
PREPRINTS 

afthe 

STEWARD OBSERVATORY 


THE UNIVERSITY OF ARIZONA 
TUCSON, ARIZONA 85721 U.S.A. 

No. 1140 

FISHER INFORMATION AND PERIODIC STRUCTURES IN COSMOLOGY 

w. J. Cocke 

Steward Observatory ~~~" 
University of Arizona nI 

Tucson, Arizona 85721 

>­
0:-::r P\~--tro ph'j~ :r. u-H, 
~ 

Submitted to Astrophysical Journal Letters. 
CD 
CC 



- 1 

Fisher Information and Periodic Structures 
in Cosmology 

W. J. Cocke 

Steward Observatory 

University of Arizona 


Tucson, AZ 85721 


ABSTRACT 

We use the principle of minimum Fisher information to develop a preliminary theory for extragalactic 
redshift periodicities. We show that the principle leads to periodic distributions in phase space, where the 
velocity part of the space is the velocity of a galaxy relative to the local Hubble flow. The results seem 
applicable to a variety of kinematic problems in cosmology. 

1. INTRODUCTION 

There continues to be strong evidence for periodicities in extragalactic redshifts. Most recently, Cocke 
& Tifft (1993) have discovered global 36 and 72 km s-l periodicities in several radial velocity data sets 
in which velocities were corrected for the solar motion relative to the cosmic background radiation. These 
periodicities are so strong that they cannot plausibly be explained as random fluctuations in the data. For 
a general review of the status of redshift periodicities, see Tifft (1993). On a much larger scale, Broadhurst 
et al (1990) have observed redshift periodicities corresponding to a spacing of about 130h- 1 Mpc, where h 
is the Hubble constant in units of 100 km s-1 Mpc- 1 . 

The theory developed here uses the the principle of minimum Fisher information (MFI), which has 
recently been exploited by B. R. Frieden (1990) as a basis for understanding physical laws. MFI is particularly 
useful in statistical problems, and here we consider the positions and velocities of galaxies in phase space 
as random variables described by a probability density p(x, v), where v is the velocity relative to the local 
Hubble flow. 

In Section 2 we discuss MFI and review its application to the Boltzmann distribution. In Sections 3 
and 4, we apply the principle to redshift periodicities, in the context of an observer-centered cosmology, and 
in Section 5 we broaden the discussion to include a general distribution p(x, v) in Cartesian coordinates. 

The paper deals primarily with the small-scale periodicities of 36 and 72 km S-l, but our results should 
have observable consequences for more general studies of the kinematics, distances, and angular distributions 
of galaxies. 

2. MINIMUM FISHER INFORMATION AS A GENERAL PHYSICAL PRINCIPLE 

MFI is a useful tool in studying the statistical properties of physical systems. The concept has been used 
by B. R. Frieden to derive such diverse results as the time-independent Schrodinger equation and Maxwell's 
equations. See Frieden (1990, 1992). 

The idea may be summarized as follows: Consider a random variable z with probability density p(z). 
The Fisher information associated with p( z) is defined as 

(1) 

Minimizing 1 by varying p( z) leads to physically interesting results if the constraints in the problem 
are chosen appropriately. One of the constraints is that the average of a kinetic energy be held constant 
during the variation of p(z). Another constraint often used is normalization, Jp(z) d.z =1. For example, if 
the random variable is one of the velocity components 11 of a molecule in a gu, the constraint < Ekin >= 
}m f 112p(11 )dv = }kT, together with the normalization constraint, leads to the variational problem 

s =j [P'(11)2/p(v)]dv + >.(/ ~m112p(v)dv ~kT) + lJ.(j p(11)d11-1) 

== / L(p, p')dv = min , (2) 
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where A and J.L are Lagrange multipliers and p'(v) =dp/dv. 
The Lagrangian for the problem is 

(3) 


The usual Lagrange equation for p(v), d(8L/8p/)/dv-8L/8p =0, then gives the Boltzmann distribution 
p(v) ex exp(-av2 ). One easily finds the Lagrange multipliers to be A =8a2 /m and J.J = -4a < 0, where of 
course a = m/2kT. See Frieden (1990) for further details. 

In this problem, as well as others, Lagrange's equation is easily linearized by the substitution p q2. 
This substitution assures p 2:: o. 

Frieden (1990) has shown that the MFI principle (typified by equation (2)) is equivalent to maximizing 
the mean-square-error of the best possible estimator of the random variable in question. 

3. THE MFI PRINCIPLE IN AN OBSERVER-CENTERED COSMOLOGY 

In this section we consider the probability density p(x, v) for the location of a galaxy in a reduced 
4-dimensional phase space. As random variables, we use the galaxy's position in spherical coordinates 
x = (r, 8, fjJ) and the radial (line-of-sight) peculiar velocity v. By this we mean the galaxy's velocity relative to 
the local Hubble flow, projected along our line of sight. The MFI principle then leads directly to periodicities 
in the observed (total) radial velocity Vob•• 

The treatment here is nonrelativistic and does not predict a value for the periodicity, but shows only 
that the observed redshift of a galaxy has preferred values and that these values may be equally spaced. 
This is in contrast with earlier work (Cocke 1985), which showed that redshifts might be proportional to the 
square root of a quantum number. 

Let p = p(r,8, fjJ, v) = q2 be the probability density for the position and radial peculiar velocity v of a 
galaxy as seen by an observer at the origin, r =O. Frieden (1990) has pointed out that Fisher information 
is additive for densities that are functions of several random variables, provided that the variables may be 
scaled to have the same dimensions. In our case, the Hubble constant ho with dimensions sec- 1 gives a 
natural scaling between position and velocity. 

As in the Boltzmann distribution problem, we use the constraints of fixed kinetic energy and normal­
ization. Here, it is appropriate to use the kinetic energy tM v 2 associated with statistical deviations from 
the highly ordered Hubble flow. We write the Lagrangian in a way similar to equation (3) as 

(4) 


where V = (8/8:r" 8/8y, 8/8z). Note the similarity between the first and second terms on the RHS of this 
equation. 

Defining Al A/4 and A2 = -J.J/4 and using the substitution p = q2 leads to the Lagrange equation 

(5) 


Here, p =q2 is the probability density in units of sec cm-4 , in rectangular coordinates. We wish to use 
spherical polar coordinates in x-space, which are more germane to our perspective as observers. A separable 
solution q = R(r)Y(8, fjJ)V(v) of equation (5) is easily found, with the usual Y =Yim(8, ,) = Pj(cos8)eiml/1,
Pi' being the associated Legendre functions for l 2:: 0 and Iml !S l. The MFI principle is not normally used 
for complex functions, but one may clearly use cos( m,) and sinem;) instead of eiml. 

The equation for R(r) is 

tPR + ~dR _ l(l+ 1) R= -'~R (6)
dr2 r dr r2 ' 

where, is a separation constant. If, is positive, the solutions of this equation are spherical Bessel functions 
i,(p), where p = ..;char. The i,(p) are sines and cosines of p divided by powers of p, but they are all regualar 
at the origin. For large p, they have the asymptotic expansion iz(p) """ cos[p - t(l + 1).,..]/p. The spherical 
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Neumann functions are also solutions of equation (6), but they are not integrable at the origin. See, for 
example, Abramowitz & Stegun (1972). 

If the separation constant' is negative, the solutions of equation (6) involve the modified Bessel functions 
Il+ 1/ 2 (p) and the Macdonald functions K ,+1/ 2 (P). The former diverge exponentially at infinity, and the latter 
are not integrable at the origin. See, for example, Lebedev (1972). Therefore, the j,(p) solutions are the 
only physically reasonable ones. This implies that' is positive. 

The equation for V(v) becomes 

d
2
V (A1 2 )

dv 2 - "2 M v - A2 +, V =0 , (7) 

the solutions of which involve Hermite functions Hv (17), where 17 = (~M)I/4v and A2 =,+(~M)1/2(2"+ 1). 
The Hermite functions diverge exponentially at either +00 or -00 unless" is an integer, n. Therefore the 
only physically admissible solutions to equation (7) are the harmonic oscillator wavefunctions Un (17) = 
e-.,,2/2Hn (17). In this case 

(8) 

4. APPLICATION TO REDSHIFT PERIODICITIES 

The above solution to equation (5) yields periodicities in the total radial velocity Vobl: The spherical 
Bessel functions are combinations of sin( -/Chor) and cos(-/Chor), and the node spacing in hor is ho6r =7r /-/C. 
The harmonic oscillator wavefunctions are roughly periodic in 17 =(~M)1/4v. In fact, for n even and large, 

n =2k, we have the limiting relation (Bateman 1953) limk-+oo[(-)kVkH2k(u/2Vk)/(22kk!)] =7r-1/2 cosu. 
There is a similar expression for odd n. The spacing between the nodes is therefore 6u R: 7r, and it follows 
that the node spacing in 17 is 617 R: 7r/V2n R: 2n- 1/2. The node spacing in v is then 6v R: 2(~M)-1/4n-1/2. 

Since Vobs = v + har, the periodicity 6Vobl is most visible when ha6r and 6v are equal, in which case 
6Vobs = ha6r = 6v. An observed redshift periodicity 6Vobl then fixes the parameter,. For example, if we 
take 6Vobs R: 36 km s-1(Tifft & Cocke 1984), we get' R: (7r/36)2 R: 0.0076 s2 km- 2. 

Note that the probability density in spherical coordinates is q2r2 sin 8. By virtue of the asymptotic 
relation for the spherical Bessel functions quoted in Section 3, this density is not integrable at r ~ 00. In 
fact, q2r2 is ex cos2[p - j(l + 1)7r] in the limit of large r. Therefore it is necessary to introduce a cutoff 
at large rj otherwise, the Fisher information would not converge. It might be possible to use MFI with 
delta-function normalization, but in any case the cosmological event horizon would be a suitable physical 
cutoff. 

We may determine the parameters nand A1 by invoking a velocity dispersion ~V relative to the local 
Hubble flow. One might choose, say, ~V R: 250 km S-1. The Hermite polynomials have n nodes, and 
therefore we have 2~v R: n6v R: 36n. It follows that n R: 14; and since 6v R: 2( ~M)-1/4n-I/2, we find 
(¥M)-1/4 R: 67 km S-1. A suitable value for the galaxy mass M would then give a value for AI' From 
equation (8) one finds A2 R: 0.0141. 

The solutions to equation (5) are cosmologically reasonable only if, given a measured Vobl, the ex­
pectation of r is R: Vobl/ho. It is easy to see that this is the case for the radial solution investigated 
here. Let p(rlvobl) be the probability density for r for a given value of Vobl' By Bayes' theoreIIlt this is 
equal to p(r, Vobl)/ f p(r', Vobl) dr'. The density p(r, Vobl) may be obtained formally by the transformation 
r =r, v =Vobl - hair, the Jacobian for which is unity. 

In the limit of large p = V(har, one gets, replacing r ~ r, the result p(r, vobl)r2 ex cos2 [P - 'Jr(1 + 
1)/2JU~[a(vobl - hor)], where we abbreviate a = (~M)1/4. Both cos and Un have roughly 14 nodes over the 
entire width of Un, and the latter function has exponential cutoffs at both ends of its width. And since U~ 
is symmetric in its argument a(vobl - har), we conclude that p(rlvobl) is, as function of r, roughly centered 
at Vobl/ho and that the expectation of r (given Vobl) is R: Vobl/ho, as desired. 

We must now discuss the role of the angular quantum numbers I and m, which would relate to the 
angular structure of a distribution of galaxies, as seen from the origin. The i,(p) have their largest extrema 
at p R: I. (These are also their first extrema. See Figure 1 for a plot of i,(p)2 for I =40.) Therefore, if a 
distribution of galaxies has observed angular detail 1/1 radians, the distribution is most likely located at a 
distance r 2: 1/(~ho) R: 0.11 h-ll Mpc. Thus the characteristic physical size of the detail is approximately 
r/l 2: l/(V(ho) R: 0.11 h- 1 Mpc. This characteristic size is independent of I and is roughly the diameter of 
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a large spiral galaxy. This is a satisfying interpretation for the parameter" especially since 7r / ( ..f(ho) is the 
node spacing in r. 

The separated solution i, (P)Yzm (8, <p)Un(av) describes a situation in which the galaxies are distributed 
in spherical shells centered about the origin. More general solutions may be built up as series in I, n, and m, 
with the stipulation that ).1 =2a4/ M and ).2 be constant. , and n would continue to be related by equation 
(8). 

Since, > 0 and n ~ 0, we have maximum, and n given by 

(9) 


The numbers used above imply 'max ~ 0.0139 s2 km-2 and nmax ~ 3l. 
Equations (9) show that for fixed ).2 and a, it is not possible to fit an arbitrary function of velocity with 

these solutions. Using Cartesian coordinates, one may easily show that it is likewise not possible to fit an 
arbitrary function of position, and we demonstrate this in the next section. Since p =q2, these more general 
solutions would show interesting and complicated interference phenomena. The period of i,(p) depends only 
very weakly on Ij therefore, terms in different values of I could easily reinforce each other. 

5. GENERAL PERIODIC STRUCTURES IN GALAXY DISTRIBUTIONS 

In the above section, we focused on the subject of redshift periodicities. One may, however, also ask how 
one might apply the MFI method to the broader problem of the distribution of galaxies in 6-dimensional 
phase space, with all three peculiar velocity components considered. 

In this case it is convenient to use Cartesian coordinates, in which equation (5) is generalized to 

1 2 2 ().1 2 ) 
h2 V q + V tI q - - M v -).2 q =0 , (10) 

o 2 

where V~ is the Laplacian in peculiar velocity space, which we now refer to simply as "velocity space." The 
general solution to equation (10) is 

q(x, v) =L f d3 k C(k, n)eik,xUn.(avz:)Unll(avlI)Un. (ava ) , (11) 
n 

where a is defined above, k = (kz:, 'Ic.y, k%), and n = (n:IH n." n%). The discussion about Hermite functions 
in Section 3 implies that the harmonic oscillator wavefunctions, with non-negative integers nz:, nil' and n%, 
must be used. 

Equations (10) and (11) show that C(k, n) is arbitrary except for the reality condition 
-::-:~--:;.

C(k, n) =C(-k, n) and for the restriction 

k2 = h~{).2 - a 2 [2(nz: + n" + na) + 3]} , (12) 

where k =Ikl. 
Since ).2 and a are constants, this equation restricts k to discrete spherical shells in k-space, and 

hence C(k, n) contains delta-functions in k. Since the integers in equation (12) are non-negative, there is 
a maximum value for k given by kmax = hov').2 - 3a~. This proves that one may not expand an arbitrary 
function of x in terms of the solutions to an MFI problem. The fact that one must use discrete shells in 
k-space is an additional restriction. 

This also means that there is a kind of classical uncertainty relation for a typical position variable z. 
Starting from the well known Fourier transform uncertainty relation 6z 6/e R:::I 1, one can substitute 6/e ~ /emax 
to get ho.J).2 - 3a26z ~ 1. 

This equation is hard to interpret. Note, however, that one may rewrite equation (12) as 

(13) 


Setting k ~ 0 in equation (13) gives us a maximum value "'max for the sum of the n's. One finds 
k~ax ~ 2hga2nmax• But the minimum velocity spacing is 6Vmin ~ 2/(a.Jii). It follows that kmax6vmin ~ 2ho. 
Since /emax6z ~ 1, we see that 

(14) 
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Thus the scale of the smallest possible detail in configuration space is equal to the scale of the minimum 
detail in velocity space divided by twice the Hubble constant. One may use equation (9) to derive the 
corresponding relation in spherical coordinates, which is 6rmin ~ 6vmin/ho. 

The fact that we have discrete shells in k-space means that q(x, v) consists (for each Ie) of a superposition 
of waves of constant wave-length. These waves include both plane waves and waves of the form io(kr) = 
sin(kr)/ler with arbitrary centers. These different components could reinforce and cancel each other at 
different positions. 

It is also interesting to consider interference effects in peculiar velocity space. Since equation (11) is the 
general solution to equation (10), we can without loss of generality orient the coordinate system in velocity 
space so that the V.z axis points toward the observer. This is independent of the orientation of the spatial 
coordinate axes. 

Let us consider the case for which there is only a single value of Ie involved. The distribution of the 
radial peculiar velocity vpec =V.z is then proportional to 

p(Vpec ) =J J dv~dvy C~= CnUn.(av:r:)Unll(avy)Un.(avpec») 2 
n 

=L CnCn, J J dVa:dvyUn.,(ava:)Unll(aVy)Un.(avpec) 
n,n' 

(15) 

The functions Un are orthogonal, and therefore the only surviving terms in this equation are for n~ = n.: 
and n~ =n y. Since we are dealing with only a single value of Ie, equation (12) implies that n~ =n". Equation 
(15) then reduces to 

p(vpec ) =L C'!U~.(avpec) , (16) 
n 

where C~ contains the normalization factors of the U's. The different terms in this equation have different 
periods 2/(an!/2), but they could sum together to produce beat periods in a way similar to the identity 
L:!:'=1 sin2 am = M/2 - L:m<ml cos(am+ G.m,1) cos(am- G.m,1 )/(M - 1). 

These effects should help to produce observable red shift periodicities at various scales. A more compre­
hensive analysis of possible periodicities in total redshift Vobl would be very complicated and is beyond the 
scope of this paper. 

6. DISCUSSION 

Minimum Fisher information is a principle of wide applicability in statistical physics, and it would be 
surprising if it did not have something to say about the distribution of galaxies in phase space. Thus one 
would expect equations (9) and (12) - (16) to be helpful in interpreting our observations of the positions 
and radial velocities of extragalactic objects. 

This seems especially true of the small-scale redshift periodicities, with their intriguing multiples and 
sub-multiples of 72 km s-l. There are also the much larger periodicities and voids with scales as larse 
as 5000 km s-l. See Broadhurst et al (1990) and da Costa (1991). MFI should be useful in interpreting 
these structures, although the principle should certainly be broadened to include gravitational interactions 
between galaxies. Its effects should then be apparent in numerical simulations as well as in observational 
data. 

Note that MFI does not predict the actual values of the periodicities, which are set by the free parameters 
in the theory, as is the case with the temperature in the simple Boltzmann distribution problem in Section 
2. 

We thank B. R. Frieden, R. C. Kennicutt, Wolung Lee, and W. G. Tifft for their helpful comments. 
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FIGURE CAPTION 

1. The square of the spherical Bessel function of order 1= 40. Galaxies described by such a distribution 
are concentrated around p = ..j(hor 2:: l. 
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