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Abstract 

We discuss how to add Bose-Einstein correlations to simulations of 
ultra-relativistic heavy-ion collisions. We show how to calculate the influ
ence of multi-particle Bose-Einstein correlations not only on the correla
tion functions of two or more identical spinless bosons, but also on mul
tiplicity distributions and single-particle spectra obtained from an event 
generator. We also discuss the effect of the Coulomb and the strong inter
action in the multi-particle final state. A computer code has been devel
oped for practical calculations. Coupling this code with the parton-string 
model, we have demonstrated the importance of Bose symmetrization on 
multi-particle production in ultra-relativistic heavy-ion collisions for dif
ferent systems of colliding nuclei at initial energy 200 AGeV. 
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1 Introduction 

The multiple particle production in ultra-relativistic heavy-ion and hadronic collisions 
is studied to understand the production mechanism and to reach finally the conclu
sions about properties of the nuclear matter under extreme conditions. An important 
part of these studies is the investigation of particle correlations. The experimental 
observations indicate substantial contribution of the Bose-Einstein (BE) correlations, 
which enhance the probability to find two or more identical bosons at low relative 
momentum. These correlations arise as an interference effect due to the symmetriza
tion requirement on the production amplitude of identical bosons. In particle physics 
the two-boson interference effects were first observed in pp annihilations as an en
hanced production of pairs of identical charged pions with small opening angles [1]. 
In heavy-ion reactions, where hundreds of identical pions and .kaons are produced, 
the multi-boson interference effects can be of far more importance. 

An important aspect of the BE correlations is the boson interferometry. Long 
time ago Kopylov and Podgoretsky [2, 3] observed a deep analogy between inter
ferometry in astronomy and particle physics. Similar to astronomy, they suggested 
to study the interference effect in terms of the correlation function and presented 
its simple space-time parameterization. Now this method is widely used to measure 
the space-time characteristics of the production process. However, for a number of 
reasons, interferometry in particle physics is more complicated than interferometry 
in astronomy. There are numerous factors (e.g. the final state interactions, the dy
namical correlations between particles, the correlation between their momenta and 
emission points, resonance decays etc.) which make the direct extraction of the source 
extent nearly impossible. In particular, the information on space-time development 
of particle production in heavy-ion collisions can be obtained from the correlation 
measurements only within a chosen transport model. 

The transport models based on the parton, classical string or hydrodynamical 
approaches are widely used to predict the particle production in ultra-relativistic 
heavy-ion collisions, to determine the acceptance of detectors and to compare the 
results obtained in different experiments under different kinematical conditions. They 
assume that the produced hadrons are on mass-shell, point-like and can be precisely 
localized in both coordinate and momentum spaces and predict the coordinates and 
momenta of all particles at all times. Being classical approaches, interference effects 
are beyond their scope. Since the BE correlations arise due to the interference of the 
amplitudes of indistinguishable processes, they cannot be taken into account in these 
models directly. 

Since nature includes BE correlations and since they influence the spectra in a 
non-negligible way, it is necessary to include these correlations into the simulations 
of the reactions, not only to improve the predictive power of these models but also 
to verify the information content of the measured spectra on the source of particle 
emission. This requires the consideration of how to connect a classical theory with 
the BE correlations. 

There are several attempts to include the two-particle BE effects in the simulatios 
based on classical transport models. These attempts address mainly the two-boson 
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interferometry (for a recent review see [4]). 
In the following, we start with the calculation of the two-boson correlation func

tion within a classical transport model. Then we extend this approach to calculate 
correlation functions of three or more identical particles. Further we discuss the influ
ence of multi-particle BE correlations on observables like multiplicity distributions, 
one-particle spectra and two-particle correlation functions. Furthermore we study 
how other correlations, like the one between the coordinate and momentum space, 
which are present in transport models, influence the BE correlations. The theoretical 
considerations are accompanied by the numerical calculations using the parton-string 
model [5]. This model contains most of the features of the standard Monte-Carlo 
event generators used to describe the ultra-relativistic heavy-ion collisions and allows 
to perform calculations in modest computer time. The aim of calculations within this 
particular model is not to make a comparison with the experimental data and not 
to improve the model, but to demonstrate practical possibility and necessity of the 
inclusion of BE and final state interaction effects and to test the developed numerical 
code, which can then be used within other dynamical models. 

The paper is organized now as follows. In Sections 2 and 3 we explain the ideas and 
assumptions allowing to calculate two-particle correlation functions using simulations 
based on a classical transport model. In Section 4, we show how to calculate the multi
particle correlations due to Bose symmetrization within such a model. In Section 5, 
we demonstrate how to calculate different corrections, particularly, for single-particle 
spectra and multiplicity distribution, connected with inclusion of the multi-particle 
BE correlations. We also consider the distortion of the two-boson interferometry by 
multi-boson correlations. Finally, in Section 6, besides the effect of BE statistics, we 
also discuss how to add the correlations due to the final state Coulomb and strong 
in teractions. 

Two-boson correlation function: formalism 

We start with the process in which, besides the system described by quantum numbers 
{a}, only two identical spinless bosons with the 4-momenta PI = (El' Pl) and P2 = 
(E2' P2) are produced. We introduce the non-symmetrized production amplitude 
T(PbP2; {a}) normalized in such a way that, in the case of switched off the effect of 
BE statistics, the inclusive differential production cross section of the two particles 
IS: 

E}E2 d3 tfI~ = U2 L 1T(PhP2i {a}) 12= U2 P2(P}, P2)' (1)
PI P2 {a} 

Here sum over {a}, taking into account the conservation laws, represents summation 
over the discrete quantum numbers and integration over the continuous ones. The 
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invariant production probability P2 is normalized to unity as 

JtPPl tPP2¥ E2 P2(Pt, P2) = 1. (2) 

The lower index 2 in the probability P2 means that here we consider production of 
only two identical bosons of a given type. The requirement of Bose symmetry leads 
to the substitution of the production probability P2 by a symmetrized one: 

P;(Pt,P2) = 2\ E 1[T(Pl,]J2;{a}) +T(]J2,Pl;{a})] 12. (3) 
• {Q} 

To introduce the space-time characteristics of the particle production, we will follow 
Kopylov and Podgoretsky (see, e.g., [2, 3]) and assume that particles are emitted 
by one-particle sources (A -+ 1, B -+ 2) which are considered as classical so they 
can be treated by parameters and not by amplitudes. Thus the 4-coordinates of 
the source centers x A and x B and other source characteristics in the model can be 
considered as a part of the quantum numbers {a} = {XA' XB, a/}. It was noticed 
out by Kopylov and Podgoretsky that the BE correlation is mainly determined by 
the phase factor exp(ipIXA + iP2XB) contained in the amplitude T(Pt,P2; {a}). To 
see this, let us first introduce the production amplitude T(Xl, X2; {a}) in space-time 
representation. Note that, in the case of finite size sources, the 4-coordinates Xl and 
X2 of the particle emission points are different from XA and XB (see Fig. 1). For 
non-interacting particles, this amplitude is related to the amplitude T(PI,]J2; {a}) by 
the usual Fourier transform: 

Now, taking into account the translation invariance, we can write 

T(Xt,X2;{a}) =i(XI-XA,X2 -xB;{a}). (5) 

Inserting (5) into (4) and introducing the Fourier transform 

t(PbP2; {a}) = Jcl'e l cl'e2 exp(iplel + ip2e2)i(eb e2; {a}), (6) 

we get: 
(7) 

It is clear from Eq. (6) that the momentum dependence of the amplitude t(PbP2; {a}) 
is determined by the space-time extent of the sources. For example, assuming that 
the sources emit particles independently: 

(8) 

and that the distribution of the emission points in the source rest frame is given by 
a simple Gaussian 

( t ) (el e~l ) (9)UA ~l '" exp -- - - ,
2r~ 2Tl 
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we obtain in the case of resting sources: 

t(Pt,P2, {a}) '" exp(-~r~p~ - ~r~p~l) exp(-~r~p~ - ~r~p~2)V({a}). (10) 

The probability Iv({a} )12 describes the production of particle sources and depends 
on the 4-coordinates of the source centers XA and XB. Note that Eq. (10) is valid 
also off mass-shell when Pol ~ EI and Po2 ~ E2. 

Inserting the amplitude (7) into Eq. (1) and separating the integration over XA 
and XB from the sum over the quantum numbers {a} = {XA, XB, a/}, we get 

P2(PI, P2) = 
=fd4 xAd"xB l: {I t(PI,P2;{a}) 12 +Re[t(Pt,P2;{a})t*(P2,PI;{a})exp(iqI2XAB)]},

{al} 

(11) 
where ql2 = PI-P2 and XAB = XA -XB. Please, note that {pi, Pi; a} = {PiXA,PixB; a'l, 
i.e. the source parameters XA and XB characterize the emission of the particles with 
momenta Pi and Ph respectively. In Eq. (11) we took into account that, after inte
gration and summation over the quantum numbers {a}, the contributions of the two 
diagonal terms are equal. 

Usually, as shown in Fig. 1, the space-time extent of the sources is assumed much 
smaller than that of the production region (rA -< ro, TA -< TO)' In other words, 
the momentum dependence of the amplitude t(PI' P2; {a}) is assumed unimportant 
when varying the 4-momenta PI and P2 by the amount characteristic for the inter
ference effect, determined by the inverse size of the production region. Under such a 
smoothness assumption we arrive at the final result of Kopylov-Podgoretsky [2]: 

P;(Pt,P2)":" f J'xAd4xBP2(Pt,xA;P2,xB)[1 +COS(q12XAB)], (12) 

where 
P2(Pt,XA;P2,XB) = L 1 t(Pt,P2;{XA,XB,a/}) 12 (13) 

{al} 

represents the classical emission probability. It is normalized by the condition: 

f cPPI cPP2 _14 J4 f cPPI cPP2--.e; E2 a-XAa-XBP2(PI,XA;P2, XB) = EI E2 P2(Pt,P2) = 1. (14) 

Note that the sum over {a/} contains the summation over all possible types of the 
sources. We also note that Eq. (12) becomes exact in the special case of amplitudes 
with a universal functional dependence on the momenta, when all sources are of the 
same type (in particular, in the case of universal parameters rA and TA in Eq. (10)) 
and at rest in a chosen system. 

The approximate Eq. (12) allows a simple interpretation. The second factor in 
the integral is just square of the amplitude corresponding to the emission of the two 
identical bosons at the points XA and XB: 
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The finite source sizes still reveal themselves in the momentum dependence of the 
emission probability P2(Pl, XA;P2, XB). 

It may be useful to compare the physically motivated Kopylov-Podgoretsky ap
proach with a more formal one based on Wigner functions [6] or space-time density 
matrix [7]. Thus, inserting the Fourier transform (4) into Eq. (1) and introducing 
the space-time density matrix 

(16) 

and the notations: Xi = ~(Xi +xD, 6;. = Xi - x~, i = 1,2, and X12 = Xl - X2, we can 
rewrite the production probability as 

P2(Ph P2) = ft f[exp(iP161+ iP262) +exp(iP261+ ip162 ) +2exp(ip12(61+62))
· cos ( Q12X12)]P2(Xt, X2; x~, x~)cf'xld4x2cf'xid4X~. 

(17) 
Changing the integration variables: Xi, X~ -+ Xi, 6;. and introducing the emission func
tion as a partial Fourier transform of the space-time density matrix (an analog of the 
Wigner density): 

D2(p, Xl; p', X2) = (IS)=f d461d462exp(ip61 + ip' 62)P2(Xl + ~6t, X2 + ~62; Xl - !6h X2 - !62), 

which is normalized in the same way as the function P2(Pt,XA;P2,XB) (see Eq. (14)), 
we finally get 

P2(Pt,P2) = Jd4x1a'X2[D2(Pl,Xl;P2,X2) +D2(P12,Xl;P12,X2)COS(Q12X12)], (19) 

where Pt2 = ~(Pl +P2). The production probability in the case of no BE effect is 
given by the first term in Eq. (19): 

(20) 

Note that the result of Pratt [6] follows from Eq. (19) in the case of independent 
production of the two particles (see also the discussion in [S]) when 

(21) 

Making the smoothness assumption, i.e. 

(22) 

and identifying the emission function D2 with the emission probability P2, we recover 
the Kopylov-Podgoretsky result in Eq. (12). This result can be also obtained directly 
from Eq. (17) if the smoothness condition was introduced on the level of the space
time density matrix as the requirement of a small width of its diagonal, determined 
by (I 6;. I), compared with the characteristic space-time distance between particle 
production points, determined by (I Xl - X2 I) [7]. 
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It may be useful to express the function D2 through the Kopylov-Podgoretsky 
amplitudes t(Pt,]J2; {a}) continued off mass-shell. Substituting Eq. (5) into Eq. (16) 
and using the inverted Fourier transform in Eq. (6), we get from Eq. (18): 

D2(p, Xl;P', X2) = (21)8 E Jd:'xAd:'xBd:' Kd:'K' exp(iK(XA - Xl) + iK'(XB - X2))· 
11" {a/} 

-t(p + !K, p' + !K'; {XA, XB, a'} )t*(p - !K,p' - !K'; {XA' XB, a'}). 
(23) 

Comparing Eqs. (13) and (23), we can see that the emission function D2 is more 
spread in space and time than the emission probability P2. In particular, assuming 
factorization of the production amplitude and its Gaussian parametrization (see Eqs. 
(8) and (9» and similar Gaussian space-time distribution of the sources with spatial 
and time dispersions r~ and TJ, we get for the corresponding one-particle emission 
functions: 

2 2 
P(p, x) "'J exp(-r~p2 - T~p~)exp(-~ - Xo ) (24)

2r& 2T6 
and 

x2 x5D(p, x) "'J exp(_r~p2 - T~p~) exp( - ) (25)
2r5+r~ 2T6 + T1 . 

We should stress here, that the two approaches are equivalent in the sense, that 
both are based on Eqs. (1) and (4), and give the same result for the observables PI 
and P2, using, however, parameterizations in terms of different space-time variables, 
Xl, X2 and XA, XB, related by Eq. (23). 

Concerning the connection with transport models, a question may arise about 
the meaning of the space-time coordinates of the particle production points calcu
lated within these models. Considering, e.g., resonance or string decays or secondary 
interactions, it seems natural to identify these coordinates with those of the source 
centers and not with the ones of particle emission points in the Wigner sense. On the 
other hand, the exact result of Kopylov-Podgoretsky model (Eq. (11)) is formulated 
in terms of the production amplitudes, while in a classical transport model we have 
to deal with probabilities. From this point of view, the Wigner function formalism 
may seem to be more suitable provided that the final source sizes are taken into 
account in the transport model. But the problem is still there as the emission func
tions D2 , though being real, are not positively defined. Besides, the emission function 

2D2(P12, Xl; P12, X2) corresponds to off-mass-shell bosons with P~2 == ~m~2 = m - ~q2, 
where m is the boson mass, and cannot be calculated in principle from a classi
cal simulation. In case when the smoothness condition is valid these problems are 
avoided and the difference between the two approaches, due to the parametrizations 
in different space-time variables, disappears. 

Let us define the correlation function as the ratio of the production probabilities 
with the effect of BE statistics switched on and switched off: 

(26) 

Note that, in experiment, the reference probability P2(Pl, P2) in the denominator of 
Eq. (26) is usually constructed with the help of particles from different events of 
similar type, neglecting possible dynamical correlations. 
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Inserting Eqs. (19) and (20) into Eq. (26), we obtain 

C ( ) _ Jd4xld" x 2[D2(Pt, Xl; 1'2, X2) + D2(P12, Xl; P12, X2) cos ( q12X12)] (27)2 PI, P2 - Jd4Xld4X2D2(Pl, Xl; 1'2, X2) . 

Under the smoothness assumption in Eq. (22), we can also use the approximate 
equation: 

(28) 

In the case of independent production of the particles, when Eq. (21) is valid, we can 
write the correlation function in the form 

(29) 


where 

(30) 

If the smoothness condition is valid, we can substitute the momenta PI and P2 in the 
arguments of the emission functions by the mean 4-momentum P12 and write 

F ..:.. Jd4xD(P12,x) exp(iq12X) (31)
12 - Jd4xD(P12, x) . 

We should stress that, generally, the factorization assumption in Eq. (21) is not 
necessary for the implementation of the two-particle BE correlations in transport 
models. Moreover, these models can contain additional dynamical correlations which 
would be lost in the case of such an assumption. However, for practical reasons, we will 
neglect the possible, but usually rather small, dynamical correlations in a transport 
model and assume the factorization when calculating the higher order correlations. 

Besides the 6-dimensional correlation function defined in Eq. (26), we introduce 
the correlation function integrated over some of the kinematic variables characterizing 
the two-particle system. For example, the one-dimensional correlation function in 

terms of the variable qinv = J -q~2 = Jm~2 - 4m2 is defined as 

C ( . ) _ J~~6(qinv - R)Pi(Pl' P2) 
2 qmv - d3 d3 r-:::i: . (32)

J~~6(qinv - V-q~2)P2(PI, P2) 

For practical calculations based on the event simulation within a transport model, 
it is convenient to introduce the non-invariant two-particle emission function 

- 1
D 2(pI, Xl;P2,X2) = ElE2 D 2(pI, Xl;P2,X2) (33) 

and production probability 

P2(PI,P2) = f D2(pt, Xl; 1'2, X2)~Xl~X2' (34) 
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(35) 

Similarly, the non-invariant single-particle emission function 

-
D(p, x) = 

1
ED(P, x) (36) 

and production probability 

P(p) = f D(p,x)a'x (37) 

are normalized by the conditions 

f cPpatxD(p, x) =f P(p)cPp = 1. (38) 

It is clear that Eqs. (26)-(32) are valid also with the invariant functions substituted 
by the non-invariant ones and d~~i -+ tPPi. 

Two-boson correlation function: calculations 

Generating events within a transport model as a set of phase-space points {ki ; ri} = 
{Wi, ki ; ti, ri} of emitted bosons at their freeze-out times ti, we can express the non
invariant single-particle emission function as 

D(p, x) = ~ f: 63(p - ki(ri)W(x - ri) =<63(p - ki(ri)W(x - ri) , (39) 
i=l 

where Wi = Jkt +m2 is the boson energy and N is total number of the simulated 
phase-space points. Usually dynamical models contain a correlation between space
time and momentum, which is denoted as ki(ri). The invariant emission function 
D(p, x) is given by 

where Pt and y are the boson transverse momentum and rapidity, respectively. One 
can see that these functions are properly normalized to unity. For some purposes it 
may be useful to construct the emission function in the momentum bins of a finite 
width ~p. For example, 
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where ~3p = ~P:r~P1l~P% and the number of contributing points ~N(p) is deter
mined by the condition: 

kil E {p - ~p/2, P +~p/2} . (42) 

Eq. (41) can be also written in a more compact form: 

- ~N(p) ( " )D(p, x) = N~3p fJ(X-ri) p' (43) 

where ("')p denotes the averaging over the phase-space points satisfying the condition 
(42). For the non-invariant single-particle production probability defined in Eq. (37), 
we get from Eqs. (39) or (43) 

(44) 

or 
p( ) = ~N(p) (45)P N~3p' 

respecti vely. 
Similarly, we can express the two-particle emission function and production prob

ability obtained from a dynamical model. Thus the non-invariant emission function 
is given by 

D2(pI,XI;P2,X2) = it L~I fJ3(PI - kil(ri,))fJ"(XI - ril )fJ3(P2 - k jl (rj,))fJ"(X2 - rj,) = =(fJ3(PI - ki,(ril))fJ4(XI - ril)fJ3(P2 - k jl (rj,))fJ4(X2 - rill) , 
(46) 

where M = ~N(N - 1) is the total number of simulated pairs. In finite bins of PI, 
P2 one has 

where ~M(p}, P2) is the number of pairs in given bin of PI, P2, i.e. satisfying the 
conditions 

kil E {PI - ~p/2, PI +~p/2} , 


kjl E {P2 - ~p/2, P2 +~p/2} . (48) 


The corresponding non-invariant two-particle production probabilities are 

(49) 

or 

(50) 
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Similarly, using Eq. (28), we can calculate the two-particle correlation function in 
finite bins of PI and P2 as 

(51) 

where ("')Pl,P2 is defined in Eq. (47). For the one-dimensional correlation function 
in Eq. (32), we get 

where 6.N(QintJ) is the number of the simulated pairs in a given bin of qintJ = J-qlj . 
We can also calculate the two-particle correlation function approximately, using 

Eq. (29) valid in the case of factorization of the two-particle emission function. For 
this we have to precompute the function Fij according to Eq. (31). Using Eq. (41) 
for the emission function, we get 

(53) 

Note that Fij would become a function of qij only if the correlation between space
time and momentum were neglected. In this case, to obtain Fij, we could average 
over all space-time points obtained from a transport model: 

(54) 

In the interferometry context, Eq. (54) means that the whole space-time production 
region is 'visible'. To take into account the x - p correlation, in practical calculations 
according to Eq. (53) it is suitable to introduce the bin in Pij in terms of rapidity 
Yij = ~(Yi + Yj) and transverse momentum Ptij = ~(Pti + Ptj). The corresponding 
widths 6.y and 6.Pt can be found empirically by choosing sufficiently large starting 
values and then decreasing them till the function Fij saturates. 

We performed the classical simulation of the phase-space coordinates {ki' ri} of 
emitted particles within the parton-string model [5]. This model is found to describe 
the global characteristics of ultra-relativistic hadron-hadron and nucleus-nucleus col
lisions reasonably well. To minimize the effect of final state interaction, we first 
considered neutral pions. To stress that the model contains a correlation between 
space-time and momentum, we plot in Fig. 2 the space-time rapidity '1 = ~ In (~) 
versus the momentum rapidity Y = ~ In (~!~!) of the pions emitted in central (at 
zero impact parameter) 0 + 0 collisions at initial energy E'ab =200 AGeV. 

In Fig. 3, we present the one-dimensional correlation functions calculated for 
central 0 + 0 and S + S collisions at initial energy E'ab = 200 AGe V. We have 
calculated two-pion correlation functions using several following options: 

1) as usual for interferometry analysis within a transport model [4], we use Eq. 
(52) (the open triangles); 

2) same as 1), but we choose space-time coordinates randomly to destroy the x-p 
correlation in a given event (the full triangles); 
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3) we use the approximate Eq. (29), neglecting possible dynamical correlations 
in our particular model, and calculate F12 according to Eq. (53), taking into account 
the x - p correlation (the open circles); 

4) same as 3), but we calculate F12 according to Eq. (54), neglecting the x - p 
correlation (the full circles). 

It can be seen from Fig. 3 that the x - p correlation, presented in the model, 
influences the two-pion correlation function in correspondence with a decrease of the 
effective space-time distance between the particle production points. Coincidence of 
the results 1) and 3) indicates that we can neglect dynamical correlations and use Fij 
values, precomputed according to Eq. (53), for calculation of the higher order BE 
correlations (see Section 4). 

Substituting Eq. (29) into the relation 

(55) 

valid in the case of negligible dynamical correlations, and performing integration 
(summation in our model) over the momentum P2 of the second particle, we get the 
invariant single-particle production probability containing the two-particle BE effect 
(see also [9] and [10]): 

(56) 

where 
(57) 

and 
(58) 

Note that here the invariant production probability P2(pd is normalized to unity as 
J d~~l P2(pt} = 1. For the non-invariant probability .P2 (pt} holds the relation similar 

to Eq. (56), but with the normalization condition JtPP1.P2(Pl) = l. 
It follows from our calculations based on the particular model of the ultra-relativistic 

nucleus-nucleus collisions [5], that the two-particle BE correction to the single-particle 
production probability (expressed by Eq. ( 56)) is practically negligible. 

Higher order correlation functions 

Let us first consider the events with n = 3 identical spinless bosons. Assuming un
correlated emission and absence of final state interaction, but taking into account the 
requirements of BE statistics, we get the three-particle invariant production proba

12 
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bility 
P;(Ph P2, P3) = f Jixld4X2d4X3[D(Pt, xI)D(P2, x2)D(P3, X3)+ 

+D(P3, x3)D(P12 , xI)D(Pt2, X2) COS(q12X12)+ 
+D(P2, x2)D(Pt3, xI)D(Pt3, X3) COS(qI3XI3)+ (59) 
+D(Pt, xI)D(P23, x2)D(P23, X3) COS(q23X23)+ 

+2D(Pt2, xI)D(P23, x2)D(Pt3, X3) COS(Q12xI + Q23X2 + Q3IX3)]. 

In the case of switched off the effect of BE statistics, this probability becomes 

From a classical simulation, neglecting rather small dynamical correlations, it can be 
calculated as 

(61) 

where P(Pi) = EiP(Pi) can be computed from Eq. (44). Similarly to the two-particle 
case we define three-particle correlation function in the events with three identical 
particles as 

P;(Ph P2, P3) C ( ) (62)3 PI, P2, P3 = n ( ) . 
.r3 PI, P2, P3 

Inserting Eqs. (59) and (61) into Eq. (62) and using the smoothness assumption, we 
can write the correlation function in terms of the function Fij as (see, e.g., [3]) 

Like in the two-particle case, from a classical simulation we can calculate the 
dependence of the three-particle correlation function on the invariant variable QirUJ = 
J Q123 = Jmi23 - 9m2, where ml23 is the effective mass of the system of three 
identical particles of mass m, as 

(64) 

Here N (Qinv) is the number of particle triplets in a given Qinv bin and C3(Pl" P2" P3,) 
is defined by expression (63). In Fig. 4, we show the pure (only the last term in Eq. 
(63)) three-pion correlation functions for central 0 +0 and S+S collisions simulated 
according to the parton-string model [5] at Elob = 200 AGeV with Fij calculated 
according to Eq. (53). 

We note that the last term in Eq. (63) is sensitive to the phases of Fij provided 
the emission function has no center of symmetry in 4-coordinate space. Thus, the 
measurement of the correlation functions of three or more identical bosons, besides 
the consistency check of the results of the two-particle interferometry, can give, in 
principle, an information about the asymmetry of the space-time distribution of the 
emission points [11]. 

Using Eqs. (61)-(63) and performing integration over the momenta of two or one 
of the three identical particles, we obtain the following expressions for the normalized 
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invariant single-particle production probability: 

(65) 

and the two-particle correlation function: 

where 
K3(Pt, P2) = (2Re{Fi,j,Fj,k,Fk,i,})p1t~ , (67) 

K3(Pt} = (2Re{Fi,j,Fj,k,Fk,i'})Pl (68) 

and 
(69) 

One can find similar formulae in paper [10] for the special case of Gaussian emission 
function. 

The extension of these considerations to the events with larger number of produced 
particles is straightforward. For example, in the case of independent production of 
four identical spinless particles, the four-particle correlation function can be written 
in terms of iij as 

6 2 3 2 2 
C4(Pt, P2, P3, P4) = 1 + E IFij I + E IF1j I IFkd +

o(i<i)=l o(l~i7~k~I)=l 
4 3 (70) 

+ E 2Re {FijFjkFki} + E 2Re {FliFjkFkllh} ,
o(i<i<k)=l o(l~i~k~l)=l 

where a numerate combinations or odd permutations of the elements of the sequence 
{I, 2, 3, 4}. Using the relation analogous to Eq. (55), we can compute the BE cor
rections for single-particle spectra and two-particle correlation functions due to the 
presence of additional identical bosons similarly as in the two- and three-particle 
cases. 

Finally, we can define the n-particle correlation function in the events with n iden
tical spinless particles as a ratio of the invariant production probability P~(Pl' P2, ... , Pn) 
including the effect of BE symmetrization to the one, P(pt, P2, ... , Pn), obtained from 
a classical simulation: 

(71) 

Neglecting dynamical correlations and putting 

n 

Pn(Pt, P2, ... , Pn) = IT P(pd, (72) 
i=l 

we can express the correlation function in terms of Fij as (see also [10, 12]) 

n 

Cn(pt, P2, ... , Pn) = L: IT Fi(1i· (73) 
(1 i=l 
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The sum in Eq. (73) is over n! possible permutations (f of the sequence {I, 2, 3, ... , n}. 
As one can see from Eqs. (63) and (70), the higher order correlation functions 

consist mainly of the statistical combinations of the lower order correlations. The 
genuine higher order correlations are measured by the so-called particle cumulants. 
For example, the three-particle cumulant 

K3(Pl, P:h P3) = 2Re{F12F23F31} (74) 

in Eq. (63) or the four-particle cumulant 

3 

K .. (pt, P2, P3, P..) = E 2Re{FljFjkFkIFh} (75) 
cr(l¢j¢k¢I)=l 

in Eq. (70) measure the statistical dependence of the whole.3- or 4-particle set. 
Any of the three or four particles is independent of the others if the corresponding 
cumulant is zero. From a classical simulation, we are able to calculate the three- and 
four-particle cumulants from Eqs. (53), (74) and (75) and compare them with the 
existing experimental data to test the model. These cumulants calculated for high 
energy nucleus-nucleus collisions within our particular dynamical model [5] appear to 
be clearly non-zero for neutral pions (see, e.g., Fig. 4), while for charged ones they 
are strongly damped by the Coulomb repulsion effects (see Fig. 8 and discussion in 
Section 6). Note that substantially non-zero cumulants of identical charged pions 
would be in contradiction with the results of intermittency analysis of high energy 
experimental data [13]. In this analysis, the cumulants of the order three or higher 
are found non-zero in hadron-hadron or e+e- interactions, while for nucleus-nucleus 
collisions they appear to be practically vanishing. 

Higher order BE corrections 

As one can see from formulae (56), (65) and (66), the two- and three-particle BE 
correlations lead to distortions of the original single- and two-particle distributions. 
Such distortions are small in the case of interference of only two or three identical 
particles. However, as it was pointed out in paper [10] (see also [3] and [15]), they 
can become essential for the events with a large number of identical spinless particles 
due to factoriallY increasing number of correction terms. 

To account for the multi-boson symmetrization effect, in papers [10, 14] a phase
space weighting procedure was used with weights in the form of a normalized square 
of the sum of n! plane waves, like that in Eq. (15) for the case n = 2. This procedure 
however appears not practical for large numbers n of identical bosons due to the 
factorially large number of the terms to be computed to calculate the weight and, 
due to large weight fluctuations. These fluctuations can be substantially reduced by 
weighting only in the momentum space. The corresponding weights can be identified 
with the correlation functions Cn(Pl, P2, •.. , Pn) constructed from the precalculated 
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functions Fij (see Eqs. (29), (63) and (70) for the cases n = 2,3 and 4, respectively). 
However, there is still the problem with factorially large number of the terms required 
to calculate the weight according to Eq. (73). 

A strong reduction of the number of calculated terms can be achieved by sub
stituting the weight method by numerical integration, similarly to the considered 
two- or three-particle cases. We thus should perform integration over momenta of 
one or more particles in the inverted Eq. (71), i.e. we have to compute K 2(Pl), 
K2, K3(Ph P2), K3(Pl) and K3 , defined in Eqs. (57), (58), (67), (68) and (69), 
respectively, and corresponding average values of the higher order cumulants. We 
should also perform combinatorics to define multiples of these averaged cumulants. 
The last performance can be fulfilled up to all orders. Thus the statistical weight 

w(n) = JP:(Pb P2, ... , Pn) nd~~i of an event with n identica.l spinless particles can 
i=1 • 

be ca.lculated with the help of the recurrence relation (see also [3, 15]): 

n-l 

w(n) = L C;-1Kj+lw(n - i-I), (76) 
J=O 

with C;-1 being the number of combinations of i elements out of n - 1, Kl = 1, 
w(O) = w(l) = 1 and w(n) = 0 for n < o. One can check that w(n) = n! in the case of 
'coherent' particle emission (e.g., the emission from a very small space-time region) 
when Kj+l =it. 

However, for realistic models used to predict particle production in ultra-relativistic 
heavy-ion collisions, the numerical averaging of the cumulants of all orders is a diffi
cult task. An attempt to take into account all the multi-particle interference pattern 
was recently considered by Pratt [16]. In this paper corrections to multiplicity distri
butions, single-particle spectra and two-particle correlation functions were calculated 
using the relativistic Bjorken model [17] for the emission function. To compute cumu
lants up to tenth order, the integration was performed analytically over the space-time 
coordinates and numerically over the momenta. 

We should also mention the method of the correlation integral, developed by 
Carruthers and co-workers [18], based on a recursion expression of the integrated 
cumulants through the lower order ones. This method can be used as a tool for 
calculation of the integrated cumulants of arbitrary order. 

As a first approximation, representing a lower estimate of the effect of Bose sym
metrization, we neglect higher than the second order cumulants in Eq. (73). We will 
call it the second order cumulant approximation or simply the two-particle approx
imation. We recall that there is no experimental evidence for significantly nonzero 
values of the higher than second order cumulants in nucleus-nucleus collisions at high 
energies. In this approximation, we can express the statistical weight w(ni) of an 
event i = 1,2, ... , Nevt with ni identical spinless particles in final state as 

w(ni) = 1 + L
ft, 

D(ni, a)K2'\ (77) 
0=1 

where D(ni, a) = (ft; _2:)i!~!(2!)Q • For practical calculations of this weight it is more 
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convenient to use the recurrence relation (76) reduced to: 

w(ni) = W(ni - 1) + (ni - I)K2w(ni - 2). (78) 

It should be stressed that the account of the third or still higher order cumulants 
is straightforward and has to be done to check the convergence of such a lowest 
order cumulant expansion. A fast convergence is expected for the processes, such as 
heavy-ion collisions, characterized by a large space-time extent of the pion production 
region. In this paper, we limit ourselves to the second order cumulant approximation 
which appears to be sufficient for our purpose: to demonstrate a strong influence of 
the multi-particle BE effects. 

The knowledge of the statistica.l weights for events with different number n of 
produced identical particles gives us a possibility to compute the effect of BE statistics 
on the multiplicity distribution 

W(n) 
1 

= N 
Ne.,t

L 6(n  nil (79) 
evt i=1 

obtained in a classical simulation [15]. The BE corrected multiplicity distribution can 
be calculated as 

Nevt 

ni)w(ni)/ L: w(ni). (80) 
i=1 ;=1 

In the two-particle approximation, the normalized invariant single-particle prob
ability for the events with n identical spinless bosons takes the form: 

(81) 

leading to Eq. (78) after the integration over the momentum Pl' Note that Eq. (81) 
reduces to Eqs. (56) or (65) (with K3(Pt} = K3 = 0) for n = 2 or n = 3, respectively. 

For the two-particle correlation function in the events with n identical particles, 
we have in given approximation: 

Cn(pt, P2) = w(n - 2)(1 + IF1212) + (n - 2)w(n - 3)(K2(pd +K2(P2))+ (82)
+(n - 2)(n - 3)w(n - 4)K2(Pl)K2(P2)' 

One can check that Eq. (82) leads to Eq. (81) after multiplying it by P(P2) and 
integrating over the momentum P2. For n = 2 or n = 3 Eq. (82) reduces to Eqs. (29) 
or (66) (without K3(Pt, P2) term), respectively. 

As expected, our calculations confirm that the effect of BE statistics for the events 
with a large number n of identical bosons leads to substantial distortions of the 
multiplicity distributions, the single-particle spectra and the two-boson correlation 
functions. This is demonstrated in Figs. 5-7 for central 0 +0 and S +S collisions 
simulated within the parton-string model [5] at E'ob = 200 AGeV. 

In Fig. 5 we show the original and BE corrected multiplicity distributions of 
neutral pions calculated from Nevt = 20000 generated events of 0+0 collisions. As the 
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reconstruction of the tail of the BE corrected multiplicity distribution is practically 
impossible, we have fitted the simulated multiplicity distribution by a superposition 
of Poissonians (full curve) and used this fit to properly normalize the BE corrected 
points (dashed curve). A dramatic increase of the population of high multiplicities 
due to the effect of BE statistics (K2 = 0.0056) is observed: the simulated mean 
multiplicity of 44.7 is increased by about 21 units. 

In Fig. 6 we show the neutral pion transverse momentum distributions ~ ~~ and 
rapidity distributions ~ : respectively obtained from the events generated with fixed 
neutral pion multiplicities n = 30,60 in 0 +0 and n = 100 in S +S collisions. In Fig. 
6 we also draw the ratios of BE corrected and uncorrected single-particle distributions. 
We can see that the BE symmetrization enhances production of the pions with low 
Pt and small y, and that this effect becomes more pronounced with increasing pion 
multiplicity. 

We should note here that in several papers (see, for example, review [3] and recent 
paper [15]) a possible enormous influence of BE statistics on the single-pion spectra 
and multiplicity distributions was argued and, in particular, the idea of pion laser, 
i.e. production of pions collimated in narrow and monochromatic jets, was discussed. 

In Fig. 7 we present a ratio of the renormalized two-particle correlation functions 
Cn(qinv)/w(n) and C2(qinv)/w(2) calculated for the events generated with fixed neutral 
pion multiplicities n = 30 and 60 in 0 + 0 collisions. We can see that the multi
boson BE correlations distort the two-body correlation function in such a way that it 
becomes lower and wider. This is in qualitative agreement with the results of papers 
[10, 14, 15]. 

Concerning the two-pion interferometry, we note that the experimental correlation 
function is calculated as a ratio of the measured two-particle distribution to the 
reference one, the latter being usually also influenced by multi-pion BE correlations 
(the so-called residual correlations [10, 14]). For correct comparison of the theoretical 
and experimental correlation functions, in the case when the event mixing technique 
is used to construct the reference distribution, one has to take into account the change 
of the single-particle spectra according to Eq. (81). 

So far we considered identical bosons as free particles and completely neglected 
their interaction. However, it is well-known (see, e.g., [19, 20]) that particle correla
tions at small relative velocities can be strongly affected by this interaction. Thus the 
effect of final state interaction is used as an important part of particle interferometry. 
Due to the unsolved multi-body interaction problem, usually, only the mutual inter
action of two particles with a small relative velocity is taken into account, similar to 
the considered two-particle approximation (see next Section). 

The effect of final state interactions 

Let us now consider the production of interacting particles. As usual, we assume that 
the density of the produced particles in momentum space is sufficiently low so that 
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only the final state interaction in the pairs of particles with small relative velocities 
is to be taken into account. In the case of the production of only two identical 
spinless particles the effect of final state interaction then reduces to the substitution 
of the plane waves in Eq. (4) by the nonsymmetrized Bethe-Salpeter amplitudes 
q,~;h(Xh X2) in the continuous spectrum of the two-particle states [7, 20]: 

(83) 

Under the smoothness assumption the two-particle production probability becomes 

Pi(Pl, P2) = (84)=f cf'X1cf'X2D2(Pl, XljP2, x2){1 q,~;h(Xl2) 12 +Re[q,~;h(Xl2)q,~J:(X12)]}' 

where the amplitude q,~;h(Xl2) is obtained from the Bethe-Salpeter amplitude after 
separation of the c.m.s. motion of the two particles: 

(85) 

At equal emission times ti = t; in the two-particle c.m.s. the amplitude q,~;h (Xl2) 

coincides with the wave function q,~+~. (r*) , k* = pi = -pi, r* = Xi2' represent
ing solution of the scattering problem and having the asymptotics of a superposition 
of the plane and outgoing spherical waves. It can be shown [20] that the ampli
tude q,~;h(Xl2) can be usually substituted by this solution, leading to the equal time 
approximation first used by Koonin to calculate the correlation function of two non
relativistic protons [19]. 

In the case when three identical spinless particles are produced, on the assumption 
of saturation of the final state interaction by the two-body effects, the three-body 
nonsymmetrized Bethe-Salpeter amplitude can be approximated as 

q,~;~P3(Xl,X2,X3) ~ exp(ipIXl + iP2X2+ iP3X3)~l2(X12)~31(X31)~23(X23)' (86) 

where 

~ij(Xij) =exp(-iPiXi - ipjxj )1T!~iJ,(Xi, Xj) =exp(-~iqiiXij )1T!~iJj(Xii). (87) 

Assuming now besides smoothness of the emission probability also its factorization, 
we get the following expression for the three-particle production probability: 

(88) 
The generalization of Eqs. (84) and (88) to the case of n identical spinless bosons is 
straightforward. 
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We define the n-particle correlation function, similar to the case of non-interacting 
bosons (see Eq. (71)), as a ratio of the production probability P~(Pl,P2' ••• , Pn), 

including both the effects of BE statistics and particle final state interaction, to that, 
Pn(Ph P2, ••• , Pn), obtained from a classical simulation. As one can see from Eqs. (84) 
and (88), the calculation of the n-particle correlation function requires to compute 
n(n - 1) amplitudes \II~iJi(Xij) and \II~tJ.(Xij) for each event simulated in a transport 
model. Clearly, even on the factorization assumption, this calculation is much more 
complicated than in the case of pure BE correlations since the integration over space
time coordinates of n production points is not reduced to the single space-time point 
integration (like in Eq. (53)). 

For neutral pions at small relative momenta k* = Ik*1 = iqinv, we are interested 
in, the scattered wave in the wave function \II~+J-(r*) is dominated by s-wave. Since 
usually the characteristic distances r* between the pion production points are larger 
than the range of their strong interaction, we can write 

'Iy,(+) ( *) ..!.. (Ok* *) + I(k*)exp(ik*r*)
"It -It- r - exp -~ r , (89)

r* 

where I(k*) is the two-pion s-wave scattering amplitude. In such conditions, the 
effect of strong final state interaction on the correlation function is determined by 
the ratio of the scattering amplitude I(k*) to the characteristic distance between the 
production points in the c.m.s. of the two particles [20]. As the 11"011"0 scattering 
length is positive and rather small (/(0) ~ 0.1 fm), the final state interaction slightly 
enhances (less than 5%) the effect of BE correlation in the system of two neutral 
pions. 

For identical charged pions the effect of final state interaction is dominated by the 
Coulomb interaction. In the usual case, when the characteristic distance between par
ticle production points in their c.m.s. is much smaller than the two-pion Bohr radius 
a = 388 fm, it can be approximated by the Coulomb penetration factor representing 
modulus squared of the Coulomb wave function at zero distance: 

(90) 

Thus, in given approximation, we have to multiply the pure BE n-particle correlation 
function by the product of n(n

2
-1) Coulomb penetration factors. For example, the 

three-particle correlation function in the events with three identical charged pions 
then takes the form: 

(91) 

where C3(Ph P2, P3) is the correlation function in the absence of final state interaction, 
given by Eq. (63). It is clear from Eq. (90) that the Coulomb repulsion strongly 
suppresses the correlation of two identical charged pions only in the region of very 
small relative momenta k* < 2: = 3 MeV Ic. Taking account of the relation 

(123)2 _ (12)2 + (13)2 + (23)2
qinv - qinv qinv qinv' (92) 

20 




7 

this corresponds to the suppression of the three-particle correlation function in the 
region q!!;3) < 6v'3 MeVIc. Thus the final state interaction in the system of identical 
charged pions becomes of increasing importance with increasing the effective space
time extent of the production region. 

In Fig. 8, we show the two-particle (Eq. (29)) and the pure three-particle (only the 
last term in Eq. (63)) correlation functions of positively charged pions calculated with 
and without the Coulomb penetration factors for central S + S collisions simulated 
within the parton-string model [5] at E'o.b = 200 AGe V. It may be seen from Fig. 
8 that the Coulomb effect in the system of three charged pions is quite strong even 
at q!!;3) of several tens MeVIc. Thus the Coulomb repulsion may be responsible 
for the vanishing of the third and higher order cumulants of identical charged pions 
as measured in nucleus-nucleus collisions. The influence of the Coulomb final state 
interaction will be even stronger in future heavy ion experiments at higher energies 
due to increasing effective space-time extent of the particle production region. 

Concerning the Coulomb effects in a multi-pion system, they should somewhat 
weaken the considered effects of the multi-particle BE correlations, depending on 
the effective space-time extent of the production region of charged pions. Though 
their detailed investigation is beyond the scope of present paper, it is certainly of 
a large practical interest. Here we only mention that such an investigation would 
require consideration of the pions of both signs (for 1&"+ 1&"- pairs there will be Coulomb 
attraction corresponding to the negative Bohr radius a = -388 fm in Eq. (90)) and, 
eventually, of other charged particles; the total production probability, in the absence 
of dynamical correlations, being just a product of the production probabilities of 
various particle species. 

Conclusions 

Large numbers of identical bosons are produced in ultra-relativistic heavy-ion col
lisions. Their production can be strongly affected by the requirements of quantum 
statistics. However, these requirements are usually neglected in classical simulations 
within transport models (event generators) which are widely used for description of 
the multi-particle production. 

We have presented here the theoretical basis allowing to calculate the effect of 
the multi-particle BE correlations on various observables within a classical transport 
model. We have also discussed the inclusion of the effect of Coulomb and strong final 
state interaction in the produced multi-particle system. 

We have developed the computer code BOSE which can be coupled with a classical 
transport model to account for the effects of BE statistics and final state interaction 
and thus to allow a reliable comparison of the model with experimental data. Coupling 
this code with the parton-string model, we have demonstrated the importance of the 
multi-particle BE effects on multiplicity distributions, single-pion spectra and two
pion correlation functions. 
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Figu re 1: Source model picture for the production of two identical bosons. 

Figure 2: Correlation between space-time and momentum rapidities of neutral 
pions calculated in the parton-string model for central 0 + 0 collisions at initial 
energy 200 AGeV. 

Figure 3: Correlation functions of two neutral pions calculated in the parton-string 
model for central 0+0 and 8 +8 collisions at initial energy 200 AGeV. The meaning 
of the various points is explained in the text. 

Figure 4: The pure correlation functions (only the last term in Eq. (63)) of three 
neutral pions calculated in the parton-string model for central 0 + 0 and 8 + 8 
collisions at initial energy 200 AGeV. 

Figure 5: Multiplicity distributions of neutral pions calculated in the parton-string 
model for central 0 + 0 collisions at initial energy of 200 AGeV. Results with and 
without inclusion of BE correlations are shown by full and open circles, respectively. 
The full curve represents the fit of the multiplicity distribution by a superposition of 
five Poissonians, the dashed curve is obtained from this fit after the inclusion of the 
BE weights. 

Figure 6a: Transverse momentum distributions of neutral pions (left) and their 
ratios (right) calculated in the parton-string model for central 0 +0 ( n1\"o = 30,60) 
collisions at initial energy 200 AGeV. The distributions with and without inclusion 
of BE correlations are shown by full and open circles, respectively. 

Figure 6b: The same as in Fig. 6a, but for rapidity distributions. 

Figure 6c: The same as in Figs. 6a and 6b, but for central 8 +8 ( n1\"o = 100) 
collisions at initial energy 200 AGeV. 

Figu re 7: The ratio of the renormalized correlation functions of two neutral pions 
Cn(qinv)/w(n) and C2(qinv)/w(2) calculated in the parton-string model for central 
0+0 collisions with fixed 11"0 multiplicities n = 30 and 60 at Elab = 200 AGeV. 

Figure 8: The two-particle (Eq. (29)) and the pure three-particle (only the last 
term in Eq. (63)) correlation functions of positively charged pions calculated with 
(full circles) and without (open circles) the Coulomb penetration factors (left) and 
their ratios (right) for central 8 + 8 collisions simulated within the parton-string 
model at E'ab = 200 AGeV. 
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The source model picture of the two-boson emission 
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Central 0+0 collisions at 200 AGeV 
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