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The large size of Lyman alpha gas clouds at intermediate 
redshifts* 

Nadine Dinshawt , Craig B. Foltzl , Chris D. Impeyt, Ray J. Weymann., and Simon L. 

Morrisl! 


The absorption lines of Lyman a observed in the spectra of high redshift 
quasars are thought to arise in cosmologically-distributed, intervening "clouds," 
the origin and physical nature of which are still unknown. Various models 
have been proposed, including pressure-confined clouds in a hot intergalactic 
medium1 , relics of primordial density fluctuations associated with the cold dark 
matter (CDM) scenario for the biased formation of galaxies2

, gravitationally­
confined clouds in CDM minihalos3

, and shocks resulting from explosive galaxy 
formation4 • To distinguish between these models requires some knowledge of the 
cloud size and geometry. Here we present ultraviolet spectra of the Lyman a 
forest of the quasar pair 0107-025A,B in which we detect four absorption lines 
common to both spectra in the redshift range 0.5 ~ z ~ 0.9, and six lines which 
are seen in the spectrum of one quasar but not the other. Assuming that these 
are Lyman a lines, the directly-measured lower limit on the characteristic radii of 
the clouds is between 160 and 180 hlJo kpc (where hlJo == Ho/100 km S-l Mpc-1 

, 

qO = 0.5). The typical velocity difference between the common absorption lines 
along the two lines of sight is only about 100 km S-I. These direct measurements 
lead to a picture of absorbing clouds that are both larger in extent and more 
quiescent than can easily be explained by current theoretical models. 

The close pair of quasars, 0107-025A,B (zem = 0.956,0.952; angular separation 1.44'), 
were observed on 1994 February 12 with the Faint Object Spectrograph (FOS) on the rebur­
bished Hubble Space Telescope (HST). The G190H grating was used on the red side of the 
FOS with the 1" circular aperture. The reciprocal dispersion of the G190H is 0.3 Apixel-I, 
corresponding to a spectral resolution (FWHM) of 1.4 A, or about 200 km S-I. A total of 
222 minutes integration time was accumulated on A and 108 minutes on B covering the 
wavelength range 1625-2300 A. Fig. 1 shows the flux calibrated HST spectra. 

"Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope 
Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under 
NASA contract NAS5-26555. 

tSteward Observatory, University of Arizona, Tucson, Arizona, 85721 USA 

tMultiple Mirror Telescope Observatory, University of Arizona, Tucson, AZ 85721, USA 

"Carnegie Observatories, 813 Santa Barbara St., Pasadena, CA 91101-1292, USA 

II Dominion Astrophysical Observatory, 5071 W. Saanich Rd., Victoria, B.C V8X 4M6, Canada 
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Absorption lines were fitted by Gaussians using algorithms identical to those of the 
HST QSO Absorption Line Key Project.s To avoid introducing spurious absorption lines 
into the analysis, we considered only those lines detected at the> 5a confidence level, and 
we also restricted our sample to lines with wavelengths longward of 1800 A, shortward of 
which the SIN degrades rapidly and the identification of Lyman a lines is confused by the 
presence of higher order Lyman lines. This procedure ensures that in the range 1800-2300A, 
all lines with Wo ~ 0.33A should be detected at the 5a limit in both objects. In addition, 
since absorption line systems containing metal lines may have different properties than the 
Lyman a forest lines, we selected for further discussion only those lines that we believe are 
neither members of metal-line containing systems, higher order Lyman series lines, nor, of 
course, Galactic absorption lines. The lines so selected are listed in Table 1 and marked by 
ticks in Figure 1. 

The lines listed in Table 1 are believed to be Lyman a absorption lines for the following 
reasons: (1) the lines are not attributable to Galactic absorption features; (2) in some cases 
(lines 4, 5, 6, 7 in A and 4, 6, 7 in B), there are statistically real lines attributable to higher 
order Lyman lines at the same redshift; (3) given the number of Lyman a forest lines per unit 
redshift determined from other investigationsS we expect to see about 9 ± 3 Lyman a lines 
with rest equivalent width> 0.32 A in each quasar's spectrum in the wavelength range from 
1800-2300 A, and we observe seven lines in both A and B; and (4) we have not identified 
any metal lines associated with the Lyman a lines, though our current wavelength coverage 
is not extensive enough to search for either the C IV or Mg II doublet. 

Table 1 contains four pairs of lines which are seen at very similar wavelengths in each 
spectrum. In all cases the redshift differences between the two features comprising the pair 
are small, ~z < 0.0009. The probability of getting jour or more pairs of lines out of a total 
sample of 14 within this redshift difference is "J 10-1 . We interpret these as cases where the 
lines of sight to the two quasars pierce the same absorber, so the lower limit on the transverse 
diameter of an absorber seen along both lines of sight is simply the proper separation of the 
lines of sight at the redshift of the absorber. For the common pairs observed here, this 
separation is 320 - 360 kpc implying that the lower . limits on the transverse radii range 
from about 160hU;o!<.pc for the lowest redshift pair at z = 0.536 to more than 180hlo~ kpc 
for the pair at z = 0.877 (for qo = 0.5; assuming qo = 0, these limits become 180 and 
225h1io kpc, respectively). These lower limits are independent of any assumptions about the 
cloud structure or geometry. 

The radial velocities measured along the two lines of sight reflect differences in bulk 
motions (e.g. rotation, expansion or contraction) of the absorbing gas seen over scales equal 
to the separation of the lines of sight. The limit on the accuracy of these measurements is 
dominated by two types of errors: (1) a systematic uncertainty due to HST pointing errors 
causing the two quasar images to be placed differently within the 1" aperture of the FOS, and 
(2) random uncertainties arising in the wavelength calibration and line-fitting procedures. 
Since the observations of the two quasars used the same guide star, the HST pointing error 

http:160hU;o!<.pc
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projected along the dispersion direction is expected to introduce an uncertainty of 0.28 A 
or about 42 km S-l,6 Since this effect is systematic, shifting all of the lines in one spectrum 
relative to those in the other, it should be manifest in the mean of the velocity differences of 
the common lines, which range from -146 km S-1 to 112 km S-l (Table 1). The mean velocity 
difference is only 26 km S-l. Furthermore, the measured shift between the wavelengths of 
the Galactic Al II .A1671 line is 20 ± 36 km S-l. Both of these lead us to believe that there is 
no large systematic shift between the two spectra. The random uncertainty in the measured 
radial velocity difference between two lines is conservatively estimated to be about 17 km s-l 
while the rms velocity difference for the four coincident pairs is 104 km S-l. Therefore, we 
conclude that we are seeing statistically significant, albeit small, velocity differences over 
scales of several hundred kpc. 

In the foregoing discussion we have consistently referred to 'cloud radii' rather than 'cor­
relation lengths'. The present observations do not allow us to directly discriminate between 
single coherent clouds versus correlated but distinct structures. Assuming the former and 
that the clouds are identical and spherical, it is possible, using standard maximum likelihood 
techniques7, to estimate the most probable value as well as the upper and lower 95% confi­
dence limits for the radius, R, of the clouds. Here, by "radius" we simply mean the impact 
parameter which produces column densities corresponding to our equivalent width detection 
limit. The probability distribution P(R) [solid curve] and its cumulative distribution [dashed 
curve] for qo = 0.5 are plotted in Figure 2. The most probable value of R given by the peak 
of the solid curve is 350h101o kpc. The 95% confidence lower and upper bounds on the cloud 
radius estimated from the dashed curve correspond to 270 < R < 860h101 

o kpc. For qo = 0.0 
the radii are larger by about 20%. 

Previous constraints on Lyman a forest absorber sizes,8-11 also based on the presence of 
common absorption lines in the spectra of physical or gravitationally-lensed pairs of quasars 
suggest cloud sizes about an order of magnitude smaller. Recent observations of the lensed 
pair HE 1104-1805 have been used to infer a 20' model-dependent lower limit on the cloud 
radius, at redshift z ~ 2.5, of 25hlo~ kpC12 and two very recent independent studies of the 
quasar pair 1343+2640 A,B separated· by 9.5'1 sugges~. cloud radii of at least '" 20hlo~ kpc 
at z ~ 2.13,14 

For typical Doppler widths, neutral hydrogen column densities and expected values of 
the ionizing radiation field at these redshifts,15 static self-gravitating clouds are expected to 
be smaller than this, especially with any dark matter binding (cf ref. 16; eq 8); pressure 
confinement would make them smaller still. However, if the clouds are in the process of 
collapsing they would be larger than these simple estimates for static structures. 

Alternatively, the large characteristic sizes implied by Figure 2 may be more indicative 
of correlation lengths than actual cloud sizes. There is evidence that luminous galaxies have 
effective cross sections for producing Lyman a with Wo ~ 0.3 A of several hundred kpC,17 
and it has also been suggested that pressure-confined tidal debris resulting from mergers or 
close encounters of galaxies spread over several hundred kpc may be involved18. For models 
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such as these, the large characteristic size for the Lyman a structures which our observations 
establish is not especially surprising. However, the small projected velocity differences may 
be more difficult to understand, since clouds unaffected by drag in the disks or virialized 
halos of normal galaxies would have velocity dispersions of 200 - 300 km S-1.19 Similarly, 
the characteristic line-of-sight velocities associated with small groups of galaxies, or with 
dwarf galaxies orbiting around luminous galaxies, are typcially 150 km S-1.20 We must note, 
however, that our observed typical velocity difference of 104 km S-l is based upon only four 
pairs of lines and so may not be highly statistically significant. 

Regardless of which, if any, of the models above may prove to be correct, our observa­
tions suggest velocity differences of less than a few hundred km S-l over scales of several 
hundred kpc. By contrast, examination of the distribution of the small number of Lyman a 
line profiles currently observed with the HST Goddard High Resolution Spectrograph at 
20 km S-l resolution reveals that: (1) the typical Doppler width distribution is about the 
same as that at high redshifts, i. e. centered at about 30 km S-l with a small dispersion; 
and (2) there is very little evidence for structure (e.g. an excess of line pairs with separation 
50-300 km S-l). So there is a marked contrast between the transverse versus line-oj-sight 
velocity correlation properties of the absorbers, though it must be noted that the transverse 
properties result from studies of the relatively strong lines reported here while the line-of­
sight properties are deduced from high spectral resolution studies of weaker lines. If these 
arise from different populations, then the comparison of their properties may be invalid, but, 
taken at face value, this evidence suggests that we are dealing with coherent structures of low 
dimensionality, such as sheets or filaments, though the observations could also be explained 
by flattened disks supported by rotational velocities of (allowing for projection effects) order 
200 km S-1 but with random velocities which are much smaller than this along each line of 
sight. 

We are in the process of obtaining GHRS observations of this pair of quasars which 
extend to lower redshifts as well as supporting ground-based observations which may help 
to resolve some of the questions raised-.here. 
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to understand the sources of error in the wavelengths. We thank Tom Aldcroft and Jill 
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TABLE 1 


LYMAN-Q ABSORPTION LINES OF QSO PAIR 0107-025A t B WITH WO ~ 0.33 A 


A B A-B 
No. >.(A) O"A Wo(A) O"WO '&:40. No. >.(A) O"A Wo(A) O"WO '&:40. At/(km/a) 

< 0.28 1 1845.17 0.06 0.44 0.04 0.5178 
1 1867.83 0.04 1.74 0.05 0.5364 2 1867.32 0.10 0.66 0.07 0.5360 82 ± 17 
2 1894.34 0.10 0.60 0.05 0.5583 < 0.28 

< 0.22 3 1919.99 0.33 0.38 0.08 0.5794 
3 2016.20 0.16 0.34 0.04 0.6585 < 0.18 
4 2090.33 0.03 0.94 0.03 0.7195 4 2089.55 0.03 0.79 0.03 0.7188 112± 4 
5 2102.14 0.03 0.72 0.03 0.7292 < 0.16 
6 2172.52 0.03 0.65 0.03 0.7871 5 2173.58 0.07 0.40 0.03 0.7880 -146± 7 

< 0.14 6 2200.36 0.03 0.88 0.03 0.8100 
7 2282.03 0.02 0.67 0.02 0.8772 7 2281.61 0.03 0.58 0.02 0.8768 55± 5 
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Figure Captions 

FIG. l:-HST FOS spectra of 0107-025A and B as a function of vacuum, heliocentric wave­
length. The dotted line in each panel shows the 1-0' errors. Tickmarks indicate significant 
(> 50') absorption features with rest equivalent widths, Wo ~ 0.33 A. Several strong lines 
which are not marked can be identified as higher order Lyman lines. The emission feature 
near 2020 Ais Lyman f3+0VI AA 1031, 1037. An exposure of a PtCrNe comparison lamp was 
obtained immediately following one exposure of each of A and B to minimize the uncertainty 
in the wavelength calibration due to nonrepeatability in the positioning of the filter-grating 
wheel which was moved before each target was observed. The spectra were reduced via the 
STSDAS pipeline processing facility in IRAF using post-COSTAR flat-field and inverse sen­
sitivity files. The bottom panel shows the equivalent width threshold (50') for an unresolved 
line. 

FIG. 2:-Probability distribution peR) normalized to one at its peak as a function of cloud 
radius for the four coincident and six anticoincident lines observed in the spectra of 0107­
025A,B (solid curve). The cumulative probability distribution is also plotted (dashed curve) 
from which lower and upper limits on the radius of the absorbers can be estimated. A 
cosmological model with Ho = 100 km S-1 Mpc and qo = 0.5 was assumed. 
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Modeling compressible turbulence with minimum Fisher information 

W. J. Cocke 
Steward Observatory, University of Arizona, Thcson, AZ 851~1 
jcocke@as.arizona.edu 

The principle of minimum Fisher information is used to work out the joint distribution function of the 
density and velocity in homogeneous, isotropic, stationary compressible turbulence. It is assumed that the 
Mach number is low. For an ideal gas in adiabatic motion with "y = 5/3, the distributions of the density and 
velocity are nearly Gaussian, but the pressure p has an exponential tail at large values of p. The expression 
for the pressure-velocity correlation is negative and is proportional to the square of the variance of the 
density. 

I. INTRODUCTION 

We apply the principle of minimum Fisher information (MFI) to the problem of understanding the 
joint distribution function of the density and fluid velocity in adiabatic, compressible turbulent motion. We 
assume that the turbulence is homogeneous, isotropic, and statistically stationary and that the Mach number 
is small. We compute the distribution function numerically for the case in which the fluid is an ideal gas 
with an adiabatic index of 5/3. 

The MFI principle has recently been exploited by B. R. Frieden1,2 as a basis for understanding physical 
laws. MFI is particularly useful in studying the statistical properties of physical systems. In this paper we 
consider the density p and fluid velocity u of a turbulent fluid as random variables described by a probability 
density P(p, w), where w == pu is the mass flux. In this simple version, we consider only the johit probability 
of these variables at a single point in space and at a given time. Thus we do not attempt to find the correlation 
between these variables at different locations or at different times. 

II. MINIMUM FISHER INFORMATION 

The MFI idea may be summarized as follows: Consider a random variable z with probability density 
P(z). The Fisher information associated with P(z) is defined as 

(1) 

Minimizing I by varying P(z) leads to physically interesting results if the constraints in the problem 
are chosen appropriately. One of the constraints is that the average of a kinetic energy be held constant 
during the variation of P(z). Another constraint often used is normalization, f P(z) dz = 1. For example, 
if the random variable is one of the velocity components v of a molecule in a gas, the constraint (Ekin) = 
jmf v 2 P(v )dv = jkT, together with the normalization constraint, leads to the variational problem 

s = J[p'(v)2 / P(v)]dv +).. (J ~mv2 P(v)dv - ~kT) + p.(J P(v)dv - 1) 
== JL(P, P')dv = min, (2) 

where).. and p. are Lagrange multipliers and P'(v) == dP/dv. 

1 
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The Lagrangian for the problem is thus 

(3) 

The usual Lagrange equation for P(v), d(8L/8P')/dv - 8L/8P = 0, then gives the Boltzmann distri­
2bution P(v) <X exp(-av ). One easily finds the Lagrange multipliers to be A = 8a2 /m and J1. = -4a < 0, 

where of course a = m/2kT. See Frieden l for further details. 
In this problem, as well as others, Lagrange's equation is easily linearized by the substitution P = q2. 

This substitution assures P ~ o. 
Frieden l showed that the MFI principle (typified by equation (2)) is equivalent to maximizing the 

mean-square-error of the best possible estimator of the random variable in question. 

III. THE TURBULENCE MODEL 

We assume that the Fisher information variables are the components of the mass flux w~ == pu~, where 
we use 4-d.imensional relativistic notation, with J1. = 0, 1, 2, 3. Here, u~ == dz~ / dT is the 4-velocity of the 
fluid. This choice of Fisher variables is consistent with formal treatments of Fisher information, in which the 
preferred variables are components of a conserved 4-vector, such that 8w~/8z~ =o. See the comprehensive 
review by Frieden2 • In our case this is just the continuity equation, expressing conservation of mass. It must 
be stated, however, that the choice of Fisher variables is somewhat arbitrary, and there is no guarantee that 
the components of w~ are really the appropriate ones. The final justification rests on whether the model 
gives realistic predictions. 

In this paper, we apply the model to the adiabatic motion of a fluid with internal energy density f(p), 
later specializing to an ideal gas of point particles, for which the energy density of the gas is p/('Y -1), where 
P is the pressure, and p =Kp7, with 'Y =5/3. 

We could in principle apply our model to relativistic turbulence, but this would be very difficult, so 
we content ourselves with the Newtonian, nonrelativistic case. In the nonrelativistic limit, then, we have 
w~ ~ p(l, u), where u is the Newtonian fluid velocity. The Fisher variables become just p and w. We use 
three constraints in the MFI principle; namely, we use the mean values of the fluid kinetic energy density 
and the internal energy density, and (as in Sec. II) normalization. These constraints are allowed for by three 
Lagrange multipliers Ai, A2, and A3. The fluid kinetic energy density is pu2/2 =w 2 /2p. 

The variables p and w have different dimensions, and we must introduce a scale factor c having dimen­
sions meters/sec into the MFI Lagrangian, which we write in a way similar to equation (3) as 

1 1 (8P)2 A1W
2 

L=pVwP.VwP+ 2p -8 -(--+A2f+A3)P (4)
c p 2p 

Using the substitution P =q2 leads to the Lagrange equation 

2 
2 1 8 q (Ai 2 )

V wq + c2 8p2 = 2p w + A2f(p) + A3 q (5) 

where V! is the Laplacian in 3-d.imensional w-space and w 2 == w 2 • 

We wish to solve this equation for P =q2(p, w) under the boundary conditions that P be integrable and 
that q(O, w) = o. In general this is a very difficult problem, even numerically, but we can find an approximate 
solution for low Mach number, where u2 « dE/dp = v~, v, being the sound speed. 

In this case one may use the An&atz q = .,p(p) exp[-a(p)w2] for the low-Mach-number limit. Substituting 
this expression into equation (5) and neglecting the term in w 4 yields the equation 

1 82 q :3
V2 q + - - ~ e-(lw {[(4a2 - c- 2a").,p - 2c- 2a'.,p'] w 2 + c- 2.,p" - 6a.,p} 

w c2 8p2 


Al
~ e-(lw:3 ( w 2 + A2f(p) + A3).,p (6)
2p 

2 



Here, the prime indicates differentiation with respect to p. To interpret a, note that the probability density 
for w at fixed p is, by Bayes' theorem, 

P(wlp) = P(w, p) = (2a)3/2e- 2aw4 (7)P(p) 11" 

since P(p) 1f;(p)2 Jd3w exp[-2a(p)w2
]. Note that the Ansatz automatically involves a Gaussian distribu­

tion for the velocity, for low Mach number. 

Taking into account the 3-dimensional nature of the integral over w-space, we may easily use equation 
(7) to evaluate the expectation of w2 for fixed p, which we denote by E[w2Ip]. The result is 

3
E[w2 Ip] =-- (8)

4a(p) 

We now show that one may neglect the term in a" in equation (6), assuming that a" is of order ap-2 
and that c is equal to or greater than the sound speed v,. From these assumptions it follows directly that 
la"lc- 2 ;S a(pv,)-2. Also note that a itself, by virtue of equation (8), is of order a ~ E[W2]-1 ~ E[(pu)-2]. 
The neighboring term 4a2 is then of order 4a2 ~ a(pu)-2. But in the limit of low Mach number, u < < v" 
and therefore la"/c- 2 « 4a2 • It is not consistent to make the same argument about the term in ,p". 

Since equation (6) must hold for all w, it breaks up into the two equations 
4a2,p - 2c-2a'1f;' ~ }.1,p/(2p) and c-2,p" - 6a,p ~ (}.2£ + }.3)1f;. 

For integrating these equations numerically it is convenient to introduce the new variable Z == 1f;'/,p. 
The above equations then become 

2a' Z ~ c2 (4a2 }.1 ) (9)
2p 

Z' + Z2 ~ c2 (6a + }.2£ + }.3) (10) 

An approximate solution of equation (10) may be obtained in the limit of large c by noting that as 
c ---. 00, Z = O(c). The term Z' in equation (10) may then be neglected. We show in the next section that 
this is actually the same as the low-Mach-number limit, at least for the ideal gas of point particles. In this 
approximation we get 

(11) 

This relation is actually the lowest-order equation in a WKB approximation and is not valid near or 
between the "classical turning points," where Z ~ O. We discuss this further in the next section, where we 
apply the formalism to an ideal gas of point particles. 

It is well known that the velocity components in atmospheric turbulence are approximately normally 
distributed, but that there are more zeros and more strong gusts than would be the case for an exact 
Gaussian3 • The approximation of low Mach number used in this paper is responsible for the exactly normal 
distribution obtained here. It may be that relaxing this condition would produce a more realistic model. 

IV. APPLICATION TO AN IDEAL GAS OF POINT PARTICLES 

We now integrate equation (10) numerically, using the approximation a(p) ~ V}.1/8p. Equation (8) 
shows that this approximation implies E[U2Ip] = E[w2Ip]/ p2 ex p-3/2, so that the velocity dispersion gets 
larger as p decreases. 

We show below that this approximation for a(p) is valid over a wide range of p and is consistent with 
the assumption that the Mach number is small, at least for the parameter values used in this section, which 
we now discuss. 
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We first show how to fix AI: Let the turbulence be characterized by the rms turbulent velocity Uo 
and the density Po at which P(p,O) = t/J(p)2 is a maximum. Let Wo == PoUo• Then by equation (8) 
w5 = E[w2IPo] 3/4a(Po). So if a(p) ~ VAI/8p, we have 

9 
Al ~ 8Poa(Po)2 = 3U4 • (12)

2po 0 

The multiplier A2 may be fixed by recognizing that equation (10) is like the Schrodinger wave equation 
for a particle in a potential V(z) ex 6a(z) + A2e(Z). (Recall that Z' + Z2 = t/J" /t/J.) 

For an ideal gas of point particles, 'Y =5/3, and the energy density is e =3p/2. For adiabatic motion 
pcp) K p5/3. Thus the maximum value of t/J (i. e., t/J(Po» occurs where the "potential" yep) = 6a + 
3A2Kp5/3/2 ~ 3VAI/2p+ 3A2Kp5/3/2 is a minimum. Knowing Al from equation (12), one can then find A2 
by taking dV/ dp =0 at Po, getting 

(13) 

The multiplier A3 then follows as an eigenvalue of equation (10), under the boundary conditions that 
Z(p) -+ +00 as p -+ 0 and Z(p) -+ -00 as p -+ +00. However, one may get an estimate of A3 by using 
equations (11), (12), and (13) and assuming that Z(Po) ~ O. The result is 

117 -2-2 
A3 ~ 20 Uo Po . (14) 

The parameter c may be found by noting that the variance 6p of p near Po is given by pcp, 0) ~ 
exp[2 J.P Z(P')dP'] ~ exp[-(p - PO)2/26P2]. It then follows that 2Z' ~ 1/6p2 ~ ±c(V + A3)-1/2V'. Note

Po 
that V (Po) + A3 ~ 0 and V' (Po) ~ O. Therefore, V (p) ~ 1V" (Po) (p Po )2. One may combine these relations 
with equations (11) - (14) to find 

c~ Uop5 [4 . (15)
6p2 V39 

As an application of this technique, we have computed an approximate solution of equation (10) for our 
point-particle gas at a characteristic pressure of 1 atm ~ 105 Nt/m2 and a characteristic density of Po =1 
kg/m3, corresponding to standard temperature and pressure at sea level. This gives K = 105 in MKS units. 
We assume an rms turbulent velocity of Uo =5.2 m/sec. Equations (12) and (13) then yield Al = 0.006173 
and A2 = 3.333 X 10-1• We have fixed the width of t/J(p) by setting c = 3 X 104 m/sec in equation (15), 
getting 6p = 0.0075 kg/m3 . 

The WKB approximation was used for the actual computation of Z(p), with our large parameter c 
playing the role of the quantum-mechanical v'2iii/1i.. See, for example, the book by Schift'4, who gives details 
on fitting Bessel functions together at the classical turning points. In the quantum mechanical case, the 
assumption of large quantum number is generally used to allow cosine solutions in the region between the 
turning points. In this case, however, we are interested in a solution with a single maximum, so we must use 
the Bessel functions J±.I/3 themselves for the fitting. If the turning points are P1 and 1'2, we define 

e(p) == cJ.P V-Yep) - A3dp p> P1 
PI 

(P2
(p) == c J V- yep) - A3dP p< 1'2. 

p 

The fit was then obtained by adjusting A3, P1, and P2 so that the functions ve[JI / 3(e) + J-1/3(e)] and 
v'l[JI / 3 «() + J- I/3«()] met at their maxima, assuring that t/J and its derivative were continuous everywhere. 
For the parameter values given in the paragraph just below equation (15), the fit gives PI ~ 0.988875, 
P2 ~ 1.011202, and A3 ~ -0.2163574. This value of A3 compares well with the estimate given by equation 
(14), which is -0.216346. 
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Figure 1 is the resulting graph of the quantity Z == "p' /"p. The abscissa is the mass density p in kg/m3 • 

Correspondingly, Z (the logarithmic slope of"p) crosses zero at Po = 1 kg/m3 • This means that the density 
distribution is roughly a Gaussian with a peak at Po. The variance of the Gaussian is small, about 0.0075 
kg/m3 as stated above. The sound speed is Va =300 m/sec, giving a Mach number of about 0.017. 

A general feature of this model is that the parameter c is arbitrary and was used in equation (15) to 
set the width of the density distribution. With c fixed, however, the model is completely determined, and 
one can go on to predict such quantities as the correlation between pressure and velocity. We do this in the 
next section. 

Generally, the variance of the density distribution is given approximately by 6p ~ PoM2, M being the 
Mach number. So the variance appropriate to M = 0.017 is about 3 x 10-4 kg m-3, or a factor of thirty 
smaller than that given by Figure 1. But one can use equation (15) to show that one could reach this value 
of 6p by going to c = 2 X 101 m/sec. The numerical integrations become difficult for such a large value of c. 

We have mentioned that the term ZI in equation (10) is generally much smaller than any of the others, 
so that one obtains equation (11). This equation breaks down at Z ~ 0, since its right-hand side actually 
vanishes at the turning points Pl and P2, rather than at Po. Elsewhere, however, for the parameter values 
leading to Figure 1, equation (11) represents Z to better than 1% accuracy over the range of the figure. 
Therefore the shape of the curve in Figure 1 is the same for all values of c for which the Mach number is 
low; we need only change the scale of the ordinate by a factor of c to find Z for any such value of c. This 
means 6p« Po, or, from equation (15), e» Uo. 

We can now discuss the approximation a(p) ~ VAl/8p, which results from neglecting the term in a' Z 

in equation (9). If this approximation holds, equation (12) implies a(p) ~ 3/(4UJp~/2pl/2), so that a typical 
value for a' is a' ~ -3/(8UJp~) ~ -0.014. From Figure 1, a typical value for IZI is 5 x lOS, and so the 
left-hand side of equation (9) is, numerically, about 140 kg-4 m lO sec2 • But the first term on the right-hand 
side is 4e2a2 ~ ge2/(4U~P6) ~ 2.8 x 106 in the same units. Therefore the left-hand side of (9) is much less 

2than the individual terms on the right-hand side and may be neglected. Since a' (X p-3/2 and a (X p-l, the 
approximation breaks down for very small p. 

2For very large p, the expression (11) may be used to show that a'Z (X p-2/3, whereas a (X p-l. Thus 
there are troubles at very large p, as well. But for the range covered by experiments and simulations (perhaps 
0.5 ~ P ~ 2.0), the approximation should be valid. One can easily show that the approximation gets even 
better as e is increased, for fixed Uo and Po. 

Similar arguments may be advanced for neglecting e-2a" as compared with 4a2 in equation (6). We 
have a" ~ 9/(16UJp~/2 p5/2), and so a typical value for e-2a" is 9/(16e2UJp6) ~ 2.3 x 10- 11, whereas 
4a2 ~ 3.1 x 10-s . 

Figure 1 shows that Z(p) is very nearly a straight line near the central value Po ~ 1, so the distribution 
of the density at fixed w = 0 is roughly Gaussian. The MFI principle thus predicts that experiments and 
direct numerical simulations should show small deviations of P(p, 0) from an exact Gaussian. 

The marginalized pressure distribution P(p) is also interesting. A plot of 10glo[P(p)] is shown in Figure 
2, where we see that the distribution becomes approximately exponential for large values of p. We comment 
on this further in Section VI. 

V. MEAN VALUES AND THE CORRELATION BETWEEN DENSITY AND VELOCITY 

In this section we evaluate various expectation values assuming that a(p) ~ VAl/8p and that one can 
fit Z with a quadratic as Z(p) ~ -(p - Po)/26p2 + ~J3(p - po)2, where we also assume 1J36ps l « 1. This 
fit need apply only over an interval that is several times the variance 6p. For Figure 1, these conditions are 
satisfied, since we have J3 ~ 2000 (kg/mS)-Sand 6p ~ 0.0075 kg/m3 • 

l
First we investigate the normalization J J "p2e-2a.w d3wdp = 1, with "p(p) 

Ao exp[J: Z(p')dp'J, Ao being a constant. Changing variables to r = P-Po gives "p(r)2 = A5 exp[2 J; Z(r')dr'] ~ 
o 
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exp[-r2/26p2 + /1r3]. Integrating over w yields 

(16) 

where r~ » 26p2 is a suitable cutoff such that /1r~ « 1. For the example in Figure 1, rc Rl 0.04 kg m-3 

would suffice. 
3

We can then expand efjr Rl 1 + /1r3 + (/1r3)2/2 and a(r)-3/2 Rl (SPo/Al)3/4(1 + 3r/4Po - 3r2/32P5). 
One may then extend the integration in equation (16) to ±oo and obtain to third order in 6p/Po and /16p3 

Similarly, one can show that to the same order of smallness the mean value of p, abbreviated (p), is 

36p2 6p
(p) Rl Po(1 + -2 + 3/16p3_)

4 Po Po 

Likewise, from equation (S), 

The density-velocity correlation then becomes 

2] 3 ( 2 6p2E[(p- (p))U Rl -- U )­
2 Po 
3 6p2 

Rl--UJ- (17)
2 Po 

Note that the terms in /1 have cancelled and that the expression does not depend on the equation of state. 
If p = Kp"', we can easily convert this into the pressure-velocity correlation as 

(IS) 

The sign of this correlation is in agreement with the Millionshchikov hypothesis5 • 

VI. SUMMARY AND CONCLUSIONS 

We have demonstrated that the MFI principle can predict the distribution of density and pressure in 
homogeneous, isotropic, compressible, stationary turbulence. At low Mach number, for an ideal gas of point 
particles in adiabatic motion (,. = 5/3), these distributions are nearly Gaussian, although the pressure 
distribution shows an exponential tail at large p. 

For incompressible turbulence, various investigations show exponential tails for certain distributions. 
See for example Lane et a16 , who find exponential tails for the temperature distribution in experiments with 
passive transport in incompressible turbulence. The exponential character seems, however, to be due to eddy 
transport of large temperature differences from distant locations. 

Holzer and Siggia7 show exponential distributions in numerical experiments with Gaussian velocity 
distributions, and Pumir8 has demonstrated that direct numerical simulations can yield pressure distributions 
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which are exponential for p < P and Gaussian for p > p. Both of these papers, however, treat incompressible 
turbulence, whereas the results of the present paper are for the compressible case. 

For incompressible turbulence, the density cannot be used as a Fisher variable since it is constant. Thus 
the compressible and incompressible cases would seem to be quite different from each other from the point 
of view of MF1. 

For an ideal point-particle gas, we predict a negative pressure-velocity correlation which depends on '1, 
as given by equation (18). 
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Figure Captions 


Figure 1. Z(p), the logarithmic derivative of ,pep) for an ideal gas of point particles, with Po = 1 kg/m3 
, 


Uo = 5.2 m/sec, and a variance op = 0.0075 kg/m3 
• The nearly linear appearance shows that ,pcp) is 


approximately Gaussian. 


Figure 2. loglO[P(P)], the logarithm of the pressure distribution function for an ideal gas of point particles 

for the same parameters as in Figure 1. The abscissa is the pressure scaled by Po = 1 atm = 1 x 105 Nt/m2. 
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