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Abstract 

A quantum approach to the particle correlations at small relative velocities in 
the presence of a strong Coulomb field is developed in the adiabatic approximation, 
allowing for a reliable determination of the space-time characteristics of particle 
production processes in heavy-ion reactions. 

It is well-known (see, e.g., [1-3]) that the particle correlations at small relative velocities 
are sensitive to space-time characteristics of the production process due to the eifects 
of quantum statistics (QS) and final state interactions (FSI). Usually, only the mutual 
interaction of two particles with a small relative velocity is taken into account. This is 
however questionable in the case of heavy-ion reactions when the particles are produced 
in a strong Coulomb field of residual nuclei. Sometimes the eifect of the nucleus Coulomb 
field is taken into account by a classical shift of the particle momenta. Since this shift is 
typically several tens MeV / c, such a procedure strongly influences correlations of particles 
with diiferent charge-to-mass ratio. Thus in ref. [4] it was argued that np correlations 
can be completely destroyed due to a strong Coulomb repulsion of the protons from the 
emitting nucleus. The "Coulomb shift" procedure however does not take into account 
that both the shift of particle momenta and the correlation eifect develop simultaneously 
and cannot be separated in a simple way. At characteristic emission times T of several 
hundreds fm/c or higher this complicated 3-body problem can be solved in the classical 
approximation. In fact, the classical trajectory calculations show that at r > ~, where 
Ia I, 'Y and v are Bohr radius, Lorentz factor and velocity of the particle pair, the eifect of 
residual nucleus on particle correlations is of minor importance despite the one-particle 
spectra are substantially aifected [5]. To extend the theoretical description to lower values 
of r, we develop here a quantum approach in the adiabatic approximation, assuming the 
relative motion of the two particles much slower than their motion with respect to the 
Coulomb center. 

Let us start with the usual assumption of sufficiently small density of the produced 
multiparticle system in the momentum space, such that the correlation of two particles 
with a small relative velocity is influenced by the effects of their mutual QS and FSI only. 
Define the correlation function R(Pl, P2) of the two particles as the ratio of their diiferential 
production cross section to the one which would be observed in the case of absence of 
the effects of QS and FSI. Introducing the normalized probability WS(Z17Pl; Z2,P2) of the 
emission of two noninteracting particles, with total spin S and 4-momenta Pl and P2, by 
the one-particle sources decaying at the space-time points Zl = {t17rl} and Z2 = {t2,r2}, 
and assuming the momentum dependence of the emission probability inessential. when 
varying the 4-momenta Pl and P2 by the amount characteristic for the correlation due 
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to QS and FSI, we get the well-known result of Kopylov and Podgoretsky, modified by 
ipt ithe substitution of the plane wave e ,xt+ p2,x2 by the nonsymmetrized Bethe-Salpeter 

amplitudes in the continuous spectrum of the two-particle states t/J~~)(xt, X2) [3,6]: 

R(Pt,P2) - L Ja'XI a'X2WS(Xt,PI; x2'P2)It/J~<;';)(Xt,X2)12 
S 

- L PS(pl,p2)(1t/J~~)(x)12)S. (1) 
S 

(2) 

describes the population of the total spin-8 states, e.g., Ps = (28 +1)/[(2s1 + 1)(2s2+1)] 
for unpolarized particles with spins SI and S2. In the case of identical particles, the 
Bethe-Salpeter amplitude should be properly symmetrized: 

(3) 

The amplitude t/J;1~~) (x), depending only on the relative 4-coordinate x ={t, i1 = Xl - X2, 
is obtained from the Bethe-Salpeter amplitude after separation of the two-particle c.m.s. 
motion: t/J;l<:;)(Xt, X2) = eiPX t/J~~)(x), where X = [(PIP)XI + (P2P)X2]/p 2 is the c.m.s. 
4-coordinate and P =2p = PI + P2. At equal emission times t* = ti - t; = 0 in 
the two-particle c.m.s. the amplitude t/J;l~~)(X) coincides with a stationary solution of 

the scattering problem t/J:~~)(T*), f* = Pi = -112, having at large r* the asymptotics 
of superposition of the plane and diverging spherical waves. In fact, it can be shown 
[3] that the amplitude t/J~(:;)(x) can usually be substituted by this solution (equal time 
approximation) . 

We shall now consider particle correlations in the presence of a strong Coulomb field, 
e.g., in heavy-ion reactions. In this case the Bohr radius of the system particle + residual 
nucleus can be rather small (f'V 0.6 fm for the system proton + nucleus with the charge 
number Z = 51) so that the Coulomb interaction in this system can be substantial 
even for relativistic particles. In such a situation, instead of the two-particle Bethe
Salpeter amplitude t/J~~~)(xt, X2), the correlation function is determined by the amplitude 
t/J~~~}(+)(Xl' X2) representing the solution of a complicated multibody problem, taking into 
account interaction between the two particles and also their interaction with the residual 
system described by the quantum numbers {a:}. For the correlation function, defined as 
the ratio of the two-particle production cross section to the one in the case of absence of 
the effects of QS and FSI between the two particles (t/J --+ ;jJ), instead of Eq. (1), we have 

_ 2:s ps(p,p)~(It/J;l~~}(+)(xt, X2) + (-l)st/J::~~}(+)(xt, x2)12)s (4)
R(Pt,P2) - 1 -S{a}(+) 2 -S{a}(+) 2

2:sPS(p,p)2(It/JPIP2 (Xt, X2)/ + It/JP2Pl (xt, x2)I)s 

for identical particles, and 

(5) 
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4 4 4for nonidentical ones. Here (/)s = L{a} J d x1 d4X2WS{a}l/ L{a} J d x1 d x2WS{a} and 
L{a}, taking into account the conservation laws, represents summation over the descrete 
quantum numbers and integration over the continuous ones. Again the smoothness condi
tion is implied, i.e. the dependence of the emission probability of noninteracting particles 
W S{a}(Xt,P1; X2,P2) on the 4-momentap1 and P2 is assumed inessential when varying them 
by the amount characteristic for QS and FSI. 

It can be shown that at (r*) > lal, e.g., in the case of particles evaporated by a 
compound nucleus with the characteristic emission time T > W, and at k* not too close 

"('II 

to the classical boundary k; = (Ial{r*) /2)-1/2, the conditions of the applicability of the 
classical approach are fulfiled and this problem can be solved with the help of the classical 
trajectory calculations [5]. To get rid of the limitations of such calculations, we develop 
below the quantum approach and solve the problem of the two-particle correlations in the 
field of a heavy Coulomb center. 

We consider the emitting nucleus N sufficiently heavy so that the recoil effects can be 
neglected and the c.m. of the system particle + nucleus can be identified with the rest 
frame of the nucleus, which we situate at the origin. Neglecting further the change of the 
nucleus electric charge during the process of particle emission, we approximate it by an 
effective charge Ze. Finally, neglecting the interaction of the particles 1 and 2 with other 
emitted particles, the quantum numbers {a} of the residual system are reduced to the 
effective charge number Z. 

Let us start with the hypothetical case of particles which interact with the charge 
Ze but their mutual interaction is "switched off". In such a situation we can treat the 
systems (1, N) and (2, N) independently so that the interaction with the Coulomb center 
just leads to the substitution of the spatial parts of the plane waves eipiXi by the usual 
Coulomb wave functions: 

(6) 

where lail = 1/(WiziZe2) is the Bohr radius of the system (i, N) generalized to the rela
tivistic case by the substitution mi --1> Wi, 6i = argf[1 + i/(IPilai)] is the Coulomb s-wave 
shift, Ac(IPilai) = 1~~z(O)12 is the Coulomb penetration factor: 

21t' 21t' 
Ac(Y) = -/[exp(-) - 1] (7) 

y Y 

and F(a, 1, z) is the confluent hypergeometrical function (F --1> 1 at ri «: laiD. Thus 

..i.SZ(+)(x x) = eipIXl+ip2X2~:'lZ(r )~:?z(r ) = eiPX e-ik•r ~:,lZ(r )~:?z(r ) (8)0/Pl P2 1 , 2 PI 1 P2 2 P1 1 P2 2· 

Note that a small contribution of spin-dependent electromagnetic forces is neglected in 
Eq. (8) so that '¢SZ ='¢Z is independent of the total spin S of the particle pair. We can 
thus put 2:s ps(I-¢SZI2}S = (I-¢ZI2) in the denominators of Eqs. (4) and (5). 

Let us now adiabatically"switch on" the interaction between particles 1 and 2, i.e. 
consider relative motion of the two particles at characteristic distances much slower com
pared with their motion with respect to the Coulomb center. It is clear that in such a 
case the plane wave e-ik•r in Eq. (8) will be substituted by the Bethe-Salpeter ampli
tude 'Ij;~~) (x) describing the relative motion of isolated interacting particles and that the 
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Coulomb functions q,~z(ri) will be only slightly modified. Neglecting this modification, 
we arrive at our main result: 

"/,SZ(+)(X x) = eiPX"/,S(+)(x)q,:!z(r )q,,!:z(r ) (9)o/PIP2 I, 2 o/PIP2 PI 1 P2 2· 

We will call it adiabatic approximation using a close analogy with the quantum theory 
of the motion of electrons and nuclei in a molecule. In the adiabatic approximation the 
fast motion of electrons in a molecule is separated from the slow motion of nuclei, leading 
to the corresponding factorization of the total wave function. In our problem, the fast 
motion is the motion of the two considered particles with respect to the Coulomb center, 
and the slow one is their relative motion. 

Analyzing the distortions of the Coulomb potentials Vi (ri) between the particles and 
the Coulomb center due to the interaction between the two particles, we have found [7] the 
following sufficient applicability conditions of the adiabatic approximation in the region 
of small k* <"" l/r* we are interested in: 

l/lal <: IPiI, (10) 

These conditions simply reflect the fact that the Coulomb potentials Vi(rd are distorted 
to the extent determined by the ratios of the momenta l/lal and l/[r* + r*2/IJS (k*)I], 
characteristic for Coulomb and strong interaction between the two particles (at k* <"" 
l/r*), to the total particle momenta IPiI. As practically IPiI is larger than the classical 
boundary value Pbi = (Iail (ri) /2)-1/2, we can substitute it by this value to get still more 
sufficient conditions. In the case of two protons emitted by a typical nucleus with Z = 51 
and (ri) = 6 fm (Pbi = 154 MeV /c, a = 58 fm, JO(O) = 7.8 fm), these conditions are not 
very restrictive: 41 ~ 1, r* ~ 1.1 fm. In the case of heavier particles or fragments the 
first condition becomes stronger while the second one is weakened. E.g., for two deuterons 
(Pbi = 218 MeV/c): 32 ~ 1, r* ~ 0.8 fm. 

For quantitative estimates we assume that, in the case of absence of FSI, the compound 
nucleus isotropically emits unpolarized particles with the energies distributed according to 
Maxwellian law with the temperature T = 4 MeV. The distribution of the 4-coordinates 
of the particle sources is approximated by Gaussian law 

rl 2 r2 2ti t~ 
Ws ( XI, PI; X2, P2 ) ex Ps (PI, P2 ) exp( - 2 2 - -22) exp( - 2 2 - -22)' (11) 

ro TO ro TO 

with the parameter ro = 3.5 fm roughly corresponding to the mass number of the emitting 
nucleus A = 120. Requiring the same dispersion of the difference t = tl - t2 of the 
emission times for the Gaussian law and the exponential decay law, the parameter TO can 
be identified with the emitter lifetime T. For evaporation processes T is typically several 
hundreds fm/c (leading to (r*) ~ VT of several tens fm). For the effective charge number 
of the residual nucleus we put Z = 51, which leads to about twice as large mean kinetic 
energy of the emitted protons or deuterons as compared with that of neutrons. The mean 
velocity of pp, pd or np pairs at small values of k* is (v) "" 0.15. The above parameters 
roughly describe particle emission in the reaction 40Ar +108 Ag at 44 MeV/nucleon [5]. 

Instead of the 6-dimensional correlation function R(Pl, P2) we calculate the I-dimensio
nal one RZ(k*) corresponding to Eq. (4) or (5) with the nominator and denominator 
integrated over I-particle spectra tPUi(Pi)/tPPi. To separate pure effect of the nucleus 
Coulomb field on particle correlations, we compare the correlation function RZ(k*) with 
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the one R" Z" (k*) taking into account the effect of the nucleus Coulomb field on one-particle 
spectra but not on particle correlations. For instance, for nonidentical particles 

R"Z" (k*) = 
Ls J tP<7t (Pt) tP<72(P2)0(k* - Iii I)ps (Pt ,P2)(I",:.\tl ( Xl> X 2W)s (Icf1i, Z (it')cI)~z (i2')I2) (12) 

J d3Ul(Pt} d3U2(P2)S(k* -I.P!I)(I~;~z(r/)~~z(r2/)12} . 

Our results confirm the classical trajectory calculations showing negligible effect of the 
residual nucleus on particle correlations at large emitter lifetimes 'T > W. In Fig. 1 we 
present the results of quantum calculations for np system in the region of smaller lifetimes 
where the classical approach is not valid. Our calculations show an increasing influence of 
the residual nucleus with decreasing 'T leading to a suppression of the correlation. Though 
this suppression appeares much less important than expected from the simple"Coulomb 
shift" procedure [4]. For example, at'T = 100 (10) fmlc the np correlation function is 
suppressed at small relative momenta by '" 10 (35)% only. A noticeable suppression at 
'T < 50 fml c is obtained also for pd system ('" 15%) and even for pp system ('" 10%). 

In conclusion we summarize our results. In the adiabatic approximation we have 
developed quantum approach to the correlations of particles produced with a small relative 
velocity in the field of a heavy Coulomb center. We have demonstrated that, contrary 
to some expectations, substantial correlations of particles with different charge-to-mass 
ratio survive even in a strong Coulomb field of residual nuclei in heavy-ion reactions. 
In these processes, the quantum adiabatic approach to the particle correlations at small 
relative velocities can be used for a quantitative study of the space-time picture of particle 
production. 

We would like to express our thanks to N. Carjan, M.1. Podgoretsky and especially to 
J. Pluta for numerous and fruitful discussions. The work of one of the authors (V.L.L) 
was supported by the Grant No NKAOOO from the International Science Foundation. 
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Figure 1: The np correlation functions R Z and R" Z" 
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(only one-particle spectra are influ
enced by the nucleus charge) and their ratio calculated for the effective charge number of 
the emitting nucleus Z = 51. l'he particles are assumed to be unpolarized and emitted 
isotropically according to Maxwellian law with the temperature 4 MeV. The distribu
tion of space-time coordinates of the particle sources is approximated by Gaussian law in =Eq. (11) with ro = 3.5 fm, TO T = 10, 50 and 100 fm/c. 
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