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ABSTRACT

It is believed that radiatively driven mass outflows associated with type | cosmic X-ray
bursts and fast X-ray transients are relevant to the precursors and apparent radius variations
sometimes seen during the course of these events. Previous studies of neutron-star winds have
assumed that the transition from subsonic to supersonic flow is smooth and describable by
the steady conservation equations, but this assumption may be inappropriate if the wind is
unstable. Earlier investigations into the question of whether such an instability arises were
restricted to the case of a spherically symmetric isothermal flow (e.g., the solar wind), and
concluded that (at least in this context) no growing perturbations can exist. In neutron-star
systems, however, the winds are optically thick and driven predominantly by gradients in the
radiation pressure. As such, it is not obvious that the previous analyses are relevant to these
sources, given that optically thick winds have two distinct length scales, i.e., the length scale
(corresponding to the radiation pressure scale height) over which the gas is accelerated, and
the much smaller gas pressure scale height. Our goal in the present paper is to examine
the stability of neutron-star winds in more detail than has previously been attempted, and to
determine whether or not the introduction of temperature gradients can affect the stability of
the flow. We find that the dispersion relation has three solutions, corresponding to outwardly
and inwardly propagating sound waves, and a strongly attenuated entropy wave. Interestingly,
the waves are always damped. We also show that when the transonic flow is adiabatic, the
global perturbation analysis employed for isothermal winds carries over into this domain with
similar conclusions, i.e., there is no indication of growing perturbations. We conclude that the
stability of transonic flows is not affected by relaxing the isothermal constraint. Our results
suggest that a consideration of earlier wind models as outer boundary conditions for calculations
of the thermonuclear flash models are warranted, and that the use of X-ray burst sources as
“standard candles” (with an Eddington-limited total luminosity) to determine the distance to
the galactic center is valid.

Subject headings: instabilities-—radiative transfer—stars: binaries—stars: neutron—stars:
Winds—X-rays: Bursts

L. INTRODUCTION

Thermonuclear flashes in the surface layers of accreting neutron stars can release suffi-
cient energy to produce mass ejection in the form of a wind. Observationally, the occurrence
of such outflows during the peaks of many X-ray bursts is supported by at least three lines
of evidence: (1) The peak luminosities of X-ray bursts are generally of the order of the
Eddington limit (e.g., Joss and Rappaport 1984; Melia and Joss 1986 and references cited
therein), suggesting that much higher luminosities are inhibited by the deposition of radia-
tive energy into the kinetic and gravitational potential energy of a wind. (2) The apparent
radius of the neutron star (R, = [L/4mo T4,]'/2, where L and T;y are the bolometric lu-
minosity and color temperature, respectively) is seen to increase from ~ 10 km to a value
several times larger during the peaks of the most luminous X-ray bursts from some sources.
(3) Some “fast X-ray transients,” which are very similar to type I bursts except that they
last up to ~ 10° s, display distinct precursors. Lewin, Vacca, and Basinska (1984) and
Tawara, Kii, and Hayakawa (1984) have suggested that the interval between the precursor
and the main event corresponds to the emission of a strong wind by the neutron star. This
phenomenon thus seems to represent a more extreme case of the apparent radius variations
seen in some type I X-ray bursts.

Following initial discussions by Wallace, Woosley, and Weaver (1982) and Paczyiski
(1983), models for quasi-static winds from neutron stars have been developed by Ebisuzaki,
Hanawa, and Sugimoto (1983), Kato (1983), Melia and Joss (1984), Quinn and Paczyiiski
(1985), Paczyiiski and Prészysnski (1986), Joss and Melia (1987), and Abramowicz, Ellis,
and Lanza (1990) with the intent of formulating a sct of outer boundary conditions for the
hydrostatic interior of the neutron star. The assumption of quasi-static flow, permitting
a time-independent treatment of the wind, was justified by the fact that all of the above
phenomena are observed to occur on time scales, 7,45, of scconds or longer. Thus, a
quasi-static wind solution seemed to be self-consistent because 74 < Tyiow < Tehar < Tobs,
where 74 (= 1074 8) is the dynamical time scale at the surface of the neutron star, Tfi,e
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is the flow time required for a fluid element to travel from the base of the wind, where
liydrostatic equilibrium is nearly maintained, to a level where the wind has esscntially
reached its terminal velocity, and 7.har = My /M, is the time required for approximately
time-independent conditions to be established in a wind with mass outflow rate M,, and
total mass M,, above its base.

The structure of these solutions is qualitatively similar to that of models for the solar
wind, as first discussed by Parker (1960). At the bottom of the outflow, the fluid velocitics
are very subsonic, and hydrostatic equilibrium is an excellent approximation. On the other
hand, the terminal velocity of the fluid in the outer zone is highly supersonic. Between
these two extremes, the solutions pass through a singular point, corresponding to the level
r. in the neutron-star atmosphere where the fluid velocity v is equal to the isothermal
sound speed ¢, = (R,T/p)/? (in terms of the kinetic temperature T and the molecular
weight u of the particulate gas; Melia 1987). For simplicity, the transition from subsonic
to supersonic flow has always been assumed smooth and describable by the “usual” steady
conservation equations (see § I below). However, this assumption is inappropriate if the
outwardly expanding flow is unstable against the amplification of acoustic waves in the
region where v ~ ¢,.

The question of whether or not such an instability arises has already received some
attention, particularly in the coutext of the solar wind. For example, Parker (1966),
Carovillano and King (1966), and Jockers (1968) studied the perturbation problem of a
spherically syminetric isothermal flow and concluded that (at least under these conditions)
no growing perturbations can exist (sce also Cannon and Thomas 1977). The situation
with neutron stars is distinctly different, however, in that the winds in these systems are
optically thick and radiation dominated. As we shall sce, this added feature introduces a
new length scale into the problem that renders the carlier analyses inappropriate for our
discussion. Our goal in the present paper is to examine optically thick winds in more detail
than has previously been attempted and, in so doing, to determine if growing fluctuations
can affect the overall structure of the expanding atmosphere.
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I1I. BASIC EQUATIONS

Our analysis will be based on the formalism described by Joss and Melia (1987). This
assumes a weakly magnetized, nonrotating neutron star with nominal parameters: mass
M = 141 Mg and (preflash) radius B = 10 km. In addition, the wind is assumed
to be spherically symmetric and its interaction with the surrounding accretion disk is
neglected (cf. Melia and Joss 1985). The chemical abundances (by mass) are taken to be
(X,Y, Z) = (0.69,0.30,0.01).

The relevant fluid equations are the continuity equation, the equations of momentum
and energy conservation, and the equation of heat transport, in Eulerian form, under the
constraints of spherically symmetric flow. In our present analysis, we will allow for time-
dependence, so that our stability criteria include the outward spatial amplification of any
given disturbance. For the equation of continuity, we have
where p(r,t) and u(r,t) are the fluid density and velocity, respectively, as functions of

radius r aud time ¢{. The equation of momentum conservation takes the form

v Ov_ 9P GMp
TR =il i @)

where P(r,t) is the total pressure (i.e., the sum of gas pressure P, and radiation pressure
P,).
Neglecting convective heat transport (sce Joss and Meclia 1987), the equation of con-

servation of energy can be written as

du du _JO (1 a (1\]_ 1 8(r*Fp)
ot o T [m (;)*”a(,,)]—‘m o @)

where u(r,t) = uy + u, is the total energy per unit mass (ug and u, being the juternal
energy per unit mass of the particulate gas and radiation, respectively). For simplicity, we
will restrict our attention to wind solutions whose critical point lies at sufficient optical
depth in the wind that LTE is a good approximation in the transonic region. As such, the
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gas and radiation temperatures are equal, and the thermodynamic properties of the fluid

are cssentially those of an ideal gas plus blackbody radiation:
= RS' = 3 & =8 =8 4
Pg—-;—pT, ugrzl"r, P,-.aT‘, u,-pT‘, (4)

where R, is the gas constant, and T = T(r,t). In terms of the parameter f§ = Fy/P, we

nay also write

R, pT n,T (3 3)
p=-2 t=—|===1]. (5)
B’ a \B 2
Moreover, the appropriate cquation of heat transport is the radiative diffusion equation:
ac dT*
= e 6
Fr 3kp dr ©

where & is the opacity coefficient.

III. THE TRANSONIC REGIME

When quasi-static conditions are assumed, the problem can be reduced to the solution
of two simultaneous, first-order, ordinary, differential equations in two unknowns (together
with the constitutive relations: the equation of state, the internal energies of the gas and
radiation, and the radiative opacities). Taking v and T to be the dependent variables and »
to be the independent variable, we can combine equations (1), (2) and (4) (with 2/t — 0)

to obtain one of the two requisite relations (Melia 1987):

dv N
— == 7
dr D’ ™
where
_2R, T GM (R,  4aT?\ dT
N= puor r? u(p.+3 p ] dr ®)
and
DEU—«EQ-Z. (9
u v

The other relation can casily be obtained from equations (1), (2), (3), and (6).

The critical point corresponds to the level in the flow where D = 0 (i.e., where v = ¢,
as indicated above). In order for the solution to be regular at this point, it is necessary
that /N also vanish there, which will then allow a smooth transition from subecritical to

supercritical flow.

IV. SHORT-WAVELENGTH FLUCTUATIONS IN AN
ISOTHERMAL FLOW (APPLICATION TO THE SOLAR WIND)

In his discussion of spherically symmetric isothermal perturbations of the solar wind,
Jockers (1968) treated the problem with mixed initial and boundary-value conditions, in
which the perturbations of velocity and density are specified everywhere at the initial
time, and in addition the velocity perturbation at the basc of the corona is known for all
subsequent times. The solutions to the singular cigenvalue problem for the amplitudes
of the velocity and pressure perturbations can be represented as a linear superposition of
normal modes and are temporally stable and bounded at the critical point.

As a prelude to our study of a radiation dominated flow, we will in this section recon-

sider the perturbation of a spherically symmetric, isothermal wind in the short wavelength

limit (i.e., A € r, or 1/kr < 1, where k = 2x/)), for which a local analysis is adequate.

Although an analysis in this wavelength regime may not be sufficient to establish the
global stability of an isothermal wind whose length scale is set by the gas pressure scale
height Iy = Py /(8P /8r) (~ r), it will nonetheless be instructive to compare this result
with that of the optically thick flow in which I, <« I, ~ 7, where I, = P, /(OP,[dr) is the
corresponding radiation pressure scale height and A ~ [,.

When the flow is isothermal, we may dispense with the energy equation (3), and

simplify the momentum conservation equation as follows:

v B\ .8 GMp
P(E‘F‘U"a*;)——c,a——r—z*. (12)

The stationary solutions to equations (1) and (12) are well known, and may be written in

the form

411‘3[11): M N (13)

v)? v\? r 4r,
(»«—) —In (—-—) =4ln (—) +—-K, (14)
Cs Cs Te r
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where M is the total mass flux (which is constant for a stationary flow) and K = —3 for a
transonic solution (Parker 1966). To determine the manifestation of any time-dependent
disturbance or instability in the transonic regime, we now linearize the conservation equa-
tions (1) and (12), and consider perturbations about the time-independent zeroth order
quantities gy and vg (corresponding to the solutions described in equations {13] and (14])

by writing

plrt) = polr) + pr(n 1), (15)
and
v(nt) = w(r) + n(nt). (16)
This yields
18 (pm 9 (n 3 (;m
iy S ey s e K . 1
voat(po)+8r(vo)+0r(po 0, an
and
8n 8 20 (;m _
o T oy (v) e g (po =0. (18)
We now seck wave-like solutions with the usual normal mode expansion of py and vy,
viz.
exp(thkr — dwt
= pro _p(_;_____) ) (19)
and
v = vy __________exp(zk: — iwt) , (20)

where pjo and vyp are constants, and we consider both propagation and amplification of
the disturbance by admitting real and imaginary parts of w. With this assumed form of

p and vy, equations (17) and (18) reduce to the dispersion relation

1yef 2w, 12 0w] % 1
£+£{ ¢ +kc, Pt c? t i
_L (O, LY 2 0w 1 (0w} 2wdw| o,
k22 \ ar k%) kireg Or kR \ Or ke or |
8

where £ = w/ke,. Thus, to order (1/kr) (with 1/kr < 1), we recover the two solutions

NP
b= s +1 ke, Or (22)
and
"%y 9w
b= cs 1 ke, Or '’ (z3)

which clearly correspond to the outwardly and inwardly propagating waves, respectively.
Since dug/8r > 0 (see equation [14] above), it is evident that all wave fluctuations in a
spherically symmetric, isothermal flow (with &r 3> 1) are damped, in agreement with the

more general analysis of earlier workers (e.g., Jockers 1968).

V. SHORT-WAVELENGTH FLUCTUATIONS IN A RADIATION
DOMINATED FLOW (APPLICATION TO NEUTRON-STAR WINDS)

The essential difference between the isothermal flow discussed above and one in which
the dominant driving mechanism is due to gradients in the radiation pressure is that in
\the latter situation, the length scale (corresponding to the radiation pressure scale height
1, = P,./(OP,[dr)) over which the gas is accelerated can be significantly larger than the

gas pressure scale height [, = P,/(8F,/8r). 1t is not difficult to show from equation (4)

that
Iy 47
E Tr+24+9° @)
where
_ omT -
"= T Pl (29)
and
dhnv
= . 20
! dhlr (26)

It is clear from cquation (2) that a steady transonic flow has 5 ~ 47/I1, where I1 =
P,/P,, and so lg < I when IT <« 1, i.c.,, when the wind is radiation dominated. On
the other hand, the “acceleration length scale” .. = v/(dvfdr) is given approximately
by the expression loc. = P,/(OP,/0r) near the critical point 7., where v = ¢,. That is,
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lace = lgTL(n + 2+ 7) /47, which in our case reduces to locc = Iy since 5 > 7. As such, the
dominant fluctuation modes associated with the plasina are expected to have wavelengths
A~ lgee 1y € I ~ 7. The isothermal analysis discussed above suggests that growing
perturbations on the larger length scale (i.e., I, ~ r) are unlikely (see also §VI below).

If we now return to the set of equations (1), (2), and (3), and consider perturbations
in the temperature T as well as p and v, so that in addition to equations (15) and (16) we
have

T(T‘ t) = To(f‘) +T (T, t} > (27)

we then obtain the modified momentum conservation equation {cf. eq. [18]):

By O B O, DOR  GM)
poﬁhoovoar+poarvl+(voar+8“3p0+r2 1

(9Po Bpl 8Po 8T1 I} BPO -
+(8T';)W+ T, 61‘+ Br o7, T,=0, (28)
wlhiere Py is given by eq. (5) in terms of the steady state quantities, and
8P P,
P=— —p1. 29
= o T+ B0 ” (29)

In a similar fashion, the conservation of energy equation becomes

[Ouo o7y [8“0 Po) 6, [Uo Bug e Div (l ?__‘Pﬂ)

o) o " (o Al o T[0T wp \po 0T

__c._(ﬁ?f."l)] on [ Ouw wh ¢ 0Po]O;m
N’P(z) 3"“‘0 or oapo —pg_ K,pg or Or

[ Ea_uo voapo OPo 4 . 18 3P,-o
+ -vo (arzm,) Pu- r (8’1},) " ko Div (po 8r Ty h

[ ] ?_H_Q voa_po 01)0 1., c . 1 8prg
e (ﬂrﬁpo) ”or (Wo) A D+ g DY (p% or )] ”
c1dPyg 82'1‘) Py 0pg

8uo _
i) ot o w0 oo
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where DivA = (1/r%) 8(r?A)/8r for any variable A, and Fro is given by eq. (6) in terms
of the steady state quantities.

As in the case of the isothermal wind, we now seek wave-like solutions with the normal
mode expansion of p; and v, given by equations {19) and (20), and the additional mode

expansion for the temperature:

Ty = Tao exp{tk:~ iwt) ) (31)

After a long algebraic calculation, it is possible to reduce the three equations (17), (28),

and (30) to the cubic dispersion relation

e+ [(‘Y"‘ IM +i%akrM] +¢ [—%eM* —igakaz]

+ [%eM’ +iM? 1)%0: kr M] =0, (32)

which in keeping with our assumed small wavelength, has terms only to highest order in

1/kr (<« 1). Here

/2
RgTo)'
Cyp = | — , 33
0 ( m (33)
M=2 R (34)
Cs0
c n
a= wpovor {35)
_ 411,0
€= mal (36)
and
7E§a+r+%m)+%a1. (37)
This equation has the following threce solutions:
H=M+1-i 2 (38)
1= "Makrllp '
o= M—1—i— 39)
L ‘Ma krlly * (
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and

H=M1-19)~- i%a kr M. (40)

As before (see eqns [22] and [23)), the first two solutions correspond to the outwardly
and inwardly propagating waves, respectively. In this case, a rapidly decaying additional
mode £3-—the entropy wave—appears because the temperature is also allowed to vary.
Since both £, and &, always occupy the bottom half of the complex plane, this interesting
result (together with equations [22] and [23]) shows that all short wavelength fluctuations

arc damped, regardless of whether or not the flow is isothermal.

VI. A GLOBAL ANALYSIS OF ADIABATIC WINDS

We caun carry this discussion on the stability of optically-thick winds one step further
in the case where the transonic flow is approximately adiabatic. In neutron-star winds, for
example, the radiative flux

u M

Fa= 4xr?

(41)

advected across the sonic point is sometimes greater than the corresponding flux Fp dif-
fusing through the plasma (Joss and Melia 1987). Under these conditions, any deviations
from an adiabatic flow should be sufficiently small to allow the use of analytic solutions
(analogous to {14]) of the adiabatic flow equations in a global stability analysis (sec also
Aikawa 1979 for the case 7 = 1 and Bondi 1952).

Putting
P=n (;)‘%)1 , (42)
and
Co = (’w——’?)l/z , (43)
the momentum equation (2) reduces to
ot g
12

or in terms of the velocity

va = (GM ) v (45)

2r,

at the adiabatic sonic point r, (where ¢ = va),

- am-f@) -

It is not difficult to show that the stationary solutions to this equation are

1{v\? 1 e\’ 2 _
E(;) +~7~—1(£) ~TesKe (£, (7

(@) @) 2pE)F] - e

where K, is a constant determined by the physical conditions at r = rq. That is,

and

_ 5-38y
T Ay-1)7

The global perturbation analysis may now be treated as a mixed initial and boundary-

(49)

value problem along the lines set forth by Jockers (1968) in liis treatment of an isothermal
wind. Following this earlier work, we now lincarize cquations (1) and (2} for an adiabatic

flow (equation [24]), getting

dz dug det
2,2 %L =3 -8 = 5
(c vo)dr+(ﬂ+2dr)v'+[dr ﬂvg]z 0, (50)
and
d v d pet  dc?
2 Pl e T TN ot} fa _8 - r
(ca u},)dr(vﬂ) (ﬂ+2dr)v.+[vo #=0, (51)
where z = py/py, and 02, /0t = Pz, duy O = Puy. If we now define the new variables
X
{=zexp {/ (% - ﬁuo) (2 —-v3)! tlr} (52)
o T
and
* 2
= —%:—; (2 — vd) exp {/ro (% -ﬁ'uu) (- vf,)—l dv'} , (53)
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where rg is the base radius of the wind, then these two equations reduce to

¢ _ wB(B+2dw/dryy _ (54)
dr 2 -8
and
dn
el B (=0, (55)
where .
2 21~
w=[2-5%] - (%)

As in the isothermnal case, the proof of stability consists in using equations (54) and (55) to
show that if Re(8) > 0, this eigenvalue § is real, and then to use this fact to demonstrate
that there are no cigenvalues with Re(f) > 0.

Constructing the integral

we can evaluate the Lh.s. explicitly to give

o [ [ 20l e+ Re(@) 1 [ odd ]
(ﬁ—ﬂ)[/m . de/m tc;’;;dr]-m (58)

Both terms are positive definite as long as dc? /dr < 0, so that under this condition, 8 = g*

as required. The second part of the proof (that Re(8) < 0) follows exactly the procedure
of the isothermnal case since wg > 0 when # is real and positive. As such, an adiabatic,
spherically symmetric wind is stable against spherically symmetric initial and boundary
perturbations, where the boun(lary perturbations are applied at the inner boundary of the

outflow.

VII. CONCLUSIONS

We have reconsidered the question of stability in a spherically symmetric, transonic
flow, though this time with an application to optically-thick, radiation dominated neutron-
star winds. In these systems, the mass outflnx results from gradients in the radiation
pressure over a distance [, that is very large compared to the gas pressure scale height 1.

u

Our analysis has shown that the introduction of a temperature gradient does not affect
the stability of the outflow against transonic, wave-like fluctuations with A ~ Iy < Iy ~ 7,
since both the outwardly and inwardly propagating acoustic waves are always damped. We
have also demonstrated that when the transonic flow is adiabatic (a good approximation for
these radiation-dominated expanding coronae), the wind is globally stable against initial
and boundary perturbations.

We therefore conclude that inasmuch as the earlier wind calculations were used to
determine the outer boundary conditions for the nuclear buruing fuel at the base of the
wind, those constraints are valid. In addition, our calculations would seem to indicate that
the use of X-ray burst sources as “standard candles” (with Lz & Lg) to determine the
distance to the galactic center is probably warrauted, since the wind can in fact regulate
L by reducing its value below L.4 while the particle mechanical energy and numnber flux
correspondingly increase, as indicated by the earlier studies of quasi-static, neutrou-star
winds.

This research was supported in part by NSF grant PHY 88-57218, NASA grant NAGW-
2380, and the Alfred P. Sloan Foundation. Most of the numerical calculations were carried

out at the National Center for Supercomputing Applications in Urbana-Champaign.
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