calculated and experimental barrier characteristics of six actinide nuclei. The 
experimental data are taken from [39]. v I Vb and En are respectively the first peak height, the second peak height 
and the energy of the second potential minimum relatively to the ground state (in MeV). 

va ex t va theo Ell ex t 
5.8 3.7 <4.5 
6.1 3.9 

.6 3.8 
4.2 2.6 
4.3 2.4 
4.5 

5. Asymmetric fission barriers 

En theory 
2.9 
3.1 
2.2 

Vb expt 
6.2 
6.5 
5.5 
5.7 
5.1 
4.2 

Vb theory 
11.2 
11.5 
9.1 
9.7 
7.4 
5.5 

In this section, the compatibility of an aSYIDlnetric decay process through these 
quasi-molecular shapes [40] is checked with experimental data. In Fig. 10 calculations 
on the aSYlnmetric breakup of 149Tb are compared with recent results. It is known that 
the original version of the LDM [28] predicts too high fission barrier heights for light 
and intermediate Inass nuclei. Here, the difference with the data is only 10%. In contrast, 
the expernnental barriers are 370/0 greater than those determined by the YEFRLDM [24] 
which, nevertheless, reproduces generally accurately nuclear masses and fission and 
fusion barrier heights. Our calculations agree well with the data. Fig 11 shows that our 
approach reproduces also fairly well the recent data for 94Mo (except for the lighest 
fraglnents) while it overestimates slightly the barriers for the In nucleus. In all cases, our 
aSYlrunetric fission barrier heights lie between the predictions of the LDM and 
YEFRLDM models. 
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Fig. 10. Comparison of experimental data [6] and theoretical fission barrier heights for 149Tb versus the fission 
asymmetry. The solid and dashed lines correspond respectively to the YEFRLDM [24,42] and LDM [28] while 
our results are given by the dashed-dotted curve [40]. 

It is also ilnportant to know whether, in this fusion-like fission valley, the 
Businaro-Gallone point [43] where nuclei become unstable with regard to asymmetric 
breakup is also correctly localized in the nuclear mass range. The potential surfaces seen 
by the fissionning 86Kr and 205At nuclei are displayed in Fig. 12. As expected, for the 
light nucleus the barrier is InaxiInal for sYlrunetric fission and decreases Inonotically 
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with asyrmnetry. Thus, the potential favours decay by light fragment emission. On the 
other hand, the heavy nucleus shows the opposite behaviour. The syrmnetric fission path 
corresponds to the exit channel which minimizes the potential energy. The barrier 
heights reach a maximum for a very asyrmnetric configuration. For still greater 
asYlnmetry , the barrier decreases again. For this intennediate mass range, decays by 
sYlnmetric fission and light charged particle emission are favoured. For actinide nuclei, 
the macroscopic fission barrier heights (around 5 MeV) are of the same order as the 
shell effects and, consequently, the dependence on the mass asyrmnetry is not smooth. 
Furthennore, for the heaviest elements, the decay via alpha particle emission is the most 
ilnportant one. 
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Fig. 11. Same as Fig. 10 but for 94Mo and IlO-112In and as a function of the fragment charge [40]. 
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for typical light and heavy nuclei. 
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The so-called 'conditional' saddle-point (CSP) corresponds to the barrier for a 
fixed lnass aSYlmnetry. When all these CSP are plotted in a single curve, they form a 
ridge line sUlmnarising the lnain information (see Fig. 13). The often used fissility 
coefficient x = ECoul/2Esurf gives the interplay between the Coulomb and the surface 
energies. It can lead to some confusion since the different macroscopic lnodels do not 
use the same surface coefficients and the selected nucleus should always be specified. 
For light nuclei, the curve is monotonic and reaches its minimal value for very 
asymtnetric splitting. As the nucleus becomes bigger, the symmetric configuration 
barriers decrease. For a fissility value between 0.4 and 0.5 the curve is a plateau and all 
the exit channels have very similar CSP values. For still heavier nuclei, the symmetric 
splitting turns out to have the lowest CSP. The ridge curve in this case reaches a 
maximuln for very aSYlmnetric configurations and then drops again for the most 
aSYInlnetric decays. This is exactly the Businaro-Gallone picture. More precisely, the 
BG point falls in the lnass interval 81-145 in our study in agreement with the 
experimental estimations which locate the BG point between 85-145 [44]. 
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Fig. 13. Ridge lines for different ~ stable nuclei. The conditional saddle-point energy is normalized to the surface 
energy of tbe corresponding compound nucleus. 

6. Emission of C, 0, Ne, Mg and Si nuclei 

The half-lives of nuclei elnitting heavy clusters like C, 0, Ne, Mg and Si through 
this very asymtnetric fission valley leading rapidly to two spherical touching nuclei at 
the early stage of the tunneling process have been calculated [45] and cOlnpared with 
recent data relative to the so-called cluster radioactivity [3,4]. In such an unified fission 
approach, the decay constant of the parent nucleus is sitnply It =voP. There is no 
adjustable preformation factor. The assault frequency v 0 can be evaluated fro In the zero 
point vibration energy Ev = 1/2hvo and, in the harlnonic oscillator approxilnation, 
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Vo = 2.5 X 10 S-1 . The barrier penetrability P is calculated within the general form of 
the action integral 

2 Rb 112 }
P =exp --J [2B(r)(E(rJ- E(Ra JJ] dr, (19){ fz Ra 

with E(Ra J= E(Rb J= Q . 

The expression proposed for the inertia B(r J in this new fusion-like fission valley [46] 

has been used 


B(r) = .u{1 + fer) ~752 exp[ - 1:8 ((r- Ra)/Ro )]}. (20)
1 

l( 
Reont - r J2 

where f (rJ= o,~cont Ra • r ::; R 
cont and 

r ~ R eont 

The partial half-life titne is related to the decay constant A by T, - In 2 No112 - A . 
parameter used to determine the potential energy has been changed. 

The predictions within the macroscopic LDM barrier tunneling and the 
experimental partial half-lives are compared in the table 3 (first and third colulnns). The 
Inacroscopic part of the total energy leads to a reasonable agreelnent for the heaviest 
clusters but fails to reproduce the 2°0 and 14C elnission. 

Table 3. Time characteristics (in s) of the cluster radioactivity. The first and second columns indicate respectively 
the theoretical half-lives without and with taking into account the microscopic corrections. The last column gives 
the experimental data. 

(21) 

Emitter 
and 

cluster 

Theoretical 1i/2 : 

nlacroscopic LD M 
barrier tunneling 

Theoretical T1I2 : 

macroscopic and 
microscopic barrier 

tunneling 

Experimental 

1i/2 (s) 

222 Ra -714 C +208 Ph 2.7 X 1033 2.0 X lOll 1.2 X lOll 
223 Ra -714 C +209 Ph 1.6 X 1034 1.2 X 1014 2.0 X 1015 
224 Ra -714 C +210 Ph 1.1 X 1035 1.9 X 1017 7.4 X 1015 
226 Ra -714 C +212 Ph 4.3 X 1035 6.8 X 1022 1.8 X 1021 

228 Th -720 0 +208 Ph 1.3 X 1026 4.3 X 1022 7.5 X 1020 

230Th -724 Ne +206 HI! 1.1 X 1026 3.7 X 1026 4.4 X 1024 

231 Pa -724 Ne +207 TL 2.9 X 1024 1.2 X 1023 1.7 X 1023 

232U -724 Ne +208 Ph 9.6 X 1022 1.3 X 1021 2.5 X 1020 

233 U -724 Ne +209 Ph 3.3 X 1023 4.7 X 1024 6.8 X 1024 

234 U -724 Ne +210 Ph 1.2 X 1024 9.4 X 1027 1.6 X 1025 

234 U -728 Mf! +206 Hf! 7.6 X 1024 1.4 X 1027 
3.5 X 1025 

235U -728 Mg+207 Hg 5.1 X 1025 4.6x103o 2.8 X 1028 

236 Pu -728 MJ! +208 Ph 2.0 X 1021 1.7 X 1021 4.7 X 1021 

238 Pu -728 Mf! +210 Ph 6.2 X 1022 8.0 X 1027 5.0 X 1025 

238 Pu -732 Si +206 HJ!. 1.3 X 1025 8.4 X 1027 1.9 X 1025 
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In order to sitnulate the microscopic corrections such as shell effects and pairing in 
this very aSYlnmetric decay case, the difference between the experimental Q-value and 
the theoretical one deduced from the present LDM has been added at the lnacroscopic 
potential energy of the initial spherical nucleus with a linear attenuation factor vanishing 
at the contact point of the nascent fragments. The theoretical estimates agree very well 
with the data for all the C, 0, Ne, Mg and Si clusters when the microscopic 
contributions are included (second column in the table). 

Therefore, it seems that the emission of clusters by heavy nuclei may be viewed as 
the litniting case of very aSYlnmetric fission via compact and creviced shapes. It is 
ilnportant to emphasize that the main explanation of the good reproduction of the 
experimental data is the ability of the present model to reproduce the height and width of 
the potential barriers with the help of the experimental Q-value. The physical process 
which leads to two tangent spherical fragments may be an adiabatic fission process or, 
alternatively, the emission of a preformed cluster. Whatever the physical process is, the 
role of the proximity energy and the microscopic corrections is emphasized since their 
introduction is sufficient to reproduce the potential barrier characteristics which govern 
the half-lives of the cOlnpound nuclei. 

7. Fragment kinetic energy 

The fragment kinetic energy is the potential energy at the scission point plus the 
possible pre-scission kinetic energy. The total energy released from saddle point to 
infinity is the sum of that kinetic energy and of the fragment excitation energy due to 
dissipation and defonnation. The question then arises of the definition of the scission 
point. In the usual fission valley, the breaking of the matter bridge occurs for shallow 
necks between long touching fragments [47]. Then, the nuclear proximity forces are very 
weak and these rupture points between the fragments are chosen as scission points. Such 
a definition is impossible for quasi-Inolecular shapes since at the contact point between 
the spherical nascent fragments the proxiInity energy reaches 30-40 MeV. Norenberg 
[29,30] has defined the scission point as the top of the scission barrier where the 
defonnations are slnall since the repulsive Coulomb forces are approximately cancelled 
by the attractive proxilnity forces. For 240pU, the proxiInity energy is still -18 MeV; the 
distance between the equivalent sharp surfaces being 1.1 fIn. Wilkins et al [33] have 
arbitrarily fixed the scission point as the point where the distance between the surfaces 
is 1.4 fIn for all nuclei. For A > 100 and along the J3 stability valley, we have found that 
the distance between the equivalent sharp surfaces at the saddle point of the fission 
barrier is given by -0.00647 A+2.587. 

The range of the nuclear friction is strongly correlated with the range of the nuclear 
force and the dissipation vanishes when the nuclear force effects disappear. Thus, the 
scission point where the fraglnents beCOlne free is lnore outer and lower than the saddle 
point. It is difficult to define its position precisely because it is located in the tail of the 
proxitnity energy and where the slope of the deformation energy is very pronounced. In 
Figs. 14 and 15, the Coulomb energy at the point where IENI < O.5MeV is compared 

with the kinetic energy of the intermediate Inass fraglnents produced during the 
'1' h. f" f l49Tb and 194H Th SImI. arlty between ese ' aSYlrunetrlc lSSlon 0 g. e t two energIes 

confinns that the definition of the scission point as the point where the proxitnity energy 
vanishes is reasonable, 
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Fig. 15. Comparison between experimental TKE's [49] and theoretical predictions [40] for light fragment 
emission from 194Hg. 

In table 4, the dependence of the predicted total kinetic energy on the selected 
threshold value for the nuclear proximity energy is displayed and the predictions are 
cOlnpared with experimental data. 

Table 4. Comparison of the experimental fragment kinetic energies estimated from [47] and theoretical total 
kinetic energies taken as the Coulomb interaction energies when the nuclear proximity energies are lower than 
0.1, 0.2 and 0.5 MeV in the case of symmetric fission. 

Nucleus Z2/A 1I3 Empirical TKE 
(MeV) 

TKE 

IENI < O.1MeV 

TKE 

IENI < O.2MeV 

TKE 

IENI < O.5MeV 
2Y'Fm 1573 193 214 220 229 
226Ra 1271 158 171 177 184 
InIr 1027 133 137 141 147 

162Dy 799 104 105 109 113 
91Zr 356 50 45 46 49 
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The ,assumed lhnit value for EN plays an increasing role with the mass. There is a 
tendency for heavy nuclei to overestimate the data. The energy stored in nucleon 
elnission, the collective modes such as vibrations, rotations and charge polarisations 
could partially fill this gap. Let us recall that the two-spheroid model correctly 
reproduces the total kinetic energy. 

8. Rotating hyperdeformed quasi-molecular states and critical angular momentum 

Rotating hyperdeformed states have been recently observed in Dy [50]. Ridges 
were found in p-y-y coincidence spectra corresponding to an extrelnely high dynamic 

mOlnent of inertia of 130 tt2 
. MeV-I, suggesting the existence of strongly deformed 

prolate shapes of ~ ~ O. 9 in a high spin range of about 75-98 Ii. Very high dynamic 

InOlnent of inertia of 140 tt2 • MeV-1 has been also observed in Gd [51]. These 
experiments have been repeated and the data are still debated [52]. 

Calculations [53] based on the cranking Strutinsky method with a deformed 
Woods-Saxon potential had predicted the existence of hyperdeformed nuclear states but 
not for so high spins. Furthennore it had been rather assulned for Dy that hyperdeformed 
shapes would not likely be found because these states would not be populated below 70 
Ii, while above the fission decay Inode would be dOlninant. 

These rotating hyperdefonned states are populated in heavy-ion reactions (for 

exrunple, 37 c+ 120Sn -* 153 Dy + Ip +3n) and the starting configuration is two interacting 
spheres. Consequently, it is important to know the rotational dependence of the potential 
energy in the quasi-molecular shape valley which is particularly adapted to describe the 
entrance channel in heavy-ion collisions [54,55]. The I-dependent barriers for Dy are 
displayed in Fig. 16. A scission barrier survives to spin 115 Ii and Inacroscopic 
hyperdefonned states appear in a very spin range of about 70-110 Ii. The geolnetrical 
characteristics of these rotating isolneric states are for 1=701i, ~ ~.8, 

I -L :::;; 94li2 
. MeV -1 and Q:::;; 20eb. For a spin of 110 Ii, the values are ~ zO.96, 

I -L :::;; 118li2 
. MeV -1 and Q:::;; 30eb. The high values of the InOlnent of inertia and 

curvature at the saddle-point explain that the centrifugal forces can relnove the potential 
pocket only for very high angular mOlnenta. The possibility to conciliate low fission 
barrier heights and high Inaxhnal angular momenta against fission is really a specificity 
of this deformation valley through quasi-molecular shapes. The first experilnental data 
on hyperdeformed states in Dy are in agreement with these theoretical results but the 
knowledge of the lifetime and quadrupole moment is highly desirable and further 
experiments are needed. 

The shell corrections are not included and one cannot obtain a potential well for ~ 
z 0.6 explaining the superdeformed states observed experimentally. Nevertheless, these 
theoretical barriers seeln also compatible with the available data on the superdeformed 
states in Dy : extension in spin froin 22 Ii to 60 Ii, top transition at an excitation energy 
of 30 MeV and bands close to yrast at spins greater than 55 Ii. Furthermore, the stability 
against fission of these superdefonned states at 60 Ii is ensured by a barrier of 14 MeV 
in this deformation valley. 
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Fig. 16. Sum of the deformation and rotational energies as functions of the deformation and angular momentum 
(Ii unit) for Dy. The dashed line indicates the separation into two equal spherical fragments. 

In Fi~. 17, the I-dependent deformation energies are plotted for the 24Mg, 72Se, 
132Ce and 1 1 Hg nuclei. The external barriers are high and thin and up to P~ 0.7 - 0.8 the 
deformation energy profile is very flat at medium spins. The shape variation occurs at 
relatively constant energy and it is not surprising that, at intermediate angular momenta, 
shell rearrangements generate shallow wells where superdeformed states may survive. 
For lower spins and P< 0.7 the slope of the potential energy curve is more pronounced 
and the shell effects will find it more difficult to dig a well. This might be the 
explanation for the observed sudden disappearance of the superdeformed states. 
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With decreasing spins the external minimum located at the foot of the scission 
barrier moves to intennediate positions. Their geometrical characteristics are compared 
in Table 5 with data relative to the superdeformed states of Ce, Eu, Dy and Hg. There is 
no evident contradiction and the Inacroscopic well at intermediate spins give a first 
rough indication on the superdeformed well emphasizing the iInportance of the 
underlying macroscopic potential surface. 

Table 5. Experimental and theoretical quadrupole moment and moment of inertia for superdeformed states. The 
theoretical values correspond to the limit positions where the wells are still deeper than 0.5 MeV. 

nucleus Exp Q (eb) Theor Q (eb) Exp I (Ji 2• MeV-I) Theor I (Ji 2• MeV-I) 

Ce 8.8 lOA 55 60.5 
Eu 13 12.3 68 69.5 
Dy 19 14 85 79 
Hg 18 21.5 110 121 

To study the super and hyperdeformed states, the spheroidal configurations are 
often chosen even at very large deformations since the calculations of shell effects are 
easier. In Fig. 18, the characteristics of the deformation paths through compact and 
creviced shapes and prolate ellipsoidal shapes are compared. It is striking to observe that 
up to ~ ~ O. 8 O. 9 the differences between the values of I -L and Q in the two valleys 
are very slnall even though these two paths are so different [55]. Therefore, the values of 
I -L and Q deduced froln experiInental data lead to a poor understanding of the nucleus 
elongation and neck developlnent and the ellipsoidal and one-body nature of the strongly 
deformed rotating states is not proved. 

S 
rem 

0.8 0.6 0.4 0 
4 2 

I 
.L 

3 

2 

~ 

Sell 

~ 
~ 

~ 

0.5 

/ 
'/ 

/ 

I 5 
I 

I 
/ 

/2
/ 3 

1.0 

Q 1-1 
eft 

1 

0.5 1.0 0.5 1.0 

Fig. 18. Relative perpendicular moment of inertia, quadrupole moment and inverse effective moment of inertia of 
Ule elliptic lemniscatoids (full curve) simulating the quasi-molecular shapes and prolate spheroids (broken curve) 
as a function of the deformation. Slem is the ratio between the neck radius and half the elongation of the 
lemniscatoids while Sell is the ratio between the axes of the ellipsoidal shapes. 
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The / critical angular momenta that light nuclei are able to sustain against the 

centriiugal forces have been obtained experimentally recently [56]. They are compared 
in Fig. 19 with calculations within the original version of the Liquid Drop Model [28], 
the Finite Range Liquid Drop Model [42] which uses a Yukawa plus exponential 
potential for the sutface and proximity energies and the present generalized LDM 
applied to quasi-molecular shapes [57]. The pure liquid drop model overestimates the 
fission barrier heights and consequently the critical angular momentum. The lcr derived 
from the two approaches taking into account the nuclear proximity energy are in 
agreement with the experimental results. 
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Fig. 19. Comparison of the experimental [56] critical angular momenta with theoretical predictions ( dashed 
curve [28], solid curve [42], triangles [57]) for light nuclei. 

The question of the luaximal angular lUOluentum that medium and heavy nuclei are 
able to sustain against rotation is an old and still debated problem put forward once luore 
by the new and questionable results at very high spins. In Fig. 20, three predictions of 
the critical angular mOluentum for f3-stable nuclei are compared. Most of the studies [28, 
42,58] predict a maximum of lcr of around 80-90 n, except Neergard and Pashkevich 
[59] who obtained around 110 n . Within our shape sequence and energy definition, the 
luaximum of the critical angUlar momentum is approxituately 130 n for mass around 
190. The question of the experimental value of lcr is not simple since it can be reached 
only indirectly in fission processes following fusion reactions which are needed to bring 
enough angular luomentum to the compound nucleus or via decay of hyperdeformed and 
superdefonued states. Nevertheless, the fast fission of selui-equilibrated fused systelus at 
I ::; 140 n has been observed [60]. 

The agreeluent with the first data on hyperdefonued rotating states seelUS to 
confinn that the defonuation valley through compact quasi-luolecular shapes luight be, 
really, a nuclear deformation valley. 
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Fig. 20. Critical angular momentum (Ii unit) for nuclei along the ~ stability Valley. The values obtained for 
quasi-molecular shapes are given by the full curve [22] while the theoretical predictions of Cohen et al [28] and 
Broglia et a1 [58] correspond respectively to the chain curve and the dotted curve. 

9. Ternary fission 

At low energies, the sYlrunetric nuclear tripartition has an upper lilnit of 2 xl 0-9 

relatively to binary fission, while for a lightest fragment in the mass range A ~ 30, the 
ratio is 8 xl 0 -8. In contrast, very asymmetric ternary fission with the emission of an a 

particle occurs with a relative yield of 3-6xl0-3 [61,62]. Ternary fission was also 
expected in the reaction 238 U+ 238 U ~iJ~Sh but has not been observed. 

At intennediate energies (10-100 MeV/A), highly excited systems are obtained by 
partial fusion of the projectile and the target and a large runount of thermal excitation 
energy and rotational energy is deposited. Besides particle elnission and binary fission, 
the nuclear ternary fraglnentation is also an important decay mode for these hot systems 
[63]. 

The ternary fission valley through elongated shapes with wide necks where the 
proxiInity forces are negligible has been extensively investigated [64]. On the other 
hand, the frunily of quasi-molecular shapes previously used in the binary case has been 
generalised to describe and study [65-67] the prolate ternary fission (see Fig. 2). It 
covers the whole deformation range froln the sphere to three aligned tangential spherical 
nuclei; the two external fragments being identical. 

The different contributions to the potential energy are given separately together 
with the defonnation energy in Fig. 21 for the sYlrunetric and extreme asymmetric 
ternary fission for 212pO. In Fig. 22, the barriers are given for a light nucleus and an 
heavy one for different aSYlrunetries [68]. As in the binary case, the total energy varies 
gently even around the contact point where the slope of the Es and En curves changes 
drastically and the nuclear attraction is the greatest. For light nuclei and for all the lnass 
aSYlnmetry values, the saddle point corresponds to three separated fragments held 
together by the proxiInity forces which counterbalance the Coulolnb repulsion and the 
potential barrier is a scission barrier. For heavier nuclei, the saddle point shape has the 
srune configuration, except for very high aSYlnmetries (a particle elnission for exrunple) 
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where the' barrier top corresponds to a one-body cOlnpa~t shape encountered before the 
fonnation of the necks since the proximity energy is not ~ufficient to introduce an 
inflection in the potential curve. The height of the barrier depends strongly on the decay 
aSylnmetry. 
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Fig. 21. Variation of the surface energy Es. the Coulomb energy the nuclear proximity energy EN and the 
deformation energy E (in MeV) for the 212pO nucleus plotted against the reduced distance between the mass 
centres (of the two halves of the system [65]) in the path of the ternary fission through compact and creviced 
shapes. The broken line corresponds to the separation into three spherical fragments. The central nucleus is an 
alpha particle for the asymmetric configuration (right column) . 
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Fig. 22. Ternary fission barriers as a function of the distance r between the mass centres for the 40Ca and 240pU 
nuclei. The central fragment is indicated on the curves and the separation point by a vertical bar. 

In Fig. 23, binary and ternary sYlllinetric fission barriers are compared. The two 
barriers have the SaIne structure: one peak for medium nuclei and two peaks separated 
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by a deep Ininimuln for heavier nuclei. A greater elongation in the ternary case causes 
the outer peak of tile ternary fission barrier to be always further out than in the binary 
case. In this Inass range, the ternary fission barrier is Inuch higher than the binary one 
and ternary fission is very energetically unfavourable, although the formation of three­
body isomeric states corresponding to the deep miniInuln of the ternary fission barrier 
seems possible. For Z > 102, the ternary fission barrier is lower than the binary one but 
it remains further out. The height of the second peak relatively to the second miniInum is 
important for Z < 110 but this second barrier lies well below the first peak. The 
hypothesis that the fraglnent kinetic energy corresponds to the interaction Coulomb 
energy at the external scission point where IENI < O.2MeV allows to roughly reproduce 

the kinetic energy of the three comparable fragments detected in the V+Ne and V+Ar 
reactions [65, 69]. 
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Fig. 23. Binary (dotted curves) and ternary (full curves) symmetric fission barriers for the nuclei 212pO, 232Th, 

240pU, ff~Sh and iri Sh plotted against the reduced distance between the two halves of the fissioning system. 

The shell effects have been introduced for the superheavy elements within the Droplet model prescription. The 
vertical bars indicate the contact point. 

The Inacroscopic fission barrier heights for binary and ternary fission are compared 
in Fig. 24. The ternary fission Inay occur only for very heavy and very light nuclei. For 
heavy systelns the two tails of the curve show that the whole structure of the double­
humped ternary fission barrier must be exmnined and not just the barrier height 
relatively to the ground state. 

Recently, the fission of 48Cr formed in fusion reactions has been reported [70] and 
the I-dependent binary and ternary fission barriers are compared in Fig. 25. It is quite 
striking to observe that the defonnation energy of the IniniInum in the 25-40 Ii range is 
of the SaIne order or lower in the sYlrunetric ternary decay channel than in the binary one 
and that its position is Inore external (hi~her Inoment of inertia). Then, one Inay not 
exclude the occurrence of prolate 160 + 60 +160 Inolecular configurations following 
fusion reactions in this spin and excitation energy range [71]. Analyses of experimental 
results to test this hypothesis are in progress [72]. 



24 
Z2/A 

:; 90 5 10 15 20 25 30 35 40 

CI) 

:i 

o 50 100 150 200 250 300 

Mass Number A 

Fig, 24, Macroscopic fission barrier height for binary fission (broken curve) and ternary fission in the ~ stability 
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Fig. 25, Binary and ternary symmetric fission barriers versus the moment of inertia and spin for 48Cr . 

10. Influence of the temperature and rotation 

The new generation of accelerators built in laboratories such as GANIL, GSI, 
MSU, TexasAM, HMI and SATURNE provides heavy-ions in the intermediate energy 
domain (10-100 MeV/A) allowing the study of highly excited nuclei. These systems are 
obtained by partial fusion of the projectile and the target and a large amount of thermal 
excitation energy and rotational energy is deposited. Pairing effects vanish around T=l 
MeV while shell effects disappear at T=2-3 MeV. Particle emission is enhanced with 
excitation energy. It has been clearly established that fusion still exists at 60 MeV/A and 
that nuclear systelns can be fonned in thermal equilibriuln up to temperature as high as 5 
or 6 MeV [73] ; the binary and ternary fission Inode remaining an important decay 
channel. Consequently, the knowledge of the dependence of these two exit channels on 
the temperature, angular momentum, Inass and asymmetry is important [41,68]. 

The dependence on the telnperature of the binary and ternary fission barrier heights 
are displayed in Fig. 26. The heating of a nucleus strongly lowers its fission barrier and 
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the lowering is all the more important as the system is heavy since the main telnperature 
effect is to diminish the surface tension. At T =5 MeV, the binary fis~ion barriers vanish 
for A -- 200. In the ternary fission valley, due to the high external peak persisting for 
high masses, quasi-molecular isomeric states are able to sustain high temperature. 
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Fig. 26, Barrier heights (MeV unit) for the symmetric binary (left part) and ternary (right part) fission of nuclei 
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The decrease of the binary fission barrier heights when a nuclear system is heated 
and rotates is shown for four selected typical nuclei in Fig. 27. The differences between 
Inass inertia explain that the barrier height for light nuclei vanishes rapidly for low 
angular InOlnenta, while for heavy systelns, centrifugal forces cOlnpensate for the 
defonnation energy only for very high angular mOlnenta. For all systems, the 
telnperature dependence of the barrier height dilninishes when the angular Inomentum 
increases. 
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The "ridge-line potentials for the four above mentioned nuclei located below and 

above the Businaro-Gallone point are displayed in Fig. 28. The lowering of the surface 
energy and, then, of the fission barrier height by the temperature increases with the 
sYlrunetry of the system and with its Inass. The incorporation of telnperature maintains 
essentially the same topology of the Businaro-Gallone picture: below the BG point the 
ridge line shows a maximum at symmetry while above the symmetric saddle-point is 
stable with respect to the mass-asymmetry mode and is the ordinary fission saddle-point. 
Nevertheless, there is a shift of the BG point toward lower fissility values as the 
temperature increases and also as the angular momentum increases. High temperature 
and rotation favour symmetric fission. 
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Fig. 28. Binary fission barrier heights (MeV unit) as functions of the temperature and the decay asymmetry for 
the 40Ca, 109Cd, 197Au and 240 nuclei. Al and A2 are the masses of the two nascent fragments. 

11. Fragmentation and formation of bubbles and toroids 

In heavy-ion collisions at 30-100 MeV Inucleon, although binary and ternary 
fission remains an itnportant exit channel, quaternary, quinary, ... decays have been 
observed at high excitation energies [74]. The interpretation of this Inultifragment 
production is still elusive. Several explanations have been advanced [75,76] including: 
dynmnically induced density fluctuations, expansion of an initially compressed source, 
statistical decays and rapid sequential binary fission. Starting froln the idea that the n 
fragments are elnitted by an almost thermalized system, the fragmentation barriers into 
several spherical fragments emitted in a volume-like lnanner [77] and in a ring-like 
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lnanner [78] have been calculated within sYffilnetric quasi-molecules. The selected 
geolnetric conl igurations are respectively for the fraglnent mass centres : equilateral 
triangle, tetrahedron, square, spheres along three cartesian axes, hexagon, cube and 
octagon. The starting configuration is n touching spheres. 

These barriers of fragmentation in n nuclei are cOlnpared in Fig. 29 for 240pU. 

Obviously, the binary and oblate ternary decay paths are the same in the two 
geometrically different fraglnentations. In all cases, the barrier tops correspond to n 
separated fragments maintained in unstable equilibriuln by the balance between the 
repulsive CouloITlb forces and the attractive nuclear forces and so generalising the 
picture observed for the binary decay through quasi-molecular shapes. The 
fraglnentation barriers are lower when the emission is focalized in a same plane since 
the proximity forces act at larger deformations and, then, for smaller Coulomb repulsion. 
Then, even if crude hypotheses have been asserted, our calculations indicate that the 
emission of the fragments in the SaIne plane is somewhat favoured. In the case of the 
three dimensional emission, the barrier heights increase strongly with the number of 
fragments even for very high telnperature. For the plane multifragment emission, the 
situation is reversed [78] for the heaviest systems (obtained as evanescent residues in 
reactions such as Gd+U, Pb+Au, Au+Au). Indeed, apart fronl the binary fission mode, 
the potential barrier heights become comparable and even decrease slightly with the 
nlunber of fraglnents. 
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Fig. 29. Fragmentation barriers (potential energy relatively to the initial sphere energy) as functions of the 
number of fragments and the temperature (MeV unit) for the 240pU nucleus. The left column a) corresponds to the 
emission of fragments in the whole space while the right column b) is relative to the fragment emission in a 
plane. 

Froln recent experilnents for intennediate lnass systelns, it has been suggested [9] 
that a statistical competition between the various Inultifragmentation channels occurs. 
For all the excitation energies, the n event probabilities decrease with the fragment 
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nUlnber but the yield of threefold, fourfold and fivefold events increases with the 
excitation energies. This behaviour can be understood looking at the fragmentation 
barriers. At low excitation energies, the barrier height plays the major role and binary 
and ternary fission is dOlninant. In contrast, for high excitation energies, only a small 
part of the available energy is absorbed during the heating of the residual system while 
the other relnaining and non-thennalized part is so itnportant that the investigation of all 
the fragmentation channels is possible. The situation is different for the heaviest 
systems. All the lnultifragmentation events in the same plane seem to have roughly the 
same probability even for low excitation energies. Nevertheless, the problem to form 
these very evanescent heaviest mixtures of matter with no binary fission barrier is not 
simple since it is necessary to overcome the deep-inelastic regime and low excitation 
energies are perhaps not sufficient. 

Some recent experimental data [79] and simulations within the Boltzmann­
Uehling-Uhlenbeck model [80] seeln to point out that effectively, for very violent 
collisions of intermediate Inass systems, the thermal source expands rather in a plane 
perpendicular to the line connecting the centres of projectile and target. This transverse 
focalization is mainly due to the initial compression which induces strong oblate 
deformations in which Rayleigh instabilities develop allowing the plane lnultifraglnent 
emission. 

When the cOlnpression effects and the Coulomb repulsion are extremely important 
as in violent central collisions of very lnassive nuclei, calculations have shown that a 
depression of matter might occur in the centre of the distribution of nucleons just after 
the most violent phase of the reaction [81-83]. Recently, first experimental signatures in 
very massive collisions like Pb+Au [84,85] seem to indicate that evanescent and strongly 
defonned shapes intermediate between toroidal and bubble configurations develop 
before the fraglnentation in several intermediate lnass fragments. These exotic 
topologies were early on suggested as being metastable long tilne ago. 

The energy of a nuclear system evolving in the deformation path leading 
continuously frOln an initial spherical shape towards toroidal configurations and bubbles 
has been studied within the above described generalized liquid drop model and selected 
shape sequences [86,87]. The toroidal deformation barriers and barriers of plane 
fraglnentation are displayed for 322128 in Fig. 30 while, in Fig. 31, the comparison also 
includes the bubble defonnation barriers and barriers of three dimensional elnission for 
40°147. For these very heavy systelns, a wide and deep potential pocket appears in the 
toroidal defonnation path. Furthennore, this well is located below the potential barriers 
for the n fragment elnission in SOlne deformation range. This might perhaps allow to 
such exotic toroidal shapes, generated by the dynamics in the first phase of the most 
lnassive heavy-ion collisions, to survive in a metastable state before decaying in the 
Inultifraglnent exit channels due to the effects of the surface tension forces which 
clusterize the lnatter distribution to minimize the nuclear surface. The angular 
InOlnentum transfer accolnpanying the formation of these toroidal shapes in heavy-ion 
reactions lnight also slightly increase their stability. In contrast, the three dimensional 
fraglnentation barriers are well below the bubble-like deformation barriers whatever the 
lnass and the telnperature of the systeln are. So, if the dynamics in the lnost Inassive 
central heavy-ion collisions leads the nuclear systeln to very distorted rotating hollow 
bubble configurations after the cOlnpression phase, the system will afterwards evolve 
rather to evanescent toroidal Inatter distributions while clusterising under the action of 
the surface tension and proxhnity forces. 
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Fig. 30. Comparison between the toroidal deformation barrier (full curve) and barriers of plane fragmentation 
into 2, 3,4,6 and 8 fragments (dashed curves) for 322128. 

1.1 1.2 1.3 1.4 1.5 1.1 1.2 1.3 1.4 1.5 
300 

T=O 
8 

...-- ....... 

-'/" ........// ,6 
/ "-, 

400 
147 

T=7 

T=O T=7 

200 

200 100 

0100 

--
0 -100 

> 
CI 

-~ 
w 0 

-100 
40 

-200-80 

-120 
-300 

1.0 1.5 2.0 1.5 2.0 2.5 
< r2>112 

rei 
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12. Conclusion 

The decay path which leads an initial spherical nucleus through cOlnpact and 
creviced shapes with ahnost spherical ends and to two or Inore spherical tangent 
fraglnents which later go away has been investigated within a generalized liquid drop 
Inodel taking into account both the proximity energy, an accurate sharp radius, the decay 
aSYlrunetry and the temperature effects. The original value of the surface coefficient has 
been lnaintained. 
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Within this approach of the nuclear deformation energy, this exit channel through 

quasi-luolecular shapes is compatible with mo&t of the experimental data : symmetric 
fission barrier heights in the whole mass range, asymmetric fission barrier heights of In, 
Tb and Mo, Businaro-Gallone point, double-humped barriers of actinides, fragluent 
kinetic energies, partial half-lives of radioactive nuclei emitting heavy clusters and 
critical momenta for light and medium nuclei. The rotational hyperdeformed states 
recently observed might also come up and survive in this fusion-like fission valley. The 
rotation as well as the thermal excitation favour the symmetric splitting. In this peculiar 
decay path, the fission barrier is a scission barrier hindering the rupture of the neck 
between the nascent fragments. The nature of the saddle-point is unusual, it corresponds 
to separated fragments luaintained in metastable equilibrium by the balance between the 
attractive proximity forces and the repulsive Coulomb forces. Analytical formulas given 
the fission barrier characteristics in this deformation path will be provided in a close 
future [88]. 

The fragmentation barriers for emission in a plane or in the whole space as well the 
deformation energies of toroids and bubbles have been determined. For very heavy 
systelus, minima lying below the barriers of plane fragluentation exist in the toroidal 
deformation valley allowing some stability and relaxation of the excited toroidal system 
before its decay in several fragluents eluitted in a plane due to the surface tension and 
proxiIuity forces. 
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