

TS-SSC 92-044 3/23/92

DCA320 Turn-to-turn Short Located

DCA320 was disassembled following the determination that it had a turn-to-turn short. By electrical measurements the short had been localized to uninstrumented portion of the lower inner coil (15M-50-1022)[1]. The coil resistance was monitored and the short was observed to clear when the the keyss were removed from the last collar pack at the return end. The coils were separated and then the offending coil was compressed in the sizing fixture over the last 6 inches from the return end until the short reappeared. By resistance measurements made by piercing the insulation with a sharp probe, the short was found to be between turns 3 and 4, counting from the mid-plane, in quadrant I/III, 9.25" from the return end of the saddle, or 0.5" into the collared region. The conductors were carefully pried apart, but no obvious cause for the short could be observed. A 3 mil piece of Kapton was slipped between the turns and the offending spot was compressed by the sizing fixture. The short did not return. I measured the coil resistance, using an HP3457 DMM, to be 1.142 Ohms, and the resistance of the upper inner coil (15M-50-1021) to be 1.151 Ohms. This is approximately the original difference between the two coil resistance.

While it is disconcerting to have a short with no known cause, I believe that we should reassemble the magnet and re-key it. However, to limit the peak stress in the collaring press, I propose that the press be shimmed to limit the closure of the tooling. I will recommend a shim thickness shortly.

ACKNOWLEDGEMENTS

Essentially all the information noted above was given me by Denny Gaw and Dan Smith. Denny made the electrial measurements and Imre Gonczy made the coil repairs.

REFERENCE

[1] J. Strait, DCA320 Turn-to-turn Short, TS-SSC 92-039, 3/18/92.

Distribution:

R. Bossert, J. Carson, S. Delchamps, W. Koska, E.G. Pewitt, M. Wake, DCA320 Traveler, Discrepancy Report#480

TS/SUPERCONDUCTING MAGNET PRODUCTION 0102-ES-298025 REV.D

FNAL/SSC DISCREPANCY REPORT

() Traveler Title:	2) Traveler No.:	3) Rev. No.:	4) DR No.:
Keying Procedure	ES-298280	H	480
5) Step No.: 6) Drawing/Revision No.: 7) Ma	ignet/Coll Serial No .:	QA Assigned	d: Class: or II
3.9 Do	A-320		
8) Nonconformance Description by First H	and Observer:	17 0	
The lower inner Coil Resistance	(measured) was 11	29 #1 10	si Keyed.
The coil RESISTANCE aT POST C	ollared was measur	ed at 114	2 AND
the Resistance Data Taken Dur	ing Keynug shows	a coil te	o coit
short at 7044 psilsee Attached			
9) Name al Dorputy	Title: Off		Date: 3-18-92
10) Cause of Nonconformance:			
1			
11) Responsible Authority/Physicist 12) Disposition:			Date:
11) Responsible Authority/Physicist			Date:
13) Corrective Action to Prevent Recurre	ance:		
14) Responsible Authority/ Physicist	Title:		Data
15) Corrective Action/Disposition Verified By:	16) Approved By:	ti	Date:
(11) Responsible Authority/Physicist Date:	QA/QC Project Man 17) Reviewed By:	ager	Date:
11) Responsible Authority/Physicist Date: Class: I or II	17) Lealener DA		
Will Configuration be effected? [] Yes []	No SSCL Q.A. Engineer	r	Date:

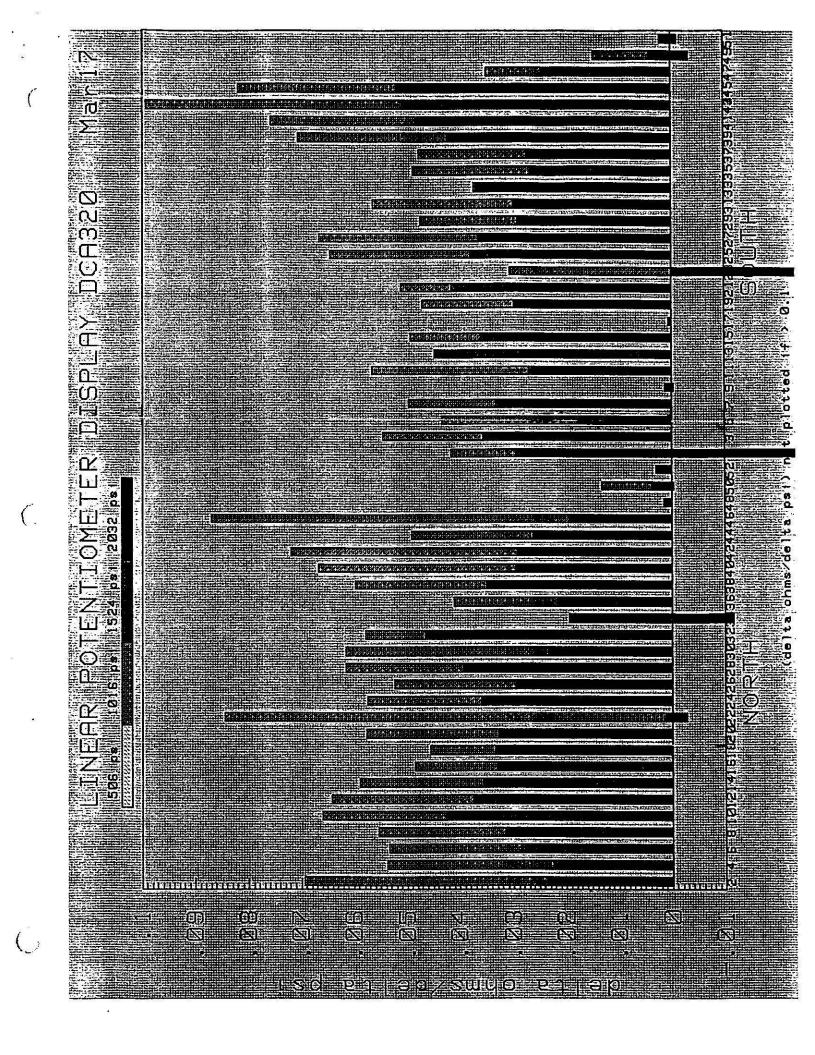
Magnet number: DCA320

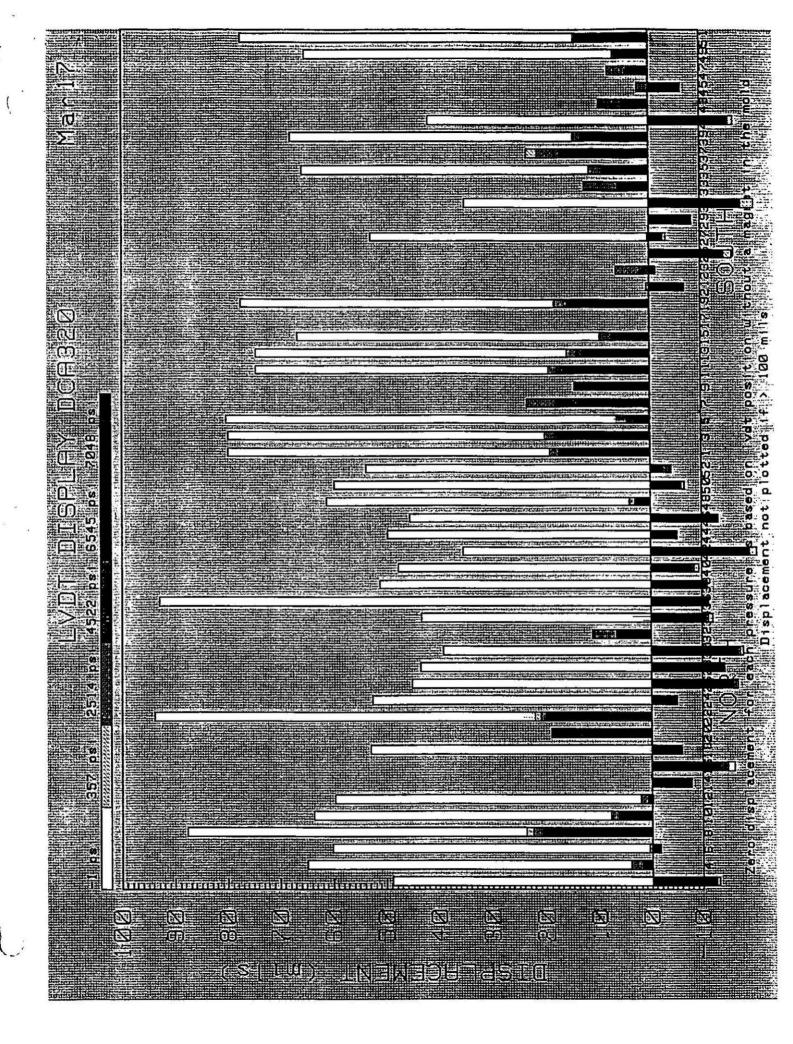
Date: 17 Mar 1992

Time: 09:01:02

Operator's name: D.GAW

Comment: FIRST ATTEMPT THIS MAGNET HAS THE NEW CABLE INSULATION KAPTON WITHOUT FIBERGLASSTAPE


100-JACK	SIDE-JACK	UPPER COIL	LOWER COIL	% Difference	Coil-to-coil
-1 psi	-1 psi	2.974 ohms	2.960 ohms	.470%	OPEN
357 psi	8 psi	2.972 ohms	2.961 ohms	.370%	OPEN
2514 psi	7 psi	2.973 ohms	2.960 ohms	.440%	OPEN
4522 psi	7 psi	2.972 ohms	2.957 ohms	.500%	OPEN
6545 psi	7 psi	2.971 ohms	2.959 ohms	.400%	OPEN
7048 psi	7 psi	2.970 ohms	2.950 ohms	670%	OPEN
7049 psi	6 psi	2.969 ohms	2.950 ohms	.640%	SHORT
7027 psi	506 psi	2.969 ohms	2.950 ohms	.640%	OPEN
7030 psi	1016 psi	2.969 ohms	2.950 ohms	.640%	OPEN
7042 psi	1524 psi	2.969 ohms	2.950 ohms	640%	OPEN
7035 psi	2032 psi	2.968 ohms	2.952 ohms	.540%	OPEN
4078 psi	1976 psi	2.970 ohms	2.956 ohms	.470%	OPEN
14 psi	6 psi	2.969 ohms	2.955 ohms	.470%	OPEN


	506 ps 11 1916 ps		DCA320 Mar17	
ATES)				
N R				
		2949538404244454950521135		941434547495 14

 $\overline{}$.

.

Zero displiacement based on average of pot positions of DCR312; DCR313, and DCR314. Displacement not plotted if > 100 mils

TS-SSC 92-039 3/18/92 J. Strait

DCA320 Turn-to-turn Short

DCA320 has developed a turn-to-turn short either during or immediately after the coller keying operation. The short is in the uninstrumented portion of the lower inner coil. Table I summarizes the inner coil resistance measurements recorded in the Traveler. From before to immediately after keying the lower inner coil resistance decreased 6 milliohms relative to the upper inner coil. This, however, is within the range of variation observed among earlier measurements and did not cause immediate alarm. By the next day, however, it had lost another 13 milliohms, and it became evident that there is a problem.

Table II and Figure 1 show the upper and lower half coil resistances during the keying operation. It is evident that the lower coil resistance dropped about 5 milliohns when the vertical press hydraulic pressure was brought from 6500 to 7000 psi. (No increase in coil stress was observed by the strain gauges at this step, however.) This represents only a 0.2% change in the lower-upper coil difference which is below the alarm threshold of 0.5%. As the press was opened, the lower-upper coil difference returned to its original value. In retrospect, of course, this change indicated the presence of a short; unfortunately no one was looking closely enough.

Table III gives the voltage tap series check data from the Traveler. Also indicated are 1) s, the estimated cable length, in inches, from tap 19B to each tap, 2) ds, the distance from the indicated tap the the previous one, and 3) $\langle z \rangle$, the average s of the cable segment defined by the indicated tap and the previous one. Vraw is the measured voltage from the Traveler. Vnorm is that voltage normalized to make the voltage at 13A match the "standard" voltage listed in the Traveler of 313.5 mV. dVnorm is the normalized voltage difference between the one tap and the previous tap. The data in the collared (pre-keyed) and keyed states are compared at the right. Within the instrumented portion, the normalized voltage at each tap differs between the two sets by at most 0.1 mV, which corresponds to the least significant digit recorded in the Traveler. However, the the normalized voltage across the uninstrumented portion is 17 mV lower after keying. This corresponds to a 19 milliohm decrease in resistance.

There is no further information about the location of the short that can be obtained without disassembling the magnet. Therefore we should begin disassembly as soon as the standard post-keying inspection has been completed. To aid in the location of the short, all 4 keys should be pryed out together down the length of the magnet and the upper inner and lower inner coil resistances should be monitored as the keys are pryed out. The resistances should be recorded after every 2 feet of the keys has been removed from the key slots.

Distribution: R. Bossert, J. Carson, S. Delchamps, W. Koska, E.G. Pewitt, M. Wake, DCA320 Traveler, Discrepancy Report, D. Smith

• •.

.

-,

				Inner Co	oils	8			
				Rupper	Rlower	RI-Ru	∆(RI-Ru)		
Table I	1/31/92	P	ost Cure	1148	1137	-11	0		
14510 -	2/7/92	Pre-A	ssembly	1147	1142	- 5	6		
	2/18/92	Post-As	ssembly	1148	1139	- 9	2		
	3/10/92	Pre-(Collared	1148	1137	-11	0		
	3/12/92	Post-0	Collared	1153	1142	-11	0		
	3/17/92	Pos	st Keyed	1146	1129	-17	- 6		
	3/18/92	Pos	st Keyed	1149	1119	-30	-19		
TableI	Keying Sequence								
lade	Vert	Horiz	Rupper	Rlower	RI-Ru	∆(RI-Ru)	Δ/R		
	-1.0	-1.0	2974	2960	-14	0	0.00%		
	357.0	8.0	2972	2961	-11	3	0.10%		
	2514.0	7.0	2973	2960	-13	1	0.03%		
	4522.0	7.0	2972	2957	-15	- 1	-0.03%		
	6545.0	7.0	2971	2959	-12	2	0.07%		
	7048.0	7.0	2970	2950	20	- 6	-0.20%		
	7049.0	6.0	2969	2950	-19	- 5	-0.17%		
	7027.0	506.0	2969	2950	-19	- 5	-0.17%		
	7030.0	1016.0	2969	2950	-19	- 5	-0.17%		
	7042.0	1524.0	2969	2950	-19	- 5	-0.17%		

2952

2956

2955

2970

6.0 2969

-16

-14

-14

-2 -0.07% 0 0.00%

0 0.00%

7035.0 2032.0 2968

4078.0 1976.0

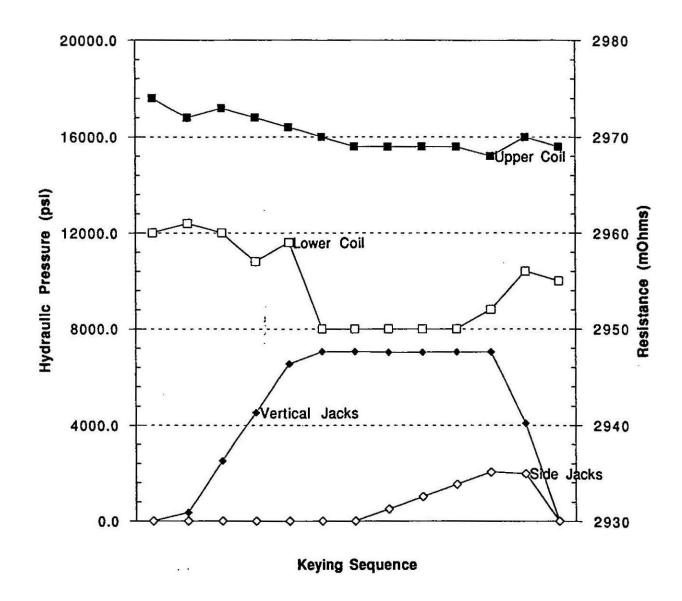
14.0

85**5**7

Table III

1022 Vtaps Keyed-Collared

. -


Coil 15M-50-1002 (DCA320 Lower Inner)

1	Cable		F	Collared	(3/12/9	2)			Keyed	(3/18/92)				Keyed -	Collared.
				Vraw	Vnorm	dVnorm	dV/dz		Vraw	Vnorm	dVnorm	dV/dz		Vnorm	dVnorm
Vtap	z (in)	dz	<z>(in)</z>	(mV)	(mV)	(mV)	$(\mu V/in)$	Vtap	(mV)	(mV)	(mV)	(µV/in)	Vtap	(mV)	(mV)
19 B	0.0			0.0	0.0			19 B	0.0	0.0			19 B	0.0	
19 A	11.5	11.5	5.8	0.5	0.5	0.5	44.9	19 A	0.5	0.5	0.5	45.1	19 A	0.0	0.0
19 C	585.3	573.8	298.4	26.1	26.1	25.6	44.6	19 C	26.6	.26.1	25.6	44.6	19 C	0.0	0.0
19 D	596.6	11.3	590.9	26.5	26.5	0.4	35.4	19 D	27.0	26.5	0.4	39.1	19 D	0.0	0.0
18 B	1171.1	574.5	883.8	52.1	52.1	25.6	44.6	18 B	53.0	52.1	25.6	44.5	18 B	0.0	-0.1
18 A	1182.4	11.3	1176.7		52.7	0.5	44.3	18 A	53.6	52.7	0.6	52.2	18 A	0.0	0.1
18 C	1757.6	575.3	1470.0	78.2	78.3	25.6	44.5	18 C	79.7	78.4	25.7	44.6	18 C	0.1	0.0
18 D	1767.4	9.8	1762.5	78.6	78.7	0.4	40.9	18 D	80.1	78.8	0.4	42.1	18 D	0.1	0.0
17 B	2343.4	576.0	2055.4	104.3	104.4	25.7	44.7	17 B	106.2	104.4	25.6	44.5	17 B	0.0	-0.1
17 A	2353.2	9.8	2348.3	104.7	104.8	0.4	40.9	17 A	106.7	104.9	0.5	50.2	17 A	0.1	0.1
17 C	2930.0	576.8	2641.6	130.4	130.5	25.7	44.6	17 C	132.7	130.5	25.6	44.3	17 C	-0.1	-0.2
17 D	2938.3	8.3	2934.1	130.7	130.8	0.3	36.2	17 D	133.1		0.4	52.1	17 D		0.1
16 B	3515.8	577.5	3227.0	156.3	156.4	25.6	44.4	16 B	159.2		25.6	44.4	16 B	0.1	0.0
16 A	3525.0	9.2	3520.4	156.8	157.0	0.5	54.4	16 A	159.7		0.5	53.4	16 A	0.0	0.0
16 C	4103.2	578.3	3814.1	182.5	182.7	25.7	44.5		185.8		25.6	44.3	16 C	0.0	-0.1
16 D	4111.8	8.6	4107.5	182.8	183.0	0.3	34.9	16 D	186.2		0.4	43.4	16 D		0.1
15 B	4690.8	579.0	4401.3	208.5	208.7	25.7	44.4	15 B	212.3		25.7	44.4	15 B	0.0	0.0
15 A	4699.4	8.6	4695.1	208.9	209.1	0.4	46.6	15 A	212.7		0.4	45.7	15 A	0.0	0.0
15 C	5276.2	576.8	4987.8	234.6	234.8	25.7	44.6	15 C	238.8		25.7	44.5	15 C	-0.1	-0.1
15 D	5289.3	13.1	5282.7	235.2	235.4	0.6	45.8	15 D	239.4		0.6	45.8	15 D	-0.1	0.0
14 B	5863.8	574.5	5576.5	260.7	260.9	25.5	44.4	100 A 100 A 100 A	265.4		25.6	44.5	14 B	0.0	0.0
14 A	5876.9	13.1	5870.3	261.3	261.6	0.6	45.8	14 A	266.0		0.6	46.5	14 A	0.0	0.0
14 C	6452.1	575.3	6164.5	286.9	287.2	25.6	44.5		292.1	287.1	25.6	44.5	14 C	-0.1	0.0
14 D	6463.7	11.6	6457.9	287.4	287.7	0.5	43.1	14 D	292.6		0.5	44.1	14 D		0.0
13 B	7039.7	576.0	6751.7	313.0	313.3	25.6	44.5	10. DOLA 10. P.10	318.6		25.6	44.4	13 B	-0.1	0.0
13 A	7051.3	11.6	7045.5	313.5	313.8	0.5	43.1	13 A	319.2		0.6	50.8	13 A	120065063	0.1
0 A	22476	15425	14764	999.7	1000.7	686.9	44.5	0 A (1000.2	983.3	669.5	43.4	0 A	-17.4	-17.4

584 Straight sect lgth 1.8 End lgth (turn 18) 3.6 End lgth (turn 15)

-Bayer

Vnorm = Vraw*313.8mV/V(13A)

DCA320 Keying

′ -...

Figurel