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Abstract 


Phase space bound structures generated from the semi-classical 
Landau-Vlasov (LV) description of the nuclear dynamics are analyzed. 
To this purpose a new satistical approach has been implemented for 
sampling configurations with fixed number of nucleons from the LV 
solution, on which the most bound density fluctuations in phase space 
are searched. The method is shown to reproduce correctly the global 
experimental trends on 36Ar on 58Ni at 32, 52 and 95 Me V /nucleon 
incident energies. This results open a new view of one body descrip­
tions. 
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1 Introduction 

The disassembly of highly excited drops into a mixture of small aggregates 
and individual particles is nowadays one of the most interesting and chal­
lenging problems in non-equilibrium physics. In Nuclear Physics this phe­
nomenon is present in the so-called multifragmentation in heavy ion collisions 
(HIe) at intermediate energies. 

The multifragmentation process in HIe was predicted [1] to occur at high 
enough excitation by different approaches. From the experimental point of 
view, the multifragment emission has been evidenced by first generation 411" 
detectors [2] as an important decay channel. Recently, very efficient devices 
have been constructed [3] and a considerable amount of experimental results 
is currently available. Nevertheless, in spite of the existence of new and 
more refined data, the dynamical mechanisms leading to the disassembling 
of nuclear systems in several fragments are not yet fully understood. 

Among the different theoretical approaches describing the dynamics of 
HIe at intermediate energies we will mention those based on some transport 
equation, like Vlasov- Uheling- Uhlenbeck (VUU) [4], Boltzmann- Uheling­
Uhlenbeck (BUU) [5], the Landau- Vlasov (LV) [6] and the Boltzmann­
Nordheim- Vlasov (BNV) [7] models. All these formalisms have in com­
mon the characteristic that they describe the reaction dynamics through the 
evolution of the one body distribution function in phase space. They have 
been successful in the description of global features of HIe reactions at inter­
mediate energies as for example the collective flow, inclusive cross-sections, 
single particle spectra, etc. On the other hand the possibility of extracting 
information about fragment formation has been quite an elusive point. Most 
of the analysis performed so far have relied on simple cluster recognition al­
gorithms which disregarded the role of momentum space [8]. On the other 
hand the role of fluctuations in phase space has shown to be of primarily 
importance in the formations of aggregates leading to fragments [9]. In this 
communication we explore the onset and evolution of bounded structures in 
phase space in the collision of 36,Ar on. 58Ni at 32, 52 and 95 MeV/nucleon 
recently performed at GANIL. In section II we briefly describe the LV formal­
ism used to describe the collision dynamics. In order to extract information 
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of the fragment formation process a novel model is devised. Firstly, the one 
body distribution resulting from the LV formalism is described in terms of N­
body configurations, taking special care that conservation laws are satisfied 
and that Pauli principle is not violated. Secondly, clusters are searched for 
on these configurations. This is described in section III. Results are finally 
shown in section IV and a discussion is presented. 

The Landau Vlasov Model 

The Landau-Vlasov model describes the dynamics of nuclear collisions through 
a semi-clasical transport equation for the one body distribution function in 
phase space f(r, i). It consists in a free-flow or Vlasov term complemented 
by a Pauli-blocked Uehling-Uhlenbeck collision term Icoll(f) [6], 

afat + {f, H} = lcoll(f) (1) 

where { , } stands for the Poisson bracket and H is the one-body Hamilto­
nian. This equation is solved by projecting f(r,i) onto a moving basis of 
coherent states, which are frozen-width gaussians in coordinate and momen­
tum spaces: 

(2) 

The Wi are here the projection coefficients determined by the initial condi­
tions, X and tP the variances in coordinate and momentum space. A detailed 
description of the LV model can be found in Refs. [6, 15] and references 
quoted therein. 

This model has been shown to reproduce accurately the equation of state 
of nuclear matter at zero and finite temperatures for many different in­
teractions with zero or finite range [12]. Estimations of surface energy of 
semi-infinite nuclear matter are also correct [15]. It has been used to study 
dynamical instabilities arising from fluctuations in the spinodal zone for nu­
clear matter [14] and characteristic times were extracted for the spinodal 
decomposition. It has also been widely proven the success of this model 
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on the description of the nuclear dynamics in HIC at intermediate energies 
[11, 12, 13]. 

Concerning the Boltzmann-like collision term, we used in this work the 
isospin and energy dependent free nucleon-nucleon cross-section. We did 
not include any in-medium corrections, since in spite of intensive theoretical 
efforts [16, 17], they are not yet well known and they do not exceed 0.8 to 1 
times the free value [16]. 

With respect to the one-body Hamiltonian in equation (1), we consider 
a simplified version of the zero-range Skyrme effective force, the so-called 
Zamick interaction [18]. With this force the one-body potential reads: 

(3) 

where p is the local density: and to, t3 and v are parameters adjusted to give 
saturation properties of infinite symmetric nuclear matter. In particular, the 
saturation density value is Poo =0.145 fm -3. In our case: to = -356MeV / Poo; 
t3 = 303MeV / Poo ~,v = ~. We use this very simple force in order to give 
a first illustration of global dynamical trends which, at the same time, can 
serve as a test of the method that we describe below. Nevertheless, fur­
ther investigations using more realistic forces, which take into account for 
instance surface terms, should be performed. This kind of calculations are 
now in progress. 

Cluster Analysis 

The Landau-Vlasov equation gives the time evolution of the one-body density 
of a system of A interacting particles. It is obtained from the projection of the 
Liouville equation corresponding to the total A-body distribution function 
onto the one-body phase space r, after truncation of a hierarchy of correlation 
patterns. This procedure gives rise to an extended mean-field description 
which takes dissipative processes into account. These processes are given in 
terms of a Boltzmann-like collision kernel. 

A one-body distribution function represents at each time the mean occu­
pation in an element of volume d6r = d3r d3p in r space. This represents the 
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mean number of particles in rJ6r when a number M of experiments (each one 
involving A particles) have been performed. Let us call Ci(r,i) the particle 
configuration whose coordinates lie within c.t>r around (r, i) for each individ­
ual experiment, and define Elr an operator giving the number of particles in 
Ci. Then 'the LV distribution function can be viewed as an microcanonical 
ensemble average of microscopic "A-body" configurations Ci(r,i), such that: 

tflN = f(r,ji) bd3 p = ~ f: 0r(C;(r,ji)) tflr (4) 
.=1 

where rJ6N gives the number of particles in rJ6r. Conversely [10] , M' config­
urations of A particles can be generated by choosing phase space coordinates 
according to the LV distribution function. Such a mapping must respect the 
following conditions: i) conservation of a given set of relevant observables 
with respect to the mean behaviour, and ii) Pauli exclusion principle. Con­
sider the most general ensemble of A-body states, satisfying Eq.(4) together 
with conditions i) and ii). It contains informations about the dissipative be­
haviour of the system generated by a mean-field-plus-collisions description, 
given by the LV model, since it is constructed from a truncated hierarchy of 
correlations. Not only the individual Ci are elements of this ensemble, but 
also many more configurations which are consistent with the solutions of the 
exact many-body problem. 

In this spirit the procedure we adopted is the following: a) at each time 
t, from the complete set, A=94 gaussians were picked at random one by one. 
In this way, we get a sampling according to the one-body density resulting 
from the L-V model. It is also important to note that this is a minimum bias 
mapping. b) at each step, i.e. each time a new gaussian is taken, we checked 
that 

5x~. 
--.!L
x6 

5pf.
+ --.!! > 1P5­ (5) 

with 5x~j ["it ­ ij]2 and 5p~j = [pt - pj]2, Xo and Po are normalization 
constants satisfying the relation (xoPo)/1i = 1, thus insuring that Pauli ex­
clusion principle is not violated. In this case we have considered a lattice 
structure assuming a body-centered cubic net with close packing. Xo is then 
calculated as the distance to the nearest neighbour in the net. c) once the 
complete set is thus generated, we check for the conservation (with respect 

5 



to the LV description) of total potential energy, total kinetic energy, momen­
tum and angular momentum. d) if condition c) is satisfied the configuration 
is accepted, otherwise it is rejected. In order to obtain reliable information 
on observables typically measured in experiments, this process is performed 
for a wide range of impact parameters b, as many times as configurations 
are required for the calculation of the fragment spectra (according to the 
geometrical law dn = 27rb db). 

It is important to point out that in order to calculate the magnitudes 
involved in condition c) a prescription must be given to calculate the energy 
of the configurations resulting from the mapping. In order to keep the con­
sistency with the L-V formalism used to generate the primordial one body 
distribution function we adopt the following recipe: we assign to each point 
of the projected configuration a Gaussian with a width that is a function of 
the number of points of the projected configurations (A in this case). This 
new set of Gaussians interact with the same potential as described in Eq. 
(3). Taking a set of initial configurations as reference we fix the width of 
the gaussians in order to conserve volumes in phase space. For a uniform 
distribution of gaussians, this gives the condition tT' = (N/A)1/6 tT, where tT' 

and tT stand for the square roots of the new variances a (or (3) appearing in 
the sampling, and of those in the original LV distribution function X (or tP), 
respectively. Once this is accomplished the width is fixed for the rest of the 
calculation. In this work we used N / A = 60. 

When this configurations are built the fragment recognition procedure is 
as follows: According to [9] a cluster Cis defined as that set of particles, 
denoted by the sub indices i , which satisfies the following condition 

Vi E C, ei = TicA.f +Ej Vij < 0 (6) 

where TiCAl is the kinetic energy of particle i calculated in the C.M. of the 
cluster C. Here Vij denotes the interaction energy between particles i and i, 
both belonging to the same cluster C; i.e. all particles must be bound.For a 
system of particles we define the cluster decomposition as a partition of the 
total system into subsets, such that, for each subset condition (6) is satisfied, 
i.e. each subset is a cluster. Because this condition can be satisfied by more 
that one partition we introduce the following additional condition: a cluster 
structure is a decomposition of the system in which the total binding energy is 
maximum when each cluster is considered as non interacting with the others. 
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As it can be easily seen this is a very complicated task, because the 
binding energy is calculated in the center of momentum of each subset of 
the partition, as a consequence, the problem is highly self consistent. To 
solve it, an algorithm in the spirit of simulated annealing was developed 
(ECRA) [9]. It is clear that this cluster definition is free from arbitrary 
"clusterization parameters", on the other side this method is statistical in 
nature and although we can be confident that we will be quite close to the 
maximizing partition, we cannot be sure that the true maximum has been 
reached. It should be emphasized at this point that, being it possible to 
apply this method at any point in the evolution of the system, there will be 
a stage in which what we are recognizing as clusters is the set of most bound 
density fluctuations in phase space. During this stage particles are close 
together in q space and no cluster structure can be recognized by standard 
configuration (MST) cluster recognition algorithms. At later, asymptotic, 
times the colliding system will evolve into a dilute mixture of free nucleons 
and small aggregates, in which clusters will be well separated in space and 
then we can call them fragments. 

The one-body density p resulting from the projection onto the r-space of 
the LV distribution function is show in Fig 1, in full lines, for Ar + Ni at 95 
MeV /nucleon and b=0.5 fm, at different times. In this figure, the coordinate 
r is paralell to the beam axis, in the center of mass frame. Together with this 
quantity we show, in dashed lines, the densities as calculated from the super­
position of 20 A-particles mappings. As it can be readily seen the agreement 
is very good even at asymptotic times, where the densities strongly fluctuate. 
These results show the consistency of our procedure at the sampling level. 

Comparison with experimental results 

In this section we show the results of our calculation in the case of the 36Ar 
+ 58Ni reaction at 32, 52 and 95 MeV/nucleon, recently studied at GANIL 
using the 47r detector INDRA [20],[21],[22]. 

The bare results of the above described method were further processed 
in the following way: i) we have removed what we call "unrealistic clusters" 
as for instance diprotonsj ii) a simplified version of an experimental filter 
has been applied in order to simulate the detector acceptances (angular and 
energy detection thresholds). 
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In Fig. 2 we show the evolution of the charged product multiplicity 
for complete events with the incident energy. In the left panel the exper­
imental results of ref [20] are shown for incident energies of 32,52 and 95 
MeV/nucleon, on the right panel we show the results of this calculation. 
From the comparison between left and right panels we observe that, in spite 
of the low statistics in the calculation, the main characteristics of the bell­
shaped distributions are reproduced. We see that in both cases the curves 
broaden and the maxima are shifted towards higher multiplicity values when 
the incident energy increases. In particular, at 95 MeV/nucleon this last 
quantity attains values which are close to the total charge of the system. 
Nevertheless, in this case, the theoretical histogram is too wide with an im­
portant contribution in the high multiplicities region. This result is not very 
surprising since, on one side, the LV distribution function does not contain 
dynamical multiparticle correlations and, on the other side, in the clusteri­
zation procedure the implemented effective interaction is the same as in the 
LV dynamics (Eq.3). Even if this kind of force describes rather well the 
mean field properties, it does not account for the quantum effects required 
to generate bound fragments of few nucleons. A consequence of this is the 
fact that the charged particle multiplicity is overestimated. This effect is 
naturally more marked at the highest energy. 

Also in complete events, the intermediate mass fragments (IMF) multi­
plicities normalized to their areas [20] are shown in Figs.3 a)-b) at different 
incident energies. Here, IMF stands for those fragments with charge bigger 
or equal to 3. Accordingly to the experimental yields, the theoretical IMF 
distribution (Fig. 3.b) is dominated by 2 and 3 IMF independently of the en­
ergy. The maximum IMF multiplicity is nevertheless lower in our calculations 
than in the experiment, except for the case at 95 MeV/nucleon incident en­
ergy, in which the general shape of the histograms are very similar. In fact, 
at 32 and 52 MeV/nucleon the tails of the distributions corresponding to 
low probability events do not agree with the data. In our calculations, the 
number of IMF is clearly lower and the onset of "vaporization" [21], which 
corresponds to those rare events in which zero IMF are detected, is not found 
at incident energies below 95 MeV/nucleon. According with the discussion 
of the previous figure the absence of these events, mainly at low energy, are 
not only related to our low statistics but also to the incomplete one-body 
description of the collisional process with a simple local force. 

In Figs. 4 we show the mean number of IMF as a function of charged 
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product multiplicities. In this case experimental results [22] (stars) for only 
two energy values are available (32 and 95 MeV/nucleon in Figs. 4 (a) and 
(b), respectively). From the comparison it is seen that the general shapes are 
qualitatively reproduced by our results (full dots). On one side, both curves 
attain a maximum value which is nearly the same for both energies. On 
the other side, the range of charged product multiplicities is shifted towards 
higher values at 95 Mev/nucleon. As expected, due to the same reasons as 
in the preceding figures, the maximum value of the mean number of IMF 
is underestimated in roughly 1 IMF. This results from the fact that the 
interaction used in the algorithm which determines the most bound structures 
lacks of quantum and surface effects. The consequences of this in Fig. 4(b) 
is to stretch the results along the absissa and to compress them along the 
ordinate axis with respect to the data. Despite these effects, our results 
exhibit the experimetally observed saturation of the maximum mean number 
of IMF with the incident energy, which is characteristic of the phase space 
geometry generated in the initial violent stage of the reaction. 

Conclusions 

In this communication we presented a novel method for fragmentation anal­
ysis in one-body (Landau Vlasov) description of nuclear collisions. Its main 
idea is to build A-body configurations coherent with the kinetic one-body 
distribution. This mapping is performed in such a way t·hat the initial one­
body distribution is well reproduced by the superposition of the projected 
configurations. No extra correlations are introduced. The only restriction 
is that no violation of Pauli principle is allowed. Moreover, conservation 
of total energy (potential and kinetic), total momentum and total angular 
momentum, with respect the LV description, is carefully enforced. Finally 
a cluster recognition algorithm in the spirit of the ECRA is applied. This 
method is free from arbitrary clusterization parameters and can be applied 
at any stage of the evolution, even at very early dense ones, thus allowing 
for the analysis of the time evolution of the most bound density fluctuations 
in phase space. 

The input of the above mentioned method was the one-body distribution 
resulting from a LV simulation, using a very simple force, i.e. the Zamick 
one. The comparison between the experimental results and our calculations 
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are quite encouraging. It is seen that in all the cases investigated we can 
reproduce the general trends. Since no quantum effects and no additional 
correlations than those present in the kinetic LV description are injected, this 
method cannot exactly describe fragment spectra, in particular small clusters 
are not reliable. The interesting consequence of this work is that a one body 
description as the LV model plus a suitable fragment recognition method is 
able to correctly reproduce the global trends of the experimentally measured 
observables which are relevant for fragmentation even when fluctuations are 
analyzed (Le. Fig 2). These results open new questions about the origin of 
this predictive power on semi-classical one-body theories and new works on 
this subject are now in progress. 
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Figure Captions 

Fig.1) In this Figure we show the projected one body density resulting 
from the L-V formalism together with the same quantity as calculated from 
the superposition of 20 N-particles mapping. 

Fig.2) Evolution of the charged product multiplicity for complete events 
as a function of the incident energy. On the left we show the experimental 
results [20], on the right panel the calculated values. 

Fig.3) Intermediate mass fragments (IMF) multiplicities normalized to 
their areas for complete events [20] at different incident energies: 32 (full 
line), 52 (dashed line) and 95 (dotted line) MeV/nucleon. The experimental 
values [20] are plotted in (a) and the results of the present calculation in (b). 

FigA) Mean number of IMF as a function of charged product multiplic­
ities for 32 (a) and 95 MeV/nucleon (b). The experimental data [22] are 
represented with stars and our theoretical results with full dots. 
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