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We investigate the rates of production and thermalization of II~ and II.,. neutrinos at temperatures 
and densities relevant to core-collapse supernovae and protoneutron stars. Included are contribu
tions from electron scattering, electron-positron annihilation, nucleon-nucleon bremsstrahlung, and 
nucleon scattering. For the scattering processes, in order to incorporate the full scattering kine
matics at arbitrary degeneracy, the structure function formalism developed by Reddyet al. (1998) 
and Burrows and Sawyer (1998) is employed. Furthermore, we derive formulae for the total and 
differential rates of nucleon-nucleon bremsstrahlung for arbitrary nucleon degeneracy in asymmetric 
matter. We find that electron scattering dominates nucleon scattering as a thermalization process 
at low neutrino energies (ev ;S 10 MeV), but that nucleon scattering is always faster than or compa

1013 3rable to electron scattering above ev ~ 10 MeV. In addition, for p ~ g cm- , T;S 14 MeV, and 
neutrino energies ;S 60 MeV, nucleon-nucleon bremsstrahlung always dominates electron-positron 
annibiJation as a production mechanism for II~ and II.,. neutrinos. 

PACS number(s): 25.30.Pt, 26.50.+x, 13.15.+g, 97.60.Bw 

I. INTRODUCTION 

1010The cores of protoneutron stars and core-collapse supernovae are characterized by mass densities of order I">J 

1014 g cm-3 and temperatures that range from I">J 1 to 50 MeV. The matter is composed predominantly of nucleons, 
electrons, positrons, and neutrinos of all species. For v" and v.,. types (collectively 'v"s'), which carry away 50-60% 
of the I">J 2 - 3 X 1053 ergs liberated during collapse and explosion, the prevailing opacity and production processes 
are v,,-electron scattering, v,,-nucleon scattering, electron-positron annihilation (e+e- ++ v"v,,), and nucleon-nucleon 
bremsstrahlung. While all of these processes contribute for the electron types (ves and ves), the charged-current 
absorption processes lien ++ pe.- and veP ++ ne+ dominate their opacity so completely that in this paper we address 
only v" production and thermalization. 

Supernova theorists had long held [1] that v,,-nucleon scattering was unimportant as a mechanism for neutrino 
equilibration. While this process was included as a source of opacity [2,3], it served only to redistribute the neutrinos 
in space, not in energy. In contrast, v,,-electron scattering was thought to dominate v" neutrino thermalization. In 
addition, the only vpv" pair production mechanisms employed in full supernova calculations were e+e- ++ II"V" and 
plasmon decay (1'pl ++ v"v,,) [2]; nucleon-nucleon bremsstrahlung was neglected as a source. Recent developments, 
however, call both these practices into question and motivate a re-evaluation of these opacities in the supernova 
context. Analytic formulae have recently been derived [4-6] which include the full nucleon kinematics and Pauli 
blocking in the final state at arbitrary nucleon degeneracy. These efforts reveal that the average rate of energy 
transfer in v,,-nucleon scattering may surpass previous estimates by an order of magnitude [5,7-11]. Hence, this 
process may compete with v,,-electron scattering as an equilibration mechanism. Similarly, estimates for the total 
nucleon-nucleon bremsstrahlung rate have been obtained [7,12-14] which indicate that this process might compete 
with e+e- annihilation. 
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These results suggest that the time is ripe for a technical study of the relative importance of each process for 
production or thermalization. To conduct such a study, we consider III' neutrinos in an isotropic homogeneous 
thermal bath of scatterers and absorbers. In this system, the full transport problem is reduced to an evolution of the 
neutrino distribution function (FII ) in energy space alone. Although this is a simplification of the true problem, it 
provides a theoretical laboratory in which to analyze the rates both for equilibration of an initial neutrino distribution 
function with dense nuclear matter and for production of the neutrinos themselves. From these rates we determine 
the importance and particular character of each process, and discover in which energy, temperature, or density regime 
each dominates. We employ a general prescription for solving the Boltzmann equation in this system with the 
full energy redistribution collision term. We compare quantitatively, via direct numerical evolution of an arbitrary 
neutrino distribution function, the rates for thermalization and production by each process, at all neutrino energies. 
Furthermore, we present the total nucleon-nucleon bremsstrahlung rate for arbitrary nucleon degeneracy and derive 
the single "I' and iiI' production spectra. This facilitates a more comprehensive evaluation of its relative importance 
in neutrino production than has previously been possible. 

In §U, we discuss the general form of the Boltzmann equation and our use of it to study III' equilibration and 
production rates. In §UI, we provide formulae for each of the four processes we consider: lip-nucleon scattering, 
IIp-electron scattering, and lIpiip pair production via both nucleon-nucleon bremsstrahlung and e+e- annihilation. In 
§IV, we present the results of our equilibration calculations, showing the time evolution of "I' distribution functions 
as influenced by each of these processes individually. We include plots of thermalization and production rates for 
each process as a function of neutrino energy and time. For the scattering interactions we include figures of the time 
evolution of the net energy transfer to the medium as a function of incident neutrino energy. We repeat this analysis 
at points in temperature, density, and composition space relevant to supernovae and protoneutron stars, taken from 
snapshots of a stellar profile during a realistic collapse calculation [3]. Using these results, we discuss the relative 
importance of each process in shaping the emergent "I' spectrum. In §V, we recapitulate our findings and conclusions. 

II. THE BOLTZMANN EQUATION 

The static (velocity = 0) Boltzmann equation for the evolution of the neutrino distribution function (FII ), including 
Pauli blocking in the final state, and for a spherical geometry, is 

1 {) () 1 - p,2 () ) . 
( ~ at + p, 8r +-r- {)p, FII = (1 - :FIIbll - :FIIXII' (2.1) 

where t is the time, r is the radial coordinate, and p,(=cos 8) is the cosine of the zenith angle. j II and XII are the total 
saurce and sink, respectively. For emission and absorption, ;11 is the emissivity and XII is the extinction coefficient. 
For scattering, both ;11 and XII are energy redistribution integrals which couple one neutrino energy bin with all 
the others. The matrix element and associated phase-space integrations which comprise jll and XII for electron and 
nucleon scattering yield the probability that a given collision will scatter a particle into any angle or energy bin. A 
full transport calculation couples energy and angular bins to each other through the right hand side of eq. (2.1). 

In a homogeneous, isotropic thermal bath of scatterers and absorbers no spatial or angular gradients exist. Conse
quently, the Boltzmann equation becomes 

1{):F1I ( ) • (2.2)~8t = 1 - 7='11 111 - 7='IIXII' 

By dealing with this system, the transport problem reduces to an evolution of :FII in just energy and time. Note 
that for scattering processes, both ill and XII require an integral over the scattered neutrino distribution function 
F~. Similarly, in evolving 1='11 via the production and absorption processes, jll and XII involve an integration over the 
anti-neutrino distribution function :Fr;. Therefore, Fp must be evolved simultaneously with F II • While ill and XII may 
be fairly complicated integrals over phase-space, the numerical solution of eq. (2.2) is straightforward. 

Given an arbitrary initial :FII , we divide the relevant energy range into n energy bins. We then solve eq. (2.2) for 
each bin individually and explicitly. Angular integrals over scattering cosines which appear in the lip-nucleon and 
lip-electron scattering formalism, as well as the electron energy integration needed for e+e- annihilation, are carried 
out with a 4-point Gauss-Legendre integration scheme. The double integral over dimensionless nucleon momentum 
variables needed to obtain the contribution from nucleon-nucleon bremsstrahlung is computed using nested 16-point 
Gauss-Laguerre quadratures. 
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A. Rates for FII Evolution and Energy Transfer 

Scattering, emission, and absorption processes, at a given neutrino energy (e,,), produce and remove neutrinos 
from the phase-space density at that energy. The former achieves this by transferring energy to the matter during 
scattering, the latter two by emitting or absorbing directly from that bin. The Boltzmann equation can then be 
written in terms of an in and an out channel, the former a source and the latter a sink: 

lJF" _ lJF" I lJF" I (2.3)---at- at in -lit out' 

Consequently, for any interaction, there are two rates to consider: the rate for scattering or production into a given 
energy bin (rin) and the inverse rate for scattering or absorption out of that bin (rout). The rates ei" and ex" yield 
timescales for an interaction to occur, but fail, in the case of the former, to fold in Pauli blocking in the final state. 
Equation (2.3) includes these effects and provides natural timescales for F" evolution: 

(I-F,,) . 
F" eJ" (2.4) 

and 

rout = -.!... lJF" I 
F" at out 

ex,,· (2.5) 

Note that although eq. (2.5) does not explicitly contain a Pauli blocking term, x" contains an integral over (1- F~), 
in the case of scattering, and an appropriate final-state blocking term, in the case of absorption. At a given e", then, 
rin incorporates information about the "11 phase-space density at that energy. Conversely, at that same e", rout 

contains information about the phase-space at all other energies. Regardless of the initial distribution, lJF" / at = 0 in 
equilibrium. This implies r in = r out in equilibrium and, hence, we build in a test for the degree to which the system 
has therma1ized. 

Just as there are distinct rates for the in and out channels of the Boltzmann equation during equilibration, so too 
are there distinct scattering energy transfers. For "11 scattering with a scatterer 8 (electron or nucleon), at a specific 
e", two thermal average energy transfers can be defined; 

(W)in = f tf3p~wF~Tn [III1S +-II~S'] / f tf3p~p"Tn [III1S +- II~S'] (2.6) 

and 

(W)out = f tf3p~W(1 - F~) I out [III1S -+ II~S'] / f tf3p~ (1 - P") Iout [III1S -+ 1I~8'] , (2.7) 

where primes denote the scattered neutrino, w(= e" - e~) is the energy transfer, and rn and Iout are the kernels for 
scattering into and out of a given energy bin, respectively. As a consequence of detailed balance between the in and 
out channels of the Boltzmann equation, Iin = e-{3wIout, where Ii= l/ksT and T is the matter temperature. (The 
scattering kernels are discussed in detail in §III for both scattering processes.) Note that the denominators in eqs. 
(2.6) and (2.7), up to constants which divide out in the definitions of (W)in and (w)out, are just ill and x"' respectively. 

In an effort to provide more than one measure of the timescale for F" equilibration due to scattering and to make 
contact with previous neutrino thermalization studies [15-17] we also define a set of timesca1es in terms of (w)ov.t and 
the higher w-moment, (w2 ) out; 

r (w)out I (2.8)D =ex" -I e" 

and 

(2.9) 

r D is the rate for shifting the centroid of a given distribution and r E is the rate for spreading an initial distribution 
[15]. In contrast with the work of [15-17], we include the full effects of Pauli blocking in the final state, allowing us 
to deal consistently with cases in which the " I1 S are partially degenerate. 
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III. INDIVIDUAL INTERACTIONS 


This section details the source and sink terms necessary to solve the Boltzmann equation for the time-evolution of 
:FII • Sections §m A and §llI B are dedicated to the presentation and discussion of the collision terms for lip-nucleon 
and IIp-electron scattering, respectively. Section §llI C describes the Legendre series expansion approximation and the 
use of it to compute the contribution to the Boltzmann equation, the pair emissivity, and the single lip spectrum due to 
e+e- ++ lIpiip. Our derivations of ill and XII' as well as the single and pair spectra from nucleon-nucleon bremsstrahlung 
at arbitrary nucleon degeneracy and in the non-degenerate limit, are presented in §IllD. In what follows, we take 
(]2 ~ 1.55 X 10-33 em3 MeV-2 S-l, sin2 8w ~ 0.231, and employ natural units in which n=c = kB =1. 

A. Nucleon Scattering: IIp'n ++ IIp'n and IIp.p ++ IIp.p 

Researchers working on supernova and protoneutron star evolution have recently re-evaluated the issue of energy 
transfer via lip-nucleon scattering [5,7-10]. Originally, the assumption was made that the nucleons were stationary 
[1]. IT a neutron of mass mn is at rest with respect to an incoming neutrino of energy ell, one finds that the energy 
transfer (w) is ,...., -e~/mn' For ell = 10 MeV, w ,...., -0.1 MeV, a fractional energy lost of 1%. Using these simple 
kinematic arguments and disregarding neutrino and nucleon Pauli blocking, one finds that the thermalization rate 
for lip-electron scattering should be approximately a factor of 20 larger than that for lip-nucleon scattering. In the 
context of interest, however, at temperatures of order 10 MeV and mass densities of order 1013 g cm-3 , free nucleons 
are not stationary, but have thermal velocities. The fractional energy exchange per collision, in the case of lip-neutron 
scattering, is then,...., Pn/mnc [5]. For T ,...., 10 MeV this gives a ,....,10-20% change in ell per collision. This calls the 
naive estimate of the relative importance of lip-nucleon scattering as a thermalization process into question and a 
more complete exploration of the relative importance of the two scattering processes is necessary. 

Recently, analytic formulae have been derived which include the full kinematics of lip-nucleon scattering at arbitrary 
nucleon degeneracy [4-6]. At the temperatures and densities encountered in the supernova context non-interacting 
nucleons are not relativistic. Due to nucleon-nucleon interactions, however, at and around nuclear density (,...., 2.68 X 

1014 g cm-3 ), the nucleon's effective mass drops and is expected to be comparable with its Fermi momentum [4]. 
In such a circumstance, a relativistic description of the lip-nucleon scattering interaction is warranted. In addition, 
spin and density correlation effects engendered by these nucleon-nucleon interactions have been found to suppress the 
lip-nucleon interaction rate by as much as a factor of,...., 2 - 3 [5,10,11]. 

In this study, we focus on lip equilibration rates at densities $ 1 x 1014 g cm-3 where it is still unclear if nucleon
nucleon interactions will play an important role. This ambiguity is due in part to uncertainties both in the nuclear 
equation of state and the nucleon-nucleon interaction itself. For this reason we choose to treat the nucleons as non
relativistic and non-interacting, thereby ignoring collective effects which might enhance or reduce the lip-nucleon 
scattering rate. Making these assumptions, we find that ill and XII in eq. (2.2) are given by 

. _ G2 fd3 ....' ;ro' -/3w (3.1)'T 
311 - (211')3 PII..L.NC.rII e 

and 

x. = (;~3 / cPP'., INC [1 - F.], (3.2) 

where /1 = l/T, p~ is the final state neutrino momentum, and w is the energy transfer. In eqs. (3.1) and (3.2), the 
neutral-current scattering kernel is given by 

(3.3) 

where p(= cos8) is the cosine of the scattering angle between incident and final state neutrinos and S(q,w) is the 
dynamic structure function. In eq. (3.3), V and A are the appropriate vector and axial-vector coupling constants; for 
lip-neutron scattering, V = -1/2 and A = -1.26/2. The dynamic structure function is 

....
f 
~ 

S(q,w) = 2 (2:{3 :F (1 - :F') (211')6(w + e - e') 

= 2ImII(O) (q,w) (1- e-/3W)-l (3.4) 
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where q = IPII - p~1 = [e; + e~2 - 2elle~p]1/2 is the magnitude of the momentum transfer, and :F and :F' are the 
incident and scattered nucleon distribution functions, respectively. In eq. (3.4), pis the incident nucleon momentum, 
e is the incident nucleon energy, and e' is the scattered nucleon energy. The imaginary part of the free polarization 
is given by [5,18] 

(3.5) 

where 

Q = (m{3) 1/2 (_~ + ..!L) (3.6)
2 q 2m ' 

11 is the nucleon degeneracy (pIT), and m is the nucleon mass. The factor e-/3w which appears in eq. (3.1) is a 
consequence of the fact that S(q, -w) = e-/3wS(q,w), itself a consequence of detailed balance between the in and 
out channels of the Boltzmann equation. The dynamic structure function can be thought of as a correlation function 
which connects ell and e~. 

The q" angular integrations implicit in eqs. (3.1) and (3.2) can be computed trivially assuming the isotropy of :FII . 
FUrthermore, defining the coordinate system with the momentum vector of the incident neutrino, the scattering angle 
and the direction cosine are equivalent. Combining these two equations in the Boltzmann equation for the evolution 
of:F1I due to neutral-current lip-nucleon scattering, we obtain 

(3.7) 

At the temperatures and densities encountered in supernovae and protoneutron stars, electrons are highly rela
tivistic. A formalism analogous to that used for lip-nucleon scattering is desired in order to include the full electron 
kinematics at arbitrary electron degeneracy. Reddy et al. [4] have developed a relativistic generalization of the 
structure function formalism described in §ill A. They obtain a set of polarization functions which characterize the 
relativistic medium's response to a neutrino probe in terms of polylogarithmic functions. In analogy with eq. (3.7), 
we can write the Boltzmann equation for the evolution of:F1I due to lip-electron scattering, as 

8~v = (~3 / d"p~ INC Hl - .rvl.r~e-P'" - .rv[l - P,,]} , (3.8) 

where INC is the relativistic neutral-current scattering kernel for "I'S, analogous to INC in eq. (3.3). All the physics 
of the interaction is contained in INC' which can be written as 

(3.9) 

As in the non-relativistic case, INC is composed of the lepton tensor, 

A0l/3 =8[2kOlk/3 + (k . q)gOl/3 - (kOl q/3 + qOl k/3) - i£Ol/3PII kpqll] , (3.10) 

which is just the squared and spin-summed matrix element for the scattering process written in terms of kOl' the 
incident II", four-momentum, and qOl (= (w, q», the four-momentum transfer. The scattering kernel also contains the 
retarded polarization tensor, n~/3' which is directly analogous to the free polarization in the non-relativistic case given 
in eq. (3.4). The retarded polarization tensor is related to the causal polarization by 

1m D!p =tanh ( - ~.Bw) 1m D"p (3.11) 

and 
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IIall = -if (~:;4 Tr[Ge(P)JaG~(P +q)Jlll· (3.12) 

In eq. (3.12), Po is the electron four-momentum and Jo is the current operator. The electron Green's functions (Ge 
and G~), explicit in the free polarization, connect points in electron energy space and characterize the effect of the 
interaction on relativistic electrons. The polarization tensor can be written in terms of a vector part, an axial-vector 
part, and a mixed part, so that 

(3.13) 

In turn, the vector part of the polarization tensor can be written in terms of two independent components, IIT and 
IIL. In contrast with eq. (3.3), since vIc fOW 1 for the electrons, the angular terms which were dropped from the matrix 
element in the non-relativistic case, leading to a single structure function, must now be retained. INC can then be 
written as a set of three structure functions [4]: 

(3.14) 

where A = (4e"e~ + q~)/2q2 and B =e" + e~. These structure functions can be written in terms of the vector parts 
of the retarded polarization tensor (II¥ and IIf), the axial part (II~), and the mixed part (IIeA): 

(3.15) 

(3.16) 

Uld 

(3.17) 

The retarded polarization functions, in terms of differences between polylogarithmic integrals, can be found in Ap
pendix A. 

c. Electron-Positron Annihilation: e+e- ++ "piip 

Fermi's Golden Rule for the total volumetric emission rate for the production of lIpS via electron-positron annihi
lation can be written as 

(3.18) 

where 

(3.19) 

Uld 64 (P) conserves four-momentum. In eq. (3.18), Po(= (e,p» and p~(= (e',p'» are the four-momenta of the 
electron and positron, respectively, and q~(= (c",q;» and q:(= (eD,q;,» are the four-momenta of the "I' and iiI" 
respectively. The process of electron-positron annihilation into a neutrino/anti-neutrino pairs is related to neutrino
electron scattering considered in §Ill B via a crossing symmetry. In order to make the problem tractable, we follow the 
standard procedure [2] of expanding the production kernel in a Legendre series in the scattering angle to first order (see 
Appendix B). Near the neutrinospheres, at densities which render neutrino transport diffusive this approximation 
holds. In a full neutrino transport algorithm, however, which must handle both the diffusion and free-streaming 
limits, the second-order term, with proper closure relations, must be used in the semi-transparent regime between 
the neutrinospheres and the shock [19]. Having made this approximation, including only the zeroth- and first-order 
terms, the single "I' spectrum is 

!~ = (1 - 1'"v) ;;. 1.00 

<leD c: ~(cv, CD)(1 - 1'"D), (3.20) 
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where .~(e",ep) is the zeroth-order production kernel expansion coefficient, an integral over the electron energy (see 
Appendix B) [2]. With the differential spectrum or emissivity (dQ/de,,) in hand, it is a simple matter to extract the 
contribution to the Boltzmann equation due to e+e- annihilation. As eq. (3.20) already contains the lip blocking 
factor, the contribution to the Boltzmann equation, the in channel explicit in eq. (2.3), can be written as [2] 

8F" I =..!.. (21r)3 dQ (3.21)at in 41r e~ de,,' 

In order to obtain the out channel for absorption due to e+e- annihilation, we need only replace Fe-Fe+ in eq. (3.19) 
with an electron/positron blocking term, (1- Fe- )(1- Fe+), and replace the lip and Op blocking terms in eq. (3.20) 
with F"Fp • Finally, the Boltzmann equation for the evolution of F" in time due to e+e- ++ IIp Op can be written as 

00 

8F" 2G2 1 21Elit = (21r)3 0 de;; e;; 0 de Ho(e",ep,e) {{1- F,,)(I- F;;)Fe-Fe+ - F"F;;(1 - Fe- )(1- Fe+)} , (3.22) 

where € =e" +ep and Ho(e",e;;,e) is given in eq. (B5). In solving eq. (3.22), Fp must be evolved simultaneously with 
F". To do so, in addition to making the appropriate changes to the vector and axial-vector coupling constants, V 
and A, one needs to integrate over e" instead of ep. Note that the electron and positron distribution functions appear 
explicitly in eq. (3.22). We take these distributions to be Fermi-Dirac at temperature T and with 1]e determined by 
T, p, and Ye. 

Equation (3.18) may also be used to find the total volumetric IIp Op pair spectrum by replacing e" in the numerator 
with f. Ignoring neutrino blocking in the final state one can show that [20] 

3Q •••• '" 2.09 X 1024 (:ev)· /(fIe) ergs em- .-', (3.23) 

where 

and 

(3.24) 


(3.25) 


are the Fermi integrals. 

D. Nucleon-Nucleon Bremsstrahlung 

The importance of nucleon-nucleon bremsstrahlung in late-time neutron star cooling has been acknowledged for 
some time [13,14]. Recently, however, this process has received more attention as a contributor of IIp Op pairs and as 
an energy transport mechanism in both core-collapse supernova and nascent neutron star evolution [7,12,21,22]. The 
contribution from nucleon-nucleon bremsstrahlung is a composite of neutron-neutron (nn), proton-proton (pp), and 
neutron-proton (np) bremsstrahlung. Fermi's Golden Rule for the total volumetric emissivity of single lipS due to nn, 
pp, or np bremsstrahlung, including lip and iip blocking in the final state, is given by 

(3.26) 

where 

(3.27) 

The product of differential phase space factors in eq. (3.26) includes a term for each of the four nucleons involved 
in the process; 1 and 2 denote initial-state nucleons whereas 3 and 4 denote final-state nucleons. In eq. (3.26), 8 is 
a symmetry factor for identical initial-state fermions, q" is the neutrino three-momentum, e" is the neutrino energy, 
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and the four-momentum conserving delta function is explicit. In a one-pion exchange model for the nucleon-nucleon 
interaction, the spin-summed matrix element can be approximated by [13,21] 

A A2 2 2 f 2 
) 4 [( k

2 )2 ]~ IMI ~ 64G 9A ( m,.. k2 + m; + ... €- (c"co - if". kio· k) (3.28) 

where € = c" + co, k is the magnitude of the nucleon momentum transfer, 9A ~ -1.26, f I"oJ 1 is the pion-nucleon 
coupling, and m,.. is the mass of the pion. In order to make the IS-dimensional phase-space integration in eq. (3.26) 
tractable we assume the quantity in square brackets to be oforder unity, but possibly as low as 0.1 [12]. To acknowledge 
our ignorance, we introduce the factor, (, and assume these momentum terms are constant. Furthermore, we neglect 
the momentum of the neutrinos relative to the momentum of the nucleons. We are left with a simple, but general, 
form for the bremsstrahlung matrix element: 

(3.29) 

where A = 64G291f4/m!. In the case of nn or pp bremsstrahlung, as appropriate for identical particles in the initial 
state, the symmetry factor (s) in eq. (3.26) is 1/4. Such a symmetry factor does not enter for the mixed-nucleon 
process, np, which is still further enhanced by the fact that a charged pion mediates the nucleon exchange [21]. 
This increases the matrix element in eq. (3.29) by a factor of 7/3 in the degenerate nucleon limit and I"oJ 5/2 in the 
non-degenerate limit [21]. Considering the already substantial simplifications made by choosing not to handle the 
momentum terms directly, we will adopt the more conservative 4 x (7/3) enhancement for the np matrix element. The 
total volumetric emission rate combining all processes is just Qtot = Q"" + Qpp + Q"p' What remains is to reduce 
eq. (3.26) to a useful expression in asymmetric matter and at arbitrary neutron and proton degeneracy. 

Following ref. [21], we define new momenta, P:i:: = (PI ±P2}/2 and Pse,4e =Ps,4 - p+, new direction cosines, "Yl = 
P+ 'p-/lp+llp-I and "Ye =P+ 'Pse/IP+IIPsel, and let Ui =Pf/2mT. Furthermore, we note that tPPltPP2 =8tPp+tPp_. 
Using the three-momentum conserving delta function, we can do the tPP4 integral trivially. Rewriting eq. (3.26) with 
these definitions, we find that 

Q =2As(2mT)9/2(211'}-9 Jde" c! Jdeo du_ du+ dU3e d;1 d;e (co/€)2 (U_U+U3e)1/2 6(E) :::[Fl, (3.30) 

where 

4 

6{E) =6{ L Ci - €) =6{2T{u_ - U3e - €/2T». (3.31) 
i=1 

The nucleon distribution functions in the term :::[Fl in eq. {3.30} have been rewritten in terms of the new direction 
cosines, the dimensionless momenta (Ui), and the initial-state nucleon degeneracy factors '11,2 = IJl,2/T: 

e-(a~+b'''Y1) 
:F1=------,- and (3.32)

2 cosh( a1+ b'"Yd 

e(e~+d'''Ye) e(e;-d'''Ye) 
and (3.33)(1 - :F3) = 2 cosh{cl + d';e) (1 - :F4) = 2 cosh{c2 - d';e)' 

where CL2 = Cl,2/2 = i{u+ + U3e -'11,2) and d' = d/2 = {U+U3c)I/2. :F" and :Fo, in contrast with the nucleon 
distribution functions, are independent of angle; for a given set of thermodynamic conditions, they remain functions 
of energy alone. While non-trivial, the integrations over ;1 and "Ye can be performed. For example, the result for the 
"Yl integration is of the form 

..; 1 In [(B - (1 + 2B)e2 +2ev'B(B + l)(e2 
- 1)] , (3.34)

2 B(B+l) 

where B = sinh2 a' and e= cosh b';1- With a proper evaluation of the integration limits and some algebra one can 
rewrite this result as 
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1 In[(1 + cosh a coshb + sinha sinh b)] 
(3.35)2 sinh a' cosh a' (1 + cosh a cosh b - sinh a sinh b) • 

S~ar operations yield a result for the "'Ic integral in terms of c and d. In addition, eq. (3.31) can be used to eliminate 
the.IDtegral over u_. Collectively, these manipulations reveal that the differential v" bremsstrahlung emissivity at 
arbitrary neutron and proton degeneracy is simply a three-dimensional integral over u+, U3c, and c,;: 

::;: =K Be (1 - F.) c! f dc.1h4 tiu3c (c. /<)2 "+1/2e-/3_/2 +(<, "+, "3c)(1 - F.), (3.36) 

where 

K =2G2 ( m )9/2 (-,--)4 g2 T7/2 (3.37)211'2 m7l' A , 

(3.38) 

and 

e± = (u':j2 ± u~2)2 - fJ2 

f =u+ + u_ - '11/2 - fJ2/2 
g± =±2(U+U_)1/2 - '11/2 + fJ2/2 

( 1/2 1/2)2h± = u+ ± u3c - fJ2 

i = u+ + U3c - '11/2 - fJ2/2 

k± = ±2(U+U3c)I/2 - '11/2 + fJ2/2 . (3.39) 

Though u_ has been integrated out via the energy-conserving delta function, it appears here in an attempt to make 
this expression more compact and should be read as u_ = U3c + E/2T. Importantly, if '11 = fJ2 the right-hand term 
within both logarithmic terms in ~(E, U+, U3c) becomes unity. 

Using eq. (3.21), we can easily obtain the contribution to the Boltzmann equation due to nucleon-nucleon 
bremsstrahlung for arbitrary nucleon degeneracy, in asymmetric matter, and including the full nucleon and neutrino 
Pauli blocking terms. We find that 

ill = K's' f de,; du+ dU3c (Cii/E)2 u+I/2e-Pf./2 ~(E, U+, U3c) (1 - :F,;) (3.40) 

where K' = [(21r)3/41r]K. The nucleon phase-space integrations above are identical in form for the v"ii" absorption 
process, v"ii"nn -+ nn. In this case, then, the primed energies are now associated with nucleons 1 and 2 in the above 
manipulations and the incident nucleons (3 and 4) have unprimed energies. If we take the form derived above for the 
nucleon phase-space terms, the absorption channel (XII) must then contain a factor of ePE • In addition, the blocking 
term, (1 - :Fii ), becomes :F,;. The Boltzmann equation for the evolution of :F1I in time is then, 

~ a~" = K's' f de,; du+ dU3c (c,;/E)2 u+1/2 e-Pf./2 ~(E, u+, U3c) {(I - :F1I)(1 - :F,;) - :F1I:F,; ePE } • (3.41) 

For the neutron-neutron (nn) or proton-proton (PP) bremsstrahlung contribution, we simply set s = 1/4 in eq. (3.41) 
and use '11 =1J2 ='1n or '11 =fJ2 ='1", respectively. For the mixed nucleon (np) bremsstrahlung we set s =1, multiply 
eq. (3.41) by 7/3, and set '11 = '1n and fJ2 ='1". While eqs. (3.36) and (3.41) may not appear symmetric in '11 and 
fJ2 the logarithmic terms conspire to ensure that the rates for both np and pn bremsstrahlung are identical, as they 
should be. That is, it makes no difference whether we set '1n or '11' equal to '11 or fJ2. 

Just as in §III C, in considering e+e- ++ v"ii", :F,; must be evolved simultaneously with :F1I• In this case, however, the 
situation is simpler. Suppose we wish to compare electron-positron annihilation with nucleon-nucleon bremsstrahlung 
by starting at t = 0 with :F,; = :F1I =0 over all energies. We then solve eq. (3.22) and its :F,; counterpart at each 
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timestep and at each energy. For e+e- annihilation, F" and Fli will evolve differently; they will be visibly different at 
each timestep, because of the weighting of the vector and axial-vector coupling constants which appear in the matrix 
element. In contrast, eq. (3.41) for bremsstrahlung must be solved only once. Since there is no difference in weighting 
between 11" and ii", we can set Ff) =F" at every energy, at every timestep, as long as Fp =F" at t =O. Of course, if 
we wish to consider Fp =F F" initially, the two distributions would need to be evolved separately and simultaneously, 
coupled through the blocking and source terms on the right-hand side of the Boltzmann equation. 

Equation (3.26) can also be used to find the total volumetric lI"ii" pair emissivity. To facilitate this we replace E" 

with € and insert Jo(€- (E" +EIi»dt:. Assuming the neutrinos are radiated isotropically, we can use this delta function 
to do the integral over tf3 iff) and leave the total rate in terms of an integral over E" from zero to € and another over € 

from zero to infinity. Momentarily ignoring neutrino blocking in the final state, the former can be integrated easily. 
Making the same momentum, angle, and nucleon distribution function substitutions we used in deriving the single 11" 
spectrum we can reduce the pair spectrum to an integral over U+, USc, and q = €/2T. We find that 

5Q"plip =Ds(T8• / dqduscdu+q4e-qu+l/2~(€,u+,usc), (3.42) 

where 

D = ~ G201 (L)4 m9/2, (3.43)
15 J21r9 m", 

and ~(€, u+, usc) is defined in eq. (3.38). Note that eq. (3.42) allows us to easily calculate the pair differential 
volumetric emissivity (dQ".. f) .. /dt:). For Q~nf) and Q':!f) , S = 1/4. As with the single II.. spectrum, for Qn"Pn 

... ... p p p p ,.. p"p 
multiplyeq. (3.42) by 7/3 and set s =1. Finally, Q~otli =Q~nli + Q':!Ii +Q:Pp • 

pp pp pp pp 

1. The Non-Degenerate Nucleon Limit 

In the non-degenerate nucleon limit, the term F 1F2(1 - Fs)(1 - F4) reduces to e'11e1l2 e-2(u++u_> [12] which is 
independent of angle. This tremendous simplification allows for easy integration over u+ and USc in eqs. (3.36), 
(3.41), and (3.42). The total volumetric emissivity of a single lI"ii" pair in this limit, ignoring 11" and ii" blocking in 
the final state, is [12] 

(3.44) 


For nn and pp bremsstrahlung, X is the number fraction of neutrons (Xn) or protons (Xp), respectively. For the 
mixed-nucleon process (np), X 2 becomes (28/3)XnX p' Figure 1 compares the non-degenerate nucleon limit (eq. 3.44) 
with the arbitrary nucleon degeneracy generalization (eq. 3.42) in the case of neutron-neutron (nn) bremsstrahlung, 
as a function of the neutron degeneracy fin = I'n/T. The filled square shows the degenerate limit obtained by ref. 
[14]. Note that at fin !:::! 0, the fractional difference between the two is just "'J 12%. At realistic neutron degeneracies 
within the core (fin -- 2), this difference approaches 30%. 

The single differential 11" emissivity can be written in terms of the pair emissivity [12]: 

2q
dQ = C (Q"pf)p ) E3 /.00 e- .,z (z2 _ Z)1/2dz 
de" T4" 1 z3 

= C (Q;- )c! f.~ e~q K1(q)(q - q.)' dq , (3.45) 

where C =2310/2048 !:::! 1.128, q" =E,,/2T, q =€/2T, and Kl is the standard modified Bessel function of imaginary 
argument. A useful fit to eq' (3.45), good to better than 3% over the full range of relevant neutrino energies is [12] 

~~ __ 0.234 Q",j,lip (~ r,4 e-1.1e:.,/T. (3.46) 

Using eq. (3.21), we obtain the contribution to the Boltzmann equation including Pauli blocking of 11" and ii" neutrinos 
in the final state: 
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(3.47) 

where 

(3.48) 

In obtaining eq. (3.48), we have used the thermodynamic identity in the non-degenerate limit, 

3/2
'Ii _ 211" ni 

e - - - (3.49)( )mT 2' 

where n is the number density of nucleons considered and i is 1 or 2 for neutrons or protons, depending on which 
nucleon bremsstrahlung process is considered. 

IV. RESULTS 

The numerical algorithm we have developed accepts arbitrary initial II", and ii", phase-space distributions. Using 
the scattering formalism developed in the previous section, we evolve two initial distribution functions: (1) a broad 
Gaussian in energy centered at 40 Me V with a maximum of Fv = 0.80 and a full-width at half-maximum of .....28.6 
MeV, and (2) a Fermi-Dirac distribution at a temperature 2 x the temperature of the surrounding matter and with 
zero chemical potential. While the former is unphysical in the context of supernova calculations, it illustrates the 
effects of blocking on both the average energy transfer and the rates for each scattering process. Furthermore, its 
evolution is more dynamic than the Fermi-Dirac distribution. As a result, the way in which the distribution is spread 
and shifted in time is more apparent. The essential differences between the two pro(:esses are then more easily gleaned. 
The latter initial distribution is motivated by consideration of the environment within the core of a supernova. The II", 
and ii", distribution functions, having been generated as pairs via e+e- ++ lI",ii", and nucleon-nucleon bremsstrahlung 
should have approximately zero chemical potential. Furthermore, even in the dense core, the II"'s will diffuse outward 
in radius and, hence, from higher to lower temperatures. By starting with a Fermi-Dirac distribution at twice the 
temperature of the matter at that radius, we learn more about how equilibration might effect the emergent II", spectrum 
in an actual collapse or protoneutron star cooling calculation. 

For the production and emission processes, we start with zero neutrino occupancy and let each build to an equi
librium distribution of II",S and ii",s. As a check to the calculation, the asymptotic distribution should be Fermi-Dirac 
at the temperature of the ambient matter with zero neutrino chemical potential. Throughout these simulations, we 
take the factor' in eq. (3.41) for nucleon-nucleon bremsstrahlung to be 0.5. (This factor represents our ignorance of 
the importance of the nucleon momentum transfer terms.) 

We repeat these calculations for four temperature, density, and composition points (StarA, StarB, StarC, and 
StarD) taken from the one-dimensional collapse calculation profile, Star [3], corresponding to four radii below the 
shock ( ..... 80 km). Roughly, these points have densities 1014, 1013 , 1012, and lOll g cm-3 • The actual numbers are 
shown in Table I. 

A. Scattering 

Figures 2 and 3 show the evolution of a Gaussian distribution at t =0 to an equilibrium Fermi-Dirac distribution at 
the temperature of the surrounding matter due to II",-neutron (lI",n) and II",-electron (lI",e-) scattering, respectively. 
The equilibrium distribution has a non-zero neutrino chemical potential set by the initial total number of II",S, which 
is conserved to better than .001% throughout the calculation. Multiple curves on each plot show snapshots of Fv in 
time from t = 0 to 1000 microseconds (ps). Both calculations were carried out at the thermodynamic point StarB 
whose characteristics are shown in Table I. StarB is indicative of the core of a supernova, a region of moderate to high 
temperatures (T ..... 15 Me V) and densities of ..... 1013 g cm-3. These two figures illustrate the fundamental differences 
between lI",e- and lI",n scattering as thermalization processes. Curve A in Fig. 2 and curve C in Fig. 3 indicate that 
at high II", energies (Ev z: 30 MeV) lI",n scattering is a much more effective thermalization mechanism. At Ev ~ 40 
MeV both curves show the distribution is within .....30% of equilibrium. Importantly, however, curve A is at 0.33 ps 
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for IIpn scattering whereas curve C is at 3.30 IJS for IIp e- scattering. Curve C, in Fig. 2 for IIpn scattering, also 
at t = 3.30 !JS, shows that above ......25 MeV the distribution has almost equilibrated. For IIp e- scattering, similar 
evolution at high neutrino energies takes approximately 25!JS. These simple estimates reveal that IIpn scattering is 
about 10 times faster than IIp e- scattering at equilibrating III'S with energies greater than approximately 25 MeV. 

This situation is reversed at low EllS. Comparing curve E at t =33.0!JS in both Fig. 2 and Fig. 3, we can see that 
at ...... 10 MeV both distributions have filled to approximately the same percentage of the asymptotic, equilibrium FII. 
However, below Ell ......8 MeV, IIpn scattering has not filled FII to the extent IIp e- scattering has. In fact, the rate at 
which these low energy states are filled by IIpn scattering is very low; the energy transfer (w) is much smaller than 
the incident III' energy. In this regime, the Fokker-Planck approximation for the time evolution of FII in energy space 
may be applicable. In marked contrast, Fig. 3 indicates how effective IIpe- scattering is at filling the lowest Ell states. 
Curves F from Figs. 2 and 3, taken at 1000 !JS, show that though the distribution has reached equilibrium via IIp e
scattering, for IIp'n scattering the very lowest energy states remain unfilled. For each of the four points in the Star 
profile we consider, IIpn scattering dominates at high energies (~20 MeV), whereas IIp e- scattering dominates at low 
III' energies (;$ 10 MeV) and particularly for Ell ;$ 3 MeV. 

Figures 4 and 5 depict the evolution of FII via IIpn and lI"e- scattering, respectively, for an initial Fermi-Dirac 
distribution at 2 x the temperature of the surrounding neutrons and electrons and with zero neutrino chemical po
tential. This calculation was carried out at StarC (see Table I), which is representative of the outer core, in the 
semi-transparent regime, where the neutrinos begin to decouple from the matter (near the neutrinosphere). The same 
systematics highlighted in the discussion of the evolution of the initial Gaussian distribution for StarB are borne out 
in these figures. Curves A and B on both plots, denoting 0.10 and 0.33 milliseconds (ms) of elapsed time, respectively, 
oonfirm that above Ell ...... 15 MeV IIpn scattering dominates thermalization. 

Figures 6 and 7 show {whn and {w}out, as defined in eqs. (2.6) and (2.7), for IIpn scattering and IIpe- scattering, 
respectively. The separate curves portray the evolution in time of the thermal average energy transfers as the 
distributions evolve to equilibrium (cf. Figs. 4 and 5). As one would expect from kinematic arguments, the magnitudes 
of both {W}in and {w}out for IIpn scattering are much less than those for IIp e- scattering. Though the energy transfers 
are much smaller, even at the highest energies, IIpn scattering still dominates IIp e- scattering in thermalizing the III' 
distribution because the rate for scattering is so much larger. At low neutrino energies, however, both average energy 
transfers for neutron scattering go to zero, whereas they approach large negative values (...... -20 Me V) for electron 
scattering. At these low energies, the fact that the rate for IIpn scattering is larger than for IIp e- scattering fails to 
oompensate for the vanishing energy transfer. For example, at Ell = 3 MeV and t = 33 ms, the energy transfer for 
lI"e- scattering is more than 100 times that for IIpn scattering. 

In order to fold in information about both the rate of scattering and the average thermal energy transfer, we plot
rD and fE (eqs. 2.8 and 2.9) in Fig. 8 for all four points considered in the Star profile. We show here a snapshot of 
the rates for both scattering processes for a Fermi-Dirac distribution initially at twice the local matter temperature, 
with zero neutrino chemical potential. Note that the spikes in fD indicate the neutrino energy at which {w}out = 0 
(d. Figs. 6 and 7). In general, we find that as Ell -+ 0, rD and rE go to zero for lip-neutron scattering, whereas 
rD approaches a constant and fE gets very large for IIp e- scattering [15]. This is a consequence of the fact that, 
regardless of F." {w}out -+ 0 for IIpn scattering as E., -+ 0, as shown in Fig. 6. For IIp e- scattering the situation is 
different. As Fig. 7 reveals, {w}out approaches ...... -20 MeV at E., = O. As expected from our analysis of the evolution 
of F., in Figs. 4 and 5, at approximately 40 MeV the thermalization rate for IIpn scattering for StarB is about an order 
of magnitude greater than that for IIp e- scattering. Specifically, the rD'S cross at ......15 MeV, whereas the fE'S cross 
at -20 MeV. Below these energies, both IIpn rates drop off precipitously as a consequence of the fact that {w}out -+ O. 
Below E., ...... 5 MeV, the thermalization rate for IIp e- scattering dominates by 2-5 orders of magnitude. As evidenced 
by the other panels in Fig. 8, this same trend holds in the other regions of the stellar profile. In general, the rates drop 
over the whole energy range for both processes as the density and temperature decrease, but the same systematics 
hold. In fact, for StarA, StarC, and StarD the fE and rD crossing points for both processes are lower than those 
for StarB. As a result of the higher temperature at this radius (T ~ 14.5 MeV) IIp e- scattering is important in 
thermalizing slightly higher energy neutrinos than at the other radii. For StarC and StarD, specifically, both rates 
cross at neutrino energies less than 12 MeV. 

These results demonstrate that lip-nucleon scattering is an important thermalization process from the dense core 
through the semi-transparent regime for III'S with energies greater than approximately 15 MeV. The addition of this 
energy transfer mechanism implies that the III'S stay energetically coupled to the surrounding matter longer than has 
been previously estimated [23]. We can approximate the radius at which the III'S energetically decouple from the 
matter (the Ep-sphere) [23] by observing when the diffusion timescale is approximately equal to the equilibration 
timescale given by fi)l = TD, as defined in eq. (2.8). Using this crude approximation we find that by including 
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vIi-nucleon energy transfer the E,,-sphere is pushed outward in radius by approximately 3 kilometers. This difference 
in radius corresponds to a 1-2 MeV drop in the matter temperature in the model Star. The average energy of the 
emergent spectrum is roughly correlated with the local matter temperature of the E,,-sphere. Therefore, we conclude 
that vIi-nucleon energy transfer in full transport calculations will likely soften the emergent v" spectrum. 

B. Emission and Absorption 

Figure 9 shows the total integrated volumetric emissivity as a function of radius in the model Star for nucleon-nucleon 
bremsstrahlung in the non-degenerate nucleon limit (eq. 3.44), its generalization for arbitrary nucleon degeneracy (eq. 
3.42), and the emissivity for e+e- annihilation (eq. 3.23). Note that not one of these expressions contains neutrino 
blocking terms and that the general bremsstrahlung rate crosses that for e+e- annihilation at - 23 kilometers where 

6 X 1012 p ~ g cm -3, T ~ 11 MeV, and Ye ~ 0.13. While this plot gives a general idea of where e+e- annjbiJation should 
begin to compete with nucleon-nucleon bremsstrahlung, it fails to include the differential nature of the production in 
energy. In addition, it does not include absorption or blocking effects, which quantitatively alter the relative strength 
of the emission. 

To begin to understand the import of these terms and the character of each pair production process, we include 
Figs. 10 and 11, which show the time evolution of Tv via nucleon-nucleon bremsstrahlung and electron-positron 
annihilation, respectively, for the point StarC, initialized with zero v" and iip phase-space occupancies. The final 
equilibrium distribution is Fermi-Dirac at the temperature of the surrounding matter, with zero neutrino chemical 
potential. Comparing curve C on both graphs, which marks 10.0 milliseconds (ms) of elapsed time, one can see that 
bremsstrahlung dominates production below - 15 MeV. Indeed, bremsstrahlung overshoots its equilibrium distribu
tion at energies below 10 MeV before finally filling the higher ev states. In contrast, electron-positron annihilation 
fills the higher states first and moves slowly toward the low-lying neutrino energies, taking a factor of 10 more time 
at this thermodynamic point to reach equilibrium. 

In Figs. 12 and 13, we plot rin and rout, as defined in eqs. (2.4) and (2.5), for both production processes at 
the point StarB. As one would predict from our simple observations of the time evolution of Tv, the bremsstrahlung 
rates are much faster (-2 orders of magnitude) than the e+e- 8nnibiJation rates at low neutrino energies. At StarC, 
e+e- annihilation competes with bremsstrahlung above ev - 15 MeV. For StarB, however, at a matter density an 
order of magnitude greater than that for StarC, the energy at which nucleon-nucleon bremsstrahlung becomes more 

1013 3important than e+e- annihilation is - 60 MeV. In this regime, where T - 12 - 14 MeV and p - g cm- , 

we find that bremsstrahlung dominates neutrino pair-production via electron-positron annihilation. A close look at 
the evolution of the total thermal average neutrino energy «ev» reveals that Tv reaches its asymptotic equilibrium 
distribution via nucleon-nucleon bremsstrahlung in - 1 ms. Electron-positron annihilation takes - 50 ms to fill all 
but the very lowest energy states. This trend continues as the matter becomes more dense. For StarA, well beneath 
the neutrinospheres at p - 1014 g cm-3 , the rates for bremsstrahlung and electron-positron annihilation never cross. 
In fact, the former produces an eqUilibrium Fermi sea. of v" 's in - 50 p8, whereas the latter takes - loa seconds. 
This difference of 8 orders of magnitude in timescale, however, is a bit misleading. Similar to v"n scattering, e+e
annihilation has trouble filling only the very lowest neutrino energy states. In actuality, at the highest energies, both 
rin and rout for e+e- annihilation come within 3-4 orders of magnitude of the rates for bremsstrahlung at the same 
energy. Still, the difference is striking. As the temperature drops from StarB (14 MeV) to StarA (10 MeV) and the 
density increases by an order of magnitude, l1e goes from 3.79 to 15.75. Consequently, Pauli blocking of electrons in 
the final state suppresses the process vpiip -+ e+e-, and the phase-space density of positrons is depleted to such an 
extent that e+e- -+ vpiip is suppressed as well. We conclude that beneath the neutrinospheres and specifically for 
p - 1013 g cm-3 , nucleon-nucleon bremsstrahlung is the primary and dominant vpiip source. Near the neutrinosphere, 
within the gain region and behind the shock, between 30 km and 60 km at p - 1012 g cm-3 and T - 6 - 8 MeV, 
bremsstrahlung competes with e+e- annihilation at all neutrino energies and is the primary production process for 
the low-lying ev and eo states. 

The addition of nucleon-nucleon bremsstrahlung will have quantitative implications for the lip and liT emergent 
spectra. Specifically, they should be softer and brighter. Burrows et al. [12] confirm this with their study of static 
supernova and protoneutron star atmospheres, having included nucleon-nucleon bremsstrahlung in the non-degenerate 
limit. In addition to observing a systematic softening, they also find that the lip spectrum is a factor of 2 more luminous 
at ev =10 MeV. 
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V. SUMMARY AND CONCLUSIONS 

Our results for equilibration via IIp-electron scattering and lip-nucleon scattering indicate that the latter competes 
with or dominates the former as a thermalizer for neutrino energies ~ 10 MeV for p ~ 1 X 1011 g em-3 at all 
temperatures. At neutrino energies ~ 30 Me V the difference at all densities and temperatures is approximately an 
order of magnitude. For the production and absorption processes, we find that nucleon-nucleon bremsstrahlung, 
at the average energy of an equilibrium Fermi-Dirac distribution at the local temperature, is 5 and 2 orders of 

1014magnitude faster than e+e- annihilation at StarA (T 10 MeV, p g cm-3 ) and StarB (T 15 MeV,"'-J "'-J "'-J 

p "'-J 1013 g em-3 ), respectively. Only for p "'-J 1012 g em-3 and T "'-J 6 MeV does e+e- ++ IIpVp begin to compete 
with bremsstrahlung at all energies. We conclude from this study that the emergent "I' and liT' spectrum is (1) 
brighter and (2) softer than previously estimated. The former results from the inclusion of the new pair emission 
process, nucleon-nucleon bremsstrahlung. The latter is a consequence of both the increased energy coupling between 
the nuclear and neutrino fluids through lip-nucleon scattering and the fact that bremsstrahlung dominates e+e
annihilation near the neutrinospheres at the lowest neutrino energies. While the full transport problem, including 
lip-nucleon scattering energy redistribution and nucleon-nucleon bremsstrahlung, must be solved in order to delineate 
precisely what consequences these processes have for the emergent "I' spectrum, these calculations demonstrate that 
they should not be omitted. 
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APPENDIX A: NEUTRINO-ELECTRON SCATTERING 

Each of the retarded polarization functions in eqs. (3.15-3.17) can be written in terms of one-dimensional integrals 
over electron energy (ee), which we label In [4]; 

ImIIf(q,w) = 2:~13 [1.+ wId ~ 10] , (AI) 

(A2) 

(A3) 

and 

2 

Imn~A(q,W) = S:jq13 [wIo +2lt]. (A4) 

The authors of [4] were able to express the In '8 in terms of polylogarithmic integrals such that 

10 = Tz (1 -~) , (A5) 

(A6) 

and 
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11"2 Z2 ~ e c e2 C )
12 = T 3z ( 1]; - Z1]e + - + - + 2~ - 2~ + ~ (A7)3 3 Z Tz T2z' 

where 1]e = P,e/T is the electron degeneracy, z = {3w, w is the energy transfer, and 

e_ = -~ + ~Jl-4;;. (AS) 

In eqs. (A5-A7), the en's are differences between polylogarithmic integrals; en =Lin(-al) - Li(-a2), where 

Lin(Y) = /." Lin-l (x) dx, (A9)
o x 

and Li}(x) = In(1 - x). The arguments necessary for computing the integrals are al = exp[l1(e- + w) - '1e] and 
a2 = exp({3e- - '1e). 

APPENDIX B: ELECTRON·POSITRON ANNIHILATION 

The production kernel is defined by 

RP( 8) - 1 f tf3p tf3p' (1 ~ I 12) )4 4 (Bl)eu,ep, cos - 2e ep (211")32e (211")32e,Fe-Fe+ 4~ M (211" 8 (P). u

The differential production spectrum for final state vps can then be written as [2] 

3 
dQ e f /.00 11 /.211'de = (1 - Fu) (2;)6 dO 0 ei deD -1 dp,' 0 dtjJ RP(eu,eD, cos 8) (1 - F D) , (B2) 

u 

where dO is the differential solid angle for the Vp neutrino, p,' =cos 8' is the cosine of the iip angular coordinate, and 
t/> is the azimuthal angle between vp and iip• Expanding the production kernel in a Legendre series in the scattering 
angle, cos 8 = p,p,' + [(1- p,2)(1- p,'2)]1/2cost/>, 

RP(eU,eD,cos8) = ~ 2:(21 + 1).r(eu,eD)~(cos8) - ~.~(eu,ep) + ~.f(eU,eD) cos8. (B3) 
I 

~, in eqs. (3.20) and (B3), is given by [2,24] 

(B4) 

where Fe+ is a function of e'(= eu + eD - e) and 

HO(eU,eD,e) = (V + A)2 JJ(eU,eD,e) + (V - A)2 JJl(eu,eD, e) . (BS) 

Each Jo in eq. (BS) is a polynomial in eu, ep, and e of dimension [energy]. They are related to each other by [2] 

(B6) 

Both J6 and J61 can be found in ref. [2] (correcting for the typo in their eq. C67). From eqs. (3.20) and (BS) we see 
that the differences between the spectra for vps and iips for a given temperature and electron degeneracy ('1e) arise 
solely from the relative weighting constants (V + A)2 and (V - A)2 in eq. (BS) for J6 and J61 , respectively. Indeed, 
in this approximation the same can be said for the difference in the spectrum between Ve and vp neutrinos. 
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TABLE I. Radius (R), temperature (T), density (p), lepton fraction (Ye ), and degeneracy factors (f1 = pIT) for neutrons, 
protons, and electrons for four points from the model, Star, a one-dimensional core-collapse calculation evolved through collapse 
for 0.24 seconds. At this point in the core evolution, the shock is at about 80 kilometers Burrows, Hayes, and FryxeU (1995). 

Label R (km) p (g cm-3 ) T(MeV) Ye fin f1p f1e 

StarA 10.75 1.281 x 1014 10.56 0.2752 2.37 0.70 15.75 

StarB 18.75 1.023 x 1013 14.51 0.2021 -1.62 -3.04 3.79 

StarC 34.75 1.082 x 1012 6.139 0.0907 -2.48 -4.81 3.03 

StarD 49.75 1.071 x lOll 4.527 0.1671 -4.45 -6.06 1.93 
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FIG. 2. The time evolution via v",-neutron scattering of the neutrino distribution function (.1'11) for an initial Gaussian 
distribution centered on 40 MeV, for the thermodynamic characteristics specified by StarB in Table I. The curves show the 
distribution at snapshots in time: (A) t = 0.33I's, (B) t = LOOps, (0) t = 3.30ps, (D) t = 10.0ps, (E) t = 33.0ps, and 
(F) t = 1000 ps. The solid dots denote an equilibrium Fermi-Dirac distribution at the temperature of the surrounding thermal 
bath with a neutrino chemical potential I'll ~ 2.32T set by the initial v", neutrino number density. 
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FIG. 4. The time evolution via v#,-neutron scattering of the neutrino distribution function (FII ) for an initial Fermi-Dirac 
distribution at 2 x the ambient temperature, for the thermodynamic characteristics specified by StarC in Table I. The curves 
show the distribution at snapshots in time: (A) t = 0.10 milliseconds (InS), (B) t = 0.33 InS, (C) t = 1.0 InS, (D) t = 3.3 InS, 
and (E) t = 33.0 InS. The solid dots denote an equilibrium Fermi-Dirac distribution at the temperature of the surrounding 
thermal bath with a neutrino chemical potential ISv ::::::: 2.55T set by the initial v#' neutrino number density. Comparison of this 
plot with Fig. 5 shows that v#,n scattering dominates thermalization above ell "'-i 10 MeV. 
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