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Abstract 

A quantum approach to the particle correlations at small relative velocities in 
the presence of a strong Coulomb field is developed in the adiabatic approximation, 
allowing for a reliable determination of the space-time characteristics of particle 
production in heavy-ion reactions. The method allowing to measure which sort of 
particles was emitted earlier and which later at time scales as small as 10-22 s is 
suggested. 

Introduction 

The particle interferometry is here" understood as a measurement of the space-time char
acteristics of the production process with the help of particle correlations at small relative 
velocities. It is well-known (see, e.g., [1-3]) that these correlations appear due to the effects 
of quantum statistics (QS) and final state interactions (FSI). Usually, only the mutual 
interaction of two particles with a small relative velocity is taken into account. This is 
however questionable in the case of heavy-ion reactions when the particles are produced 
in a strong Coulomb field of residual nuclei. Sometimes the effect of the nucleus Coulomb 
field is taken into account by a classical shift of the particle momenta. Since this shift is 
typically several tens MeV / c, such a procedure strongly influences correlations of particles 
with different charge-to-mass ratio. Thus in ref. [4] it was argued that np correlations 
can be completely destroyed due to a strong Coulomb repulsion of the protons from the 
emitting nucleus. The "Coulomb shift" procedure however does not take into account 
that both the shift of particle momenta and the correlation effect develop simultaneously 
and cannot be separated in a simple way. At characteristic emission times r of several 
hundreds fm/c or higher this complicated 3-body problem can be solved in the classical 
approximation. In fact, the classical trajectory calculations show that at r > ~, where 
lal,'1 and 'V are Bohr radius, Lorentz factor and velocity of the particle pair, the effect of 
residual nucleus on particle correlations is of minor importance despite the one-particle 
spectra are substantially affected [5]. To extend the theoretical description to lower values 
of r, we develop here a quantum approach in the adiabatic approximation, assuming the 
relative motion of the two particles much slower than their motion with respect to the 
Coulomb center. 

Since the pioneering papers of Kopylov and Podgoretsky it is well-known that the study 
of directional dependence of particle correlations can be used to extract the information 
on the form of the production region and the emission time. We show here that not only 
the magnitude of the mean difference of particle emission times can be determined but 
that even the sign of this difference can be measured. 
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In Sections 2 and 3 we briefly review the basics of interferometry of noninteracting 
and interacting particles. In Section 4 we develop the theory of particle correlations in a 
strong Coulomb field of the emitter. In Section 5 we suggest the method allowing one to 
measure the difference between mean emission times of the particles of various types. 

Correlations of noninteracting identical particles 

Let us start with the usual assumption of sufficiently small density of the produced par
ticles in the momentum space, such that the correlation of two particles with a small 
relative velocity is in1luenced by the effects of their mutual QS and FSI only. Define the 
correlation function R(Pl, P2) of the two particles as the ratio of their differential produc
tion cross section to the one which would be observed in the case of absence of the effect 
of QS and FSI. Introducing the normalized probability WS(Z17Pl; Z2,P2) of the emission 
of two noninteracting particles, with total spin 8 and 4-momenta PI and P2, by the one
particle sources decaying at the space-time points ZI = {t17Tl} and Z2 = {t2,Ti}, we get 
the well-known result of Kopylov and Podgoretsky (see, e.g., a review [1] and ref. [3]): 

Here P == !P = !(Pl + P2), q ={qO,q} = PI - P2, z == {t,r} = ZI - Z2, the mean 
(/)s = J d4 z 1 d4 z 2Wsl / J d4z1d4 z 2Ws is a function of PI and P2, and 

(2) 

describes the population of total spin-8 states, e.g., ps = (28 + 1)/[(281 + 1)(282 + 1)] for 
unpolarized particles with spins 81 and 82. 

It should be noted that Eq. (1) is obtained under the natural assumption of inessential 
momentum dependence of the emission probability WS(ZI,Pl; Z2,P2) when varying the 
components of 4-momenta PI and P2 by the amount ILlpol < (lzol)-1 characteristic for 
the interference effect: the smoothness assumption. In other words, the components of 
the mean space-time distance between particle sources (Izo I) are assumed much larger 
than those of the space-time extent of the sources "J (Ipo 1)-1. 

The characteristic feature Qf the correlation function (1) is the presence of the inter
ference maximum or minimum at smalll~ changing to a horizontal plateau at sufficiently 
large I~. E.g., assuming that particles are produced independently, in spin states inde
pendent of the production points: 

(3) 

and that the normalized one-particle probability 

(4) 
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effectively describes the space and time limitation of the production process, we get 

R(Pl,P2) = 1 + ~::)_1)5P5(p,p) exp(_r~q2 - Tgq~) 
5 

= 1 + L(-1)5p5(p,p)exp(-4r~kT2 - 4p2")'2k.i2). (5) 
5 

The correlation function in the second of Eqs. (5) is expressed in terms of the relative 
momentum in the pair rest frame: q* = {O,2k*}, k* = Pi = -~; kT = ?T/2 and 
ki = qL/(2,,),) = qo/(2")'v) are the transverse and logitudinal components of the vector k* 
with respect to the pair velocity V, ")' is the Lorentz factor of the pair, p = Jr~ + (VTO)2. 
We see that, due to the relation qo = vq == vqL, the correlation function at VTo > ro sub
stantially depends on the orientation of the vector k* (or if) even in the case of spherically 
symmetric spatial form of the production region. Generally, the orientation dependence 
of the correlation function can be used to determine both the characteristic emission time 
and the form of the production region [1]. 

Correlations of interacting particles 

Making a similar smoothness assumption as in the case of identical noninteracting par
ticles, i.e. assuming the momentum dependence of the emission probability of noninter
acting particles W5(Zt,Pl; Z2,P2) inessential when varying the 4-momenta PI and P2 by 
the amount characteristic for the joint effect of QS and FSI, we can prove that the effect 
of FSI reduces to the substitution of the plane waves in Eq. (1) by the nonsymmetrized 
Bethe-Salpeter amplitudes in the continuous spectrum of the two-particle states [3,6]: 
eiPIZ1+iP2Z2 -+ 1/J:l~)(ZI' Z2). For the correlation function of two identical particles we then 
have 

(6) 

and for that of two nonidentical particles 

R(Pt,P2) = L! d4z1 d4 z 2W5(Zt,Pl; z2,p2)11/J:l~)(zt, z2)12 
5· 

= L P5(Pt,P2)(11/J:l~)(Z )1 2)5. (7) 
5 

Here the amplitude 1/J:l~)(Z), depending only on the relative 4-coordinate Z = ZI - Z2, 
is obtained from the Bethe-Salpeter amplitude after separation of the two-particle c.m.s. 
motion: 

..I,5(+)(Z z) = eiPX ..I,5(+)(z) (8)'f'PIP2 1, 2 'f'PIP2' 

where X = [(PIP)ZI + (P2P)Z2]/ p2 is the c.m.s. 4-coordinate. 
At equal emission times t* = tr - t; = 0 in the two-particle c.m.s. the amplitude 

1/J:l~) (z) coincides with a stationary solution of the scattering problem 1/J:~~) (r-) having 
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at large r* the asymptotics of superposition of the plane and diverging spherical waves: 
ik rtP:~:)(T"') -+ e- • + I S ( _k*)eik•r

• Ir*. In fact, it can be shown [3] that the amplitude 

tP~~)(z) can be substituted by this solution on condition It*1 « p.r*2, where p. is the 
reduced mass of the two particles. For the Gaussian space-time distribution (4) of the 
emission points it leads to the condition To « P.1roP. For To <"'-' ro this condition 

is satisfied if particle energies Wi = Jmi +Pi2 > 1/ro, while in the case of a large 
characteristic emission time, when VTo > ro, it requires IPiI > 1/ro> The equal time 
approximation is usually valid for heavy particles, like bons or nucleons. But, even for 
two pions at v = 0.3, ro = VTo = 1 fm, the exact calculations of the correlation function 
show that this approximation overestimates FSI contribution by less than 20% [3]. 

The effect of FSI on the correlation function was first calculated numerically by Koonin 
for the case of two nonrelativistic unpolarized protons [2]. Simple analytical formulae, 
valid for arbitrary particles (including relativistic, polarized and nonidentical particles) 
produced at sufficiently large distances compared with the range of their strong interac
tion, were obtained in ref. [3] (see also a review [7]). Concerning the size of the effect of 
FSI on the correlation function, the contribution of the strong interaction is determined 
by the ratio IS Ir*. It thus decreases with increasing space-time dimensions of the pro
duction region and particle velocities. For pions Iisl « (r*) and this contribution is of 
the order of 0.1 or smaller, while for nucleons at small k* usually Iisl > (r*) and the 
correlation function, being typically of the order of 1-10, is dominated by the effect of 
strong FSI. 

In the case of charged particles the Coulomb repulsion (attraction) becomes important 
at k* -+ 0, forcing the correlation function to tend to 0 (00). If the characteristic distance 
(r*) between two particles in their c.m.s. is much smaller than their Bohr radius lal = 
III ± p.zlz2e21, where ±ZlZ2e2 is the product of the particle electric charges, the effects of 
Coulomb and strong interaction practically factorize: 

(9) 

where R(PhP2) represents the correlation function due to the strong interaction only and 
the function Ac(k* a) is the modulus squared of the Coulomb wave function at r* = 0: 

21r 21r 
Ac(Y) = -/[exp(-) - 1]. (10)

Y Y 

The function Ac(k* a) substantially deviates from unity only at small values of argument, 
i.e. in the region of small momenta k* < 21r/lal. E.g., for two charged pions (two protons) 
lal = 388 (58) fm and, on condition (r*) « lal, the Coulomb effects are important at 
k* < 3 (22) MeVIc. It should be stressed that the separation of Coulomb effects in the 
Coulomb factor Ac(k*a) does not take place at (r*) comparable or larger than the Bohr 
radius, e.g., in the case when particles are produced in the decays of long lived resonances 
(17,'1') or in the evaporation processes. In such a situation, with the increasing (r*) the 
correlation function tends to 1 and not to the Coulomb factor Ac(k*a) [3]; it substantially 
deviates from 1 only for k* < 21rk;, where k; = (lal(r*)/2)-1/2 is the classical boundary 
value. 

.. 
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4 Correlations in a strong Coulomb field 

We shall now consider particle correlations in the presence of a strong Coulomb field, e.g. 
in heavy-ion reactions. In this case the Bohr radius of the system particle + residual 
nucleus can be rather small (~ 0.6 fm for the system proton +nucleus with the charge 
number Z = 51) so that the Coulomb interaction in this system can be substantial 
even for relativistic particles. In such a situation, instead of the two-particle Bethe
Salpeter amplitude t/J~~)(Z17 Z2), the correlation function is determined by the amplitude 
t/J:l~}(+)(Zt, Z2) representing the solution of a complicated multibody problem, taking into 
account interaction between the two particles and also their interaction with the residual 
system described by the quantum numbers {a}. For the correlation function, defined as 
the ratio of the two-particle production cross section to the one in the case of absence of 
the effects of QS and FSI between the two particles (t/J --. ;fi), instead of Eqs. (6) and (7) 
for identical and nonidentical particles we have 

(11) 

and 

(12) 

Here 
PS(P17P2) = L Jd4 z 1 ~Z2WS{a}(Z17Pl; Z2,P2), (13) 

{a} 

(/)S = E{a} J d4 z 1 d4 z 2WS{a}/ / E{a} J d4 z 1 d4 z 2WS{a} and E{a}, taking into account 
the conservation laws, represents summation over the descrete quantum numbers and 
integration over the continuous ones. Again the smoothness condition is implied, i.e. the 
dependence of the emission probability of noninteracting particles W S{a}(Zt,Pl; Z2,P2) 
on the 4-momenta PI and P2 is assumed inessential when varying them by the amount 
characteristic for QS and FSI. 

It can be shown that at \(r*) > lal, e.g., in the case of particles evaporated by a 
compound nucleus with the characteristic emission time T > EJ., and at h* not too close 

1'v 

to the classical boundary hi = (Ial (r*) /2)-1/2, the conditions of the applicability of the 
classical approach are fulfiled and this problem can be solved with the help of the classical 
trajectory calculations [5]. To get rid of the limitations of such calculations, we develop 
below the quantum approach and solve the problem of the two-particle correlations in the 
field of a heavy Coulomb center. 

We consider the emitting nucleus N sufficiently heavy so that the recoil effects can be 
neglected and the c.m. of the system particle +nucleus can be identified with the rest 
frame of the nucleus, which we situate at the origin. Neglecting further the change of the 
nucleus electric charge during the process of particle emission, we approximate it by an 
effective charge Z e. Finally, neglecting the interaction of the particles 1 and 2 with other 
emitted particles, the quantum numbers {Q} of the residual system are reduced to the 
effective charge number Z. 

Let us start with the hypothetical case of particles which interact with the charge 
Ze but their mutual interaction is "switched oft". In such a situation we can treat the 
systems (1, N) and (2, N) independently. It follows from the results presented in previous 
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Section that the interaction with the Coulomb center just leads to the substitution of the 
spatial parts of the plane waves eipiZi by the usual Coulomb wave functions: 

e-ipiri 

(14) 

where lail = 1/(wiziZe2) is the Bohr radius of the system (i,N) generalized to the rela
tivistic case by the substitution mi -t Wi, 5i = argr[l + i/(IPilai)] is the Coulomb s-wave 
shift, Ac(IPilai) = 1~~z(0)12 is the Coulomb penetration factor given in Eq. (10) and 
F(a,l,z) is the confluent hypergeometrical function (F -t 1 at Ti < laiD. Thus 

(15) 

Note that a small contribution of spin. dependent electromagnetic forces is neglected in 
Eq. (14) so that ~sz =~z is independent of the total spin S of the particle pair. We can 
thus put Es ps(I~SZI2}S = (I~ZI2) in the denominators of Eqs. (11) and (12). 

It will be convenient in the following to separate the time and the spatial parts of the 
two-particle c.m.s. 4-coordinate X = {Xo, R} and rewrite the amplitude in Eq. (15) in 
the form 

..i.SZ(+)(z z) =eiPoXoe-ik*,. i! ... (; ;)
Y'PIP2 h 2 PIP2 h 2 , (16) 

where 
(17) 

Let us now adiabatically "switch on" the interaction between particles 1 and 2, i.e. con
sider relative motion of the two particles at characteristic distances much slower compared 
with their motion with respect to the Coulomb center. It is clear that in such a case the 
plane wave e-ik*,. will be substituted by the Bethe-Salpeter amplitude 1/J:l~)(z) describ· 

ing the relative motion of isolated interacting particles and that the function i~P2 (rl' r2) 
will be only slightly modified. Generally, we can write 

..1,SZ(+)(ZI Z2) = eiPoXO ..I.S(+)(z)~Z ... (z z)
Y'PIP2' Y'PIP2 PIP2 1, 2, (18) 

where the function ~~P2(Zh Z2) can be substituted by i~P2(;h r2) on certain conditions 
which will be considered below. After this substitution we get our main result: 

",/,SZ(+)(z z) = eiPX,,/,S(+)(z)~!Iz(r )~'!.2z(r) (19)Y'PIP2 1, 2 Y'PIP2 PI 1 P2 2· 

We will call it adiabatic approximation using a close analogy with the quantum theory 
of the motion of electrons and nuclei in a molecule. In the adiabatic approximation the 
fast motion of electrons in a molecule is separated from the slow motion of nuclei, leading 
to the corresponding factorization of the total wave function. In our problem, the fast 
motion is the motion of the two considered particles with respect to the Coulomb center, 
and the slow one is their relative motion. 

Note that the symmetrized amplitude [1/J:;~+)(ZhZ2) + (-1)s1/J~~~+)(zhz2)]/-v'2, de
termining the correlation function of two identical particles, containes combination of the 
two-particle amplitudes [1/J:l~)(z ) - (-1)stP:'~) (z»)/02) corresponding to an isolated pair 
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with forbidden symmetry. In particular, the production amplitude of two identical nu
cleons in triplet state S = 1 in the Coulomb field depends on otherwise forbidden s-wave 
interaction in the isolated pair. 

We will discuss the applicability conditions of the adiabatic approximation in the 
nonrelativistic limit but, as the Coulomb wave functions with the modified Bohr radius 
satisfy the relativistic wave equation, this analysis can be generalized also for the case 
of relativistic particles. First we derive equations for the functions ~z and iZ. In the 
nonrelativistic limit we have 

(20) 

Neglecting eventual weak dependence of the function ~z on the emission times, i.e. as
suming ~~p;(Zt,Z2) = ~~p;(;t,T2)' we can put t* = 0 and substitute the amplitude 

""~~)(z) by ""~~+)(?). The amplitude ""~~+)(Zt,Z2) then satisfies Schrodinger equation 

A S SZ(+)[Ho +Vi(rl) +V2(r2) +V (r"') - E12lr,bPIP'J (ZhZ2) = o. (21) 

Here Vi(ri) = (aimiri)-I is the potential between particle i and the Coulomb center, 
VS(?) is the interaction potential of the two particles, 

1 -+ 2/ 1 -+ 2/ 1 -+2/( ) 1 k-+2 /E12 = 2'P1 ml + 2'P2 m2 == 2'P m1 +m2 + 2' p. (22) 

is their kinetic energy and 

.. 1 -+2 1 -+2 1 -+2 1 -+2 
Ho = -2'V1/m1 - 2'V2/m2 = -2'VR/(ml + m2) - 2'Vr /p. (23) 

is the free Hamiltonian. Using now the Schrodinger equation 

[-~(V~ + k2 )/p. + VS(r")l,p~~+)(r") = 0 (24) 

and the relation 

V;("p . ~) = ~ . V;"p +"" . [V; +2(V r In "p) . Vr] ~, (25) 

and also taking into account that Vr = Vr., we get the equation for the function ~Z: 
A A .k,..... Z

[Ho +Vi(r1) +V2(r2) +V - E12]e-' ~Plp;(;t,r;) = 0, (26) 

where 
1 -+ S(+) -+ -+ -+

V
A = --:-[VrIn"p k" (r"') + ik]· (Vr + ik). (27)

p. 

Clearly, the function i Z satisfies similar equation with V = o. Thus the equations for 
functions ~z and i Z differ only in the term V containing gradient Vr • In the adiabatic 
approximation one can neglect this term considering it as a smaJ.l perturbation in the 
continuous spectrum. Noting that the functions ~~Z(ri) defined in Eq. (14) depend on 
ri only through the variable Pi = Piri + IPilri' we can write the perturbation in the form: 

Ve-ikT*i~ ... (rt,r2) = -.!.[VrIn"ps~+)(r"') + ik].
P1P2 p.-k 

['" d In ......ZlZ( -+ ) '" d In ......Z2Z( -+)] -ikT* Ji.Z (-+ -+)v rPl -d ':rih rl + v rP2- ':rp; r2 e ':rihf12 rh r2 • (28)
PI dP2 
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The two terms in Eq. (28) can be considered as distortions of the Coulomb potentials 
Vi(rl) and V'2(r2). The sufficient applicability conditions of the adiabatic approximation, 
guaranting approximate equality of functions t Z and ~z , thus follow from the requirement 

.!.1[Vrln",s~+)(r-)+ik]VrPidd lntp~z(Ti)1 <: IVi(Ti)I. (29)JL Pi-A" 1 

U sing known asymptotic formulae for the confluent hypergeometric functions in the limit 
of both large and small distances, and the relations VrPi = ±JL~(~ + ~), i = 1,2, we 
get the following sufficient conditions in the region of small Ie < I"V 1Ir* we are interested 
in: 

(30) 

These conditions simply reflect the fact that the Coulomb potentials Vi(ri) are distorted 
to the extent determined by the ratios of the momenta l/lal and I/[r* + r*2/IfS(Ie)I1, 
characteristic for Coulomb and strong interaction between the two particles (at Ie <I"V 

1Ir*), to the total particle momenta IPi I. As practically IPi I is larger than the classical 
boundary value Pbi = {Iail (r;) 12)-1/2, we can substitute it by this value to get still more 
sufficient conditions. In the case of two protons emitted by a typical nucleus with Z = 51 
and (ri) = 6 fm (Pbi = 154 MeVIc, a = 58 fm, r(O) = 7.8 fm), these conditions are not 
very restrictive: 41 » 1, r* » 1.1 fm. In the case of heavier particles or fragments the 
first condition becomes stronger while the second one is weakened. E.g., for two deuterons 
(Pbi = 218 MeV Ic): 32 » 1, r* » 0.8 fm. 

For quantitative estimates we assume that, in the case of absence of FSI, the compound 
nucleus isotropically emits unpolarized particles with the energies distributed according to 
Maxwellian law with the temperature T = 4 MeV. The distribution of the 4-coordinates 
of the particle sources is approximated by Gaussian law in Eq. (4) with the parameter 
ro = 3.5 fm roughly corresponding to the mass number of the emitting nucleus A = 120. 
Requiring the same dispersion of the difference t = tl - t2 of the emission times for the 
Gaussian law and the exponential decay law, the parameter ro can be identified with the 
emitter lifetime r. For evaporation processes r is typically several hundreds fmlc (leading 
to (r*) ~ vr of several tens fm). For the effective charge number of the residual nucleus 
we put Z = 51, which leads to about twice as large mean kinetic energy of the emitted 
protons or deuterons as compared with that of neutrons. The mean velocity of pp, pd 
or np pairs at small values of Ie* is (v) 0.15. The above parameters roughly describe I"V 

particle emission in the reaction 40Ar +108 Ag at 44 MeV Inucleon [5]. 
Instead of the 6-dimensional correlation function R(PI ,P2) we calculate the I-dimensio

nal one RZ(k*) corresponding to Eq. (11) or (12) with the nominator and denominator 
integrated over I-particle spectra d3Ui(Pi)ltPPi. To separate pure effect of the nucleus 
Coulomb field on particle correlations, we compare the correlation function RZ(Ie*) with 
the one Rtl z,. (Ie*) taking into account the effect of the nucleus Coulomb field on one-particle 
spectra but not on particle correlations. For instance, for nonidentical particles 

R"Z"(Ie*) = 

1:s J d3Ul(Pl) ~U2(P2)5(1e* -1Y;I)PS(pl'P2)(I"':S;;)(ZhZ2)12)s(Iq,;~Z(r/)q,~Z(r2')12) (31) 
J d3ul(Pl) dlU2(P2)5(1e* - IPiI)(Iq,;~Z(rt')q,~Z(r2/)12) . 

Our results confirm the classical trajectory calculations showing negligible effect of the 
residual nucleus on particle correlations at large emitter lifetimes r > ~. In Figs. 1-3 
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we present the results of quantum calculations for pp, pd and np systems in the region 
of smaller lifetimes where the classical approach is not valid. Our calculations show an 
increasing influence of the residual nucleus with decreasing T leading to a suppression of 
the correlation. Though this suppression appeares much less important than expected 
from the simple "Coulomb shift" procedure [4]. For example, at T = 100 (10) fm/c the 
np correlation function is suppressed at small relative momenta by rv 10 (35)% only. A 
noticeable suppression at T < 50 fm/c is obtained also for pd system (rv 15%) and even 
for pp system (rv 10%). 

Measurement of the difference of the mean emis
sion times of various particles 

Clearly, the correlation function of two nonidentical particles is sensitive not only to the 
magnitude but also to the sign of the difference of the emission times t = tl - t 2 • Below we 
demonstrate this sensitivity and the way how the correlation function of two nonidentical 
particles can be used to estimate the difference between their mean emission times. 

Let us consider sufficiently small momentum k* of the particles in their c.m.s. so that 
their strong interaction is dominated by s-wave and the wave function "":~~) (;-) in the 
absence of Coulomb interaction takes the form 

(32) 


where the scattered wave 4>Z.(r*) is independent of the directions of the vectors k* and 
;-. Neglecting the interaction of the two particles with the residual system and assuming 
that the conditions of equal time approximation are fulfiled, we can write the correlation 
function in the form 3 

L ps(I",,:~~)(r-)12)S 
s 

1 +L ps(I4>Z.(r*)12+2Re4>Z. (r*) cos k*r- - 2Im4>Z.(r*) sin k*r-)s. (33) 
s 

Consider now the behaviour of the vector ;- in the limit Ivt I ~ r. Making the Lorentz 
transformation from the source rest frame to c.m.s. of the two particles: ri = "'Y(rL - vt), 

= rT, we see that, in the considered limit, the vector ;- == -"'Yvt is nearly parallel orr T 

antiparallel to the vector of pair velocity V, depending on the sign of the time difference t. 

Therefore, the correlation function is sensitive to sign(t) due to the odd term rv sin k*;-. 

For charged particles there arise additional odd terms with respect to the argument k*;

due to the confluent hypergeometrical function F(a, 1, z) = 1 +az +a(a +1)(z/2!)2 + ... 

modifying the plane wave in Eq. (32): 


"':~;)(r") = e i\/Ac(k*ll){e-k
°;- F[ ;':,1, i(k*r" +k*r*)] + 4>~.(ron, (34) 

8 = argr[l + i/{k*a)]. The sensitivity of the correlation function to sign(t) can be also 
modified due to Coulomb interaction with the emitting nucleus (see Eq. (19». 

3The correlation function of two noninteracting particles was first introduced in ref. [3] in a sym
metrized form, so that the odd terms in variable k·;- were omitted. 
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Thus we see that the sign of the mean time difference (t) can be determined provided 
the sign of the scalar product k*v is fixed. A straightforward way is to measure the 
correlation functions R+(k*v ~ 0) and R_(k*v < 0). Depending on (t), their ratio 
R+ / R_ should show a peak or a dip or oscillate in the region of small Ie* and approach 1 
both at Ie* -+ 0 and Ie* -+ 00. 

As the sign of the scalar product k*v is approximately equal to that of the difference of 
particle velocities 111 -112 (this equality is exact for particles of equal masses), the sensitivity 
of the correlation functions R+ and R_ to the sign of the difference of particle emission 
times has a simple explanation in terms of the classical trajectory approach. Clearly, the 
interaction between the particles in the case of earlier emission of faster particle will be 
different compared with the case of its later emission (the interaction time being longer 
in the latter case). 

Our calculations show that the correlation functions R+, R_ and their ratio are sub
stantially sensitive to (t) provided that (t)2 is comparable to or higher than the dispersions 
(t~ - (ti)2). In Figs. 4 and 5 we present the results for pd and np systems assuming that 
the particles are emitted by a nucleus with the effective charge number Z = 51 and tem
perature 4 MeV according to the Gaussian time distributions of the width of 50 fm/c 
and (t) = -100 fm/c. We see that in both cases the ratio R+/R_ strongly deviates from 
unity in the region of small Ie* achieving maximum value of I'V 2.0 (1.3) at Ie* ~ 10 (35) 
Me V / c for pd (np) system. This maximum would be replaced by a mjnjmum in the case 
of reversed sign of the mean difference of the emission times (t). We can also see that the 
ratio R+ / R_ is only slightly affected by the Coulomb field of the residual nucleus. 

Conclusions 

In the adiabatic approximation we have developed quantum approach to the correlations 
of particles produced with a small relative velocity in the field of a heavy Coulomb center. 
We have demonstrated that, contrary to some expectations, substantial correlations of 
particles with different charge-to-mass ratio survive even in a strong Coulomb field of 
residual nuclei in heavy-ion reactions. In these processes, the quantum adiabatic approach 
to the particle correlations at small relative velocities can be used for a quantitative study 
of the space-time picture of particle production. 

It is well known that the directional dependence of two-particle correlations can be used 
to estimate the form of the production region and the magnitude of the mean difference 
of the times of particle emission. We have shown that also the sign of this difference can 
be measured. Thus a new possibility is open to determine which sort of particles (e.g., 
protons or neutrons, pions or bons) was produced earlier and which later. For this we 
suggest to study the correlation functions of two nonidentical particles separately for the 
angles between the relative velocity k'" /JL and the total pair velocity v in the emitter rest 
frame less and greater than 900 
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Figure 1: The pp correlation functions RZ and R"z" (only one-particle spectra are influ
enced by the nucleus charge) and their ratio calculated for the effective charge number of 
the emitting nucleus Z = 51. The particles are assumed to be unpolarized and emitted 
isotropically according to Maxwellian law with the temperature 4 MeV. The distribu
tion of space-time coordinates of the particle sources is approximated by Gaussian law in 
Eq. (4) with 7'0 = 3.5 fm., TO =T = 10, 50 and 100 fm./c. 
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lated for the effective charge numbers of the emitting nucleus Z = 51, "Z" = 51 (only 
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Figure 5: The same as in Fig. 4 for the np system. In particular, (tn - tp ) = -100 fm/c. 


