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Abstract The (3 x + 1)/2 problem is generalized into the n-fUl'cation problem (li x + mi)/n 
where i E [0, 1, .. . n -1] is the value modulo n of x. It is shown that, under some constraints on 
li and mi, the main bijection property between the k less significant digits of the seed, written 
in base n, and the sequence of generalized parities of the k first iterates is preserved. This 
property is used, first, to build a cipher and, second, to investigate a stochastic treatment of 
ensemble of large value seeds. 

Introduction 

The (3x + 1)/2 problem deals with the sequence of iterated positive integers Xn defined in an 
iterative way by the relations 

Xn+l x n /2 if Xn is even 
(1)

{ Xn+l (3xn + 1)/2 if Xn is odd 

Starting from Xo (the seed) it has been checked [Leavens and Vermeulen 1992] that for 
all seeds up to 240 

, the sequence of iterates ends with the cycle 2, 1, 2, 1 ... and it has been 
conjectured that this remains true for all positive seeds. Unfortunately neither the conjecture 
has been proved 1, nor a counter example given: this leads some people to believe that the 
problem may belong to the class of undecidable problems introduced in Mathematics by Godel 
and Turing [Conwey 1972]. 

Experience shows that for such hard problems it may be interesting to embed them in a 
more general one and to see what happens (stability of the results, appearance of new properties 
... ). This is one of the purpose of this paper with a generalization of the bifurcation problem 
to an n-furcation. In this spirit another embedding can be found in the paper of Chamberland 
[Chamberland 1996] who extends to the real line the relation (1) only defined for integer nunl
bers. 

lWhile this paper is submitted, S. Fanelli [Fanelli 1999] claims that he is able to conclude. Nevertheless, 
our paper is not devoted to the proof of the conjecture but, rather, gives some applications of the generalized 
problem. 
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Another goal of our paper is to introduce a stochastic approach to this problem. First steps 
in this direction have been initiated by Terras [Terras 1976] and around 1990 this approach was 
independently s tudied by Lagarias [Lagarias and Weiss 1992] and ourselves [Feix et al. 1994, 
1995]. This paper completes and precises the previous ones , and, moreover gives as possible 
application the building of a cipher. 

Such a stochastic approach deserves obviously long comments. It may be pointed out 
that, since we have a perfectly deterministic process, a stochastic approach is unnecessary, 
irrelevant and may lead to errors. Statistical physicists have, since Boltzmann, faced this type 
of discussion (with sometimes very hot disputes). Of course in statistical physics we deal with 
the N-body problem which , as soon as N > 2, is totally non integrable while our present 
problem is integrable by pieces. But two kinds of results can be expected 

- while the exact "trajectory" of a seed (i.e. the value of its nth iterate) is totally lost in this 
stochastic approach, the behaviour of a large ensemble of seeds can be obtained. This is 
the usual statistical physic result. 

- Deterministic sequences can look like random ones. This is the basic justification of all 
"pseudo-random numbers generators" used in computational physics. This is a very tricky 
problem and the statistical approach of sequence (1) will provide interesting remarks. 

The paper is organized as follow: in section 2 we quickly remind the bijection theorem 
which provides partial justification for the stochastic approach . In 3 we give the generalization 
of the (3 x + 1)/2 problem introducing the n-furcation (I x + m)/n. Section 4 shows that the 
freedom in the choice of I, m and n allows the construction of cycles with period and sequence 
of iterates arbitrarily chosen. Section 5 consider the inverse problem (building the tree from 
the cycle 1-2 and its antecedent). In section 6, the structure of finite sequences of iterates is 
studied for different values of I, m and eventually n. It is shown that a cipher can be build as 
an application. Vie come back section 7 to a mixing mechanism (in fact a direct consequence 
of the bijection theorem given section 2) and introduce in section 8 the random walk game and 
its numerical simulation. Section 9 gives our conclusion . 

The Bijection Theorem 

The bijection theorem states that a bijection exists between the last k bits of a ,,"C'pd written in 
base 2 and the parities of the k first iterations given by (1). We simply show on an example the 
precise meaning of the theorem while proofs can be found in [Feix et al. 1994] . Table 1 gives 
the 16 numbers from 0 to 2n 

- 1 written in base 2 with n = 4 bits. The third column gives the 
parities of the first 4 iterates of the corresponding number with the following convention: an 
even iteration is noted by 0 and an odd iteration by I , the number on the right in this column 
corresponding to the first iteration. For example, 1001 i. e. 9 gives the sequence 14, 7, 11 and 
the parity sequences I P II written in our convention 1101, i.e 13. 
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number parity sequence 
base 10 base 2 convention 

even:::::: 0 odd:::::: 1 
traduction 
in base 10 

0 0000 0000 0 
1 0001 0101 5 
2 0010 1010 10 
3 0011 0011 3 
4 0100 0100 4 
5 0101 0001 1 
6 0110 0110 6 
7 0111 0111 7 
8 1000 1000 8 
9 1001 1101 13 
10 1010 0010 2 
11 1011 1011 11 
12 1100 1100 12 
13 1101 1001 9 
14 1110 1110 14 
15 1111 1111 15 

Table 1: The 4 first sequences of parity corresponding to the 16 first positive integers. 

Focusing our attention respectively on the last, the two last and three last bits of the num
bers on one side and the first, the two first and three first iterations on the other side, we notice 
that the k last bits completely define the k first iterations (here for k ::; 3). Moreover , taking 
the 4 bits, we notice that there is a bijection between the 24 elements of the numbers running 
from 0 to 15 and the 24 possible sequences of 4 iterations. 

The connexion wi th a stochastic treatment is based on this bijection . Selecting randomly 
the k bits of the seed produces a sequence of parities for the successive iterates which cannot 
be distinguished from the sequence obtained by tossing k times a coin. Notice that from the 
point of view of information theory the result is quite normal. The data of the k bits of the 
seed gives the same quantity of information as the data of the parities of the k first iterates. 
In fact the building of the seed from the sequence of parities is as simple as the direct process 
(see section 6 of this paper). The question is now to understand the influence of the finiteness 
of the seed. We will come back to this problem after the generalization of the next section. 

3 Generalization: the (l x + m)/n problem 

Let us consider an iteration giving Xp+l as function of xp accordingly the following rules where 
xp E N+, li l mi, n are integers, positive for li and n , possibly negative for m 1 , with i = 
0, . . . , n - 1. V'le denote xln the value of the integer x modulo nand 
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Ii 
0 1 2 3 4 

0 0 0 0 0 0 
1 0 1 2 3 4 
2 0 2 4 1 3 
3 0 3 1 4 2 
4 0 4 3 2 1 

ap 

Ii 
0 1 2 3 4 5 

0 0 0 0 0 0 0 
1 0 1 2 3 4 5 
2 0 2 4 0 2 4 
3 0 3 0 3 0 3 
4 0 4 2 0 4 2 
5 0 5 4 3 2 1 

Table 2: Conditions for the bi

jection theorem for n = 5. The Table 3: Conditions for the bi

table gives all possible product jection theorem for n = 6. The 


ap1ils when and lils take table gives all possible product
apl5 

all possible values. aplil6 when apl6 and lil6 take 
all possible values. 

if xpln = i then Xp+l = (Ii Xp + mi)/n (2) 

As there are n possible issues, such a process will be called an n-furcation. 

In addition we must add some constraints on mi and Ii' First, Xp+l must belong to N+. 
\Vriting xp = apn + i, with i = 0, 1,2, . . . n - I, we have, 

(3) 


and a first condi tion is 

(4) 


Second, the bijection theorem imposes new constraints: after the first iteration given by 
(2), the n possibilities must exists for the next one. Writing the number xp in base nand 
defining ai = (i Ii + mi)/n, which is now an integer, because of the first condition , we have to 
check that when ap In goes from 0 to n - 1 for each li In the product ap Ii In goes from 0 to n - 1. 
Notice that ai plays a role in defining the bijection but not on its existence which only depends 
on ap lil n with ap and Ii going from 0 to n - l. 

Tables 2 and 3 show the constraints for n = 5 and n = 6. For n = 5, we see that, except 
for the first line ap Ii brings the five digits 0, I, 2, 3, 4. Consequently, we must simply take all 
lils i- O. But for n = 6 only the lines Ii = I, Ii = 5 allmv the continuation of the bijection and 
we mllst consequently have for all Ii , Ii 16 = 1 or lil6 = 5. 

It is easily proven that 

. for n = 2 we must have all Ii odd, 
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2 0 1 2 3 4 
i·t 4 1 3 6 2 

mi 5 4 -1 2 -3 

Table 4: An example of the coefficients ii and mi for a pentafurcation satisfying the bijection 

criterium: iii + mil n =5 = O. 

for n = 3 we must have ailli such that lil3 1'= 0, 

for n = 4 we must have alii; such that iil4 1'= 2 and lil4 1'= 0, 

for n = 5 and 6 the constraints have been given above while for n = 7 the only constraint 

is iil7 1'= O. 

Table 4 gives the example of a pentafurcation with the indicated values of i; and m i which 
satisfy (3) and the relation ii 15 1'= o. 

3.1 	 A consequence of the bijection theorem: divergence from or 
convergence to a small number (or a small cycle) of the iterated 
numbers 

We suppose a very large seed where the k digits have been taken at random. If k ---t 00 

the n issues will appear with the same frequency in the list of the iterations given by the 
seed. Supposing a large seed and consequently large subsequent iterates we see that , roughly 
speaking, the seed will be multiplied, after k iterations, by 

k j nik j nikjn lkjn / ki o 1 	 2 . . . n-l n (5) 

The decrease or increase of the sequence at least for the k first steps will depend on the 
value of A given by 

(6) 


If A > 1 the sequence diverges to infinity and if A < 1 it decreases. In both cases a trapping 
in a cycle is possible but the bijection theorem indicates that if the digit of the seed are taken 
randomly the falling in the trapping cycle has very small probability. This is no more true 
when we approach small numbers . It can be easily checked that the bijection x/2, (3 x + 1) / 2 
decreases, x/2, (5x + 1)/2 increases and for the trifurcation x/3, (4x + 2)/3, (7x + 4)/3 for 
respectively Xl3 = 0, 1,2, we have a slight increase since 4 x 7/ 33 = 28/27. 

3.2 	 Guessing the nature of the sequence 

Suppose you are given a sequence of parities (for a bifurcation) or a sequence of the na ture 
0, 1, ... n - 1 of the successive iterations (for a n-furcation) , but you are told that, may be. 
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the sequence has nothing to do with the n-furcation game and has been obtained by a truly 
random process. Then you are asked to guess how the sequence has been obtained. 

If the rules of the (eventually used) game have been honestly communicated the best way 
is to use the bijection theorem to build the seed . If after a certain number of steps the digits 
obtained are systematically zero it is likely that we have obtained all the significant digits of a 
seed which is certainly finite. But the given sequence can be too short compared to the numbers 
of digits of the seed. In that case you cannot decide . The case where the number of digits of 
the seed is equal to the number of iterates corresponds to the possibility of building a cipher 
and will be studied section 6. 

But things can be more difficult if you are not given the Ii and mi of the game (n is 
specified) and even worst if you are given a wrong set of Ii, mi. It would be interesting to 
study the sequence of generalized parities especially for diverging series and to compare their 
pseudo randomness to the sequences obtained with the actual random number generators used 
in computers. 

An equation for building cycles 

Although n-furcation can be also studied, we will treat only the bifurcation case x /2, (I x+m)/2 
problem. Suppose we want a N-period cycle with a given sequence of parities. It is easily proved 
that Xo the first term of the cycle, I, m and N are connected in the following equation 

(7) 

In equation (7), J is the number of odd parities and J( is given by applying the N iterations 
(either x/2 or (I x + 1)/2) to the seed O. Note that m has been taken out and figure explicitly 
in equation (7) . 

In the following example with I = 3, we look for m such that a cycle of period 5 having the 
sequence J, J, P, J, P for which J stands for odd and P for even . Consequently in equation 
(7) we have J = 3, N = 5. 

The number J( is computed in the following way. The J iterate of 0 is 1/2, the second 
iterate is again J : applied to ~/2 it gives (3/2)(1/2) + 1/2 = 5/4. The third is P : applied to 
5/4 it gives 5/8. The fourth is J : Applied to 5/8 it gives 15/16 + 1/2 = 23/16. The fifth and 
last is P and gives J( = 23/32. Equation (7) writes 

5xo = 23m 

Since 23 cannot be divided by 5 the solution with the smallest m is m = 5 and Xo = 23 with 
the cycle 23 , 37,58, 29,46,23,37, . ... 
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Sometimes equation (7) can be simplified. It is the case in the example with l = 3 and the 
sequence IIIIPIJIPP? Now N = 11, J = 7 and equation (7) vvrites 

-139xo = 2363m 

Since 2363/139 = 17 we get m = -1 and Xo = 17 a member of the well known 11 period 
cycle of the (3x - 1)/2 problem. 

A solution always exists for equation (7) : m = 2N - [1 and Xo = 2N K (always an integer) . 

If we could find Nand J such that 

(8) 

we would obtain a cycle for the (3 x + 1)/2 problem I Unfortunately the only solution is 
N = 2, J = 1 which leads to the trivial cycle 2, l. Of course, other solutions may exist if 2N K 

3Jcan be divided by 2N - (as in the above example leading to m = -1), but in that case 
we must guess the correct sequence. Consequently if equation (7) is certainly useful to obtain 

cycles of not too large period in the generalized (l x + m)/2 problem its usefulness in the study 
of the conjecture for l = 3, m = 1 is not obvious. Nevertheless equation (7) deserves further 

studies . 

The inverse problem 

Another approach consists in considering the "landing" on the cycle i. e. the antecedents of 1 : 
these numbers giving 1 after 1, 2, 3 ... steps coming back to the usual (3 x +1)/2 problem. Fig
ure (1) gi ves the first 10 steps. The question is : how many "grand father" do we find at step k ? 

Obviously each element y at the step k - 1 gives at step k its double x = 2y but it can have 
another parent if x = (2y - 1) /3 is an integer. Let , be the last digit of the number y written 
in base 3 with, E {O, 1, 2} . Since y = 3/3 +, we obtain x = 2f3 + (2, - 1)/3 and for x to be 
an integer we need, = 2. Supposing an equiprobability between the 3 possible values of, we 
see that in one third of the cases y will have 2 antecedents. This corresponds to the relation 
F(k) = (4/3)F(k -1) where F(k) is the number of antecedents at step k with, consequently an 
asymptotic formula F(k) (4/3)k. Figure (2) shows that for k up to 28 the curve 10gF(k) fits, rv 

indeed, a straight line the slope of which .2879 checks very nicely with the theoretical value of 
the stochastic model log 4/3 = .2877. Moreover we have in the inverse problem the same kind 
of conservation of the equipartition of the last digits. We show for example that if we have 
equipartition of the last p + 1 ternary digit in y at one step, we have equipartition of the last 
p ternary digits of the antecedent. 

For example we consider the numbers y = a 33 + b where b runs from °to 26. We put in 
columns 1, 2, 3 of table 5 the three possible digits of b. On columns 4 , 5, 6 we give the two 
last ternary digits of the antecedent x = 2y for column 1, 2, 3 respectively. For example, the 
underlined b 211 corresponds to the number 27a + 22, its double is 54a + 44. We take this 
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1 - 2 - 4-8 16- 32 64  128 \256 - 512 1024 

341 

85 - 170  340 

113 

21 - 42 84 - 168- 336 

5 
10  20\~- 80 ~160- 320 

53 - 106 

35 

13 - 26 ~52 - 104 

17 ~34 

II 

3- 6 - 12- 24 - 48 - 96 

Figure 1: Tree of the "parent" numbers. 

o 10 20 30 
k 

Figure 2: Logarithm of the numbers of parents at step k. 

number modulo 9 to obtain tile last two digits. The value is 8 written 22 in Lernary units 
(underlined column 5 of table 5). In column 7 we gi ve the nine 2 last ternary digi ts of the nine 
numbers which have an antecedent x = (2y - 1)/3. Since they must end by 2 they are the 
numbers listed column 3. For example, 122 corresponds to the number a 33 + 17 which gives 
the antecedent 18a + 11. This number has indeed 02 for its two last ternary digits (the number 
and its antecedent are inserted in squares). 

These results and the results of the numerical investigation of the 28 antecedent steps shows 
the interest of a stochastic approach for the inverse problem. See [Feix et al. 1994] for further 
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1 2 3 4 5 6 7 
000 001 002 00 02 11 01 
010 011 012 20 22 01 10 
020 021 022 10 12 21 12 
100 101 102 00 02 11 21 
110 111 112 20 22 01 00 
120 121 11221 10 12 21 @J 
200 201 202 00 02 11 11 
210 211 212 20 22 01 20 
220 221 222 10 12 21 22 

Table 5: Column 1, 2, 3 : the three last "trits" of b, with y = 27a + b. Column 4, 5, 6 : the 
last 2 "trits" of the parent number x = 2y. Column 7 the 2 last "trits" of the parent number 
x = (2y + 1)/3 . 

details and section 7 of this paper for the direct problem . 

6 	 An application to the (l x + rn)/2 problem· building a 
cipher 

Let us consider the (l x + m)/2 problem which, at each steps, exhibits 2 possibilities, char
acterized by the values of 4 numbers, la, mo , ll, mi . If these numbers are chosen fulfilling the 
constraints given section 3, a bijection exists between the parities of the k first iterations and 
the k less significant bits (LSB) of the seed. In other words, the (I x + m) /2 problem gives a rule 
to obtain a permutation between two words of k bits taken among 2k words. This suggest to use 
the (l x + m)/2 problem to build a cipher. Obviously, it is possible to consider a more general 
case based on the (lx + m)/n problem but we will restrict the study to the case n = 2. The 
first reason is that it is important to study the structures between the ciphertext (k iteration 
bits) and the cleartext (the k seed bits) in the simplest case and the second one is that, from a 
practical point of view, computers working directly in binary, \vill provide an easy programming. 

In order to determine the ciphertext we have to choose first the four values la, mo, ll, mi . 

As already mentioned the la, 17.0 , ll, ml have constraints for the bijection to exist and we have 
to take an even value for mo and odd values for la, ll, mi. In addition they are chosen in N+ in 
order to compute only positive integers. In fact this condition do not restrict the choice of the 
four values as it is shown thereafter. First, as the k first iteration depends only on the k last 
bits (a consequence of the bijection), it is not necessary to compute the iterates with more than 
the k LSB. Consequently, la, mo, II and ml can be large, giving very large iterates too. Without 
this property, the code would be of no practical value. Indeed, a large number of choices for 
the quadruplet la, mo, II, mJ must exist (to make the code difficult to crack). \Ne will see that 
t his numbers have , as the messages, around k significant bits . This implies that the kth iterate 
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will have around k2 bits. Happily, all calculations will consider only k bit numbers (i.e. the 
k last bits of each iterate) In fact, if necessary, a further saving can take place since the first 
operation must be computed on k bits, the second one on (k - 1) bits and to be able to have 
the last iteration, the last bit of the k iterate is enough. 

Now it is not necessary to look at all possible values of the quadruplet lo, mo, ll' ml because 
for a similar reason only the k last bits of these numbers are relevant to perform the k first iter
ations. Let us compute more precisely the possible number of quadruplet (i.e. the complexity 
of the code). The calculation reads as follow. We consider the two sets of numbers lo, mo, h, ml 

and [0, mo,ll, ml with ~ = li + 2k Ai and m i = mi + 2k Mi, with Ai, MiEN, i = 0,1. The first 
iterate XI of Xo reads 

where li = l o or II and mi = mo or ml according to the parity of Xo . The first iterate XI of 
Xo using the other set of values li and mi reads 

_ [iXO + mi k-l( )
Xl = 2 = Xl + 2 Ai Xo + Mi . 

As already mentioned, the k - 1 next iterations only depends on the k - 1 less significant 
bits of Xl and Xl which are the same. Consequently, the iterates X2 and X2 of the number Xl 

will have the same k - 2 last bits, and then the next iteration are the same for both. And so 
on for the next k - 2 iterations . 

At this step , we have a first limit on the number of possible quadruplets. For message of 
k bits lo, mo, hand ml are also written on k bits: with m o even and lo, II and ml odd. 
But this set of different possible cases will be reduced by 4 taking into account the following 
considerations. 

We first consider the iterates Xl and Xl (points A and A on table 6( a)) of even seeds Xo 

computed using the values lo, mo and [0, mo respectively, with [0 = lo + 2k- l and mo = mo. We 
have Xl = Xl + 2k- 2xo and since Xo = 20:, Xl and Xl taken modulo 2k- l are identical. 

I lWe turn to odd iterations considering first ll' ml and [1 = II + 2k- , ml = ml + 2k- and 
their iterates Xl and Xl = Xl + 2k-2XO + 2k- 2 (points Band B on table 6(b)). SiTlce Xo is now 
odd , Xl and Xl have the same k - 1 LSB. If now we consider Xl and Xl (points C and C on table 

2xo 2k 26(b)) computed using the couples ll , ml and [I, ml respectively, we get Xl = Xl + 2k - - 

(the previously definition for [1 and ml have been adopted) . Again we check that Xl and .il 
have the same k - 1 LSB. 

The symmetries for lo , mo on one hand, and ll' ml on the other hand are given table 6. The 
conclusion is that we can let mo (respectively md take all the even (respectively odd) values 
between 0 and 2k but restrict lo and II to the odd values between 0 and 2k- 1 Since we have now 
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II [1 

ml B C 
ml C f3mo A A ~ 

(a) 
(b) 

Table 6: Points A and .4, Band f3, C and C represents quadruplets gi ving the same permuta
tion. 

2 62k- 1 possibilities, for mo and ml and 2k- for lo and ll' we obtain all together 24k - possible 
quadruplets and consequently this is the number of all possible codes. 

It is interesting to compare this value to the number of permutations possible with the k bits 
of a word. This kind of code has k~ possible permutations vvhich correspond to the knowledge 
of log2 k! bits of informations. If k is large enough this is equivalent to k log2 k 2 For the code 
based on the (lx+m)/2 rule we get 4k-6 bits. This is less than the bit-permutation code but 
not so different if we consider the extremely slow increase of log2 k with k. Now, the more gen
eral code is based on the permutations of words of the 2k words which can be formed with k bits . 
It implies 2k! permutations that is log2 2k! 2k log2 2k = k2k bits of information. This is muchrv 

larger than our value, but in this case the table of all the 2k! permutations is needed to decrypt 
a message although the (l x+m)/2 code needs the knowledge of the 4 numbers lo) mo, II and mI' 

In the (lx+m)/2 cipher, the decoding process is as simple as the coding process. The coded 
message, written in base 2, is inspected from the LSB to the MSB (Most Significant Bit). The 
LSB of the coded message is directly the LSB of the original message. Supposing that the 
next bit is odd, the two iterations given by this seed are computed. If these two iterations are 
identical to the 2 corresponding last bits of the coded message the second bit is indeed odd, in 
the other case it is even. The process is repeated step by step for the k bits. As for the coding 
operation, it is possible to limit the computation on k bits where k is the number of bits of 
the message we want to decode. Moreover as for the decoding process , the encoding one is an 
operation implying k iterations. 

The cryptanalysis of a ciphertext do not need the knowledge of the structure of the ci
pher. Nevertheless, these structures, if any, give insight on the complexity of the cipher and 
the amount of work necessary '1eeded, in order to crack it. As alrearly mentiof.l~ri , because of 
limitation in the choice of li) mi, there is 24k - 6 different permutations of words of k bits. First 
of all, an even (odd) cleartext gives an even (odd) ciphertext because the first iteration (LSB 
of the ciphertext) only depends on the parity of the cleartext . Then odd and even messages 
form two different groups. In the case k = 3 bits the list of all possible ciphertext obtained for 
all cleartext and all different values of l; and mi shows that there is indeed 26 = 64 different 
permutations. The inspection of this list shows that there is 8 different even permutations, 

2This formula is valid as long as log k » l. We must consequently be careful when k is smaller th an . say 
30. 
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lo mo II ml 0 2 4 6 1 3 5 7 
1 
1 
1 
1 
3 
3 
3 
3 

0 
0 
0 
0 
0 
0 
0 
0 

1 
1 
3 
3 
1 
1 
3 
3 

1 
5 
3 
7 
3 
7 
1 
5 

0 
0 
0 
0 
0 
0 
0 
0 

6 
6 
6 
6 
6 
6 
6 
6 

4 
4 
4 
4 
4 
4 
4 
4 

2 
2 
2 
2 
2 
2 
2 
2 

7 
3 
3 
7 
5 
1 
5 
1 

5 
1 
5 
1 
7 
3 
3 
7 

3 
7 
7 
3 
1 
5 
1 
5 

1 
5 
1 
5 

3 
7 
7 
3 

Table 7: For 3 bits messages, the 8 odd coded messages related to the even coded message 0642 
with the corresponding values of la, mo , II and ml ' In fact , in the case k = 3, all odd coded 
messages are connected to all even coded messages. 

each related to all of the 8 different odd permutations. Table 7 gives one of these 8 even permu 
tations with the related values of li , mi and the 8 odd associated permutations. This structure 
in 8 odd x 8 even permutations is also observed in the case k = 4 and k = 5 bits (see figure 3). 
For k = 3,4 and 5 the situation is resumed table 8. 

8 even 
ciphertext 

8 odd 
cipherle" t 

8 even 
ciphertext 

8 odd 
ciphertext 

8 even 
ciphertext -

8 odd 

Figure 3: Case k = 4 bits. Correspondence between the 1024 odd and even permutations 
obtained with the 1024 possible different quadruplets la , mo, ll, ml' 

A point which must be precised is the strength of the cipher. A cracker , to recover the key 
of the code that is the la, 11 , mo and ml, has to know some informations, t hat is some coded 
messages and the corresponding original ones. A couple clear text-ciphertext of k bits gives 
k - 1 bits of information (one bi t is lost because the last bits of the couple is always the same) . 

6The 24k - permutations corresponds to an uncertainty of 4k - 6 bits and the cracker needs , in 
the best case, 4 couples to recover the key (corresponding to the 4k - 4 bits of information ). It. 
can be proved that 4 pairs will be enough if and only if the two LSB of the 4 cleartexts are all 
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k Number of permutations Number of blocks \vith at each bloc 
24k - 6 8 odd x 8 even permutations (see fig. 3) 

3 64 1 
4 1024 16 
5 16384 256 

Table 8: 

differents that is correspond respectively to 00, 01, 10 and 11. 

The cipher based on the (l x + m)/2 problem, here studied, is a first approach and can 
be complicated using the more general rules (l x + m)/n or alternatively it is also possible to 
change the rules (l x + m)/2 while the message is coded, using two sets of number li, mi. 

Mixing properties 

We return now to the classical (3 x + 1)/2 problem. Consider a seed written in binary units. 
After a first iteration the last bit is lost. This means that the knowledge of the last bit of the 
seed do not give any information on the future iterations. But we have not lost the totality of 
the information attached to the two last bits of the seed since on these two bits of information 
only one has been lost. 

Let us consider the four possibilities for the two last bits, 00, 01, 10, 11 and compute the 
following possi bili ties for the first iterate: 

a seed ending with 00 gives an iterate ending with 00 or 10, 

a seed ending with 01 gives an iterate ending with 00 or 10, 

a seed ending with 10 gives an iterate ending with 01 or 11, 

a seed ending with 11 gives an iterate ending with 01 or 11 . 

We build the probability that a number ending with 00, 01, 10 or 11 (the lines of matrix 
(9)) gives an iterate ending with 00, 01, 10 or 11 (the columns of matrix (9)) . 

00 01 10 11 

00 1/2 1/2 
NI = 01 1/2 1/2 (9) 

10 1/2 1/2 
11 1/2 1/2 

In M an equipartition of the four possibilities for the two last bits of the seed has been 
supposed. To see what information on the two last bits of the seed has been lost after two 
iterations we just square M and find 
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1/4 1/4 1/4 1/4 
1/4 
1/4 

1/4 
1/4 

1/4 
1/4 

1/4 
1/4 

( 10) 

1/4 1/4 1/4 1/4 

Then after two iterations the two last bits of the seed have been totally lost. The result is 
generalized with a total lost of information for the k last bits of the seed after k iterations. In 
[Feix et al. 1994J the result has been generalized to trifurcation problem. 

An interesting interpretation of the matrices M, M 2, M3 . .. is obtained using information 
theory. To see it clearly we need to consider the mixing mechanism for the three last bits . We 
build M as in the preceding (2 bits) case. For example on line 101 of matrix (11) we put 1/2 
in columns 000 and 100 and zero elsewhere. Indeed a number ending with 101 can be written 
8a + 5 and gives as first iterate 12a + 8. Now if a is even the iterate ends with 000 and with 
100 if a is odd. 

The matrix M takes the form 

000 
001 
010 

M= ~ 011 
2 

100 
101 
110 
111 

000 001 010 all 100 101 110 111 

1 1 

1 1 
1 1 
1 1 (11) 

1 1 
1 1 

1 1 
1 1 

Computing M2 and M3 we obtain 

1 1 1 1 
1 1 1 1 


1 1 1 1 

1 1 1 1
Nf2 = ~ (12)

1 1 1 1 
1 1 1 1 


1 1 1 1 

1 1 1 1 


4 
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8 

M3 = ~ 
8 

1 
1 
1 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
1 
1 
1 

(13) 


We notice that irrespectively of the last bits of the first iterate we have two possibilities for 
the three bits of the seed (two 1 in all columns of M) ; after two iterates (M2) we have four 
possibilities (four 1 in all columns) and after three iterates (M3 ) we get the 8 possibilities). 
These three situations correspond to an uncertainty of one bit (after one iteration) 2 bits (after 
two iterations) and of 3 bits (after three iterations) i.e. a complete lost of the three last bits. 
vVe have consequently generalized the trivial result of lost of the last bit after one iteration. 

The random walk game 

In the random walk game, the bifurcation and the n-furcations will be considered from a statis
tical point of view. In fact, the random walk game will take the point of view of the statistical 
physicist which, briefly speaking,is studying a system at two very different scales. At the first 
one, the system is observed at its microscopic level where all the precise details of the trajec
tories of all the particles are followed at each time. Moreover, it is also possi ble to com pu te 
these trajectories if the Hamiltonian of the system is known. The second level, which is really 
the level considered by the statistical physicist, is the macroscopic one for which the behavior 
of a large number of particles is studied. At this level, the details of the trajectories are for
gotten and they are described by global averaged parameters. For example, in a hard collision 
between two particles, the trajectories after the collision crucially depends on the precise value 
of the impact parameter. The statistical approach introduces the cross section concept which 
describes the probability of deflexion into a given angle. At this level, it is only possible to ob
tain macroscopic quantities as the distribution function and derived quantities as temperature, 
pressure, density, ... 

The microscopic level will he given by the precise sequence of odd and even of the bifur
cation process the rules of which are given by (1) and more generally by the sequence of the 
n-furcation given by (2). 

The bijection theorem is the fundamental step of the random process. As in the statistical 
point of view, we are not interested in the precise sequence of a given seed but in the global 
behavior of the ensemble of sequences given by a large set of seeds. Starting from this large set 
of seeds for which the last k bits are taken at random, a consequence of the bijection theorem 
is that, for the k first iterations the probability of the n possibilities of the n-furcation process 
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lo II l2 l3 l4 mO ml m2 1m3 m4 m a k klimit 

bifurcation 1 3 - - - 0 1 - - - .21 .79 30 142 
trifurcation 1 2 7 - - 0 1 -2 - - .20 .73 19 64 

pentafurcation 1 2 3 6 2 0 4 -1 2 -3 .55 .42 13 34 

Table 9: Coefficients li and mi of equation (2) adopted in the random walk simulation for the 
bifurcation, the trifurcation and the pentafurcation. 

will be equal. 

We suppose that all seeds are very large, consequently we can neglect mi in front of li Xp 

at each step and introducing up = logn Xp we will have the same probability for the n choices, 
that is, using equation (7) (with lo = 1, mo = 0) 

with a probability of lin (14) 

Consequently, the average decrease m of an ensemble of seeds from step p to step p + 1 
reads: 

1 n 

m = < Up+ l > - < up >= - L logn li - 1 (15) 
n i=O 

The same hypothesis of large numbers has also been used in equation (6) established to 
study the asymptotic behaviour of the sequence. And the standard deviation a is given by 

2 ( )2 2a = < Up+1 - Up - m > (16) 

Starting from an ensemble of seeds, taken in a sharp distribution of numbers, the random 
process game will change this distribution into a Gaussian one, centered around < Xo > - nm 

2with a variance na after n iterations. Obviously, strictly speaking this model is valid on k 
iterations. Nevertheless, one can expect this game to be valid on a larger number of steps given 
at most by kLimit = l09nCilm iterations, for seeds taken around Ci and if numbers do not fall 
into cycles during these iterations. 

The random walk process has been played on a distribution of 105 seeds taken at random in 
a range of 2 x 107 numbers cer..tered on 109 for a bifurcation, a trifurcation and c. pentafurca
tion . Table 9 summarizes the coefficients li and mi of these n-furcations and the co rresponding 
val ues of m, a, k and klimit. 

Figures (4) give the evolution of the mean value and the standard deviation of this set of 
105 numbers at each iteration in the (3 x + 1) 12 case. The continuous lines given by the random 
process game fits pretty well with the points on a much larger value than k. Nevertheless, the 
game is no longer valid for klimit iterations for which a large set of numbers have already reach 
the cycle 2,1. Figure (5) gives the evolution of the distribution of the numbers . The change of 
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the distribution into a Gaussian is clear. 

a 20 40 60 80 100 
ileralion 

60 80 100 
ilera tion 

Figure 4: Bifurcation case: mean value of log2 of the population of numbers obtained after k 
iterations. 

The random process is also ':alid for the trifurcation and pentafurc3.tion (see h;:;ures (6), (7) , 
(8) and (9)). But for these cases, the existence of cycles involving numbers much larger than 1, 
prevents the validity of the model up to klimit. Consequently, the random process breaks more 
quickly. 

Conclusion 

What has been learned with the generalization to the (l x + m)/n problem on one side and tile 
stochastic approach on the other hand? The generalization has sho'wn that (l x + m)/n call 

17 


9 



ileration n ' 0 ileralion n ' 5 
l.or--- - - y-------, 0.40 

0.6 
0.30 

0.8 

0.20 

0.4 

0.10 
0.2 

0 .0 '-_ _ ----''--__----' 0.00 

<:6 30 34 20 

log2 X 

i lera lion n' 15 
0.20 

I 1\ 
0.15 

0.10 \ 

0 .05 

Ai 
 th0 .00 

0.20 

0.1 5 

0.10 

O . O~ 

0.00 

ileralion n' 20 

/ 

'\ 

j ~ 

ileralion n' 10 

f\ 

I \ 

J 1\ 

0.25 r------r:"1\  - - -. 

0.20 

0.15 

0.10 

log.x 

ileration n' 25 
0.20 r-----..-----., 

0.15 

0 . 10 

0 .05 

25 4511.5 26.6 42.2 8 26 44 
log,x 

ileration n' 30 
0.15 

0 . 10 

0 .05 

~ Ik 0.00 

logzx log,x 

i lera lion n' 35 ilera tion n' 40 
0.15 0.14 r  - --  - - ---, 

0.12 

O.lO 
0.10 

0.05 

0 .06 

0 .04 

j 0. 02 ~ 0.00 0.00 
2.03 2 3 .73 45.44 -0.74 22.70 46 . 14 -3 .4 21.7 4B.'? 

log, x log,x log,x 

Figure 5: Bifurcation case standard deviation of the population of numbers obtained after k 
iterations, 

exhibit more than one cycle plus eventually a fixed point and that an arbitrary cycle can be 
built by a proper choice of m. Unfortunately no conclusion can be drawn for the (3x + 1)/2 
conjecture because of the difficulties to solve equation (7). But obviously numerical investiga
tions are needed especially on these sequences where the successive iterates increase. 

In converging sequences, after k iterations, the random model can be suspected and more
over iterates fall into cycles which generally involve not too large numbers. On the contrary, 
for diverging sequences, the k iterations brings the iterates to high values which may enforced 
the validity of the random model. 

One of the result brought by the stochastic treatment is that the behavior of an ensemble 
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20 

10 
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Figure 6: Trifurcation case: mean value of log2 of the population of numbers obtained after k 
iterations. 

of seeds in the direct problem and of the antecedent 111 the inverse one is correctly describ ed 
by probabilistic arguments. This is well in the spirit of statistical physics. On the other hand 
the randomness a priori limite':! to the significant digits of the seed may provicl ~ much longer 
"pseudo-random" sequences. Of course, this is a property claimed by all pseudo-random num
bers generators . Do the sequences of parities provided by the n-furcaton is of better quality 
compared to the currently used generators? This is certainly a difficult but practically impor
tant problem. 

An application of the bijection is obtained turning to the study of limited sequences of k 
iterates. Starting from a k bit seed, we associate to the 2k words, the 2k sequences of iterates. 
All possible bijections between these numbers are obtained considering all possible values Ii; 

19 




ileralion n' 0 ileralion n' 5 ileration 0' 10 
1.0 ,---------.----, 0.14 .----~-------, 0 .00'----~-------, 

0.0 '--_ _ _ --'-_ __--' 0.00 L-...d..JJUillUWliI-'LLII.JI..LJ~---.J 0.00 

16 19 22 11.3 17,9 24.5 7.6 16.9 26 .2 

log,x log,x log,x 


ileration 0' 15 ileralion n' 20 ileralion n' 25 

nn"~----------' 0.08 ""'.-_ = . ..~.--~----, 

0 .06 

0 .0", 

0.02 

l..-........JW:.JL-JL...;.L.JL.JL.J<-""''"''----' O. 00 L-.....",'-'-''--~--''---'''''_.......J 


4.5 15 .9 27 .3 1.76 14.90 28.03 -0.81 13 .90 28.60 

log,x log,x log,x 


ileration n' 30 ileration n' 35 ileralion n' 40 

. _~0.060 ,-----~ . ..~.-------,0.050,---=._=..,-...."...-- --..., 0.050 ,------......;.,-~-----, 

0 .000 L....o......'---_~_.J!....:l........-' 0 .000 L--"'.LOliI'...._~_--'-Il:bo..--'O.ooo L-~illl-..._~_--="'--' 

-3.2 12.9 29.0 -~ . 2 11.9 2 9.1 -7. ~ 10 .9 29.3 

log,x log,x log,x 

Figure 7: Trifurcation case standard deviation of the population of numbers obtained after k 
iterations. 

mi. The building of a cipher is a possible application. Moreover, encryption and decryption 
are equally simple implying only the manipulation of k bits. 

The stochastic approach does not say much about the conjecture except tllat it confirms 
that cycles, if they exist, will have very small basin of attraction. Being certainly extremely rare 
events, a statistical approach is certainly not very appropriate for the study of the conjecture. 

On the other hand if we want to study the possibility of cycles for very large seed 10100 for 
example, we may have to give up the systematic trial of all the numbers and sample intelligently 
this huge set of cardinality 10100 . Monte-Carlo methods and random walk approximations may 
be useful. 
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Figure 8: Pentafurcation case: mean value of log2 of the population of numbers obtained after 
k iterations. 
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