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Abstract 

We present in detail the results of our two-dimensional, fully self-consistent 

radiative-hydrodynamical simulation of an accretion disk corona in low-mass 

X-ray binaries radiating at half the Eddington limit. The corona is comprised 

of two main regions, separated roughly by the radius at which the evaporated 

plasma first attains escape velocity. The inner portion is highly variable, and 

oscillates quasi-periodically on a dynamic time scale. whereas the outer corona 

is more stable with the gas rising to form a density sheath that merges into 

a wind at larger radii. Observationally. the corona can signficantly alter the 

appearance of the central source since it enhances the flux by as much as 100% 

when the neutron star is seen directly, while it suppresses the observed flux by 

an order of magnitude deep with in its shadow. 

Subject headings: radiative transfer-stars: accretion-stars: binaries-stars: coronae 

stars: neutron 
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1. Introduction 

We have previously introduced a model for accretion disk coronae (ADCs) in low 

mass X-ray binaries (LMXRBs) that for the first time self-consistently accounts for both 

the dynamical and radiative aspects of the evaporated plasma (Melia, Zylstra It Fryxell 

1991, MZF). Such a detailed treatment is necessary because of tbe role played by ADCs 

in shaping the observational characteristics of these systems. For instance, there is no 

doubt that the X-ray source in the eclipsing binaries 4U 2129 + 47 and 4U 1822 - 37 is 

diffused by a large, extended corona (White and Holt 1982; McClintock et al. 1982). In 

addition, some X-ray burst profiles may result from the scattering of X-rays by a time­

dependent, burst-induced coronal flow along the line of sight (Melia 1987; Melia It Zylstra 

1992; Melia, Zylstra It FryxeU 1992). And finally, ADCs may be the regions producing the 

iron emission lines observed in many LMXRBs (White, Peacock, and Taylor 1985). These 

features, among others, provide an invaluable diagnostic tool for probing the nature of hot 

plasmas in cosmic X-ray sources, particularly with regard to the still poorly understood 

accretion flow geometry. 

Studies of ADCs based on tbe assumption of an inner, hydrostatic region with a Gaus­

sian density distribution, and a wind in the outer rcgion, do not self-consistently account 

for the shadowiug of the disk surfacc by the inner corona and the coutribution to tbe 

heating of the outer disk by X-rays back-scattered by the extended ADC. Only a. fully 

seJf-collsistcllt treatmcnt of tbc hydrodynamics and thc radiatioll transfer can adequa.tely 

handle the illtcrdcpclIdcllcc bctwccn thc coronal structurc and tltc radiatioll physics. We 
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have addressed this need by constructing a radiative-hydrodyna.mical algorithm to SilUll- found that 8 0 lies in the relatively narrow range 1 - 10 for a large variety of power-law 

late such an environment in three-dimensional spherical space. The calculation reported (Krolik, McKee, and Tarter 1981) and bremsstrahlung-like spectra (London, McCray, and 

here, which however assumes azimuthal symmetry, provides us with the spacetime profiles Auer 1981). Since the X-ray spectra from binary X-ray sources are Planck-like, they are 

of density p(r,S,t), velocity v(r,S,t), and the radiation energy density u,.(r,S,t) of a.u relatively deficient in ultraviolet radiation, and thus we assume 80 = 10 for our simulations. 

accretion disk corona in a steady, luminous X-ray source radiating at half the Eddington Near the disk, the inverse Compton temperature is calculated as 

limit. The results of simulations for other emission geometries and time-dependent sources 
(1) 

will be discussed elsewhere. Our goal here is to present the details of the calculation first 

addressed by MZF, giving particular attention to the radiative aspects of the ADC. The where Jd (3/161f2 )(GMM/R:') and Td (21fJd/a)1/' are the mean intensity and 

coronal model and method of solution are described in §§ 2 and 3, respectively. §4 contains temperature, respectively, of the radiation from the disk, and J r cu,./41f and Tr 

a full discU88ion .of the results, and we give our conclusions in §5. (L/41faR~)1/' are the mean intensity and temperature of the radiation from the central 

compact object. G is the gravitational constant, M is the stellar mass, a is the Stefan-

Boltzmann constant, and M= 2R.L/GM is the mass accretion rate at the stellar surface. 
2. The Model 

With the additional assumption of a planar flow at the disk boundary, one obtains the jump 

The model assumes tbat X-rays from the central source ionize and heat the disk's conditiolls from tbe conservation of energy and momentum, yielding an outflow velocity 

surface layers, inducing an evaporative Bow that feeds the overlying corona. The details of 
Vo = (2cRg 80 Tco/p)1/3, (2) 

this process have been discussed elsewhere (MZF). Here, we summarize the key points. Tbe 

transition from a cool disk, wbere the gas temperature is set by a balance betweeu atomic where c is the speed of light, Rg is the gas constant, and p is the mean molecular weight 

heating and cooling processes (primarily H I and He I; McCray and Hatchett 1975), and the per free particle. With 80 =10, Teo = 107 K, a.ud p = 0.61, Vo ~ 1 X 109 em s-I. 

hot corona whose temperature Te is determined by the balance between Compton heating This outflow velocity depends only weakly on the Bux and, by extension, the cyJiu­

and inverse Compton cooling, occurs at a critical value 80 oftbe parameter 8(J) == 41fJ/Pg, drical radius. As such, the dynamically interesting region of the corona centtlrS about the 

where J is the local mean intensity of the radiation integrated over frL'quellcy, and Pg is radius where 110 equals the local escape velocity set by the effective gravitational accelel'­

the gas pressure. The actual value of 8 0 depends on the ioniza.tioll state of tbe plasma, ation (including radiative effects). Since the disk plasma p088CSSt.-'8 a Keplerian azimuthal 

which itself del)ends on the flux of ionizing ultraviolet radiation, Pl'cviolls studies havc velocity, this radius is JGM/v~ ~ 2 X 108 Clll. The domaiu of solution is IIClected to covel' 
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a region that includes this radius. Assuming symmetry with respect to the disk axis a.nd 

mirror symmetry with respect to the disk plane, we therefore confine the simulation region 

to the upper right hand quarter plane of (r,(J)-space, with the inner radial boundary at 

1 X lOT em, the outer radial bounda.ry at 5 x 108 cm, and the disk surface boundary at 

(J = 87 degrees. 

This domain of solution is sufficiently close to the central X-ray source that a typical 

electron in the plasma undergoes mallY Thomson scatterings with the photons, with a 

mean free path (It,) ~ t/n.,O"T, where n., is the photon number density and O"T is tbe 

Thomson cross section. For a luminosity L = 0.5 Led, the photon number density is 

n., ..... c5L/(4'lfc(E)r2), where (E) is the mean pboton energy, and D is a factor (generally less 

than one) accounting for shadowing by the corona. With (E) ~ 3 keY and D~ 0.1, the 

mean free path is evidently ~ 3 x 105 (r/108cm)2 cm. Thus, within the domain of solution, 

the plasma is strongly coupled to the radiation, and the sound speed depends Oil the total 

pressure, including radiation. 

A second consequence of this strong coupling between the matter and the radia­

tion is that the evaporated plasma quickly equilibrates to the inverse Compton temper­

ature and is maintained at that temperature. The time scale for equilibration, Teq == 

(3/8)(p.e/p.)(mec2/c5L)(4'lfr2/O"T), where P.e is the mean molecular weight per free clec­

tron, and me is the electron mass, is much smaller ('" 0.01/lr/108 s) than the tbe 

80w timescale Tf == r/Vo ~ o.t (r/t08 cmJ s. The Dow in thedoma.in oCsolution is therefore 

nearly isothermal, with an equilibrium temperature 

3.8 ( L ) (3)Tc = 4.0 41fan~ , 
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which gives Tc ~ 1.9 X 107 K for a neutron star with radius R. 10 km. 

This situation greatly simplifies the set of equations needed for the simulation, since 

only the mass density p and the 80w velocity v are unknown. We use the conservation of 

mass, 

fJp
fJt + V . (pv) =0, (4) 

the conservation of momentum, 

[fJv] PKT p fJt + (v. V)v = -Vp" - pV<Pg + -c-F 1> (5) 

and the conservation of angular momentum, 

fJ(pRv.p) + v. (pRv.v) 0, (6){)t 

to solve for p, the poloidal velocity v p , and the azimuthal velocity v.' respectively. Here, 

p" = pRgTc/p. is the gas pressure, <P" = -GM/r is the gravitational potential, KT is the 

Thomson scattering opacity, F f is the radiation Dux in the inertial frame of the Dow, and 

R is the cylindrical radius. 

Determining the radiation transport is nigh impossible if one does lIot make some 

approximation, even in the relatively simple case of Thomson scattering. The most gcneral 

equation of radiative transfer is an integra-differential equation for tbe intensity. That 

is, the intensity at a given point and in a given direction depends 011 the intcllsity at 

every other point and ill all directions. In order to simplify the equations governing tbe 

transport of radiative energy into simple partial differential equations, We apply the Dux-

limited diffusion tbeory developed by Levermore and Pomraning to the case of Tholllson 
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scattering only (Melia and Zylstra 1991, MZ). In this C88e, we solve only the first angular 

moment equation 

aur +V . F =-p"'TF· P (7)at 

for the radiation energy density Ur • The radiation flux F is then given by equation (29) of 

MZ, with a dependence only on the local values of the mass density, the 80w velocity, and 

the radiation energy density and its first order spatial derivative. 

At the disk boundary, the polar angular velocity is kept COllstant at a valuc of -Vo, 

where Vo is given by equation (2), though the radial velocity component decrcascslinearly 

to zero below this transition plane. The azimuthal velocity is set to the (collstant) Keple­

rian value JGM/r. In addition, tbe mass density is here set at a value linearly dcpendcnt 

on the impinging flux: Po =p.Fi/cRg Eo Teo, where Fi =Btl'F and Bel is the outward nor­

mal to the disk's surface, specified by the height-radius relation h(R) 1 (R/107 cm)··· km. 

Except for the azimuthal velocity, the hydrodynamic variables are constant at tile 

inner radial boundary, set at the values found just above the boundary. The azimuthal 

velocity scales as l/r in order to conserve the specific angular momentum, and thc radiation 

energy density is fixed at its free streaming value. 

At the outer radial boundary, all of the hydrodynamic variables are consta.nt, set at 

the values found just below the boundary. Here, tbe radiation cncrgy density scalcs as 

1/r2 and the radiation diffusion cocfficient is modified such that the diffusive flux equals 

CUr. We employ reflective boundary conditions at the 1)Dlar axis. 
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3. Method of SolutioB 

The two-dimensional structure (using spherical coordinates of the accretion disk 

corona is determined numerically on an Eulerian grid of (70 radial x 60 polar) cells covering 

the domain of solution. The size of the cells is chosen to re8ect the required resolution, with 

the smaller dimensions corresponding to the inner radial boundary and the disk surface. 

Our radiative-hydrodynamical scheme is based on the piecewise parabolic method 

(PPM) of Colella &; Woodward (1984), though with the addition of radiation transport, 

whose implementation includes tbe effects of radiation pressure in the Riemann solver, the 

radiative force in the momentum equation, and the exchange of internal energy resulting 

from the interaction between the matter and radiation. Witb the knowu values of the 

hydrodynamic variables and the explicit evaluation of the FDT coefficients from the most 

recent determination of the radiation energy density U r , the fiuite difference version of the 

transport equation is simply a combination of linear algebraic expressions for the lIpdated 

value of U r • Using the operator-split method described bclow (in which Ur is obtained for 

one row of cells at a time), this set of relations reduces to a tridiagollalsystem of equations 

that is readily solvable. It is straightforward to obtain the FDT coefficicnts ill cach cell 

from the root A 2j. iJ to the set of equations in MZ tbat determine the normalized 

flux j (eq. 26 of MZ), using a hybrid of the Ncwton.Raphson and bisection mcthods. 

The operator-split mcthod employed by our radiative-bydrodYllamical codc deter­

mincs the dcnsity, flow vclocity, and radiation encrgy dcnsity ill one row of cclls at a time. 

At a givcn time stcp, the codc sweeps through thc radial and thcn tbe polar grid rows, 
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accounting only for the fluxes and the component of the vector quantities in the direction 

of the sweep. Of course, all the components of the radiation vector l are included in the 

evaluation of its magnitude. Figure 1 is a schematic diagram showing this two-time-step 

sequence, along with a specification of the time interval. With our implicit calculatioll of 

the radiative trMsfer (see above), the time step itself is restricted primarily by the Courant 

condition (for which we assume a factor of 0.8). However, to prevent the flow from at­

taining unphysically large sound speeds (and thus exceedingly small time steps) in regions 

of very low density, we assume a minimum mass density of 2 X 10-9 g cm-3 throughout 

the domain of interest. This value is sufficiently small to be dynamically unimportant. In 

addition, we impose the restriction that no mass may leak out from cells at tbis minimum 

density in order to avoid the local "creation" of matter in these regions. We note that 

the implicitness of this method for handling the radiation transfer is reflected not ouly in 

having the new value of U r in each cell depend on the new values of the neighboring cells, 

but also in using the most recent values of tlr in neighboring cells perpendicular to tbe 

sweep direction for the evaluation of the FDT coefficients. As shown in this figure, the 

sweep directions for both the hydrodynamic and radiative determinations are alternated 

with each successive time step. 

To calculate the angle- and time-dependent flux seen by a distant observer, we hltc­

grate over the intensity from the visible emitting area (see Figure 2 for a definitioll of the 

relevant geometrical parameters). In this scheme, the emission surface is assumed to be 

a sphere located at ~t ncar the outer radial boundary of the domain of solution. The 

observer is positioned at D, making all iuclination angle i with I'e'lpect to the sYllllllctry 
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axis %. The observed flux is then given by the integral 

I h ~ i.D 
(8)F(D) = il dp 10 d;I(Touh i) ID -0;.:.,12 IDI ' 

where p (== cos 0) and ; are the angular coordinates on the emitting sphere and n == 

(D - ~t)/ID - Toutl is the unit vector pointing in the direction toward the observer. 

In FDT, the intensity I is given as 

I(Tout, n) = cUr(~t) tP(Tout, i), (9) 

where tP is the normalized intensity given by equation (9) of MZ. However, due to our 

limited grid resolution (see above), tP is known only at the coordinates (rout,Oj), with 

i = 1,. .. ,60. In addition, the intensity profile (as a function of angle) can be extremely 

narrow, particularly in regions of very low density, where the radiation is streaming freely. 

It is therefore necessary to interpolate the evaluated intensity distributions at the grid 

points to obtain a continuous profile at all intervening points. In practical terms, this 

procedure constitutes the evaluation of the intensity maxima Imall and their directions 

i m ..", at the grid points, and a set of cone angles {-On} relative to 1m..", tbat corresponded 

to the maximum angles within which the intensity exceeds specified fractions of 1m .."" In 

our calculations, we use a set of five cones (n = 1, ... ,5) with corresponding intensity 

fractions of 0.8, 0.4, 0.1, 0.01, and 0.0001. With this information, the visible portion of 

the emitting surface may be divided illto areas ill which the observer is either within 01' 

outside of these cones. Then, for a polar angle OJ_I $ 0 $ OJ, the interpolated direction 

of maximulD intensity is given as 

nma",(O) = nm..",(Oj_l) + 0: - :;~ llim..:t(Oj) - i",..",(Oj_.)), (10) 
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with the corresponding cone angle, share any common boundary values, then eight subareas cover the non-excluded region. 

We impose a 10 x 10 grid of cells over each sub-area, within which the polar angular 
d,,«(J) = 17,,(Oj_l) + (J(J. 0(Ji~1 [17,,(Oj) - ",,(9i-l»)' (11) 

, ,-I and azimuthal extent is assumed to be constant. We then sum the integrand of equation (1) 

Between each pair of neighboring grid polar angles, the area's boundary values of 0 and evaluated at each cell over the visible emitting surface and obtain the radiative flux seen 

</> are given by the minimum and maximum boundary values found in stepping through by the observer. To evaluate the observed intensity at a cell located at (0, </», where 

these grid polar angles. Thus, between two neighboring grid polar angles, an area of given 9i-l ~ (J ~ 9i. we interpolate linearly with respect to 9 the intensities 8&D1pled from 

intensity fraction is a simple rectangle in (0, </>)-space. The visible emitting surface between the profiles at the neighboring grid polar angles, (Ji-I and 9i' after rotating each profile 

two neighboring grid polar angles is further divided into sub-areas whose boundary values such that their maximum intensities point in the direction of the local maxima givell by 

of polar angle and azimuth consist of the boundary values of polar angle and azimuth equation (3). More specifically, the intensity on the emitting 8urface at (9,</» is 

of the area of the intensity fraction of interest and those of the area of the next largest 
1(9, </>; fl.) =I(9i-" </>; n,) + ~ -=-ii~11 [I(9i , </>; nr ) - I(9i-l, </>; nd], (12) 

intensity fraction. Figure 3 shows schematically all the possible divisions into subareas 
where n is the direction from the source to the observer at the point of interest, and 

of the area of a given intensity fraction between neighboring grid polar angles. The solid 

n, =n- nma~ + nmlJ~.h (13)and da.shed lines denote the areal and sub-areal boundaries, respectively. The hatched 

area corresponds to the area of the next largest intensity fraction. If the area of interest nr =n - n_:r: +nma:rl.r (14) 

shares with the area of next largeNt intensity fraction three common boundary values of and where nma:rl.l and nma:rl,r are the directions of maximum intensity at the (j _1)tll and 

polar angle or azimuth, then only one subarea covers the region consisting of tbe area of jtll grid polar angles, respectively, on the emitting surface. 

interest excluding the area of the next largest intensity fraction. If the two areas have 

the same boundary values of the polar angle or of the azimuth, then two subareas cover 4. Results 

tbe non-excluded region. If the two areas share one boundary value in polar angle and 
The simulation presented here assumes the following initial conditiolls: (1) the corona 

one boundary value in azimuth, then three subareas cover the llOu-excluded region. If an 
is at (uniform) minimum density (2 X 10-9 g cm-3), (2) the poloidal velocity is zero 

area of larger intensity fraction does not exist within the area of iuterest, then four equal 
everywhere, and (3) the azimuthal velocity is 

8ubareas cover this area. If tbe two areas share only one boundary value of polar angle 

JGM. (Jv", = -r- 8111 , (15)or azimuth, thell five subareas cover the non-excluded region. Finally, if the areas do not 
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which balances the centripetal force due to gravity in the cylindrical radial direction. The 

radiation energy density is illitially set equal to its free-streaming value for a luminosity 

1038of 0.50 times the Eddington limit (Led = 1.04 X ergs s-1 for a 1.4 M0 neutron star). 

During the simulation, the radiation flux at the inner radial boundary, ri, is independent 

of polar angle and is maintained at a level of 0.50 Led/(4n?). In addition, the radiation 

temperature is taken to be that of the stellar surface (with radius R. = 106 cm) emitting 

as a black body, i.e., 1.96 x 10' K for this particular luminosity. The gas temperature 

is set at a value 3.8/4.0 times smaller, or ~ 1.86 x 10' K. This simulation proceeds for 

approximately 1.7 seconds, during which time matter evaporates from the disk surface 

with a velocity of -1 x 109 cm s-1 and a density that depends linearly on the impinging 

flux. The calculation ends when the time-averaged evaporation mass rate has equaled the 

wind mass loss rate for -1 second (see Figure 2 of MZF). 

As noted earlier (MZF), the accretion disk corona is comprised of two main regions: 

(1) an inner, highly dynamic portion, whose vertical structure varies quasi-periodically 

on a dynamical time scale, and (2) an outer, more stable zone in which the evaporated 

plasma rises to form a sheath tbat gradually merges into a wind at large radii. The critical 

radius rcrit that divides these two regions is the radius where tbe outflow velocity of the 

evaporated plasma at the disk surface equals its escape velocity, which is determined ill 

part by the location along the disk at which the ram pressure Pov~ of the evapomted gas 

dominates over the external pressure due to tbe incident radiation. 

III the inner corona, gravity and radiation significantly retard the vertical Illotion 

of the evaporated flow and a sheath forms with tbe mOl-pressure support of the ionized 
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gas from the disk below. Since the plasma cannot escape from the inner corona, this 

sheath becomes more massive and optically thick, and the gravitational force and radiation 

pressure across it correspondingly increase. However, during this process, the supporting 

ram pressure decreases in strength because of the increased shadowing by the corona, and 

so the structure is forced to collapse back down onto the disk, where the process begius 

anew. The resulting profile is dynamic and "bubbly", with quasi-periodic oscillatiol1s on 

a dynamical time scale. 

In contrast, the flow within the outer corona is relatively stable. Here, the evaporated 

plasma rises vertically until it reaches a relatively dense sheath projecting outward with 

an angle of roughly 40 degrees with respect to the disk's surface, and eventually forms a 

wind at large radii. This mass outflux is relatively steady because the influence of gravity 

and radiation pressure gradients are balanced by the coronal ram pressure support. 

The details of this dynamical structure are displayed in Figures 4, 5, and 6. The 

six panels of Figure 4 show the coronal evolution between the simulation times 1.2 and 

1.7 seconds, in steps of 0.1 seconds. The velocity field at the eud of this sequence is 

represented by the poloidal vectors in Figure 5 and the azimuthal velocity contours in 

Figure 6. III Figure 4, the iso-density contours correspond to mass density values of 

5 x 10-5 g cm -3 times 0.58 
, where n = 0,1, ... ,14. The two-part structure is quite 

evident, with r crd ~ 1.5 X 108 cm. Within the inlier corona, tbe bubbly structure riscs a.nd 

falls quasi-periodically every - 0.2 - 0.3 scconds, which is roughly the dynamical tillle scale 

at the critical radius, i.e., 'Td1l 8 (rcrit) == Jr:ritlGM ~ 0.1 seconds. The constancy of the 

mass density distribution between the disk and the sheath ill the outer COl'Olla iudkatcs 
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that the Dux impinging on the outer disk surface is relatively constant, which itself suggests The distribution of azimuthal velocity within the outer corona is shown in Figure 6, 

that this Dux is hU'gely due to scattering off the stable (outer) sheath. together with contours (represented by the thick curves) of values for which the induced 

centrifugal force is balanced by the cylindrical radial component of gravity. Since the 
Not surprisingly, the larger evaporative Dux and stronger gravitational acceleration at 

evaporated plasma leaves the diSk with the (local) Keplerian value of tit; and it experiences 
smaller radii induce higher ma.ss densities (- 3 x 10-5 g cm-3) in the inner corona relative 

zero torque, its azimuthal velocity initially stays nearly constant at a value"" I/.fR. At 
to those (- 3 x 10-6 g em-3 ) in the outer structure. The sheath in the inner corona is 

the sheath, however, tit; decreases sharply due to the merging of the evaporated plasma 
clumpy with density enhancements as large as an order of magnitude. In contrast, the 

with gas advected outward along tbis density enhancement. As a result, tit; eventually 
sheath in the outer corona is stratified, though there is some dumpiness ncar the disk. 

drops of as IIR, significantly faster tban the azimuthal velocity of the vertical flow above 
Within the sheath itself, the density increases by a factor of 30 - 60, with the smaller 

the disk. Thus, the centrifugal force on the sheath is weak compared with gravity. 
gradients at progressively larger radii. 

Since the Dow in the corona is isothermal, the density contours in Figure 4 also rep-

In Figure 5, panel (a) shows the poloidal velocity field within the inner corona at resent the isobaric regions. We can thus determine from this Figure the direction of the 

spherical radii r $ 2 x lOS cm, whereas panel (b) shows the analogous field in the outer force due to gas pressure and its strength relative to gravity. This force acts in a direction 

c:orona for spherical radii r 2: 2 x 108 cm. The length of the arrows corresponds to the perpendicular to the iso-density curves toward the region of smaller gas pressure, with a 

magnitude of the velocity on a log10 scale, starting from 1 x 107 cm S-1 and extending up strength relative to gravity given by 

to 1 X 1010 cm s-1 (see the standard arrow shown in the upper left hand corner of each 
IVpgl R T 

IpVtPgl = IV(ln 1')1 G~,/2 ~ 1.34 x 1O-llcm-1IV(11l p)lr2, (16) 
panel), At this simulation time (Le., 1.7 seconds), tbe inner coronal sbeath is collapsing 

back down onto the disk. Between tbe disk and sbeath in the outer corona, the evaporatt.'<i For example, at a radius of 3.5 x 108 cm, tbe value of IVlu pi within the sheath is "" 

plasma rises nearly vertically witb a velocity of -1 x 109 em s-l. At large radii there is 2 X 10-8 em-I, so that the force along the sheath due to gas pressure is only ~ 3% of that 

a slight outward radial displacement due to the centrifugal force induced by the plasma's due to gravity. The relative magnitudc above tbe disk is similar, and so we conclude that 

azimuthal motion, and the Dow is diverted outward along the sheath by gas preSSllre, the gas pressure ill these regions is ineffective, which is not surprisiug given that tbe flow 

where it blends into a wind witb a velocity of "" 3 x lOS cm s-1 and a mass loss rate of here is supersonic. This is 110t the case everywhere, however, since the radiative force on 

::::: 1 x 1019 g s-I, As dicllS8t.>d by MZF, tbis is about 10 times greater thau the mass the coronal plasma must be balanced by all appropriately large gas pressure gradicnt across 

accretion rate through the disk at tbe stellar surface (St.'C Figure 2 of MZF). the sheath. In fact, the magnitude of V(ln 1') in tbis direction is - 2 X 10-2 cm-1, which 
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represents a force ratio of about 5. It is primarily tbis feature of the density structure tbat 

diverts the flow into an outwardly-directed wind. 

One reason for the difference between tbe coronal structure described here and that 

of earlier models (e.g., Begelman, McKee, and Shields 1983) may be traced to tbe latter's 

assumption of hydrostatic equilibrium in tbe vertical direction, which leads to a gaussian 

density profile. It is apparent that when dynamic effects are included, the instantaneous 

vertical mass distribution is in fact non-gaussian. Nonetheless, it is useful to gauge how 

closely a time-averaged structure can mimic a hydrostatic profile. The panels in Figure 7 

compare the actual density distributions averaged over the last 0.8 seconds of the simulation 

(solid curves) with appropriately normalized gaussian fits (dashed curves), at cylindrical 

radii R = 1.5 X 107, 2.9 X 107, 5.5 X 107, and 1.0 X 108 cm. These gaussian fits have the 

same column density and either the same maximum density or base density as the actual 

time-averaged profile (see Table 1). It is apparent that the time-averaged profiles can be 

gaussian-like, though with two very important differences: (1) there is a significant deficit 

in density at the upper end due to the pressuring effect of the impinging radiation, and 

(2) there is no global gaussian function that describes the profile at all radii, i.e., the fit is 

necessarily local and the parameters change with radius. 

Let us next consider the effects of this coronal structure on the radiation field. The 

contours of radiative energy density U r at the simulation time 1.7 seconds are displayed 

in Figure 8, which shows that the distribution is near free streaming along the polar axis, 

but is smaller below the sheath due to coronal shadowing effl'Cts. It is a simple mattcr 

to ascertain from these iso-density contours the direction of the total radiation flux i, 
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which points in a direction perpendicular to the surfaces of constant U r toward regions 

of lower density. Not surprisingly, i is radial along the polar axis. However, the 8ux 

points in a slightly poleward direction above the sheath, indicating that the radiation field 

is partially reflected off this mass density enhancement. Within the sheath, i generally 

points radially outwards, though with a diskward slant in the lower layers. The direction 

of F above the disk suggests that most of the impinging flux is in fact scattered into the 

disk by the overlying coronal sheath. 

This behavior of the radiation field is brought out explicitly by the curves in Figure 9, 

which correspond to the magnitude (heavy line) of the 8ux normalized by the persistent 

(0.5 Eddington) value and the angle" made by the 8ux vector with respect to the radial 

direction, with " increasing diskward. Evidence for a strong re8ection of the X-rays by 

the sheath is provided by an enhancement of ~ 40% in FIFo and a negative value of " 

(I=:::.! -5 degrees near an inclination of 55 degrees). The flux decreases by almost two orders of 

magnitude within the sheath, and points progressively disk ward with increasing inclination 

augle. Below the sheath, F increases slightly and points in a more radial direction due to 

contributions from neighboring lower parts of the corona. 

Finally let us consider the effect of the accretion disk corona on the flux seen by 

a distant observer. In Figure 10, we show the intensity as a fUllction of tbe poloidal 

angle for three grid points straddling the outer sheath. These curves give perhaps the 

clearest indicatioll of the usefulness of our flux-limited diffusion theory as implemented 

in the radiative-hydrodyna.mic algorithm used for tbis simulation. Just above tbe sheatb, 

tbe intensity profile is narrow with its maximum offset poleward from tbe radial direction 
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by ~ 4 degrees. In fact, the intensity in the radial direction here is "'" 100 timcs lower 

than the maximum intensity. Deep within the sheath, the profile is very broad due to the 

significant degree of scattering in this region. But the intensity profile narrows again below 

the sheath, this time showing a maximum toward the disk, confirming the behavior of tbe 

flux discussed above. 

These features of the radiation field translate directly into the observational character­

istics of the flux seen by a. distant observer (Figure 11). At inclination angles i ~ 48 degrees, 

F can be 88 much 88 twice the flux emitted directly by the neutron star, whereas it de­

creases to a tenth of this value deep in the shadow of the corona. Therefore, the partial 

(poleward) reflection of X-rays by the upper corona can grea.tly enhance the flux observed 

at low inclination angles, whereas attenuation of the direct X-ray flux greatly suppresses 

the observable flux close to the disk's surface. 

20 

5. Conclusions 

We have found that the accretion disk corona consists of two main regions: (1) a 

highly dynamic, inner zone in which the vertical structure oscillates quasi-periodically on 

a dyn&mical time scale, and (2) a relatively sta.ble outer portion in which the evaporated 

disk pl88ma rises vertically from the disk surface, deflects along an enveloping dense sheath 

forming a wind at larger radii. The critical radius that marks the transition from one 

segment to the next is given roughly by tbe location at the disk surface where the outflow 

velocity equals the esca.pe velocity determined by the local, effective gravitational field 

(which includes the influence of the impinging radiation). Within the outer corona, the 

evaporative mass 1088 rate can be 88 much 88 10 times greater than the mass accretion ra.te 

through the disk (see MZF for addition discussion on this feature). 

With a. density inversion supported by r&m pressure, the instantaneous ADC structure 

differs significa.ntiy from the ga.ussian hydrosta.tic profile assumed by earlier models (e.g., 

Begelman, McKee &; Shields 1983). Even though the time-a.veraged vertical density in 

the inner corona locally approximates a. gaussian very close to the disk, it differs from a 

gaussian at larger values of z due to a dcficit in mass, and it differs globally from tbe 

gaussian distribution expected from earlier models in the variation of scale height witb 

radius. 

A significant fraction of the pbotous emitted from the central X-ray source are rc8ected 

polewards by tbe corona. As a. result the flux seen by a distant observer is strongly affected 

by the ADC. This scatteriug cnhanccs the observed flux by as much as 100% for obscrvers 
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i.l direct sight of the central X-ray source, but suppresses the flux by an order of magnitude 

for observers deep in the coronal shadow. 

As alluded to by MZF, the large mass 1088 rates in the wind and inner corona raise 

important issues regarding the accretion disk structure and the evolution of the binary (see 

also Melia & Lamb 1987; Lamb & Melia 1987), since estimates of the driving torques based 

on an accretion rate inferred from L can severly underestimate tha actual mass transfer 

rate from the companion. Including the effect of the corona on the observed flux therefore 

implies that X-ray bright binary systems may be evolving 5 to 100 times faster (the factor 

by which Mat the outer edge of the disk exceeds the apparent rate) than is inferred from 

direct observations. 

These questions will be addressed in our continuing study of ADCs in LMXRBs. Of 

particular interest is the response of the corona to a time-dependent X-ray flux at the 

central source. The ensuing burst-induced evaporative flow can significantly alter the 

observed light profile relative to that associated with the emissivity of the source itself 

(Melia 1987; Melia, Zylstra & Fryxell 1992; Melia & Zylstra 1992). 

This research was supported in part by NSF grant PHY 88-57218, NASA grant 

NAGW-2380, and the Alfred P. Sloan Foundation. Most of the numerical calculations were 

carried out at the National Center for Supercomputing Applications in Urbana-Champaign. 
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Figure Captions 

TABLE 1 
 Figure 1. 	Schematic flow chart of the two-time-step sequence followed by the radiative-hydrody­

namics algorithm. 
Parameters For The Gaussian Fits In Figure 7 


Cylindrical Radius I Base Density IColumn Density I Scale Height 
(cm) (g cm-3) (g cm-2) (cm) 

2.00 x 10-5
1.5 x 101 
 13.01 7.35 x 105 


1.50 X 10-5
2.9 X 101 
 32.85 2.46 x 106 


2.56 X 10-6
5.5 X 101 
 24.63 1.09 x 101 


7.72 X 10-1
1.0 X 108 
 22.77 3.32 x 101 


Figure 2. 	The geometry used to determine the radiative flux seen by au observer at D, making 

an inclination angle i with respect to the symmetry axis z. The 'emitting' surface 

is a sphere of radius roue. located near the outer radial boundary of our domain of 

solution. The angles 9 and '" are position angles of an elemental area on this surface. 

Figure 3. 	A schematic representation of the areal division corresponding to a given intensity 

fraction between two neighboring grid polar angles into sub-areas (labeled by number) 

as described in the text. The solid lines denote the boundaries of the areas of specified 

intensity fractions. They serve also as boundaries of the sub-areas, along with the 

dashed lines. The hatched area is an area of larger intensity fraction. 

Figure 4. 	Contours of mass density in the accretion disk corona at (simulation) times (a) t 1.2 


s, (b) t = 1.3 s, (c) t = 1.4 s, (d) t = 1.5 s, (e) t = 1.6 s, and (f) t =1.7 s. Iso-density 


curves correspond to values of 5 x 10-5 g cm-3 x 0.5'\ where n = 0, I, ... , 14. The 


contours in panel (a) are labelled by the appropriate values of n. The corOlla consists 


of two main parts: a dynamic, inner region with a bubbly density stucture, and a 


relatively stable, enveloping sheath ill the outer zone. 


Figure 5. Polodia.l velocity field within thc (a) inner and (b) outer portions of the accrdion disk 


corona at t = 1.7 s. The length of the arrows dcnotes the velocity l11agnitude 011 a IOglO 
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scale starting at 1 x 107 cm s-1 and extending to 1 x 10tO cm s-I (see the standard 

arrow in the upper left hand corner of each panel). Plasma circulates betweell the innc!" 

disk and corona. The evaporated gas lea.ves the outer disk vertically with a velocity 

-1 x 109 cm s-l, dedects off the sheath, and blends into an outwardly~directed wind 

with a velocity of -3 x 108 cm s-I. 

Figure 6. 	Contours of azimuthal velocity 'lJtjI in the accretion disk corona at simulation time t = 

1.7 seconds. The thin iso-density curves ofvtjl correspond to values of 109 CUI s-1 times 

0.9", where n = 0,1, ... ,4. The thick iso-density curves have the same values, but 

correspond to the locations where the induced centrifugal force balances the cylindrical 

radial component of gravity. The azimuthal velocity of the dow decreases rapidly when 

it enters the sheath due to the outward advection of plasma with smaller specific 

angular momentum, 

Figure 7. 	Vertical density profiles (solid curves) in the inner corona averaged over the last 0.8 

seconds of the simulation at cylindrical radii (a) 1.5 x 107 cm, (b) 2.9 x 107 cm, (:) 

5.5 X 107cm, and (d) 1 x 108 cm. The da.'!hed curves show the corresponding gaussian 

fits assuming the sante colullln depth and either the sante maximum density (plot a) 

or the same base density (plots h, c, and d). The column depths and density scale 

heights of these gaussian fits are given ill Table 1. 

Figure 8. 	Contours of radiation energy density in the accretion disk corona at simulation time 

t = 1.7 s. The is~density curves correspond to values of 2 x 1012 ergs cm-3 tiUles 

0.5", where n = 0, 1,.", 15. Strollg shadowing effects by the COl"OIIa an: indicated 

in the outer regions, and the flux, whiclt points in a direction perpendicular to thcse 
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contours, is scattered onto the outer disk by the ionized plasma within the sheath. 

Figure 9. Local radiation dux F in the poloidal plane near the outer radial boundary normalized 

to the half-Eddington value Fo, and the angle." this dux makes with respect to the 

radial direction, as a function of polar angle 9. Scattering in the corona enhances the 

dux above the sheath by as much as 40% and suppresses it by up to a factor of "" 30 

near the disk surface. 

Figure 10. 	Intensity in the poloidal plane near the outer radial boundary as a function of angle 

"/ (increasing diskward) with respect to tlte radial direction at time t 1.7 s. The 

3 panels correspond to tlte polar angles (a) 9 = 48 degrees (just above tbe sheath), 

(b) 9 =59 degrees (within the sheath), and (c) 9 = 73 degrees (between sheath and 

disk). Thomson scattering strongly affects the radiation field within tbe corona. Just 

above the sheath, the intensity along the radial direction is -100 times less than the 

maximum intensity shifted four degrees poleward of the radial direction. Significant 

scattering within the sheath broadens the profile. The profile between the sheath and 

disk indicates that practically all of the intensity there is scattered by the sheath. 

Figure 11. 	Observed dux F (normalized to the half-Eddington value Fo) as a function of incli­

nation angle i at t = 1.7 s. Thomson scattering within the accretion disk corona 

enhances by up to 100% the flux seen by a distant observer in direct view of the 

central X-ray source, and it suppresscs tbe observable dux by an order of magnitude 

or more deep within the coronal shadow. 
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