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Recently we succeded to solve two problems which are encountered quite frequently 
in theoretical nuclear physics by employing a neural network. 1) To determine the 
impact parameter of heavy~ion collisions from the observables is of crucial importance 
for comparing the experimental results with theory. For central collisions all methods 
which rely on a single observable have failed. Employing neural network we find that a 
combination of three observables allows to determine the impact parameter four times 
more accurate than a single observable. We investigate in detail which combination of 
observables provide the best results. 2) When simulating heavy-ion reactions one has 
to get random numbers distributed according to known but not monotonous functions. 
The standard procedure to invert the function therefore fails. we could show that this 
type of problem can be quite efficiently solved by means of a neural network. 

The current studies of high-energy heavy-ion collisions are of broad scientific inter
est. This is for two reasons: First, they offer a unique testing ground for newly 
developed methods to study the behavior of strongly interacting quantum systems 
with finite particle number far from the ground state. Secondly, one hopes that in
formation on the equation of state (EOS) of dense nuclear matter can be extracted 
from the experimental data. This knowledge is essential for an understanding of 
the collapse of supernovae, for neutron-star stability, and for the onset of a possible 
transition from hadron matter to the quark-gluon plasma. The study of relativistic 
heavy-ion collisions is plagued by the complexity of the reaction. For the same 
combination of projectile and target a multitude of different processes take place, 
depending on the impact parameter. In peripheral collisions we observe only a 
small energy transfer between projectile and target. Both get excited and behave 
like compound nuclei or undergo fission. More central reactions cause the multi
fragmentation of the combined system and many intermediate mass fragments can 
be observed. In central collisions, finally, we observe the formation of a fireball, 
which disintegrates mainly by emission of nucleons or very light fragments up to 
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a particles. There is, however, no clear cut difference between these processes and 
the fluctuations of the observables are large even for a given impact parameter. 
To separate these processes is, however, of crucial. importance if one would like to 
investigate the different processes in detail and if one desires to compare it with ex
periment. This is especially true for the most central collisions. In these reactions 
the nuclei get compressed and part of the system may reach densities up to three 
times the normal nuclear matter density Po. If one has no means to select these 
most central collisions all signals are washed out by the much more numerous more 
peripheral reactions where such a compression is not present. Up to now in most 
experiments the observables have been analyzed as a function of the multiplicity 
of the observed charged particles. As is well known and as we will see later the 
binning as a function of the multiplicity can give a coarse classification into periph
eral, semicentral, and central events but it is by no means sufficient to separate the 
most central reactions. Recently, efforts have been made for a better selection of 
the central events by using the stopping and the directivity for the classification.1t2 

Although this transverse momentum analysis yields somewhat better results it is 
not sufficient for selecting precisely the desired impact parameter range. In a world 
where theory and experiment agreed completely and where there were no experi
mental acceptance cuts, the neural network technique would be a perfect tool to 
determine the impact parameters from the experimental observables. One has only 
to train the network by theoretical simulations and then to feed the trained net
work with experimental observables in order to obtain the impact parameter as 
the output of the network. However, the world is not that perfect and therefore 
the application is not that straightforward but requires a careful comparison of the 
filtered simulation with the experimental observables obtained in 47r experiments. 
In other fields of nuclear and high-energy physics, such as track reconstruction in 
high energy reactions, neural networks have already been applied quite success
fully. First, we will show that for simulations a neural network is well suited to 
describe the dependence of the impact parameter on the different observables. We 
will demonstrate that the different observables contain different informations and a 
simultaneous measurement of several of them allows one indeed to lower the uncer
tainty of the impact parameter. By comparing the results for different combinations 
of observables we select that triple of observables which allows the most precise 
determination of the impact parameter. These results can be used as a guideline 
for the experimental analysis. Secondly, when simulating heavy-ion reactions we 
have to get random numbers distributed according to a known but not monotonous 
function. The standard procedure to invert the function therefore fails. We will 
show that this type of problem (in case of cross section parametrization) can be 
quite efficiently solved by means of a neural network. It is not the purpose of this 
paper to optimize the results with respect to the network design. Rather I we would 
like to show that with the standard design we can already obtain results which 
are superior to those yet obtained with other methods. For our impact parame
ter determination we apply the quantum molecular dynamics (QMD) model which 
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has been successfully used in recent years to simulate heavy-ion reactions.3 In this 
model the nucleons are represented by Gaussian wave functions which move under 
the influence of mutual interactions given by the Bruckner G matrix. The real part 
of the G matrix acts like a density dependent two body force between the nucleons. 
The imaginary part can be formulated as a cross section. Initially the nucleons of 
projectile and target are located in a sphere of radius r = 1.14A1/ 3 and the initial 
momentum has been randomly selected in between 0 and the local Fermi momen
tum. For details of this approach we refer the reader to Ref. 3. The analysis is 
performed with 1037 events of the reaction Au(600 MeV) + Au with an impact pa
rameter randomly chosen between 0 and bmaz = 14/m. Before we start to discuss 
the neural network and the results obtained we calculate as a benchmark how well 
the impact parameter can be determined by use of one observable only. This anal
ysis was done for three observables, the total multiplicity of protons (MULT), the 
largest fragment observed in each collision (AMAX) and the energy ratio (ERAT) 
in the center of mass system defined by 

ERAT = :EPF/2m. (1)
:Ep;/2m 

where Pt and pz are the final momenta of the observed particles transverse and 
parallel to the beam. For this purpose we define the normalized impact parameter 

(2) 


Thus the range of the reduced impact parameter is [0,1]. In bins of 0.05 we cal
culated the mean value and the variance of the above mentioned observables and 
approximated the mean value by a spline fit We see that MULT as well as AMAX 
is constant for impact parameters smaller than 3.5 fm; thus they cannot be used 
to select the most central collisions. Only ERAT shows an appreciable dependence 
on the impact parameter in that impact parameter domain. In peripheral reactions 
AMAX approaches a constant value and the other observables show a dependence 
on b. To estimate the precision of the determination of the impact parameter we 
invert the fit function in order to obtain the reduced impact parameter blit as a 
function of the observables. Then we calculate the standard deviation 

N 

C = ~ ~(b~MD _ b[it)2 (3) 
.=1 

for central, semicentral and peripheral events. The results are presented in table 1. 
We see, as already expected from the discussion above, that the results obtained 
Cor AMAX and MULT are quite satisCactory for semicentral and central collisions, 
giving an uncertainty oC the impact parameter determination oC about C. bmaz = 
0.7/m. The methods fails, however, for central events. The seemingly reasonable 
values for the variable AMAX and MULT are of no use as discussed above. The 
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Table 1. Uncertainty of the impact parameter determination using only one observable. 

c= 1 E~ (b9MD _ b!it)2 O$b$ 0.15 0.3 $ b $ 0.7 0.85 $ b $ 1Jil 1=1 • I 

A A 0.0791 0.0673 0.0449 
MULT 0.1046 0.0426 0.0532 
ERAT 0.1286 0.0531 0.0813 

small standard deviation is a consequence of the fact that in central collisions (b < 

3fm) a cluster with mass number larger than 6 is rarely produced. 

Therefore, the variance of AMAX is small and the same is true - due to particle 

number conservation - for MULT. The only candidate, ERAT, fails badly giving an 

uncertainty of C . bmaz = I.8/m. In fig. I we investigate in detail the difference 

between bJit and bQMD obtained for this variable. 


ERAT 

0.6 

02 

-0.:2 

o 0.1 

Fig. 1. The difference between bQAJD and b/ it for the observable ERAT for the impact parameter 
ordered events. 

For this purpose we ordered the events corresponding to their impact parameter 
and plotted for each simulation the difference between blil and bQMD. We see that 
the huge fluctuations in central collisions are the cause for this failure. Although 
one may think of other observables, there is the general tendency that with one 
observable it seems to be impossible to select only central collisions. Next we will 
show that an artificial neural network which makes use of several variables improves 
the· situation. We start with a short description of the neural network we use. In 
our calculation we have used a feed-forward network with three layers of neurons. 
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The three layers consist of an input layer of three cells, a hidden layer of five 
cells and an output layer of one cell. The input layer receives data from outside 
(i.e., the values for the observables) and the output layer gives the result (i.e., the 
impact parameter) whose difference from the known impact parameter has to be 
minimized. For the learning phase we use the method of error back propagation 
for the change of the synaptic connections in order to obtain agreement between 
impact parameter calculated by the network and the known impact parameter of 
the QMD simulations. The equations governing the state of the network are 

S =hI + ~W~O"k + 8, hI =~WIj"j (4) 
k j 

"j = f(hj), hj =~WjkO"k - 9j (5) 
k 

with the following notations Wjk the synaptic connections between input cells and 
hidden cells, 9j the threshold of hidden cells, Wij the synaptic connections between 
hidden cells and output cell (i=l), hi the output i-cell activation, hj the hidden 
j-cell activation, w~ the synaptic connections between input cells and output cells, 
(} the threshold of output cell (i=l), "j the output function of the hidden j-neuron, 
and Sj the output function of the output i=l neuron. The activation function of 
the hidden neurons is given by f(t) = ![l + tanh(t)], and the activation function 
of the output neuron is linear so we have g(hd = hI. For training the network 
we applied the conjugate gradient method as well as a subroutine of the NAG LIB 
library. The results obtained are identical.The procedure to find the minimum 
consists of two steps and for details we refer the reader to Ref. 4. The training 
proceeds in iterations. The three input observables are chosen from the following 
set of observables: the mass of the largest fragment (AMAX), the multiplicity of 
intermediate fragments (IMF), the multiplicity of protons (MULT), the flow of 
particles = *E lIign(Ycm) . Pz, z being the direction of the impact parameter 

(FLOW), the directivity (DIR), = ~I:::' the energy ratio in the center of mass 

system [Eq. (1)] (ERAT), and FSD defined as 

~. (Ep,)2 - Ep~ 
(6)

Nc - 1 (Pproi.• E A)2
A pro3 

We tried several combinations of three observables among the seven above and 
present each event 10000 times at the network. The quality of the network response 
is quantified by the standard deviation 

N 

C = ~ ~(b~AfD _ b~ehDOrk)2 (7) 
i=l 

with b~MD the QMD impact parameter, b~e'tDork the impact parameter estimated 
by the network, and N the number of events.The time evolution of the standard 
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Fig. 2. The standard deviation between b QMD and bnehuorlc as a function of the number of 
iterations. 

deviation is displayed in fig. 2 for a typical example. We see that after 5000 
iterations the network has practically reached its asymptotic value. 

To see how well the different impact parameter ranges are reproduced we calculated 
the standard deviation for three intervals 0:5bQMD :50.15, 0.3:5bQMD :5 0.7, and 
0.85 :5 bQM D :5 1 separately. We come now to the results. Table 2 gives a survey 
of all calculations we performed selected for central, semicentral, and peripheral 
events. First of all, we observe that especially for central collisions the quality of 
the impact parameter selection depends strongly on the observables which are used. 
The combination AMAX, IMF, and FLOW leads to a standard deviation for central 
collisions of 0.8 fm, whereas the combination IMF, ERAT, and FLOW allows us 
to determine the impact parameter quite well (standard deviation = 0.31 fm). In 
any case the values are at least a factor of three better than if one uses ERAT 
only, as discussed above. Thus a neural network is indeed a proper tool to select 
the observables which contains the most information. Let us investigate in detail 
how the network performs. In fig. 3 we display the impact parameter ordered 
deviation between bnettDork and bQAfD for four combinations. In the top row we 
display the two combinations which give the best result. We see that up to b = 
0.8 there are practically no systematic structures. Thus the standard deviation is 
caused by the fluctuations of the observables in simulations with almost the same 
impact parameters. Above b = 0.8 ( = 11.2 fm) we observe systematic deviations. 
All the observables MULT, FLOW, ERAT, and IMF tend to zero for large impact 
parameters. Therefore their value for a determination of the impact parameter of 
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peripheral reactions is rather limited. Most probably observables like the scattering 
angle of the large residue are more appropriate. 

Table 2. Variance of the impact parameter detennination using three (four) observables as the 
input of the network. 

c= 1N E~ (b9 MD - b!let)2
1=1 1 1 o :5 b:5 0.15 0.3 :5 b :5 0.7 0.85 :5 b :5 1 

A A 0\ 0.0569 0.049 0.0481 
AMAX IMF ERAT 0.0331 0.0277 0.0441 
AMAX IMF FSD 0.0455 0.0433 0.0469 

AMAX MULT FLOW 0.0521 0.0489 0.0442 
AMAX MULT ERAT 0.0356 0.0281 0.0422 
AMAX MULT FSD 0.0475 0.0457 0.0415 

AMAX FLOW ERAT 0.04 0.032 0.043 
IMF MULT FSD 0.0546 0.0414 0.041 

IMF MULT ERAT 0.0335 0.025 0.0406 
IMF MULT FLOW 0.0543 0.0455 0.0422 
AMAX DIR ERAT 0.0327 0.0357 0.0427 
AMAX ERAT FSD 0.0277 0.029 0.0469 

IMF DIR ERAT 0.027 0.03 0.0564 
Il\1F ERAT FSD 0.0242 0.027 0.0492 

MULT FLOW DIR 0.0354 0.0256 0.0375 
MULT DIR ERAT 0.0234 0.0232 0.0387 
MULT ERAT FSD 0.0251 0.023 0.0395 

MULT FLOW ERAT 0.0234 0.0217 0.0353 
IMF FLOW ERAT 0.0224 0.0224 0.0357 

IMF MULT FLOW ERAT 0.0251 0.0232 0.0368 

The bottom shows the combinations MULT OIR ERAT and AMAX IMF FLOW. 
the first comes closest to the analysis with which the experimental groups 1,2 tried to 
select central events. We see that the network produces some systematic deviations 
close to the most central collisions. AMAX IMF FLOW is the worst case. We 
observe systematic structures in bnetwOTk - bQAI D. Since all of the three values tend 
towards zero for central collision the network has large problems to perform well in 
this region. To verify whether an increase of the number ofobservables improves the 
situation we also performed a calculation with four input cells using the combination 
IMF, MULT, FLOW, and ERAT, which represent the observables which give the 
best prediction using three entry cells. We do not observe an im,Provement of 
the prediction. If we change the number of hidden cells for the selection of three 
observables we do not obtain a better prediction. In summary, we have presented a 
systematic study ofa new method, the application of a neural network, to determine 
the impact parameter of heavy-ion reactions. The neural network allows one to 
lower the standard deviation between the known impact parameter of "theoretical 
data" and the impact parameter derived from the observables by a factor of four 
as compared to the use of one observable only. Thus the most interesting central 
events can now be selected with a precision of about 0.3 fm. Using instead of 
the "theoretical" data those which have been filtered by the acceptance of the 
experiment, the network - after being trained with this data set - can be directly 
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used to select the most central experimental reactions by using the measured values 
of the observables as the input variables. 
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Fig. 3. The difference between bQAlD and bnehllorJc for the impact parameter ordered events for 
four combjnations of observabJes. 

One could even imagine that this method can be used on-line to select already 
during the experiment the impact parameter range desired for the later analysis. In 
Monte Carlo simulations of heavy-ion reactions one encounters the problem to find 
random numbers which have to be distributed according to non invertible functions. 
For example, if two particles scatter, one has to choose a scattering angle 8 with 
a distribution *. We found that this task can be very easily accomplished with a 
neural network with two input variables. A random number and the energy variables 
(because *depends on the energy) and one output variable: the scattering angle 
8. As an example we show here how to treat5 K+p scattering.6 With the object 
of parametrization of differential cross sections for elastic K+p scattering by use 
of a neural network, we plotted the differential cross section according to cos8 for 
each value of momentum p, using the data given in Ref. 6. We used the data from 
p=O.798 GeV Ie to 1.907 GeV Ie. We have fitted these data with polynomials and 
obtain 

dO' ~ . 
dO (p, cos8) = L.,.., Bi(p)(cos8)t (8) 

i=O 
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w here (Ii (p) are the polynomial coefficients and n the degree of the polynomial. For 
each momentum we calculate X defined as 

codl

J Mi(p, cos8')d(cos8') 

X(p,cos8) = ---:------ 	 (9) 
J ~;; (p, cos8')d( cos81

) 

-1 

X is calculated for several values of cos8 chosen between -0.94 and .94. We see 
that X is distributed between 0 and 1. We define the normalized momentum p = 
:::; with pmtu: = 1.907GeV/c. We used the same neural network which has been 
described above. X, and p in input and cos8 in output have been presented 10000 
times at the network. The quality of the network response is quantified by the 
standard deviation 

(10) 

with cos8:h the cos8 presented at the network cos8r et the cos8 estimated by the net
work, and N the number of events. After 10000 iterations, we obtained C = 0.033, 
an extremely small value which allow us immediately practical application. 
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