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ABSTRACT. The fundamental limit to accuracy and sensitivity of wavefront sensors for 
adaptive optics is set by photon noise. The mean square error of phase measurement is 
the sum of terms from spatial and temporal averaging of the measured quantities and the 
corresponding photon noise. We define two dimensionless quantities g and q that 
characterize the spatial and photon noise character of a wavefront sensor. The method 
of least squares is applied to determine the optimum scale of sampling, Ox, and 
integration time, Ot, for minimum error. We distinguish between two different domains, 
depending on the ratio Ox/roo 

Once the limiting sensitivity and corresponding optimum sampling scales are known, the 
engineering goals for resolution and speed for the sensor detector and adaptive correction 
device follow. The acceptable detector noise, and the reference star magnitude or laser 
beacon power needed to reach a given wavefront accuracy are also determined. 

Two wavefront sensors are analyzed, with the goals of optimized sensitivity for the 
distinct cases of stellar wavefronts and laser beacons. The first is a phase shifting stellar 
interferometer, designed to be used in a closed loop system operated in the domain Ox 
< ro' at high Strehl ratio. For a bright star a residual wavefront error of 20 nm rms can 
be achieved, given good seeing and sampling scales of Ox = 40 mm and Ot = 400 JIS. 
The second example is a Shack Hartmann sensor optimized for maximum sensitivity to 
laser beacons, in the domain Ox > roo It is designed for diffraction limited correction in 
the H and K infrared bands (rms wavefront error = 100 nm), and can make use of a 
commercially available continuous wave dye laser with a few watts power to create the 
sodium beacon. The optimum sampling scales in this case are 0.5 m and 1.2 msec. Fast 
CCOs with read noise < 3 e rms are required for both examples. 

1. Measurement Errors 

The image quality produced by adaptive optics depends on the accuracy and speed of both 



\ 

the wavefront measurements and the corresponding correction applied through a 
defonnable mirror. In this paper we will be concerned only with the fundamental 
measurement errors related to the character of the aberration produced by atmospheric 
turbulence, and photon noise in the wavefront being measured. Further system errors 
associated with the correction element can in principle be made as small as desired, and 
will not concern us here. 

Adaptive correction is made on the basis of individual maps of the distorted wavefront. 
These cannot be obtained on an'arbitrarily fine scale, or in an arbitrarily short time, when 
the photon flux to be measured is finite. In general a given measurement must have 
limited spatial resolution Ox, and be an average over some time interval Ot. Thus the 
fundamental errors of a wavefront sensor arise from the spatial and temporal averaging 
as well as from photon noise in the measurement. The properties of the atmospherically 
aberrated wavefront q,(x,t) are characterized statistically by phase structure functions: 

(1) 

where ro is Fried's length measuring the scale of spatial aberration produced by 
atmospheric turbulence, and to is the characteristic time scale of temporal evolution. From 
these functions the errors of wavefront averaging may be derived. 

First, the error from the finite spatial resolution of the sensor pixels; no matter how 
accurately each pixel average is measured, a perfect description is lacking because the 
finer details of the instantaneous wavefront structure are missed. The general form of this 
error that follows from the above structure function is given by 

(2) 

where L\ is the mean square phase error in radians2
, averaged over the telescope pupil, 

Ox is the dimension of individually measured wavefront pixels or subapertures, g is a 
factor of order unity that relates the error in the full reconstructed wavefront to the errors 
of spatial averaging of the individual measurements. Its precise value depends on the 
character of the wavefront sensor. In section two below we will give a specific examples 
of this relationship derived for interferometric and Shack Hartmann sensors. 

Second, fmite temporal resolution leads to errors, because when correction is applied the 
wavefront has changed from when it was measured. The time constant for temporal 
decorrelation is given by to =0.314 rJvw' where vw, is a tll!bulence-weighted wind speed 
for all the atmospheric layers. The mean-square decorrelation error averaged over the 
telescope pupil, ~ depends on the degree of adaptive error averaged over the wavefront, 



since the residual uncompensated fitting error is unaffected by temporal decorrelation. 
As a consequence the dependence of 1\ on Dt, the measurement time interval, is quadratic 
for small Dt, turning to a 5/3-power at larger Dt. The turnover to the 5/3-law occurs at 
larger time intervals for low-order correction (Dx»ro) 2, and for full correction 
(corresponding to Dx~o) the quadratic dependence holds only for Dt/to«rJI). In this 
paper we will be concerned mainly with high-order correction, for which we are either 
in the transition between Dr and Df/3 dependence, or we are in the region where 5/3 has 
taken over. In either case, use of the 5/3 law represents an upper bound to the temporal 
error. Thus, we express the mean-square error as averaged over the pupil as 

(3) 

Here, w = rr/to =3.2 Vw is an effective speed relating spatial and temporal errors. 

Now we consider the error arising because of photon noise in the light intensities 
measured by the wavefront sensor. For any given detector the propagation of the photon 
noise to the final wavefront mean square phase error .6. can be computed. The fonn of 
this error is the same for wavefront sensors based on local gradient or direct phase 
measurements. It changes depending on the measurement pixel si~e Dx. Thus we find 

I:1 
p 

= 1/FqDtDx2 (Dx < ro ' case A) (4) 
.6. p = l/FqDtr; (Dx > ro ' case B) 

Here F is the flux of photons at the sensor per unit area of the telescope pupil and q is 
a parameter that characterizes photon sensitivity. It includes both the quantum efficiency 
of the detector and a factor of order unity that relates the photon noise in the local 
measurement to the corresponding phase error in the wavefront reconstructed over the 
telescope pupil. The denominators in these expressions are approximately equal to the 
number of photons detected in measurement time Dt from area Dx2 or ro2 respectively. 
The two different cases A and B result from the transition from diffraction to seeing limit 
over the sampling aperture Dx. Thus accuracy of a Shack Hartmann sensor depends on 
the size of the individual images, which are inversely proportional to Ox when Ox < ro, 
but is constant at the seeing limit for Dx > roo (In fact, a more careful analysis will show 
that the break may be closer to Ox = 2 - 3 ro when an unresolved stellar wavefront is 
measured, because the instantaneous image is still diffraction limited). For an 
interferometer, the break may be interpreted as a reduction in fringe visibility when 
Dx > roe 

A fourth error source will be considered later, namely the read noise of the imaging array 
in the wavefront sensor. It is not fundamental, and for the moment we will consider it 
to be negligible. 

If the pixel size and integration time of a sensing cycle are fixed, the above equations can 



be used directly to calculate noise performance. However, to find the ultimate accuracy 
limited only by photon noise, we shall suppose the wavefront sensor is configured with 
Ox and Ot adjusted so as to minimize the total wavefront error. In this limit, the 
accuracy of a sensor is characterized by just the two dimensionless parameters g and q. 
The atmospheric aberration is given by the spatial and temporal parameters ro and w, and 
the wavefront intensity by the photon flux F at the sensor. The optimum values of Dx and 
Ot and the corresponding mean square residual error may be determined by the least 
squares method as follows. 

For case A Ox < ro, we have 

(5) 

Setting al1A/aOx =0 and al1A/aOt =0 to find the minimum value, we obtain 

(6) 

and 

(7) 

and hence 

(8) 

Equation 8 is appropriate for the limiting performance of adaptive optics systems that aim 
at very accurate wavefront correction, with small scale sampling of the wavefront and 
high Strehl. 

For case B, x > ro, which is appropriate for large scale sampling of a laser beacon, we 
have 

t 13 (9)l1B = (gDx/ro + (wDt/ro)513 + l/(FqDI1':) 

Setting allB/aDt = 0, we obtain for the optimUlTI value of Dt 

(10) 

when 

B 513 ( 3 )-518 (11)
/)., min = (gDx/ro) + 8/3 5/3 Fqro/w 



The error from spatial undersampling is independently set. A reasonable goal would be 
to keep it at no more than the second term in equation (11), in which case we find 

(12) 


and for the minimum total error 

B ( 3 )-518 (13)~in = 16/3 5/3 Fqrolw 

A number of interesting results about the limiting performance of adaptive optics may be 
deduced from these expressions. Consider first ~e dependence of residual error on 
atmospheric conditions and photon flux. It is sometimes argued that adaptive optics will 
be able to correct for seeing, reducing the need to build on sites with the best seeing. 
However, we see that the mean square residual error after correction does depend on ro, 
as approximately ro-

1 for small subapertures, and as ro-
2 for larger, and thus better seeing 

will result in better correction. Put another way, for the same measurement accuracy, the 
photon flux required for given precision of correction in both cases depends on ro-

3• 

The gain in .wavefront accuracy with increased flux is weak when high accuracy 
measurements are to be made, (case A). Thus from the -5/14 power in equation 8 we see 
that a ten fold increase in flux allows only a 2.3 fold improvement in mean square error, 
or 1.5 in the rms error. The dependence on wind speed and detector quantum efficiency 
is similarly weak. Laser beacon sensing for the correction of infrared images falls in the 
domain of case B. The mean square error depends on flux and hence laser output as the 
-5/8 power. There is no dependence of the residual error on telescope aperture seen in 
the above equations. This is correct for errors in the wavefront being sensed. However, 
when a laser beacon wavefront is sensed with a large telescope, it will be different from 
a coincident stellar wavefront because of focus anisoplanitism. 

The possibility of making sensing aberrations at one wavelength to correct the wavefront 
at another was proposed by Woolf. 3 Neglecting chromatic effects in the aberration, the 
mean square residual error ~o at the observation wavelength Ao is given by 

(14) 

where Llw is the error given by equations 8 and 13 above at the sensor wavelength, "-w. 

In these equations ro is the value appropriate to the measurement wavelength, and it can 
be related to ro at the standard wavelength of 0.5 pm by ro(Aw) = ro(0.5)(VO.5)615. 
Suppose we are using a continuum stellar source to measure the wavefront aberration, and 
are free to choose the optimum wavelength for the minimum absolute wavefront error. 



Then we find from equation S that in case A the absolute error depends on 
(Aw2

/ F(Aw))-5/14. Thus the wavelength should be chosen such that Aw2IF("'-w) is minimized, 
favoring the use of shorter wavelengths. For case B, the corresponding result is that 
l/(F ("'-w)5 Aw2

) should be minimized, favoring the use of longer wavelengths. 

The flux needed to reach given phase error or Strehl ratio at different observed 
wavelengths Ao is also of interest. For case B, appropriate for laser correction of the 
infrared, the flux or laser power must be proportional to Ao-

3
.
2
• It is for this reason that 

laser correction is much easier at longer wavelengths. For case A the dependence is even 
steeper, as Ao-5.2• 

Finally, we use the above analysis to obtain expressions for the number of photons 
detected by each pixel of the imaging detector of the optimized wavefront sensor, and 
hence the limit of acceptable detector noise. The total number of photons N detected to 
sense either phase over one pixel on an interferometer, or to measure an individual star 
centroid in a Shack Hartmann sensor is given by 

(15) 

where 11 is the effective quantum efficiency (transmission plus detector quantum 
efficiency). Substituting the optimum values of Dx and Dt derived above, we find 

N = 14/5 11/q l/~in (case A) 
(16) 

(case B) 

While specific values of N require knowledge of 11/q and g for individual sensor 
implementations, we can make some general observations. A striking feature is that the 
optimum number of photon detections in an optimized system is very small, and 
independent of detector quantum efficiency; 11/q and g are both independent of detector 
efficiency. Since 4 - S pixels reads are involved in the measurement of phase or star 
position, the number of detected photons to be recorded by individual pixels is around 
N/4 - N/S. N itself is already a small number, as 11/q and g are close to unity. For case 
B the dependence of N on wavefront error is extremely weak, and in any well optimized 
system N will always be small. For case A, N depends inversely on AAmin' and will 
become larger when accurate measurements with very high Strehl are undertaken. 

From the above analysis a critical evaluation can be made of alternative forms of 
wavefront sensor for different applications. First, on the assumption that adequately low 
noise array detectors will be available, we can characterize the performance of any 
wavefront sensing detector by the parameters q and g. Then for a given strength of 
atmospheric aberration and photon flux, the optimal spatial and temporal sampling scales 



Dx and Dt can be derived. The system component requirements follow, including speed, 
resolution and noise. In the next section we give examples of this type of analysis for 
two wavefront sensors. 

2. Two Specific Wavefront Sensors and Their Errors 
A sensor optimized for case A, small scale sampling and high accuracy, is described by 
Angel 4 and a prototype has been operated at the telescope by D'nardo Colucci 5. In 
brief, the sensor is based on phase shifting interferometry, as used for accurate metrology 
in the optics shop. The aberrated wavefront enters a Mach Zehnder interferometer ahead 
of the focus. The aberration in one beam is largely removed by passing the star image 
through a spatial filter consisting of a diaphragm the size of the diffraction limited image 
core. After the beams are recombined, interference with the aberrated beam results in 
white light fringes showing the aberration at images of the pupil fonned at both 
interferometer outputs. A piezo driven mirror is used to introduce stepped phase changes 
between the two beams, with the fringe patterns recorded for each phase setting. Phase 
maps reconstructed from the fringe images are used in a closed loop adaptive system to 
maintain high Strehl ratio, obtained initially by a bootstrap method. The reference beam 
is then strong and the arrangement gives high photon efficiency with low systematic 
errors. From the analysis given by Angel, we find the appropriate parameters for this 
device, incorporating a CCD of high quantum efficiency are g=O.4, 11=0.4 and q=O.2. 

This sensor is of special interest, since we argue that the g and q values represent the 
limiting perfonnance possible with any sensor. Thus when viewing a bright star in good 
seeing, the projected optimized wavefront errors represent as perfect correction as is 
possible with astronomical adaptive optics. For the case of a wavefront of a star with I 
magnitude =2, the photon flux F =109 photons/m2/sec. In good seeing conditions, ro in 
the I band is 0.3 m and we take v w = 10 m/sec. Then from equation 8 the optimized 
mean square error is 0.02 radians2

, or 20 nm rms wavefront error. Thus adaptive optics 
can achieve image qUality with Strehl near 98% in the near infrared. The optimal values 
of Dx and Dt corresponding to this limit from equations 6 and 7 are 40 mm and 400 
microseconds respectively. From equation 16, case A, we find for the above values of 
l1/q and g that N=270. This number of detected photons is divided between 8 pixel reads 
for a phase measurement. Thus the average signal per read is 34 e, with an rms error = 
6 e. Detector read· noise < 3 electrons rms is needed to avoid increasing the photon noise. 

As a second case, we consider the sensor optimized for case B, Dx > ro, described by 
Sandler et al. l This is a Shack Hartmann sensor, designed to measure the wavefront from 
a sodium beacon. The mean square wavefront error at the laser wavelength Aw to photon 
noise is given 1 as 



(17) 

where co is the angular width of the laser beacon in units of" the subaperture diffraction 
limit, A..)Dx. The numerical factor was evaluated for a specific reconstruction geometry 
corresponding to large subaperture. N is the number of photons detected per subaperture 
in time Ot, given by equation 15. We shall suppose that an optimally transmitted laser 
beacon has width A..jro, and thus co = DX!ro. Combining these results, and neglecting for 
the moment detector noise, we obtain 

(18) 

Comparing equation 18 with equation 4 (case B) we see that l1/q = 9.7. We adopt 11 = 
O.S as an achievable goal for overall transmission, including losses in the wavefront 
sensor and detector quantum efficiency. It then follows that for this sensor q=O.OS. The 
second parameter g that characterizes the spatial averaging error is for a Shack Hartmann 
sensor given approximately by g=O.3. The sensor parameters q and g for this system, 
O.OSand 0.3, may be compared with those of the phase shifting interferometer, 0.2 and 
0.4. 

With the aid of equation 13 above, we can now calculate the laser power P needed to 
achieve given accuracy. Suppose for example that correction to 100 nm" nns is required 
to give diffraction limited imaging in the near infrared at 1.6 and 2.2 microns wavelength. 
The photon flux returned from a sodium beacon is given by F = 300,000 p.l We find 
from the above that the laser power required is 4 watts, assuming wavefront aberration 
parameters ro(0.S9pm) = 0.2 m and v w = 20 rn/sec. The corresponding optimum sampling 
values are Otopt = 1.2 msec and OXopt = 0.5 m. We note that the laser power requirement 
is critically dependent on the laser beacon having angular size limited by seeing. Explicit 
in the determination of q above is the assumption of an instantaneous angular extent A/ro, 
in this example 0.6 arc sec. If the laser beacon image size were increased, for example 
to 2 arcsec in diameter, the laser power requirement would be increased as the square, in 
this case to 44 watts. In order to obtain a beam of the smallest possible diameter, the 
laser and its projection optics should be diffraction limited, and the expanded beam should 
have a beam diameter of -2ro 6. In practice, it maybe advantageous for a large telescope 
to use Ox and Dt larger than the optimum found here, if focus anisoplanitism becomes 
the dominant error and is not corrected through the use of multiple laser beacons. 

The number of photons detected per measurement from equation 16, case B, is N=150. 

It is proposed that the motion of each subaperture image be measured with a quad cell 


. from 4 pixels on a CCD, as described by Wittman et al. 7 The average number of photon 

events recorded per pixel read in this case is thus 38, with an error of 6e rms. Thus again 

the detector noise n of ~ 3 e rms is needed to avoid significant noise increase. The 




technical challenge in this case is easier, because the detector frame rate is now 800 Hz, 
instead of 10 kHz for the phase shifting interferometer, and the number of pixels is far 
less, only a few thousand. 
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