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Abstract 

Since years it has been vividly debated whether multifragmenta
tion is a thermal or a dynamical process. Recently it has been claimed 
[1, 2J that new data allow to decide this question. The conclusion, 
drawn in these papers, are, however, opposite. vVhereas [1] states 
that the behavior of different observables as a function of the frag
ment multiplicity excludes a thermal origin of the fragments in [2J it 
has been argued that data show a first order phase transition between 
a liquid and a gaseous phase. It is the aim of this paper to show 
that both conclusions are premature. They are based on the salient 
assumption, that the system is sufficiently large to be susceptible to a 
canonical description. vVe will show that this is not the case. A micro 
canonical approach describes the data as good as dynamical calcula
tions. Hence the quest for the physical origin of multifragmentation 
continues. 

Introduction 

Since almost a decade the study of multifragmentation characterized by the 
multiple production of intermediate mass fragments (3 ~ Z ~ 20) is one 
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of the central issues in intermediate energy heavy ion collision studies. For 
beam energies in between 50A MeV and 400A lVleV multifragmentation ha.s 
been identified as the dominant reaction channel and up to 15 intermediate 
mass fragments (IMF's, Z ~ 3) have been observed in a single event. 

The mechanism of multifragmentation, however, remained rather debated 
because the different mechanisms proposed predict the same functional de
pendence for several key observables. If the disintegration of the nucleus is 
instantaneous each nucleon keeps its momentum and one expects an avera.ge 
fragment kinetic energy of 3/5EF [3] independent of the fragment size, where 
EF is the Fermi energy. The same independence one expects if the fragments 
are formed very late, after the system has been expanded while maintaining 
thermal equilibrium. This requires that the disintegration is very slow. Here 
the average kinetic energy is 3/2 T, where T is the temperature at freeze 
out. The same ambiguity one finds for the mass yield where thermal[6] and 
non thermal systems [4, 5] show the same form. Hence more complicated ob
servables have to be employed to distinguish between the different possible 
reaction mechanisms. 

Recently it has been conjectured by Toke et al. [1] that one can distin
guish between a statistical process and a dynamical process by investigating 
several observables as a function of the fragment multiplicity. In analyz
ing their data, obtained in their limited acceptance region, they made the 
following observations: 

1. 	 The average transverse kinetic energy of the intermediate mass frag
ments (IMF's) is independent of the number of observed fragments. 

2. 	 The average light charged particle (LCP) multiplicity as well as the 
total kinetic energy of the LCP's is also independent of the number of 
observed fragments. 

They considered this observation as contradictory to the assumption that the 
system is in equilibrium and argue as follows: Independent of the unknown 
impact parameter b the energy per nucleon and hence the temperature in the 
center of mass is almost identical. By varying b one changes the size of the 
source but not its temperature. Indeed, the observed average kinetic energy 
of the LCP's is independent of the number of IlVIF's. If the temperature of 
the system is constant in thermal equilibrium the ratio between LCP's and 
IMF's is determined by the chemical potential and hence fixed. Thus the 
increase of the particle number (sum of free nucleons and those entrained in 
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fragments) in the observed phase space interval has to be shared between the 
fragments and the free nucleons. Due to 2.) this is obviously not the case. 

The opposite conclusion has been drawn from the analysis of experimental 
data by [2]. In this paper it is the isotopic yield ratio of fragments which is 
used to determine the temperature of the systems. Plotted as a function of 
the excitation energy of the system the temperature shows a plateau. The 
claim that the system is in thermal equilibrium is based on the similarity of 
this observation with the latent heat observed in a first order phase transition 
in infinite systems. 

Both interpretations of the experimental data rely on the assumption 
that the equilibrated source is sufficiently large to be treated as a canoni
cal system. It is the first purpose of this article to show that this salient 
assumption is not justified. Using a microcanonical statistical model [7] we 
reproduce the results of ref. [1]. This renders their conclusions premature. 
Taking the temperature fluctuations in finite size systems seriously we will 
show that the variance of the temperature distribution is not negligible and 
hence one cannot distinguish between a constant and an increasing temper
ature as a function of the excitation energy of the system. Furthermore the 
temperature fluctuations give rise to a nontrivial relation between the appar
ent temperature measured by the fragment yields and the temperature of the 
emitting source. Thus the conclusions of ref. [2] that data show an allusion 
of a first order phase transition are premature as well. The experimental 
determination of the mechanism which causes multifragmentation remains 
to be a challenge. 

The second purpose of this article is to show that microcanonical statisti 
cal models predict strong correlations for systems as small as those observed 
in heavy ion reactions. 

The third purpose is to show that - even worse - the observables discussed 
in ref. [1] do not allow to distinguish between a dynamical and a statistical 
reaction scenario. For that purpose we compare the results of the micro
canonical statistical model [7J with those obtained by Quantum Molecular 
Dynamics simulations [8J. The analysis of the latter shows a nonstatistical 
origin of the fragments[9, 11, 10J (although the model itself is able to follow 
the evolution of a system towards equilibration if there were any). 
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2 Microcanonical and Canonical Systems 

Before we start out with the detailed calculation a reminder on the differences 
between the microcanonical and the canonical approach to study systems in 
equilibrium is appropriate. For this discussion we will be guided by the ques
tion at hand: what can we learn about the system by analyzing observables 
measured in a subsystem. This subsystem may be the limited part of the 
phase space which is free from a contamination by preequilibrium emission 
or may be the ensemble of fragments in experiments where nucleons cannot 
be measured. This question can be discussed best if we divide the system, 
which is characterized by its macroscopic parameters, the energy E, the par
ticle number N and the volume V, into two parts, the observable and the 
unobservable part of phase space. 

A microcanonical description of an equilibrated system is based on the as
sumption that in statistical equilibrium each microstate which is compatible 
with (E,V,N) is occupied with the same probability. gabs (Eabs, Vab.s, Nabs) is 
the number of microstates available in the observable sector which is charac
terized by (Eabs , Vabs, Nabs). The number of microstates of the whole system 
is consequently 

(1) 
Vabs is considered as constant here. The entropy of the system is given by 
smc = k log C(E, V,N) (k being the Boltzmann constant) whereas the en
tropy of the observable subsystem is S;;b~ = k log gabs (Eabs, Vabs, Nabs). Know
ing the functional dependence of S on E and N we can easily calculate the 
temperature liT = ~~ and the chemical potential f = ~~. For the combined 
system with 

C(N, E, Eabs) = I: gabs (Nabs, Eabs)gunabs(N - Nabs, E - Eabs) (2) 
Noba 

one finds 

k8 lnC 

8Eabs 
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N b Tobs T unobs 

o s 

For fixed values of E,N we may find in the both subsystems different values 
Eobs's and Nobs's and consequently a distribution of Tobs's and /-lobs'S. Only 

. k81nG(N E Eobs) 0 th t t . b th b tat the maXImum BE' , = e empera ures In 0 su sys ems 
obs 

agree. Therefore generally it is not possible to infer from the temperature, 
chemical potential, particle number or energy of the observable subsystem 
the ~orresponding values of the whole system or the other subsystem and 
VIce versa. 

This is of course completely counterintuitive because from daily life we 
are used to large systems. Because for a given energy of the total system 
the fluctuations of the temperature in a subsystem are ex ffi, where N is 
the number of particles in this subsystem, in macroscopic systems the fluc
tuations of the temperature can be neglected. In other words, if the system 
is sufficiently large (E ----t 00, N ----t 00) gobs· gunobs is very sharply peaked 
and the sums in eq. 1 can be replaced for all practical purposes by the 
largest term. Then the entropy becomes additive and the temperatures and 
chemical potentials in the subsystems are identical. Under this condition 
the microcanonical and the canonical calculations coincide. If this is not the 
case the (isolated) system is not susceptible to a canonical but only to a 
microcanonical treatment. 

For the interpretation presented in [1, 2] it is crucial that the system is 
large and energetic enough to justify a canonical treatment. In ref. [1] the 
observed subsystem can be identified with the limited acceptance region of 
the experiment, in ref. [2] with the subsystem of fragments which is used to 
determine the apparent temperature. It is this apparent temperature which 
has a plateau as a function of the excitation energy of the equilibrated source. 

To verify if the nuclear system is sufficiently large to justify a canonical 
description we employ one of the state of the art statistical models, the 
Statistical Multifragmentation Model (SMM), which has been developed by 
the Copenhagen group and has later been improved by Botvina [7]. There 
all possible microstates of the nuclear system are carefully elaborated. This 
model has been employed frequently to interpret heavy ion reaction data. 
It suffers, however, as every model of this kind, from 3 unsolved problems: 
a) from the problem how to treat particle unstable nuclear levels, b) from 
the not well known level density at large excitation energies and c) from the 
fact that there is no experimental information on the freeze out volume. The 
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results of statistical model calculations depend on the proposed solution of 
these problems [13]. Therefore, to study the conjecture of [2], where this 
problem becomes crucial, we employ in addition a simpler microcanonical 
model which allows for an analytical solution. It serves as well the purpose to 
understand qualitatively the fluctuations observed in the SMM calculations. 
For a general introduction to the statistical physics of multifragmentation we 
refer to ref. [12]. 

Comparison with data 

For our studies we use data and simulations for central collisions of the 
reaction 50A MeV Xe + Sn where precise data are available, taken by the 
INDRA collaboration[14, 15]. Both models, SMM and QJVID, have been 
extensively used to interpret this reaction [11, 14]. As said the analysis of 
the QMD calculations shows that in this approach the system never passes 
through a state of thermal equilibriun1 [9, 10] whereas the application of SMM 
is only justified if such a state is formed. Thus the reaction scenarios in these 
models are orthogonal. For the comparison with the data both calculations 
have been filtered with the experimental acceptance. To model the centrality 
it turns out [11] that one has to require for the (filtered) QMD simulations 
that the total transverse energy of LCP's is larger than 450 MeV. For the 
statistical model calculations we use a slightly different centrality cut. For a 
comparison of both cuts, whose difference is of no importance here, we refer 
to ref. [11]. The increase of the average transverse energy of the fragments as 
a function of their mass, observed in the experiment, is larger than predicted 
in SMM [14] calculations. Therefore one has to modify the statistical model 
calculations by adding a fourth system parameter, a collective energy, which 
is parameterized as Ecoll = c * A, where c is a parameter which remains to 
be determined and A is the fragment mass. The best agreement between 
experiment and SMlvI calculation is obtained with the following set of input 
parameter: 

freeze out density: 1/3po 
source SIze: Zs=78 As = 186 
exci tation energy: Ethermal=7A MeV Ecoll=2.2A MeV 
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Even central collisions at intermediate energy have a binary character [11] 
and consequently emission of particles from residues close to beam or target 
velocity spoils the spectra of particle emission from a possible thermal source 
at rest in the center of mass. Therefore a meaningful comparison between 
statistical model calculations and experimental data is only possible around 
OeM = 90 0 vVe subdivide the experimental data and the QMD simulations• 

into two equal size 27r intervals: 
Bobs: 600 

::; OeM::; 1200 

Bunobs: OeM < 600 
, OeM> 1200 

• 

In Bobs we observe a flat angular distribution and a constant average energy 
of IMF's and LCP's [15] as a function of the emission angle, both being 
prerequisites for a statistical equilibrium. In Bunobs, on the contrary,in the 
thermals language a preequilibrium component is superimposed to the ther
mal component. QMD which does not separate the phase space into two 
contributions but gives an continuous distribution for all observation angles 
describes this region well [11]. 

The theoretical as well as the experimental fragment energy distributions 
show an exponential shape. In fig. 1 we display on top the slope of the kinetic 
energy spectra of the fragments. The inverse slopes T are converted into an 
energy. On the bottom we show the charge yield distribution. We display 
the results for QMD and SMM calculations in comparison with the INDRA 
data. As one can see, these are well reproduced in both theories, underlining 
the above mentioned observation that these observables are not sensitive to 
the reaction mechanism. 

In figure 2 we plot for Bobs different observables as a function of the I:NIF 
multiplicity. The left column displays the experimental results for the central 
reaction 50 AMeV Xe + Sn as measured by the INDRA collaboration. 

In the first row we display the LCP multiplicity as a function of the 
number of observed IlVIF's. At higher energies, where the number of LCP's 
is much larger, the LCP multiplicity is frequently considered as a measure for 
the centrality of the reaction (what is confirmed by the QMD calculations). 
As can be seen from the panel, in our case the multiplicity of LCP's is 
independent of the IMF multiplicity. Thus one may conjecture that the 
(central, Etrans 2 450 MeV) events with different IMF multiplicities in Bobs 

have the same average impact parameter. Also the average kinetic energy of 
LCP's and IMF's, displayed in the second row, is independent of the number 
of IMF's. The third row displays the sum of the kinetic energies of the 
IMF's and LCP's, respectively. We observe, as expected from row 1 and 
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2, a constant value for the LCP's and a linear increase for the I:NIF's. The 
fourth row displays the total kinetic energy in Bobs divided by the sum of 
the number of LCP's and IMF's. In a canonical system of noninteracting 
particles this quantity is related to the temperature by T = ~ %-. We see 
that the average value decreases with decreasing fragment number and the 

fluctuation are considerable ( < 6E/ E >= VE2 - E2 / E = 0.2). The 
fourth row shows as well the total number of nucleons (free or as part of the 
fragments) in Bobs. It varies by almost a factor of 3 although the number of 
LCP's stays constant. 

These observations, although presented here for another reaction, agree 
well with the findings of ref. [1]. Thus, if their arguments were valid, we 
would arrive at the same conclusion. 

However, we are dealing with a rather small system. Fluctuations between 
Bobs and Bunobs may be important and hence the system may be too small for 
a canonical description. To see whether this is true we performed the same 
analysis using the microcanonical statistical model. The results are presented 
in the second column of fig. 2. We see that the statistical model results agree 
well with experiment. The results are, however, quite different from those 
of a canonical description of the data. There I-l and T are identical in both 
subsystems once E,N,V are given and so is the ratio between IMF's and LCP's 
which is fixed by the chemical potential. Thus fluctuations (between the two 
small subsystems Bobs and Bunobs) and correlations (due to the conservation 
of N and E) are not only important but essential for the results. 

Does this result mean that data prove that multifragmentation is a statis
tical process? To answer this question we performed calculation with QlVID 
[8] The results are presented in the third column. Besides of the too small av
erage fragment energy ( which is a consequence of a shortcoming of Q1VID, the 
artificial long range of the attractive nuclear potential which suppresses the 
Coulomb repulsion [8] and therefore decreases the average fragment energy) 
also the results of QMD agree in the error bars with those of experiment. 

Thus we arrive at the conclusion that even this quite involved analysis of 
the fragment production does not allow to distinguish between a statistical 
and a dynamical origin. One should keep in mind, however, that QMD is 
able to describe both, Bobs and Bunobs, whereas a comparison with SM1VI 
is limited to Bobs because in Bunobs nonstatistical processes dominate the 
fragment production. 
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How the correlations in the statistical model calculation show up in detail 
is shown in fig. 3 where we display the SMM results before filtering. The 
upper panel shows the fragment multiplicity in 47r and in Bunobs as a function 
of the fragment multiplicity observed in Bobs. Of course, without filtering Bobs 

and Bunobs are two arbitrary 27r bins which should not differ. However, we 
observe strong correlations between the fragment multiplicities in the two 
27r intervals. In the lower panel we compare the true fragment multiplicity 
distribution in 47r with that obtained by a convolution of the multiplicity 
distribution observed in one 27r subsystem. If no correlations were present 
we would expect for 47r a convolution of the distribution observed in 27r. This 
is obviously not the case and consequently it is impossible to infer in systems 
as small as this the multiplicity distribution in 47r from a 27r subsystem. 

Temperature fluctuations in a small system 

To address the conjecture of the second paper [2] it is important to now the 
temperature fluctuations in the relevant subsystem under the condition that 
the total energy of the systen1 is constant. This question is not easy to ad
dress because the relevant subsystem is the environment of those fragments 
which are used to determine the temperature by calculating isotope ratios. 
This information is not available in SMM. Therefore we assume that the tem
perature fluctuations of the subsystem consisting of the intermediate mass 
fragments Z 2:: 3 is a good measure for those of the above mentioned observ
able. We use the above mentioned microcanonical SMM calculations and 
identify the two subsystems with the fragments with Z 2:: 3 and the LPC's, 
respectively. To calculate the temperature fluctuation we employ eq.3. 

In fig. 4, top, we display the number of events (left) and the average num
ber of IMF's (right) as a function of the total number of nucleons entrained 
in the fragments and the total fragment energy. We see a rather broad dis
tribution. In the middle we present the difference of the temperatures and of 
the chemical potential in the two subsystems (LPC's and IMF's) as a func
tion of the total mass and the total energy of all IMF's. For calculating the 
temperature difference we have assumed that fA - A~ T2~~2/4 where T is 
assumed to be 7 MeV. We see a rather broad distribution of the chemical po
tentials and of the temperatures. The probability distribution of fragments 
to be emitted in a microstate which shows a I flT I and a chemical potential 
difference of I flp I, respectively, between the two subsystems is plotted in the 
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bottom row. The chemical potential I /:).J-l I in units of the temperature fluc
tuates by about to 40% around the mean value 0 whereas the variation of the 
distribution of the temperature difference between the subsysten1s is about 
1.7 MeV. More precisely the temperature in the subsystem of the fragments 
cannot be determined. 

To show that these results are generic and do not depend decisively on the 
mentioned problems of these microcanonical statistical model approaches we 
employ a much simpler model to confirm the order of magnitude of the above 
result. It has the advantage that is allows for analytical results. Although this 
model neglects the long range Coulomb force which make thermodynamics 
much more complicated it is sufficiently realistic to understand the physical 
origin of the fluctuations. 

VVe consider a noninteracting system consisting of NF fragments and NN 

free nucleons. The energy E = EF + EN of the system is constant. We cal
culate the fluctuation of the total fragment energy and hence the fluctuation 
of the temperature if only fragments are measured. The temperature of the 
whole system is fixed once density, particle number and total energy are 
gIven. 

The probability to have a total fragment energy EF is proportional to the 
available number of microstates for this division of the energy: 

eS(EF,p,NF)/k+S(E-EF,p,NN )/k 
(6)P(EF,p,NF) = eS(E,p,NF+NN)/k 

Assuming that we can use the ideal gas entropy 

5 p 47rmE 3 

S(E,p,N)=Nk(2+ ln (h3( 3N )2")) (7) 

the probability to find an energy fraction of EF / E for the total energy of the 
fragments is given by 

P(x = E / E N N) = r(2 + ~) (1 - X)3NN/2x3NF/2 (8)
F , F, N r(l + 3~F )r(l + 3~N) 

where N = NF + NN. For the standard deviation of the energy /:).EF = 

VE} - EF2 we find 

3NF +26(N-NF)+4 6(N-NF)+4 

(3NF + 2)(3N + 6)·3N + 4 (3N + 6)(3N + 4) 
(9) 
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For central reactions 50A MeV Xe+Sn we have typically NN = 50 and NF = 
8. Thus we find ~/ = 0.24 and hence about the same value as in the SMM 

approach. Thus the order of magnitude of the fluctuation is given by the size 
of the system only and does not depend on the details of the Hamiltonian or 
the freeze out volume. 

This has consequences for the value of the apparent temperature mea
sured by an isotope ratio. Because the isotopic yield ratio depends expo
nentially on the temperature (~ ex: exp - (El - E 2 ) IT) the mean value of 

the apparent temperature Tapp = (E2 - EdlIn < ~ >, where < ~ >= 
JdT!(T)~I JdT!(T), differs from the mean value < T > of the temper
ature distribution f(T) in the subsystem of the fragments. On the other 
hand the apparent temperature is bounded from above because above a crit 
ical temperature between 6 and 8 MeV, depending on the microcanonical 
program, fragments are not stable anymore [17]. Therefore the increase of 
the apparent fragment temperature is smaller than that of < T >. That 
may be the origin of the observation that the mean value of the apparent 
temperatures increases slowly with increasing excitation energy. 

Consequently, the argument, that the experimental data present evidence 
that in nuclear reactions a liquid gas phase transition can be observed, which 
was advanced in ref. [2], has two shortcomings. First, the temperature 
of the system extracted from the isotope ratios has large error bars, and 
hence it is not possible to distinguish between an (expected) increase of 
the temperature with beam energy and a constant value (which has been 
interpreted as sign of a latent heat). Second, the nonlinearity of the isotope 
ratio with temperature in connection with upper limit due to the instability 
of the fragments limits the apparent temperature to a small interval. Its 
dependence on the excitation energy of the system is small as compared to 
that of the mean value of the temperature distribution of the subsystem. 

conclusions 

First of all we have found that the nuclear systems of the size as expected to 
be formed in heavy ion reactions are too small to be susceptible to a canonical 
description but have to be analyzed in microcanonical approaches because 
the results of both approaches differ substantially. 

Therefore, the conjecture of Toeke et al. that the functional dependence 
of the kinetic energies of fragments and light charged particles on the ob
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served number of IMF's may be used to distinguish between a statistical and 
a dynamical reaction mechanism, which was based on a canonical description, 
cannot be substantiated by detailed calculations. On the contrary, dynamical 
and microcanonical calculations give almost identical results. QNID calcula
tions predict that the reaction never comes to a statistical equilibrium and 
is completely determined by the dynamics [9, 11]. Hence for a decision upon 
the reaction mechanism one has to study other observables. 

Another result of the microcanonical analysis is the observation of large 
fluctuations of the temperature if it is determined from fragments only. Con
sequently, due to the nonlinearity of the isotopic yield ratio as a function of 
the temperature and due to the fact that at high temperature, fragments do 
not survive, the apparent temperature measured from the isotopic yield in
creases slower as compared to the mean value of the temperature distribution 
of the fragments. In any case the relation between the apparent tempera
ture and the true temperature liT = ~~ is not trivial. Hence the apparent 
temperature can not serve as a measure for the system temperature. If the 
fluctuation of the temperature distribution are properly taken into account, 
it is impossible to distinguish between a first order phase transition (assum
ing it manifests itself in finite systems as a latent heat) and an increase of 
the apparent temperature with increasing beam or excitation energy. Thus 
also the claim that data present evidence for a first order phase transition 
is premature. These observations of our simple model remains valid also in 
the framework of microcanonical models as can inferred from a comparison 
of [17] and [18]. 

Acknowledgment: We thank R.Bougault et M. D'Agostino for communi
cating to us the results of their SMM calculations which have been used for 
this analysis. 
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Figure 1: Fitted slopes and the charge distribution for QMD, INDRA and 
SMM data in 60 0 :S OeM :S 1200 for 50A Me V Xe + Sn, central collisions. 
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Figure 2: As a function of the IMP multiplicity observed in 60 0 S OCM S 
1200 we display for central events 50A Me V Xe + Sn several observables 
in 600 S OCM S 1200 

: The LCP multiplicity (top row), the average kinetic 
energy of IMP's and LCP's (second row), the total energy of IMP's and 
LCP's (third row), the average kinetic energy of all particles and the number 
of nucleons (forth row). 
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Figure 3: Correlations as predicted by SMM calculation. We display the 
mean value of IMF's in the Bunobs and in 47r as a function of the fragment 
multiplicity in Bobs (top). Top right we display the actual IMF multiplicity 
distribution as compared to a convolution of the distributions observed in Bobs 

and Bunobs. The statistical model calculations are done for central reactions 
50A MeV Xe + Sn 

16 




2_~O 

/0 
< 

0.6 
0.4 
0.2 

a 

e,t""j>y / 

.I,~l;t 

Temperature difference 

~::tS: I ~::G I
0:'--'---'----'--:'-0.2::-"---L-'--::"-c .6 ,----' ,----' ,-:,' a 2 4 ' ~ , ,0.4--'----'--'-:0:'-:- 0.8 

Il.T/ MeV/ 

Figure 4: Top: Number of events and number of fragments as a function of 
the total mass of all fragments and of their total energy. Middle: Distribu
tion of the temperature difference and the difference of the chemical poten
tial. Bottom: Distribution of the absolute value of the temperature difference 
distribution and that of the distribution of the difference of the chemical po
tentials between the subsystems formed by fragments and LPG's, respectively, 
for a SMM calculation adjusted to describe the INDRA results 
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