TS-SSC 90-028

June 1, 1990

TO: E. G. Pewitt

FROM:

G. R. Kobliska Moblishen

SUBJECT: SSC Steel Requirements

On May 9, 1990, John Zweibohmer, Eric Larson, and myself visited J & L Steel at their Midland, PA. plant. The purpose of the visit was to discuss material that they might supply for magnet collar material and the precision skin program.

The current scenario has been to have Armco Steel provide their 90,000 lb. yield strength Nitronic 40 to meet our needs, with Armco essentially being a single source. In an effort to develop a second source, we have been working with J & L Steel to provide a material with the proper strength and magnetic requirements. J & L Steel proposes to furnish some material of a grade UNS-219 (21-6-9), which is essentially a generic equivalent to a Nitronic 40. They made three heats in their laboratory, with their heat number V958 being the one that would ultimately meet our needs. Attached, you will find a detailed report which they presented to us. The only additional comment that I might make is that the other potential suppliers for SSC collar material, namely Armco and Kawasaki, have performed their own tests which have not been performed with any uniformity. It is my intention to have Anter Laboratories and the Mellon Institute perform tests for us on Armco and Kawasaki steel that we would furnish them.

With respect to precision skin (magnet outer shell) materials, J & L's proposals for increasing the yield strength were primarily centered around cold working the material. The problem with that option is that the welding which we will do, produces localized annealing which would return the yield strength back to an annealed condition. It seemed that the most viable solution was to go to a 21-6-9 grade (same as collar materials) which would yield a 60,000 PSI yield strength in the annealed condition.

It is important to note that increasing the thickness of the skins would necessitate going to a plate stock. As such, we would no longer be able to obtain the smooth finished condition for a bearing surface that we are presently accustomed to. If we did have to go to a thicker plate and a subsequent polishing operation on the material to obtain a bearing quality surface, we would lose a lot of control on material thickness, which would effect our accuracy in roll forming. And while we are on the subject of roll forming, I must caution you that significant increases in yield strength, will have significant effects in roll forming. Such effects could well be significant enough to cause the roll forming tooling to be redesigned, or inhibit the process. Careful thought must be given as to exactly what material strength is needed.

If you have any questions or need additional information, please feel free to contact me.

attachments

.

x

- c: R. Bossert
 - J. Carson
 - E. Larson
 - P. Mantsch
 - T. Nicol
 - J.Strait
 - J. Zweibohmer

1 22

.....

			Ϋ́.	MAG	GNET OUT	ER SHELL M	ATERIALS				ž	inch
A. AVER	AGE CHEM	ISTRY		halp	6	0					isene	into 7
Grade	<u>C</u>	Mn	<u>P</u>	<u>s</u>	<u>Si</u>	Cr	Ni	Mo	Cu	<u>Co</u>	N ₂	
304	.058	1.69	.029	.011	. 57	18.23	8.10	.24	.28	.10	.059	
304LN	.022	1.63	.030	.016	.56	18.37	8.57	.26	.29	.11	.126	
316LN	.027	1.68	.029	.018	.56	17.42	10.27	2.43	.34	.12	.114	
201LTM	.026	6.24	.033	.011	. 52	16.36	5.09	.20	.50	.05	.15	:

.

1

B. AVERAGE MECHANICAL PROPERTIES

Material	Finish	Hardness	psi	Tensile Strength psi	Elongation %			0 (
T304, .185" (~ 7 coils)	2B	88 Rb	49,600 45,	18-52 91,700	55	rd	form	shall nevers yield by SKPS ,
T304 T304	1/8 HD 1/4 HD	25 RC 28 RC	87,500 97,500	114,000 124,500	34 26	ji.) /
T304LN	2B	90 RB	50,000	92,000	52			
T316LN	2B	90 Rb	50,000	92,000	50			
T201LTM T201LTM	2B 3/8 HD	93 Rb 28 RC	53,000 96,000	101,500 124,000	50 30			

2684L

21-6-9 is a good option GOKPSI yild

May 8, 1990

21-6-9 DEVELOPMENT

- 1. Compositions
- 2. Delta Ferrite in Austenite Structure
- 3. Mechanical Property Data - annealed and cold reduced conditions
- 4. Magnetic Permeability Data at 4.2 Kelvin
 vibrating sample magnetometer, 1000 Oe

ione usul was 5000 de

5. Thermal Contraction Data

SUMMARY:

- 1. Material composition and processing need to be controlled - avoid delta ferrite in final materials
 - cold reduce to provide 90 ksi min yield strength
- 2. Very low (1.0040 to 1.0065) magnetic permeability values at 4.2 Kelvin are possible
 - literature data report 1.0012 to 1.005 for Nitronic 40 and Kawasaki KHMN30L at 4.2 Kelvin. These are about the same considering the technique used and variability or lower due to different techniques and especially low strength magnetic field

J&L Specialty Products Corporation

54			CHE	MICAL AN	alyses of		<u>BLE I</u> RCIAL AND	LAB 21-(6-9 MATI	ERIALS		socie	Propriet
	<u>Material</u> Armco 21-6-9 Heat 980043	.0 <u>3</u> 3	<u>Mn</u> 9.30	P .030	.002	<u>Si</u> .54	<u>Cr</u> 19.90	<u>Ni</u> 7.03	<u>Mo</u> .30	. <u>Cu</u> .41	<u>Co</u> .16	₹ 278	Delong * <u> Ferrite</u> - 9.4
. . .	Armco 21-6-9 Heat 677093	.035	9.20	.024	.004	.62	19.93	7.00	.19	.28	.12	.288	- 9.9
	Lab 21-6-9 Heat V956	.029	9.46	.023	.006	.58	19.92	7.42	.26	.30	.17	.199	- 4.6
) Lab 21-6-9 Heat V957	.033	9.47	.025	.008	.58	20.76	7.10	.26	.30	.17	. 220	- 3.0
, (Lab 21-6-9 Heat V958	.038	9.46	.024	.006	. 59	19.70	7.14	.27	. 30	.17	.307	-12.7

....

*or "austenite stability" factor

2544L

TABLE II

*:

.

.

٠

, 1 – s 1

DELTA FERRITE

			igne Gage		Metallographic
Heat	<u>Material</u>	<u>Condition</u>	Ferrite	Ferrite	Ferrite
V 956	Lab Ingot	As-cast	5.0	- 4.6	Yes
V957	Lab Ingot	As-cast	6.5	- 3.0	Yes
V958	Lab Ingot	As-cast	1.5	-12.7	No
677093	Armco strip .064"	2400 ⁰ F-3 hrs. water quenched	1.0	- 9.9	Trace at mid- thickness
980043	Armco strip .037"	2400 ^o F-3 hrs. water quenched	1.0	- 9.4	None
6 77093	Armco strip .064"	Final gauge, cold rolled & annealed materials	None		None
980043	Armco Strip .037"	Final gauge, cold rolled & annealed materials	None		None
V956	Lab heat, Strip .065"	Final gauge, cold rolled & annealed materials	∠11		Yes (trace)
V 957	Lab heat, Strip .065"	Final gauge, cold rolled & annealed materials	None*	÷	Yes (trace)
V958	Lab heat, Strip .065"	Final gauge, cold rolled & annealed materials	None		None

* Not sensitive enough.

.

TABLE III

•

•

.

MECHANICAL PROPERTY DATA FOR COMMERCIAL AND LAB 21-6-9 MATERIALS

Sample	<u>Material</u>	Condition	Gage (in)	Haı <u>R30T</u>	rdness <u>Rb</u>	Rc	Yield Strength (psi)	Tensile Strength (psi)	Elongation (%)
A	Armco Ht. 980043	As annealed	.035	72			68,800	116,570	42
1	Armco Ht. 677093	As annealed	.0642		98		62,330	107,860	43
2	Armco Ht. 677093	1.4% cold reduction	.0633		100	22	76,400	113,300	38
3	Armco Ht. 677093	6.2% cold reduction	.0602			25	88,500	121,200	33
5	Armco Ht. 677093	8.6% cold reduction	.0587			27	98,600	125,600	30
4	Armco Ht. 677093	9.0% cold reduction	.0584			28	103,400	126,900	30
6	Armco Ht. 677093	11.3% cold reduction	.0569			29	114,000	131,930	27
7	Armco Ht. 677093	16.2% cold reduction	.0538			32	130,100	146,800	21
8	Lab Ht. V956	As annealed	.0681		95		46,410	90,480	45
9	Lab Ht. V956	6.2% cold reduction	.0639		96		64,530	98,500	47
10	Lab Ht. V956	10.9% cold reduction	.0607		100	19	87,680	100,300	37
11	Lab Ht. V956	14.1% cold reduction	.0585			21	91,470	111,950	32
12	Lab Ht. V956	22.5% cold reduction	.0528			30	115,810	129,760	19

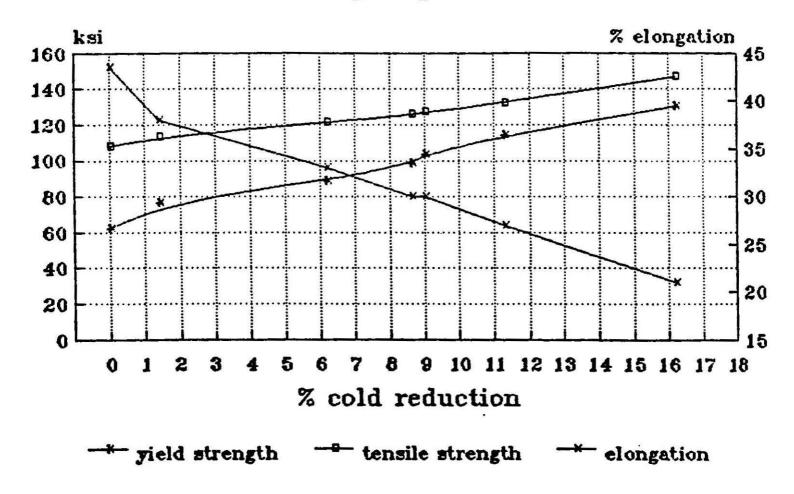
Continued.....

.

1544L

TABLE III (continued)

MECHANICAL PROPERTY DATA FOR COMMERCIAL AND LAB 21-6-9 MATERIALS

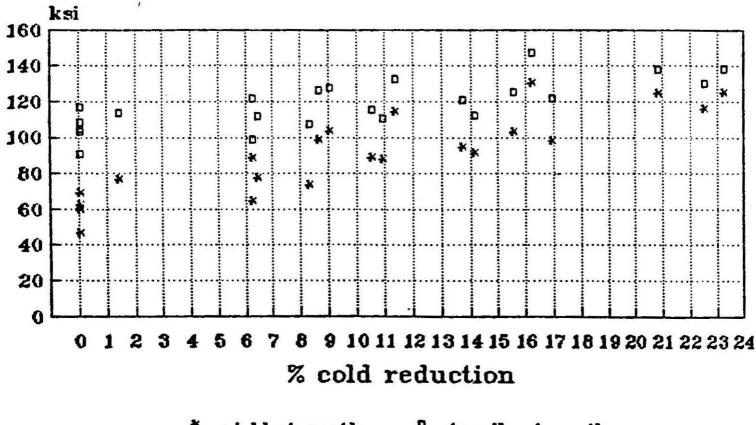

<u>Sample</u>	<u>Material</u>	Condition	Gage (in)	Hardness R30T Rb Rc	Yield Strength (psi)	Tensile Strength (psi)	Elongation (१)
13 L	ah Ht. ¥957	As annealed	.0689	98	59,570	102,950	44
14 L	ab ht. V957	8.3% cold reduction	.0632	98	73,160	106,870	41
15 L	ab Ht. V957	10.5% cold reduction	.0617	23	88,410	114,960	37
16 L	ab Ht. V957	15.5% cold reduction	.0582	27	103,100	124,960	25
17 L	ab Ht. V957	23.2% cold reduction	.0529	30	124,700	137,870	21
18 L	ab Ht. V958	As annealed	.0692	99 19	60,250	104,060	45
19 L	ab Ht. V958	6.41 cold reduction	.0648	21	77,180	111,310	45
20 L	ab Ht. V958	13.7% cold reduction	.0597	24	94,550	120,280	33
21 L	ab Ht. V958	16.9% cold reduction	.0575	26	97,900	121,280	32
22 L	ab Ht. V958	20.8% cold reduction	.0548	. 31	124,400	137,640	24

.

2544L

FIGURE 1

effect of cold reduction on mechanical properties of 21-6-9

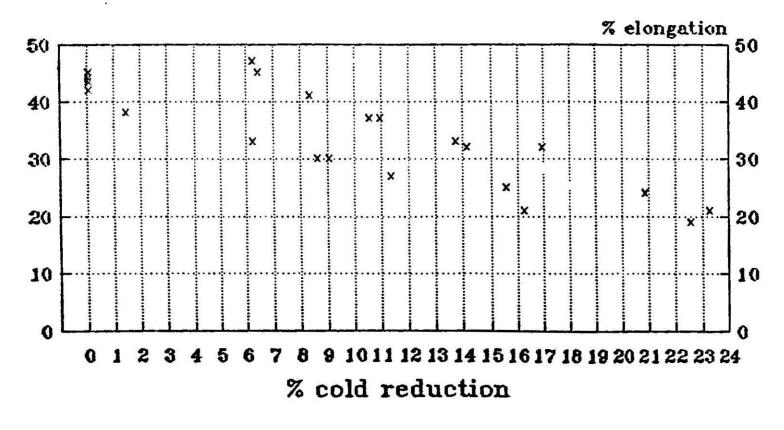


commercial armco material

• •

FIGURE 2

effect of cold reduction on mechanical properties of 21-6-9



' yield strength ^D tensile strength

ommercial and lab materials

FIGURE 3

effect of cold reduction on mechanical properties of 21-6-9

* elongation

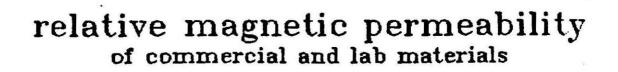
commercial and lab materials

TABLE IV

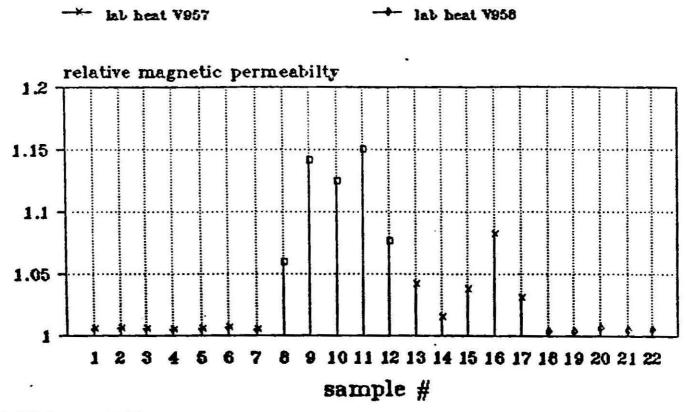
MAGNETIC PERMEABILITY

, •

.


DATA AT 4.2° KELVIN

		10.00
	10	-
311.1	le	11


22 we berte we

	N			• • •		
nple	#	ىر	H(kOe)	M(emu/cc)	M(emu)	weight(gm)
	1 2	1.0055	0.9287	C.4031	0.0048	0.0932
	2	1.0060	1.0533	0.5009	0.0057	0.0899
	3	1.0056	0.8907	0.3952	0.0044	0.0874
	4	1.0051	0.8880	0.3598	0.0043	0.0941
	5	1.0056	1.0218	0.4520	0.0046	0.0833
	3 4 5 6 7	1.0065	0.8757	0.4550	0.0046	0.0787
	7	1.0051	1.2913	0.5255	0.0049	0.0734
	8	1.0596	1.1299	5.3617	0.0656	0.0958
	8 9	1.1412	0.8240	9.2596	0.1038	0.0877
1	0	1.1245	0.9841	9.7473	0.0976	0.0784
1	1	1.1501	0.9179	10.9654	0.1174	0.0839
2	2 .	1.0762	1.0875	6.5995	0.0661	0.0784
1	.3	1.0423	1.0150	3.4147	0.0462	0.1060
1	4	1.0151	1.2238	1.4689	0.0147	0.0782
1	.5	1.0382	1.1412	3.4657	0.2357	0.0807
1	.6	1.0220	1.1619	7.5808	0.0825	0.0852
1	7	1.0313	1.0158	2.5280	0.0242	0.0751
1	.8	1.0040	1.1383	0.3629	0.0046	0.0994
1	.9	1.0040	1.3128	0.4214	0.0048	0.0890
	:0	1.0064	0.7191	0.3668	0.0041	C.0884
	1	1.0049	1.2251	0.4742	0.0050	0.0819
	2	1.0054	1.0108	0.4317	0.0048	0.0859

•

lab heat V956

armco material

• •

FIGURE 4

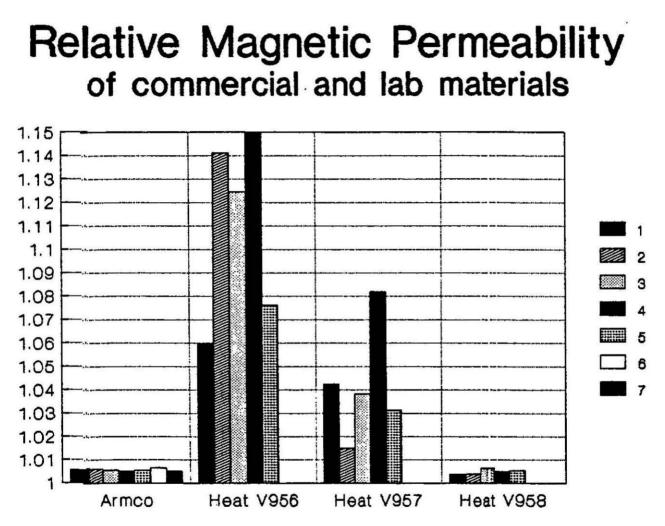
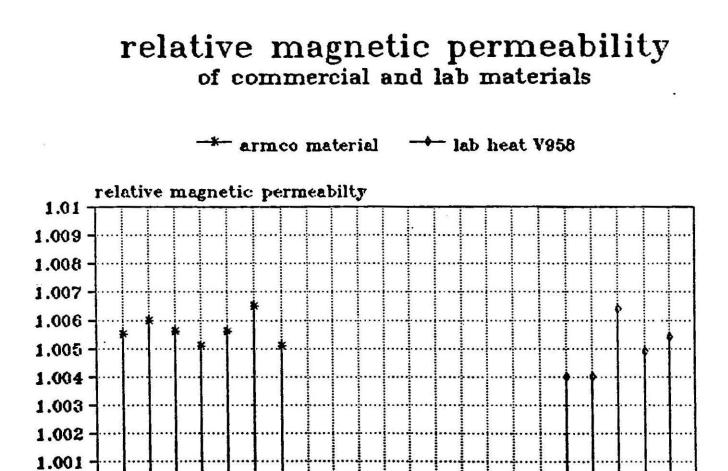



Figure 4

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 .

;

.

sample #

FIGURE 5

.

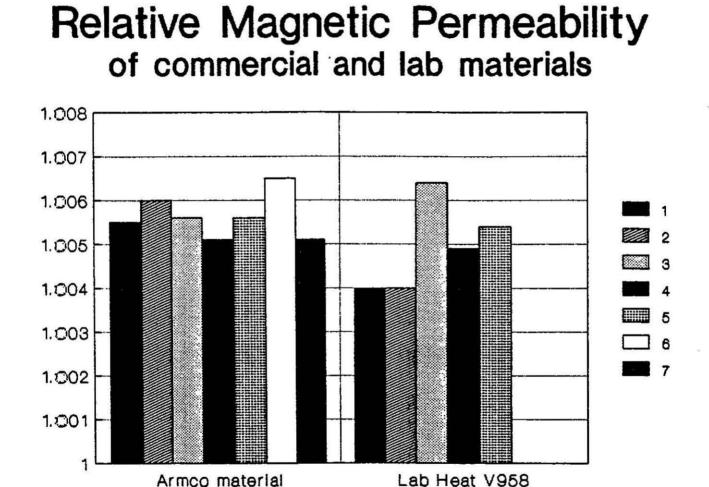
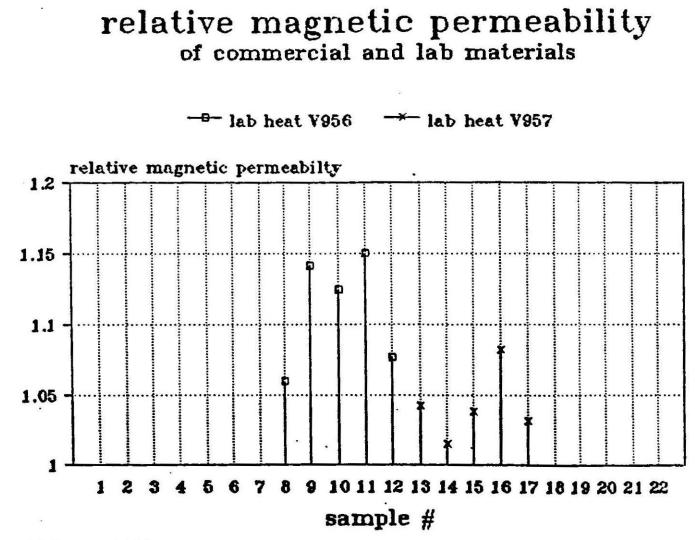
· · · .

1

at 4.2 degrees Kelvin

1 2 3 4

5 6

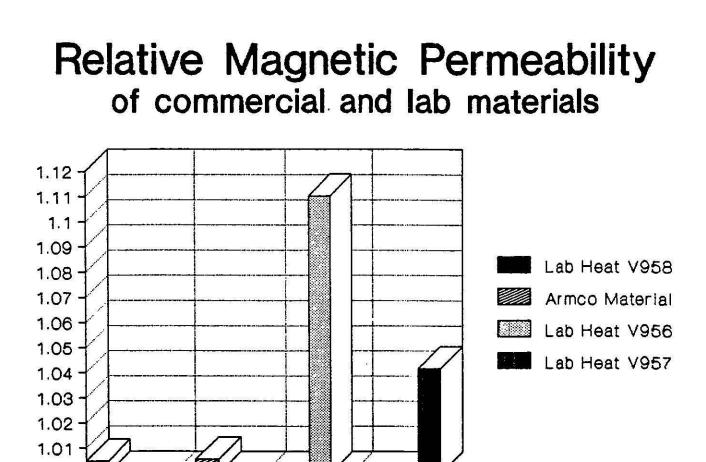


Figure 5

at 4.2 degrees Kelvin

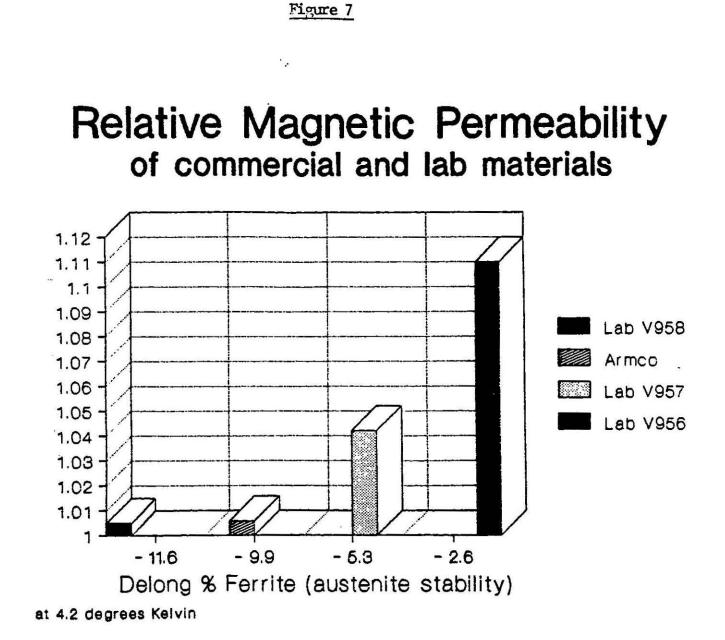
FIGURE 6

at 4.2 degrees Kelvin

- 12.7

1

based on original lab heat analysis


- 9.9

- 4.6

Delong % Ferrite (austenite stability)

- 3.0

Figure 7

based on product check analysis at hot band and final gauge

21-6-9

· .

.

COEFFICIENT OF THERMAL CONTRACTION

	SAMPLE	Average CTE (in/in/°C x 10 ⁻⁶)	Average CTE (in/in/ ⁰ F x 10 ⁻⁶)
1.	Heat V958, hot band annealed & pickled, .131"	15.3	8.5
2.	Above + 11.5% cold reduced, .116"	15.3	8.5
3.	Heat V958, cold reduced 13.5%, .0575"	15.0	8.3
4.	Armco, annealed & pickled, .0645"	15.3	8.5
5.	Above + 7.8% cold reduced, .059"	15.6	8.7

.

-

.

From 20°C to -150°C

ANTER LABORATORIES, INC. 1700 UNIVERSAL ROAD

PITTSBURGH, PA. 15235 USA May 8, 1990

JAL SPECIALTY PRODUCTS CORPORATION 12th Street and Midland Avenue Midland, PA 15059

ATTN: Mr. Jay M. Mehta, Senior Product Metallurgist

RE: PO# 342113 Coefficient of Thermal Expansion Testing

Thermal Expansion testing of your samples is complete. Each sample has been tested for the Average CTE (Coefficient of Thermal Expansion) from 20 C to -150 C as per your request. Calculations are based on a reference temperature of 20 C.

SAMPLE CODE	Average CTE (in/in/C x 10)	Average CTE (in/in/F x 10-*)
1	15.3	8.5
2	15.3	8.5
3	15.0	8.3
4	15.3	8.5
5	15.6	8.7

Accuracy: ±0.3 in/in/C x 10.4. <u>+0.2 in/in/F x 10-•</u> Resolution: ±0.2 in/in/C x 10-4. <u>+0.1 in/in/F x 10.</u>

All measurements are traceable to NIST (National Institute of Standards and Technology) Fused Silica References.

Graphical results will be forwarded as soon as available.

Please call if you have any further questions.

Sincerely,

Mahal. Cin

Mark A. Cirucci Supervisor, Testing Services

9

4

MAC/alp

MELLON INSTITUTE

•

. -

. •

14

MATERIALS CHARACTERIZATION CENTER

Report on

MAGNETIC PERMEABILITY OF TWENTY TWO (22) STEEL SAMPLES AT 4.2"K

Submitted to

J. Mehta J&L Specialty Metals 12th & Midland Avenue Midland, PA 15059

SUMMARY

Twelve (12) samples are magnetically pure, one (1) is slightly impure, and the remaining eight (8) are magnetically impure.

JOB NO 9002034

.

March 2, 1990

Prepared by:

S. G. Sankar

Job No. 9002034

Objective: Determine the magnetic permeability of twenty two steel samples at 4.2 K.

<u>Samples</u>: The 22 samples supplied by the customer were coded as follows:

1 through 7 : Competitive 8 through 12 : Lab Heat V956 13 through 17: Lab Heat V957 18 through 22: Lab Heat V958 Please see the attached sheet for more details.

A small portion (about 100 mg) of the sample was cut with a diamond blade far away from the sheared edges. The samples thus cut were cleaned in an ultrasonic cleaner to remove any impurity.

Test Procedure:

• • • • • •

As per the instructions of J and L, Mr. Greg Kobliska at the Fermi Lab was contacted. Upon his instructions, Dr. Ghosh at the Brookhaven National Laboratory was contacted. It was agreed by Dr. Ghosh that magnetic permeability measurements may be made with a vibrating sample magnetometer in an external magnetic field of approximately 1000 Oesterds.

The sample was loaded into a vibrating sample magnetometer. It was cooled with liquid helium. The sample temperature was maintained at 4.2 K throughout the measurements. An external magnetic field of approximately 5000 Oe. was applied in the superconducting magnet. Magnetization was measured as the field was lowered to zero field using an automated data acquisition system. The magnetic permeability was determined from these results at an external field of approximately 1000 Oe. This procedure was repeated for all samples.

In the calculations, a density of 7.83 g/cc was used for all of the samples, as per J and L's instructions.

Magnetic permeabilty was calculated using the formula:

 $\mu = 1 + (4 \pi H/H)$

where H is the external field and H is the measured magnetization per cubic centimeter.

Job No. 9002034

. . .

Results:

The results are presented in the table and figure enclosed. The table identifies the weight of the sample (Column 6), measured magnetiztion in emu (Column 5), magnetization per cc (Column 4) and the value of the external field (Column 3). The calculated permeability is given in Column 2 for the 22 samples.

Discussion:

Samples 1 through 7 and 18 through 22 exhibit a permeability of nearly 1.005 at 4.2 K. Sample 14 shows a permeability of 1.015, indicating the presence of a trace magnetic impurity. The remaining samples have large amounts of a magnetic impurity.

mple =	ц	H(kOe)	M(emu/cc)	M(emu)	weight(gm)
1	1.0055	0.9287	0.4031	0.0048	0.0932
2	1.0060	1.0533	0.5009	0.0057	0.0899
3	1.0056	0.8907	0.3952	0.0044	0.0874
4	1.0051	0.8880	0.3598	0.0043	0.0941
5	1.0056	1.0218	0.4520	0.0048	0.0833
6	1.0065	0.2757	0.4550	0.0046	0.0787
1 2 3 4 5 6 7 8 9	1.0051	1.2913	0.5265	0.0049	0.0734
8	1.0596	1.1299	5.3617	0.0656	0.0958
	1.1412	0.8240	9.2596	0.1038	0.0877
10	1.1245	0.9841	9.7473	0.0976	0.0784
11	1.1501	0.9179	10.9654	0.1174	0.0839
12 .	1.0762	1.0875	6.5995	0.0661	0.0784
13	1.0423	1.0150	3.4147	0.0462	0.1060
14	1.0151	1.2238	1.4689	0.0147	0.0782
15	1.0382	1.1412	3.4667	0.0357	0.0807
16	1.0820	1.1619	7.5808	0.0825	0.0852
17	1.0313	1.0158	2.5280	0.0242	0.0751
18	1.0040	1.1383	0.3629	0.0046	0.0994
19	1.0040	1.3128	0.4224	0.0048	0.0890
20	1.0064	0.7191	0.3668	0.0041	C.0884
21	1.0049	1.2251	0.4742	0.0050	0.0819
22	1.0054	1.0108	0.4357	0.0048	0.0859

.

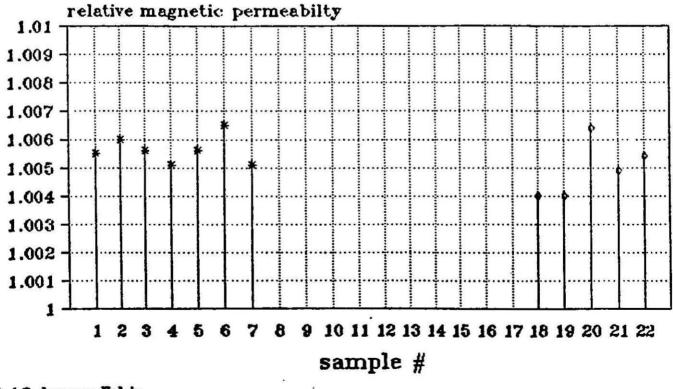
•

*

.

•

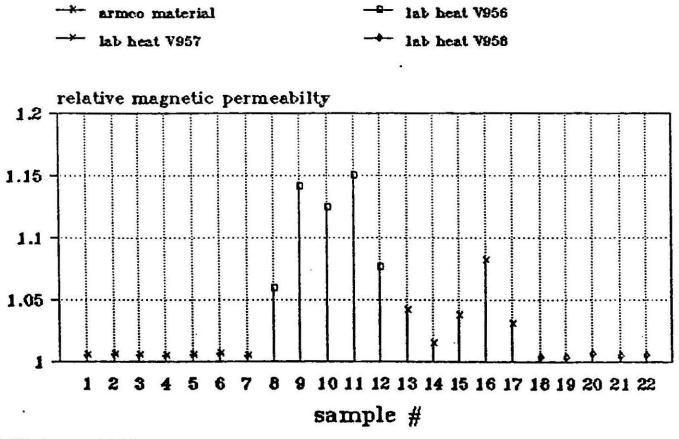
.


823

· · ·

relative magnetic permeability of commercial and lab materials

* armco material


--- lab heat V958

relative magnetic permeability of commercial and lab materials

., ...

at 4.2 degrees Kelvin