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Abstract 

We add the multiparticle Bose-Einstein correlations to classical sim­
ulations of ultra-relativistic heavy-ion collisions and calculate their in­
fluence on various observables such as multiplicity distributions, single­
particle spectra and two-particle correlation functions. We demonstrate 
the method using simulations of ultra-relativistic heavy-ion collisions within 
a parton-string model for different systems of colliding nuclei at initial en­
ergy 200 AGeV. 

The multiple particle production in ultra-relativistic heavy-ion and hadronic col­
lisions is studied to understand the production mechanism and to reach finally the 
conclusions about properties of the nuclear matter under extreme conditions. An 
important part of these studies is the investigation of particle correlations. The ex­
perimental observations indicate substantial contribution of the Bose-Einstein (BE) 
correlations, which enhance the probability to find two or more identical bosons at 
low relative momentum. These correlations arise as an interference effect due to the 
symmetrization requirement on the production amplitude of identical bosons. 

The transport models based on the parton, classical string or hydrodynamical 
approaches are widely used to predict the particle production in ultra-relativistic 
heavy-ion collisions, to determine the acceptance of detectors and to compare the 
results obtained in different experiments under different kinematical conditions. They 
assume that the produced hadrons are on mass-shell, point-like and can be precisely 
localized in both coordinate and momentum spaces and predict the coordinates and 
momenta of all particles at all times. Being classical approaches, interference effects 
are beyond their scope. Since the BE correlations arise due to the interference of the 
amplitudes of indistinguishable processes, they cannot be taken into account in these 
models directly. 

Since nature includes BE correlations and since they influence the spectra in a 
non-negligible way, it is necessary to include these correlations into the simulations 
of the reactions, not only to improve the predictive power of these models but also 
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to verify the information content of the measured spectra on the source of particle 
emission. This requires the consideration of how to connect a classical theory with 
the BE correlations. 

There are several attempts to include the two-particle BE effects in the simulation 
of multi-particle production based on classical transport models. These attempts 
address mainly the two-boson interferometry (for a recent review see [1]). In the 
present letter we extend these approaches to the case of multi-particle BE effects 
and develop a practical approach allowing to calculate -their influence on various 
observables such as multiplicity distributions, single-particle spectra and two-particle 
correlation functions. 

The theoretical considerations are accompanied by the numerical calculations us­
ing the parton-string model [2]. This model contains most of the features or'the 
standard Monte-Carlo event generators used to describe the ultra-relativistic heavy­
ion collisions and allows to perform calculations in modest computer time. The aim 
of calculations within this particular model is not to make a comparison with the 
experimental data and not to improve the model, but to demonstrate practical pos­
sibility and necessity of the inclusion of BE and final state interaction effects and to 
test the developed numerical code, which can then be used within other dynamical 
models. 

We start with the process in which, besides the system described by quantum 
numbers {a}, only two identical spinless bosons with the 4-momenta PI = (El' PI) 
and 1'2 = (E2' P2) are produced. To introduce the space-time characteristics of the 
particle production, we will follow Kopylov and Podgoretsky (see, e.g., [3, 4]) and 
assume that particles are emitted by one-particle sources (A --+ 1, B --+ 2) which 
are considered as classical so they can be treated by parameters and not by ampli­
tudes. Thus the 4-coordinates of the source centers x A and xB and other source 
characteristics in the model can be considered as a part of the quantum numbers 
{a} ={XA' XB, a'}. 

Usually the space-time extent of the sources is assumed much smaller than that 
of the production region so the 4-coordinates of the source centers x A and x B can be 
identified with those of the particle emission points Xl and X2. In other words, the 
momentum dependence of the production amplitude is assumed unimportant when 
varying the 4-momenta PI and 1'2 by the amount characteristic for the interference 
effect, determined by the inverse size of the production region. Under such a smooth­
ness assumption Kopylov and Podgoretsky arrived at the production probability [3]: 

(1) 

where q12 = PI - 1'2, X12 = Xl - X2 and D2(pt,Xl;1'2,X2) represents the classi­
cal emission probability. The production probability in the case when the effect 
of BE statistics is absent is just P2(Pl,1'2) = fct'Xlct'x2D2(pt,Xl;1'2,X2)' Thus, 
in the case when the smoothness condition is valid, we can identify the emission 
function D2(pt, Xl; 1'2, X2) with the distribution of the phase-space points {ki ; ri} = 
{Wi, ki ; ti, fi}, Wi = Jk~ +m1, of emitted bosons at their freeze-out times ti simulated 
within a classical transport model. 
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The approximate Eq. (1) allows a simple interpretation. The second factor in 
the integral is just square of the amplitude corresponding to the emission of the two 
identical bosons at the points Xl and X2: 

1 + COS(q12X12) =1 ~ ~[exp(iPtxl + iP2X2) + exp(iP2Xl + iplX2)] 12 . (2)
v2! 

The finite source sizes still reveal themselves in the momentum dependence of the 
emission probability D2(pt, Xl; P2, X2). 

It should be noted that under the smoothness assumption the physically moti­
vated Kopylov-Podgoretsky approach coincides with a more formal one based on 
Wigner functions [5] or space-time density matrix [6], the classical emission probabil­
ity D2(pt, Xl; P2, X2) being identified with a generalized two-particle Wigner density. 
The result of Pratt [5] then follows from Eq. (1) in the case of independent production 
of the two particles when the two-particle emission function reduces to the product 
of single-particle Wigner densities: 

(3) 

Let us define the correlation function as a ratio of the production probabilities 
P~(pt, P2) and P2(PI, P2) with the effect of BE statistics respectively switched on 
and switched off: 

...:... Jd4Xld4X2D2(PI, Xl;P2, x2)[1 + COS(q12X12)]
C2(Pl, P2) - ( . (4)

Jd4x 1d4x2D2 PI, Xl; P2, X2) 

Note that, in experiment, the reference probability P2(PI, P2) in the denominator 
of Eq. (4) is usually constructed with the help of particles from different events of 
similar type, neglecting possible dynamical correlations. From a classical simulation 
the correlation function can be calculated, in given bins of Pl and P2, as 

(5) 

where the averaging should be done over all phase-space points satisfying the condi­
tions k i , E {Pl - IIp/2, PI + IIp/2} ,kj , E {P2 - IIp/2, P2 + IIp/2}. 

Besides the 6-dimensional correlation function defined in Eq. (4), we introduce the 
correlation function integrated over some of the kinematic variables characterizing the 
two-particle system. For example, the one-dimensional correlation function in terms 

of the variable qinv = V-ql2 = vm~2 - 4m2 is calculated from a classical simulation 
as 

1 ~N(qi,!") 

C2(qinv) = 1 + llN( . ) E cos[(ki, - kj,)(ri, - rj,)], (6) 
qmv 1=1 

where llN(qinv) is the number of the simulated pairs in a given bin of qinv. 
In the case of independent production of the particles, when Eq. (3) is valid, we 

can write the correlation function in the form 

(7) 
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where 
F - F( ) ~ f <J4xD(P12 , x) exp(iqI2X ) (8)12 = P12, q12 - f d4 D( ) .X P12, X 

From a classical simulation, this function can be precomputed as Fsj = {exp(iqsjrk'))Pii' 
where the averaging is to be done over all phase-space points satisfying the condition 
kk' e {Psj - ~p/2, Psj +~p/2}. To take into account the possible x - P correla.tion, 
in practical calculations it is convenient to introduce the bin in Psj in terms of rapidity 
Ysj = l(ys +Yj) and transverse momentum Ptsj = l(pts +Ptj). The corresponding 
widths ~Y and ~Pt can be found empirically by choosing sufficiently large starting 
values and then decreasing them till the function Fsj saturates. 

We started with the calculation of the one-dimensional correlation function ac­
cording to Eq. (6). By choosing the space-time coordinates of the pion emission 
points randomly, we have checked that the x - P correlation, presented in the model, 
slightly widens the correlation function in accordance with the decrease of the effective 
space-time distance between the pion production points. Comparing the correlation 
functions calculated according to Eqs. (6) and (7), we have found practically co­
inciding results. This indicates that we can neglect dynamical correlations and use 
the precomputed Fsj values for calculation of the higher order BE correlations (see 
below). 

Let us further consider the events with n = 3 identical spinless bosons. Assuming 
uncorrelated emission and absence of final state interaction, we get the three-particle 
production probability in the case of switched off the effect of BE statistics as 

P3(Pt, P2, P3) = f d4Xt<J4X2cl'x3D(pt, xt)D(P2, x2)D(Pa, X3) = P(pdP(P2)P(P3)' 
(9) 

Similarly to the two-particle case we define three-particle correlation function in the 
events with three identical particles as a ratio of the symmetrized production prob­
ability Pi(Pl, P2, P3 to the reference one, P3(Pl, P2, P3). Using the smoothness as­
sumption, we can write this correlation function in terms of the function Fsj as (see, 
e.g., [4]) 

Like in the two-particle case, from a classical simulation we can calculate the 
dependence of the three-particle correlation function on the invariant variable qsnv = 
J q123 = Jm~23 - 9m2, where m123 is the effective mass of the system of three 
identical particles of mass m, as 

(11) 

Here N(qsnv) is the number of particle triplets in a given qinv bin and C3(Plo P2" P3.) 
is defined by expression (10). 

The extension of these considerations to the events with larger number of produced 
particles is straightforward. Thus, the n-particle correlation function in the events 
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with n identical spinless particles can be expressed in terms of F.i as (see also [7, 8]) 

n 

Cn(Pl, P2, ... , Pn) = L II F.O'i· (12) 
0' .=1 

The sum in Eq. (12) is over n! possible permutations (f of the sequence {1, 2, 3, ... , n}. 
So far we considered identical bosons as free particles and completely neglected 

their interaction. However, it is well-known (see, e.g., [9, 10]) that particle corre­
lations at small relative velocities can be strongly affected by this interaction. As 
usual, we will assume the density of the produced particles in momentum space suf­
ficiently low so that only the final state interaction in the pairs of particles with 
small relative velocities is to be taken into account. In the case of the production 
of only two identical spinless particles the effect of final state interaction reduces, 
under the smoothness assumption, to the substitution of the plane waves in Eq. (2) 
by the nonsymmetrized Bethe-Salpeter amplitudes in the continuous spectrum of the 
two-particle states [6, 10]. The Bethe-Salpeter amplitude can be usually substituted 
by the corresponding wave function 'II~+~.(r*),k* = pi = -P2,r* = xu, leading to 
the equal time approximation [10] first used by Koonin to calculate the correlation 
function of two nonrelativistic protons [9]. 

The calculation of the n-particle correlation function, in the considered two-body 
approximation, requires to compute n( n -1) Bethe-Salpeter amplitudes for each event 
simulated in a transport model. Clearly, even on the factorization assumption, this 
calculation is much more complicated than in the case of pure BE correlations since 
the integration over space-time coordinates of n production points is not reduced to 
the single space-time point integration like in the case of the function Fii' 

For neutral pions at small relative momenta k* = Ik*1 = lqintl' we are interested 
in, the scattered wave in the wave function 'II~+~. (r*) is dominated by s-wave. Since 
usually the characteristic distances r* between the pion production points are larger 
than the range of their strong interaction, the scatterd wave can be substituted by 
the spherical wave /(k*) exp(ik*r*)/r*, where /(k*) is the two-pion s-wave scattering 
amplitude. In such conditions, the effect of strong final state interaction on the 
correlation function is determined by the ratio of the scattering amplitude /(k*) to 
the characteristic distance between the production points in the c.m.s. of the two 
particles [10]. As the 11"011"0 scattering length is positive and rather small (/(0) ~ 0.1 
fm), the final state interaction slightly enhances (less than 5%) the effect of BE 
correlation in the system of two neutral pions. 

For identical charged pions the effect of final state interaction is dominated by the 
Coulomb interaction. In the usual case, when the characteristic distance between par­
ticle production points in their c.m.s. is much smaller than the two-pion Bohr radius 
a = 388 fm, it can be approximated by the Coulomb penetration factor representing 
modulus squared of the Coulomb wave function at zero distance: 

Ac(k*) = ;:. [exp(;:') - 1]-1. (13) 

Thus, in given approximation, we have to multiply the pure BE n-particle correlation 
function by the product of n(~-l) Coulomb penetration factors. For example, the 
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three-particle correlation function in the events with three identical charged pions 
then takes the form: 

(14) 

where C3(Pl, P2, P3) is the correlation function in the absence of final state interaction, 
given by Eq. (10). It is clear from Eq. (13) that the Coulomb repulsion strongly 
suppresses the correlation of two identical charged pions only in the region of very 
small relative momenta k* < 2: = 3 MeV/c. Thus the final state interaction in the 
system of identical charged pions becomes of increasing importance with increasing 
the effective space-time extent of the production region. 

In Fig. 1, we show the two-particle (Eq. (7» and the pure three-particle (only the 
last term in Eq. (10» correlation functions of positively charged pions calculated with 
and without the Coulomb penetration factors for central S + S collisions simulated 
within the parton-string model [2] at E'ab = 200 AGeV. It may be seen from Fig. 1 
that the Coulomb effect in the system of three charged pions is quite strong even at 
q~!3) of several tens MeV/c. 

As one can see from Eqs. (10) and (12), the higher order correlation functions 
consist mainly of the statistical combinations of the lower order correlations. The 
genuine higher order correlations are measured by the so-called particle cumulants. 
For example, the three-particle cumulant K3(Pb P2, P3) = 2Re{F12F23F31} in Eq. 
(10) measures the statistical dependence of the whole 3-particle set. Any of the 
three particles is independent of the others if the corresponding cumulant is zero. 
The three- and four-particle cumulants calculated for high energy nucleus-nucleus 
collisions within our particular dynamical model [2] appear to be clearly non-zero 
for neutral pions, while for charged ones they are strongly damped by the Coulomb 
repulsion effects (see, e.g., Fig. 1). Thus the Coulomb repulsion may be responsible 
for the vanishing of the third and higher order cumulants of identical charged pions as 
measured in nucleus-nucleus collisions [11]. The influence of the Coulomb final state 
interaction will be even stronger in future heavy ion experiments at higher energies 
due to increasing effective space-time extent of the particle production region. 

As one can see from formulae (7), (10), (12) and the definition of correlation func­
tion, the two- and three-particle BE correlations lead to distortions of the original 
single- and two-particle distributions. Such distortions are small in the case of in­
terference of only two or three identical particles. However, as it was pointed out 
in paper [7] (see also [4] and [13]), they can become essential for the events with a 
large number of identical spinless particles due to factorially increasing number of 
correction terms. 

To account for the multi-boson symmetrization effect, in papers [7, 12] a phase­
space weighting procedure was used with the weights in the form of a normalized 
square of the sum of n! plane waves, like that in Eq. (2) for the case n = 2. This pro­
cedure however appears not practical for large numbers n of identical bosons due to 
the factorially large number of the terms to be computed to calculate the weight and, 
due to large weight fluctuations. These fluctuations can be substantially reduced by 
weighting only in the momentum space. The corresponding weights can be identified 
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with the correlation functions Cn(pt, P2, ... , Pn) constructed from the precalculated 
functions Fij (see Eqs. (7) and (10) for the cases n = 2 and 3, respectively). How­
ever, there is still the problem with factorially large number of the terms required to 
calculate the weight according to Eq. (12). 

A strong reduction of the number of calculated terms can be achieved by sub­
stituting the weight method by numerical integration over momenta of one or more 
particles in the production probability 

We thus have to compute K2(P1) = (IF.,;,12)Pl' K2 = (IFi,j,12) and corresponding 
average values of the higher order cumulants. We should also perform combinatorics 
to define multiples of these a.veraged cumulants. The last performance can be fulfilled 

up to all orders. Thus the statistical weight wen) = f P:(P1, P2, ... , Pn) .=1Ii ~~i of 
I 

an event with n identical spinless particles can be calculated with the help of the 
recurrence relation (see also [4, 13]): 

n-1 

wen) = E C;-1 K j +1w(n - j -1), (16) 
l=O 

with C;-1 being the number of combinations of j elements out of n - 1, K1 = 1, 
w(O) =w(l) = 1 and wen) = 0 for n < o. One can check that wen) = n! in the case of 
'coherent' particle emission (e.g., the emission from a very small space-time region) 
when K j +1 = j!. 

However, for realistic models used to predict particle production in ultra-relativistic 
heavy-ion collisions, the numerical averaging of the cumulants of all orders is a diffi­
cult task (see, e.g., [13]). As a first approximation, representing a lower estimate of 
the effect of Bose symmetrization, we neglect higher than the second order cumulants 
in Eq. (12). We will call it the second order cumulant approximation or simply the 
two-particle approximation. We recall that there is no experimental evidence for sig­
nificantly nonzero values of the higher than second order cumulants in nucleus-nucleus 
collisions at high energies. In this approximation, the recurrence relation (16) for the 
statistical weight w(n.) of an event i = 1,2, ... , NefJt with n. identical spin less particles 
in final state reduces to: 

(17) 

It should be stressed that the account of the third or still higher order cumulants 
is straightforward and has to be done to check the convergence of such a lowest 
order cumulant expansion. A fast convergence is expected for the processes, such as 
heavy-ion collisions, characterized by a large space-time extent of the pion production 
region. In this paper, we limit ourselves to the second order cumulant approximation 
which appears to be sufficient for our purpose: to demonstrate a strong influence of 
the multi-particle BE effects. 
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The knowledge of the statistical weights for events with different number n of 
produced identical particles gives us a possibility to compute the effect of BE statis­
tics on the multiplicity distribution obtained in a classical simulation [13]. The BE 
corrected multiplicity distribution can be calculated as 

Newt Newt 

WC(n) = E 6(n - n.)w(n.)/ E w(n.). (18) 
i=l .=1 

In the two-particle approximation, the single-particle probability for the events 
with n identical spinless bosons, normalized in the same way as the non-symmetrized 
single-particle probability P(P1), takes the form: 

P~(Pl) = Pt» [w(n -1) + (n -1)K2(p.)w(n - 2»), (19)
wn . 

leading to Eq. (17) after the integration over the momentum Pl. 
For the two-particle correlation function in the events with n identical particles, 

we have in given approximation: 

Cn(Ph P2) =w(n - 2)(1 +IFuI2) + (n - 2)w(n - 3)(K2(P1) +K2(P2))+ 
(20)

+(n - 2)(n - 3)w(n - 4)K2(P1)K2(P2). 

One can check that Eq. (20) leads to Eq. (19) after multiplying it by P(P2) and 
integrating over the momentum and P2. 

Our calculations, based on simulations of central 0 + 0 and S + S collisions 
within the parton-string model [2] at E'ab =200 AGeV, confirm that the effect of BE 
statistics for the events with a large number n of identical bosons leads to substantial 
distortions of the multiplicity distributions, the single-particle spectra and the two­
boson correlation functions. Thus the mean neutral pion multiplicity of 44.7 simulated 
for central 0 + 0 collisions is increased, due to the effect of BE statistics (K2 = 
0.0056), by about 21 units. 

In Fig. 2 we show the neutral pion transverse momentum distributions 1~:, and 
rapidity distributions 1: obtained from the events generated with fixed neutral 
pion multiplicity n = 100 in S +S collisions. In Fig. 2 we also draw the ratios of 
BE corrected and uncorrected single-particle distributions. We can see that the BE 
symmetrization enhances production of the pions with low Pt and small y. We have 
also found that this effect becomes more pronounced with increasing pion multiplicity. 

We should note here that in several papers (see, for example, review [4] and recent 
paper [13]) a possible enormous influence of BE statistics on the single-pion spectra 
and multiplicity distributions was argued and, in particular, the idea of pion laser, 
i.e. production of pions collimated in narrow and monochromatic jets, was discussed. 

In Fig. 3 we present a ratio of the renormalized two-particle correlation functions 
Cn(qinv)/w(n) and C2(qinv)/w(2). It is calculated for the events generated with fixed 
neutral pion multiplicities n = 30 and 60 in 0 +0 collisions. We can see that the 
multi-boson BE correlations distort the two-body correlation function in such a way 
that it becomes lower and wider. This is in qualitative agreement with the results of 
papers [7, 12, 13]. 
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Concerning the two-pion interferometry, we note that the experimental correlation 
function is calculated as a ratio of the measured two-particle distribution to the 
reference one, the latter being usually also influenced by multi-pion BE correlations 
(the so-called residual correlations [7, 12]). For correct comparison of the theoretical 
and experimental correlation functions, in the case when the event mixing technique 
is used to construct the reference distribution, one has to take into account the change 
of the single-particle spectra according to Eq. (19). 

Concerning the Coulomb effects in a multi-pion system, they should somewhat 
weaken the considered effects of the multi-particle BE correlations, depending on 
the effective space-time extent of the production region of charged pions. Though 
their detailed investigation is beyond the scope of present paper, it is certainly of 
a large practical interest. Here we only mention that such an investigation would 
require consideration of the pions of both signs (for 11"+11"- pairs there will be Coulomb 
attraction corresponding to the negative Bohr radius a = -388 fm in Eq. (13)) and, 
eventually, of other charged particles; the total production probability, in the absence 
of dynamical correlations, being just a product of the production probabilities of 
various particle species. 

In conclusion, we would like to stress that large numbers of identical bosons are 
produced in ultra-relativistic heavy-ion collisions and that their production can be 
strongly affected by the requirements of quantum statistics. However, these require­
ments are usually neglected in classical simulations within transport models (event 
generators) which are widely used for description of the multi-particle production. 

We have presented here the theoretical basis allowing to calculate the effect of 
the multi-particle BE correlations on various observables within a classical transport 
modeL We have also discussed the inclusion of the effect of Coulomb and strong final 
state interaction in the produced multi-particle system. 

We have developed the computer code BOSE which can be coupled with a classical 
transport model to account for the effects of BE statistics and final state interaction 
and thus to allow a reliable comparison of the model with experimental data. Coupling 
this code with the parton-string model, we have demonstrated the importance of the 
multi-particle BE effects on multiplicity distributions, single-pion spectra and two­
pion correlation functions. 

Enlightening discussions with Jorg Aichelin, Guy Paic and Jan Pluta are gratefully 
acknowledged. This work was possible due to the financial support of the Centre 
National de Recherches Scientifiques. 
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Figure 1: The two-particle (Eq. (7)) and the pure three-particle (only the last 
term in Eq. (10)) correlation functions of positively charged pions calculated with 
(full circles) and without (open circles) the Coulomb penetration factors (left) and 
their ratios (right) for central S + S collisions simulated within the parton-string 
model at E,a,b = 200 AGeV. 

Figure 2: Transverse momentum and rapidity distributions of neutral pions (left) 
and their ratios (right) calculated in the parton-string model for S +S collisions with 
the fixed 1["0 multiplicity n = 100 at E'Oob = 200 AGeV. The distributions with and 
without inclusion of BE correlations are shown by full and open circles, respectively. 

Figure 3: The ratio of the renormalized correlation functions of two neutral pions 
Cn(QintJ)/w(n) and C2(QintJ)/w(2) calculated in the parton-striJ;lg model for central 
0+0 collisions with fixed 1["0 multiplicities n = 30 and 60 at E'Oob = 200 AGeV. 
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