
PREPRINTS 

of the 

STEWARD OBSERVATORY 

THE UNIVERSITY OF ARIZONA 
TUCSON, ARIZONA 85721 U.S.A. 

No. 1035 

ON THE STABILITY OF NEUTRON-STAR WINDS 

Fulvio Mella 1, 

Department of Physics and Steward Observatory 


University of Arizona 

melia@nucleus.physics.arizona.edu 


Mark Wardle, and Peter Helmberg 

Department of Physics and Astronomy 


Northwestern University 


1 Presidential Young Investigator and Alfred P. Sloan Fellow. 

Submitted to the Editor of the Astrophysical Journal. 

mailto:melia@nucleus.physics.arizona.edu


ABSTRACT 

It is believed that radiatively driven mass outflows associated with type I cosmic X-ray 

bursts and fast X-ray transients are relevant to the precursors and apparent radius variations 

sometimes seen during the course of these events. Previous studies of neutron-star winds have 

assumed that the transition from subsonic to supersonic flow is smooth and describable by 

the steady conservation equations, but this assumption may be inappropriate if the wind is 

unstable. Earlier investigations into the question of whether such an instability arises were 

restricted to the case of a spherically symmetric isothermal flow (e.g., the solar wind), and 

concluded that (at least in this context) no growing perturbations can exist. In neutron-star 

systems, however, the winds are optically thick and driven predominantly by gradients in the 

radiation pressure. As such, it is not obvious that the previous analyses are relevant to these 

sources, given that optically thick winds have two distinct length scales. i.e., the length scale 

(corresponding to the radiation pressure scale height) over which the gas is accelerated. and 

the much smaller gas pressure scale height. Our goal in the present paper is to examine 

the stability of neutron-star winds in more detail than has previously been attempted, and to 

determine whether or not the introduction of temperature gradients can affect the stability of 

the flow. We find that the dispersion relation has three solutions, corresponding to outwardly 

and inwardly propagating sound waves, and a strongly attenuated entropy wave. Interestingly. 

the waves are always damped. We also show that when the transonic flow is adiabatic. the 

global perturbation analysis employed for isothermal winds carries over into this domain with 

similar conclusions, i.e., there is no indication of growing perturbations. We conclude that the 

stability of transonic flows is not affected by relaxing the isothermal constraint. Our results 

suggest that a consideration of earlier wind models as outer boundary conditions for calculations 

of the thermonuclear flash models are warranted, and that the use of X-ray burst sources as 

"standard candles" (with an Eddington-limited total luminosity) to determine the distance to 

the galactic center is valid. 

Subject headings: illstabilities---radiative transfer-stal's: binaries-stars: ncutl'on--stars: 

Willds-X-rays: Bursts 

I. INTRODUCTION 

Thermonuclear 8ashes in the surface layers of accreting neutron stars can release suffi­

cient energy to produce mass ejection in the form of a wind. Observationally, the occurrencc 

of such out80ws during the peaks of many X-ray bursts is supported by at least three Jincs 

of evidence: (1) The peak luminosities of X-ray bursts are generally of the ordcr of the 

Eddington limit (e.g., J088 and Rappaport 1984; Melia and J088 1986 and references cited 

therein), 8uggesting that much higher luminosities are inhibited by the deposition of radia­

tive energy into the kinetic and gravitational potential energy of a wind. (2) The apparcnt 

radius of the neutron star (Ra == (LI411"0'~alI1/2, where L and Teal are the bolomctric lu­

minosity and color temperature, respectively) is seen to incrcase from", 10 km to a vallie 

several times larger during the peaks of thc most luminous X-ray bursts from some sources. 

(3) Some "fast X-ray transients," which are vcry similar to type I bursts except that they 

last up to - 103 s, display distinct precursors. Lcwin, Vacca, and Basillska (1984) alld 

Tawara, Kii, and Hayakawa (1984) have suggested that the interval between thc prccursor 

and the main event corresponds to the emission of a strong wind by thc neutron star. This 

phenomenon thus seems to represent a more extreme case of the apparent radius variations 

seell ill some type I X-ray bursts. 

Following initial discussions by Wallace, Woosley, and Weavcr (1982) aud PaczYliski 

(1983), modcls for quasi-static winds from neutron stars havc bcen devcloped by Ebisuzaki, 

Hall8.Wa, and Sugimoto (1983), Kato (1983), MeJia and Joss (1984). Quinn and PaczYliski 

(1985), Paczynski and Pr6szynski (1986), Joss and Mclia (1987), and Abramowicz, Ellis, 

and Lanza (1990) with the intent of formulating a set of outer boundary conditions for thc 

hydrostatic iuterior of the neutron star. Thc assumption or quasi-static now, pcrmitting 

a timc-indcpcndcnt treatment or the wind, was justificd by the fact that all of the above 

phenomclla are observed to occur on time scales, Tobs. of seconds or longer. Thus, a 

quasi-static wind solution seemcd to be scU-consistent bcclUlse Td < T/low < TclHlr < Too&, 

whcre Td (R: 10-4 8) is thc dynamical timc scalc at thc surfacc or thc IICut1'01l star, T//uUJ 
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is tbe 80w time required for a 8uid element to travel from tbe base of the wind, whcre 

hydrostatic equilibrium is nearly maintained, to a level where the wind has essentially 

rcached its terminal velocity, and Tchar Mw/ Alw is tbe time required for approximately 

time-independent conditions to be established in a wind with mass out80w rate Mw and 

total mass Mw above its base. 

The structure of these solutions is qualitatively similar to that of models for the solar 

wind, as first discussed by Parker (1960). At the bottom of the outBow, the Buid velocitics 

are very subsonic, and hydrostatic equilibrium is an excellent approximation. 011 tbe othel' 

band, tile tcrminal velocity of the Buid in the outcr zone is highly supersonic. Betwccn 

these two extremes, the solutions pass through a singular point, corresponding to the level 

r c ill the ncutron-star atmospbere where the Buid velocity v is equal to the isothcrmal 

souud speed c. == (RgT/p)1/2 (in terms of the kinetic temperature T and the molecular 

weight JJ of thc particulate gas; Melia 1987). For simplicity, the transition fl'om subsonic 

to supersonic flow has always been assumed sl1looth and describable by the "usual" steady 

conservation equatiolls (see § II below). However, this assumption is inappropriate if the 

outwardly expanding 80w is ullstable against tbe amplification of acoustic waves in tbe 

rcgion whcrc v tv c•. 

The question of whethcr or not such an instability arises bas already received some 

a.ttention, particularly in the coutext of tbe solar wind. For examplc, Parker (1966), 

Carovillano and King (1966), and Jockers (1968) studied tbe perturbation problem of a 

spberically symmetric isothcl'mal80w and concluded that (at least under thcse conditions) 

110 growing perturbations can exist (see also Cannon and Thomas 1977). The situation 

with ncutron stars is distinctly differeut, however, in that the winds in these systems arc 

optically thick a.nd radiatioll dominated. As we sball sec, this added feature introduces a 

ncw length scale into tbe problem that renders the earlicr analysC8 inappropriate for our 

discussion. Our goal ill thc present paper is to cxanline optically thick winds in more detail 

thau lIas prcviously been attempted and, iu so doing, to detcl'luiuc if growing fluctuations 

can affcct tbc overall structure of thc expanding atmospberc. 

II. BASIC EQUATIONS 

Our analysis will be based on the formalism described by Joss and Melia (1987). This 

assumes a weakly magnetized, nonrotatillg neutron star with nominal parameters: mass 

M = 1.41 Me and (pre8ash) radius R = 10 km. In addition, the wind is assumed 

to be spherically symmetric and its interaction with the surrounding accretion disk is 

neglected (d. Melia and Joss 1985). The chemical abundances (by mass) are taken to be 

(X,Y,Z) = (0.69,0.30,0.01). 

The relevant 8uid equations are the continuity equation, the equations of momentum 

and energy conservation, and the equation of Ileat transport, in Eulerian form, under thc 

cOllstraints of spherically symmetric 80w. In our present analysis, we will allow for time­

dependence, so tbat our stability criteria include the outward spatial amplification or auy 

given disturbance. For the equation of continuity, we have 

8p .!.. 0(r2pu) _ 0 
(1)Ot + r2 Or - , 

where p(r, t) and v(r, t) are tbe 8uid density and velocity, respectively, as fnnctions of 

radius r and time t. The equation of momentum conservation takes the form 

Ov Ov 8P GMp 
(2)p lJt +pv Or = - Or - --;r' 

where P(r, t) is the total pressure (i.e., the Slllll of gas pressure Pg and radiation l}1'eSSllre 

PrJ. 
Neglecting convective beat transport (see Joss and Melia 1987), tbe equation of con­

servation of eum'gy can be written as 

2 
8" +V Ou +P [!!.. (!) +v ~ (!)] = _..!.. 0(1. Fn) , (3)
Ot Ot p Or p r2 p Or 

wllCre u(r, t) = 'Ug + U r is thc total energy per l1uit mll,ss (ug ami 1£,. being the iutcl'Iml 

energy per unit mass of tbe particulate gas and radiatiou, respcctively). For simplicity, we 

will l'estrict our attcntion to wiud solutions wbose critical point lies at sufficient optieal 

depth in tbe wind that LTE is l\ good 8.1>(>roxilllation in the transonic region. As sneh, the 
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gas and radiation temperatures are equal, and the thermodynamic properties of the fluid 

are essentially tbose of an ideal gas plus blackbody radiation: 

Rg 3 Rg a '"' a '"' )Pg = - pT, ug = 2- - T, Pr -3 J: ~, U r = - J: ~ , (4
P P P 

wbere Rg is the gas constant, and T =T(r,t). In terms of tbe parameter P == Pg/P, we 

may also write 

P= RgpT 
U= R;T (~_~) . (5)

I'P , 
Moreover, the appropriate equation of heat transport is the radiative diffusion equation: 

ae tIr'
Fn=---, (6)

3x.p dr 

where x. is the opacity coefficient. 

III. THE TRANSONIC REGIME 

Wheu quasi-static conditiolls are assumed, the problem can be l'educed to the solution 

of two simultaneous, first-order, ordiuary, differential equations in two unknowns (together 

with the constitutive relations: the equation of stale, the illtcl'llal energies of the gas and 

radiation, and the radiative opacities). Taking v aud T to be the dependent variables and" 

to be the independent variable, we can combine equations (1), (2) and (4) (with a/at --+ 0) 

to obtain one of the two requisite relations (Melia 1987): 

dv N 
(7)

dr =15' 
where 

N == 2Rg ~ _ GM (Rg + 4a T3) dT , (8) 
p r I' 3 p dr 

and 

D==u_Rg~. (9) 
p v 

The other relation can easily be obtained from equations (1), (2), (3), and (6). 

The critical point corresponds to tltc level iu the flow where D =0 (Le., where v = e.. , 

as indicated above). In order for the solutioll to be regular at this point, it is necessary 

thl\t N also vanish there, which will then allow II. smooth tl'allsitioll from subcritical to 

supercritical flow. 
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IV. SHORT·WAVELENGTH FLUCTUATIONS IN AN 


ISOTHERMAL FLOW (APPLICATION TO THE SOLAR WIND) 


In his discussion of spberically symmetric isothermal perturbatiolls of the solal' wind, 

Jockers (1968) treated tbe problem with mixed initial and boundary-value couditious, ill 

which tbe perturbations of velocity and density are specified everywhere at tile initial 

time, and in addition the velocity perturbation at the base of the corona is known for all 

subsequent times. The solutions to the singular eigenvalue problem for the amplitudes 

of the velocity and pressure perturbatiolls call be represented as a linear superposition of 

normal modes and are temporally stable and bounded at the critical point. 

As a prelude to our study of a radiation dominated flow, we will in this section recon­

sider the perturbation of a spherically symmetric, isothermal wind ill the short wavelength 

limit (i.e., >. ¢: r, or l/kr ¢: 1, where k == 27f/>'), for wbicb a local analysis is .weqtlilte. 

Although all analysis ill this wavelength regime may not be sufficient to establish the 

global stability of an isothermal wind whosc length scale is set by the gas l>I'cssUl'e scale 

height '$1 == Pg /(8Pg /8r) (- r), it will nonetheless be instructive to compal'c this result 

with that of the optically thick flow in which 1$1 ¢: Ir rv r, where Ir Pr/(ap,,/ar) is the 

corresponding radiation pressure scale height and>' rv Ig • 

When the flow is isothermal, we may dispcnse with the energy equation (3), and 

simplify tbe momentum conservation equation as follows: 

au + v a,u) = fJp (12)_ GM p 
p ( at ar ar r2 

The stationary solutions to equations (1) and (12) are well known, and lllay be wl,iuCII in 

the form 

47f ,,2 PV = II! , (13) 

and 

(1') 47'(-V)2 - III (v)2- = 4111 - + ---.5. - K , (14) 
~ ~ ~ r 



where tV! is the total mass Dux (which is constant for a stationary flow) and K = -3 for Il 

transonic solutiol1 (Parker 1966). To determine the malJifestation of allY time-del}endcnt 

disturbance or instability ill the transonic regime, we now linearize the conservation equl\­

tiol1s (1) and (12), and consider perturbations about the time-independent zeroth order 

quantities Po and Vo (corresponding to the SOIUtiOlls described in equations [13] and [14]) 

by writing 

p(r,t) Po(r) +PI(r,t), (15) 

and 

v(r,t) =Vo(r) +vI(r,t). (16) 

This yields 

~!:(e!)+~(~)+ 8 (e!) =0, (17)
Vo at Po 8r Vo Po 

and 

8Ul {) 2 8 (PI) O.at +8r (Vo VI) +c, 8r P; (18) 

We now seek wave-like solutions with the usual normal mode expansion of PI and VI, 

viz. 

PI PIO exp(ikr - iwt) (19) 
r 

and 
eXI,(ikr - iwt) 

VI = VIO , (20) 
r 

where PIO and VIO are constants, and we consider both propagation aud amplificl\tion or 

the disturbance by admitting real and imaginal'y Ilarts of w. With tbis assumed form or 

PI and VI, equations (17) and (18) reduce to tbe dispersion relation 

2 i 2aVo] [v~ ( 1)~ +~ +-k--fJ + 2" 1+-
Ca 

k22 

1 (fJ1/0)2 
c" C.!J r r 

1 (8VO)2 (1 1) 2 lJUO i2vo fJVO] =0, (21)- k2c~ (}r - + k2,,2 - k2rUO 0;: k2v~ 0;: - kc~ 7h 
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where ~ == w/kc~. Thus, to ordCl' (I/kr) (with I/kr <t:: I), we recover the two solutiolls 

Vo i 8vo6=-+1---, (22)
c, kc, or 

and 

6=~-1 ~8Vo (23)
c, kc, or ' 

which clearly correspond to the outwardly and inwardly propagating waves, respectively. 

Since 8Vo/8r > 0 (see equation [14J above), it is evident that all wave fluctuations in a 

silberically symmetric, isothermal flow (with kr ~ 1) are damped, ill agreement with the 

more general analysis of earlier workers (e.g., Jockers 1968). 

V. SHORT-WAVELENGTH FLUCTUATIONS IN A RADIATION 

DOMINATED FLOW (APPLICATION TO NEUTRON.STAR WINDS) 

The essential difference between the isothermal flow discussed above and one in which 

the dominant driving mechanism is due to gra.dients in the radiation pressure is that ill 

the latter situation, the length scale (corresponding to the radiation pressure scale height 
"­
lr == P,./(8Pr/{)r» over wbich the gas is accelerated can be significantly larger than the 

gas pressure scale height Ig == Pg/(8Pg/or). It is not difficult to show fwm equation (4) 

that 
19 

(24)"4 
where 

())uT
T== (25) 

and 

{)Inv


11 (26)
olnr 

It is deal' fWIIl cquation (2) that a steady transonic flow luu; '/ ,..., 4rIn, where n 
Py/P", and so 19 <t:: lr whcn n <t:: I, i.e., when the wind is radiation dominated, On 

thc other hand, the "acceleration length scale" lacc == v / (lJlI/ 01') is given npPl'Oximatdy 

hy the expression lacc :::::: Py/(OP•. /Ol') near the critical point "c. where 'll :::::: c.•. Thnt is, 

9 



lace ~ Ig n (71 +2 +T)/4T, which ill our case reduces to lace ~ 19 since,., » T. As such, tbe 

dominant fluctua.tion modes associated with tbe plasma are expected to have wavelengths 

>. '" lace ~ 19 « Ir r. The isotllermal analysis discu88ed above suggests that growingIV 

perturbatiolls on the larger length scale (i.e., lr IV r) are unlikely (see also §VI below). 

If we now return to the set of equations (1), (2), and (3), and consider perturbations 

in the temperature T as well as Pand v, so that in addition to equations (15) and (16) we 

have 

T(r,t) To(r) +T,(r,t), (27) 

we theu obtain the modified momentum conservation equation (cf. eq. [18)): 

Ou, Ou, 8vo (8Vo 88Po GM)Po - +Po Vo - +Po - VI + Vo - + -- + - p,8t Or 8r Or Or 8Po r2 

+ ( 8Po) 8pI + (8Po) BTl + (l!.- 8Po) Tl = 0, (28)
OPo Or tr.ro Or Or tr.ro 

where Po is given by eq. (5) in terms of the steady state qnantities, and 

8Po 8Po 
(29)PI == OTo TI +8Po PI . 

In a similar fashion, the conservation of energy equation becomes 

[
OUo] OT, + [Olto Po] Op, + [Vo Duo ~ Div (..!.. 8PrO )
BTu 8t OPo p~ 8t BTo "Po Po BTo 

_~ (l!.-8PrO )] OT, + [vo Ouo VoPo + ~ 8PrO] 0PI 

~p~ Or OTo Or OPo pi ~p~ Or Or 


+ ( .!!.- OUo) _ ~8Po (OPo) ~Div (..!..~ OPrO )] TI 
Or BTo p3 Or BTo ~Po Po 0,' BTo 

(~Ouo) ~OPo (OPo) _ ..!.. DivFno + C Div (..!.. OPrO)] ,+ 8r Opo p3 Or OPo p3 ~Po p3 Or P 

+ [_~..!.. OP'iJ] 02T, + [Ouo _ Po OPo] VI = 0, (30) 
~ P: BTo Or2 Or p~ Or 

10 

where DivA == (l/r2 )8(r2A)/8r for any varia.ble A, and FRO is given byeq. (6) in tenns 

of the steady state quantities. 

As in the case of the isothermal wind, we now seek wave-like solutiolls witb the normal 

mode expansion of PI and VI given by equations (19) and (20), and the additional mode 

expansion for the temperature: 

T, = T,o exp(ikr - iwt) (31) 
r 

After a long algebraic calculation, it is possible to reduce the three equations (17), (28), 

and (30) to the cubic dispersion relation 

e+e2 -3)M +i~akrM] +e [-~£M2 -i~akrM2] 

+ [~£M3 +i(M2 -l)~akrM] = 0, (32) 

which in keeping with our assumed small wavelengtb, has terms only to highcst Ol'dcr ill 

l/kr (<< 1). Here 

c.o == (R~To) '/2 , (33) 

M ~ (34)
C.o ' 

a C (35)
~Po Vor • 

£ = 4urO- -;;r' (36) 

and 
2 1 1 

'Y == 3a + T + 3a11 + 3aT • (37) 

This equation has the following thrce solutions: 

2
{, =M + 1 - i ..a kr no ' (38) 

2 
(39){2 = M - 1 i •.a kr no ' 
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and 

6 = M(I-1) -i~QkTM. (40) 

As befOl'e (see equs (22) and [23]), the first two solutions correspond to the outwll.l'dly 

and inwardly prollagating wavcs, respcctively. In this case, a rapidly decaying additional 

mode 6--the entropy wave-appears because the temperature is also allowed to vary. 

Since both (I and (, always occupy the bottom half of the complex plane, this intcrcsting 

result (togethcr with equations [221 and (23)) shows that all short wavelength Ouctuations 

arc damped, regardless of whether or not the flow is isothermal. 

VI. A GLOBAL ANALYSIS OF ADIABATIC WINDS 

We call carry this discussion Oil the stability of optically-thick winds one step fmtller 

ill the case where the transonic flow is approximately adiabatic. In neutron-star winds, fOl' 

example, the radiative flux 

FA == urM (41)
41fT2 

advccted across the sonic point is somctimes greater than the corresponding flux Fn dif­

fusing through the plasma (Joss and Melia 1987). Under these conditions, any dcviations 

from all adiabatic flow should bc sufficicntly small to allow thc usc of analytic solutions 

(analogous to (14)) of tbc adiabatic flow cquatiolls in a global stability analysis (sec also 

Aikawa 1979 for thc casc 1 = 1 and Dondi 1952). 

Putting 

P=PO(~)1 . (42) 

and 

Ca == C,;Y/2 , (43) 

thc momcntum equation (2) reduces to 

(c2 _ 2) cllllV GM 
a V -- 2 (44)d lilT T 2ca , 
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or in terms of thc vclocity 

Va = (GM)I/2 (45)
2Ta 

at thc adiabatic sonic point Tca (where Ca =va), 

[(<;.)2 (v )2] dln(v/va) 2 Ira (ca)2]
Va Va dln(r/Ta) -; - Va (46) 

It is not difficult to show tbat the stationary solutions to this equation are 

~ (~)2 + _1_ (~)2 2ra Ka (-Y:;':I),
2 Va 7 - 1 Va T 

and 

~(;:)' 11l(;:)-2[11l(~)+~]= 3 (-y=I), (48) 

where Ka is a constant dctcrmined by thc physical conditions at T = Ta. That is, 

5 31 
Ka= 2(71)' (49) 

Thc global pcrturbation analysis may now bc trcatcd as a mixcd iuitial and boundary­

valuc problcm along the lillcs set forth by Jockcrs (1968) in his trcatmcnt of iUl isothcrmal 

wind, Following this earlier work, we now Iincarizc cquations (I) and (2) for all adiabatic 

flow (equation [24J), getting 

, 2) dz ( dVo ) [dC; ](ca - Vo dr + {3 +2dr VI + dr - (3 110 z = 0 • (50) 

and 

2(ca 
2 d (VI)vol ­ -

dT vo 
( dVo) [{Jc;. dC;]{J +2­ VI + - - ­ z

dr Vo dT 
0 , (51) 

WhCl'C Z == pa/po, and Dzt/at = {3z; avt/Dt = {JVI. If we now definc the new val'i'lb.1es 

<== z cxp {1: (~; (JVo) (c; - vi)-' d1'} (52) 

and 

1 VI 2 2 {I" (11C2 ) 2 -I }
1) == -fj V; (Ca Vo) CXP ro d1~ {J'IJO (c; -Vol d1' , (53) 
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where 1'0 is the base radius of the wiud, tben tbese two equations reduce to 

d( vo{J({J + 2dVO/dr)'fI =0 (54)
dr e! -vg 

and 

d'flWo-e=O, (55)
dr 

wbere 
2 ! de!]-1[ e (56)Wo= ;; {J d1' 

As in the isothermal case, the proof ofstability consists in using equations (54) and (55) to 

sbow tbat if Re({J) 2: 0, this eigenvalue (J is real, and then to use this fact to demonstrate 

tbat tbere are no eigenvalues with Re({J) > o. 
Constructing the integral 

• (de 'fl. _ dC· 'fI) dr = ({J ~.) i - lell de! dr , (57)lro 
r 

dr dr I{JI ro 
r 

dr 

we can evaluate the th.s. explicitly to give 

({J - (J.) [ir- 2vol'fl12(dvo/dr2~Re({J» d,' - ~ ir-ICI2de! d1'] 0, (58)ro (~ - vol IPI ro dr 

Both terms are positive definite as long as de!/dr < 0, so that under this condition, {J = P· 

as required. Tbe second part of the proof (tbat Re({J) < 0) follows exactly tbe procedure 

of the isothermal case since Wo > 0 when {J is real and positive. As sucb, all adiabatic, 

splaerically symmetric wind is stable against spherically symmetric initial and bOllndary 

perturbations, where the boundary perturbatiolls are applied at the inner boundary of the 

outOow. 

VII. CONCLUSIONS 

We ha.ve recollsidered the questioll of stability ill a sl)herically symmetric, transonic 

flow, though this time with all alJplicatioll to optically-tbick, .'adiatioll dominated llelltron­

star winds, In these systems, the mass outllllX results f.'olll gradients in the radiatioll 

pressure over a distance lr that is very large compared to the ga.'1 pressure scale height ly. 
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Our analysis has shown that the intl'oduction of a temperature gradient docs not affect 

the stability of the outflow against transonic, wave-like fluctuations with A "" 19 «: lr '" 1', 

sillce both the outwardly and inwardly propagating acoustic waves are always damped, We 

have also demonstrated tbat wben the transonic flow is adiabatic (a good approximation fOl' 

these radiation-dominated expanding coronae), tbe wind is globally stable against initial 

and boundary perturbations, 

We therefore conclude that inasmuch as the earlier wind calculations were used to 

determine the outer boundary conditions for the nuclear burning fuel at the base of the 

wind, those constraints are valid. III addition, our calculations would seem to indicate that 

the use of X-ray burst sources as "standard candles" (with Lma:r: ~ Lcd) to determine the 

distance to the galactic center is probably warranted, since the willd can ill fact regulate 

L by reducing its value below Led while the particle mechanical energy and nlllllbel' flux 

correspondingly increase, as indicated by the earlier studies of quasi-static, neutl'oll-star 

winds. 

This research was supported in part by NSF grant PHY 88-57218, NASA grant NAGW­

2380, and the Alfred P. Sloan Foundation. Most of the numerical calculations were carried 

out at the National Center for Supercomputing Applications in Urbana-Champaign, 
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