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ABSTRACT 
A neural network is used for the impact parameter determination in 40Ca+ 40Ca re

actions at energies between 35 and 70 AMe V. A special attention is devoted to the effect 
of experimental constraints such as the detect in efficiency. An overall improvement of 
the impact parameter determination of 25 % is obtained with the neural network. The 
neural network technique is then used in the analysis of the Ca+Ca data at 35AMe V 
and allows separation ofthree different class of events among the selected " complete" 
events. 

1. Introduction 

The increasing use of 411" multidetectors makes experimental heavy ion data more 
difficult to interpret without the help of theoretical calculations. Unfortunately, one of 
the key parameters of most calculations is the impact parameter which remains poorly 
known experimentally. Several attempts have been made to extract this quantity1) 
using the charged particle multiplicity, the perpendicular momentum, the neutron 
number,etc... It turns out that, in the energy range under consideration here, all 
these methods, very efficient for peripheral reactions, failed for central collisions due 
to saturation of the observables. In order to use as much available information as 
possible, it would be interesting to combine several different observables. A promising 
step in this direction has been made recently using neural networks 2),3). Indeed, for 
197Au+ 197Au at 600AMeV David et al3) have obtained an improvement by a factor 
of 4 in the impact parameter determination in central collisions with the use of a 
neural network compared to the use of a single observable. The goal of this paper, is 
to explore properties of a neural network at lower energies between 35 and 70AMe V. 
We will also take into account explicitly the experimental filter and restrict ourselves 
to measurable observables. Finally, the network will be applied to 35AMe V 40Ca+ 
40 Ca data collected at SARA(Grenoble, France )4). 

2. Introduction to Neural Network 

Let us start with a brief introduction on neural networks. For details and general 
background, the reader is refered to 5). By definition a neural network is an ensemble 



of highly connected cells. A cell is an entity which has one or several inputs, Ii, 
weighted respectively by Wi, an activation threshold () and gives an output according 
to a certain activation function f. Such a cell is represented on the top of figure 1. 
The output, S, of the cell is generated according to the equation: 

S = fC'I:J Wi Ii + ()). 
i 

The activation functions used for each layers are displayed on the bottom of the figure 
1. For a sake of simplicity, we have restricted ourselves to a three layer feed forward 
network. The first layer, which corresponds to the input layer, is composed of three 
cells, the median layer is called the hidden layer and contains 5 cells and finally the 
last one is a single cell output layer. Input cells receive the data from the outside 
(here the value of the physical observables) and the output cell gives the result (here 
an estimate of the impact parameter). 
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Fig. 1: schematic view of a cell (upper drawing) and of our network(1ower drawing). 

The use of a network is a two step process: a learning stage followed by an 
application stage. During the learning phase, the different parameters of the network 



(8, w) are determined. This is done with the help of a learning sample ie a sample 
for which inputs and the expected output are perfectly known. The parameters are 
then adjusted in order to minimize, according to the different weights and thresholds, 
the difference D between the calculated output, OutNN and the known one, efor the 
whole training ensemble. The function D is defined in our work as 

n 

D(Wi,8i) = 0.5CE(I(1l - Out~NI)2) 
1l=1 

where n is the total number of elements of the training sample. The details of the 
w hole minimization procedure can be found in ref 3. 
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Fig. 2: Energy dependence of the deviation(see definition in the text) for Ca+Ca reactions obtained 
from QMD+Gemini. 

In our case no real data are available to make a learning sample. A theoretical 
model has then to be used to generate this sample. A QMD dynamical calculation 7) 

coupled with Gemini6 ) has been chosen. This hybrid model has already been very 
successful in reproducing many features of the 40Ca+40Ca reaction at 35AMeV4). The 
learning sample is composed of 1000 events uniformely distributed between Ofm and 
Bfm. 

For this study, the three inputs that provide the most efficient combination of the 
available observables for 40Ca+ 40Ca at 35AMe V have been used. They are the charged 

particle multiplicity (CP), the perpendicular momentum (Pperp), and Erat = ~~~~: 

3. Behaviour of our Neural N etwork 



To compare the performance of the Neural Network (NN) with other commonly 
used methods, an observable is defined: 

Deviatian ~ t IB~MD - Brrl 
i=l 

which gives an estimate of the dispersion over the overall range of impact parameter. 
Bva" stands for the impact parameter value determined using one of the following 
observables NN, CP, Ppe7'P' E"at. 
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Fig. 3: Correlations between input impact parameter from QMD and the output generated by the 
network for Ca+Ca at 70AMe V. 

For methods other than the' neural network, let us explain the way the impact 
parameter is extracted. Using the training sample, the total distribution of a given 
observable (var) is cut into ten equal size bins for which the average impact parameter 
is calculated. Then, using a fit of a polynomial expression of these points, an impact 
parameter value Bva"is associated to each value of the observable. 

we have reported the results of such a comparison for Ca+Ca reactions as a 
function of the incident energy in figure 2. 

For all energies, the neural network gives the lowest Deviation. It is the most 
accurate of the methods used here. It can be seen also that as the incident energy 
increases, the impact parameter determination becomes better. This true for all the 
different methods. Neverthless, in this model study, the neural network always allows 
an improvement around 25% compared to the others. 

In figure 3, the correlation between the known impact parameter, BQMD, and the 
neural network output, OutNN is displayed for the Ca+Ca reaction at 70AMeV. This 
correlation is very good from 8fm till 1.5 fm. For the very central reaction, OutNN 
saturates. This is due to the saturation of input observables for this central events. 



---

It can also be seen that the dispersion around the mean increases with a decrease of 
the impact parameter. 

In previous works, model calculations have been used without taking into account 
any experiemental filter. The effect of such filter is far from negligible and has the 
tendency to increasethe apparent fluctuations. The Amphora detector filter has been 
applied to study this effect. The result is presented in figure 4. As expected, the 
recognition by the neural network is poorer than without the filter. This clearly 
shows the necessity to use a network trained as closely to the experimental condition 
as possible. 
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Fig. 4: Effect of a filter in the Neural Network performances. 

4. Application on Real Data 

The 40Ca+ 40Ca reaction at 35AMe V has been performed at SARA(Grenoble) 
using the Amphora multidetector system4). The analysis was carried out focusing 
on "complete" events. These events which correspond to the more central ones, are 
defined as those for which: 

• The effective charge particle multiplicity threshold > 10 
• The detected Ztot > 85% of total combined system Z 

The network has been trained with filtered events generated by the model calculation. 
At this energy, the OutNN distribution saturates around 2.5fm. A precise individual 
impact parameter determination at this energy by our network does not seem rea
sonable. Neverthless, we are going to separate the data into three groups according 
to OutNN. The limits of these groups are OutNN ~ 3.2fm, 3.2 < OutNN ~ 4.4/m 
and OutNN > 4.4fm and have been chosen to make three equaly populated bins. 

For these three different classes, the so called" Campi-plot"S has been generated. 
This plot allows exploration of the moments of the multiplicity distribution and has 



been suggested as a usefull means to identify for possible critical behaviour in de
excitation patterns. In figure 5, such plots are displayed for all events as well as for 
the 3 OutNN classes. 

Two peaks occur on the experimental contour plot in the pannel a) of Figure 
5. One is located at large values of InZma:z:and small values of InS~ and the other 
is located at small values of InZma:z:and large values of InS~. Plots obtained for the 
different cuts in OutNN show quite distinct behaviour. For the lower values of OutNN, 
only the low InS~ peak remain. On the other hand for higher OutNN values, only the 
high InS~ peak is present. This systematic nice behavior shows that neural network 
can be very useful in data analysis by allowing the grouping of events according to 
the correlation of several observables(here CP, Ppet',P and E,.at). 

3.0-)( 

~ 2.0
N
:s 

1.0 

3.0 

-~ 
N 2.0 

:s 
to 

0.0 -.....---'-..........-'--..........--a...-"-.......t........L.--a...-'--~---'----'--

0,0 	 0.5 to t5 2.00.0 0.5 to 1.5 2.0 

In(S2) In(S2) 

· d' t 'b t· f Z 8' E. 'z¢'zmu z:M(Z.)Fig. 5: LogarthmlC IS rl u Ion 0 ma.:z: VS 2 = ~.' ZiM(Zo}' Each contour represents 
£...J •• JI¢Jlm,u, 

constant value units of relative .u sd:ZY where Y is the yield. The outside contour level is at level 
_n 	2 ....... 


10, and each inner contour represents a progression in yield of 150. 

5. 	Conclusion 

In this contribution, the impact parameter recognition performance of a neural 
network in intermediate energy heavy ion collision has been studied. in model studies 
an improvement of about 25% is obtained compared to commonly used methods. Ap
plied to real data, in this case 4OCa+ 40Ca reaction at 35AMe V, the network provides 
a clear separation of the different peaks obtained in the experimental Campi plots. 
This indicates that the neural network can be a valuable tool in data analysis. For 



such systems, it should be emphasized, however, that the impact parameter recogni
tion is based on model calculations. Training the network would better be done using 
empirical data if this were possible. 
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