
SSCL-SR-1182
N

~ Superconducting Super Collider Laboratory
I

~
(J'J

I
....J
U
(J'J
(J'J

......

Physics Detector Simulation Facility
System Software Description

J. Allen, C. Chang, P. Estep, J. Huang, J. Liu,
M. Marquez, S. Mestad, J. Pan, and B. Traversat

December 1991

Physics Detector Simulation Facility
System Software Description

J. Allen, C. Chang, P. Estep, J. Huang, J. Liu, M. Marquez,
S. Mestad, J. Pan, and B. Traversat

Physics Research Division
Superconducting Super Collider Laboratoryt

2550 Beckleymeade Avenue
Dallas, TX 75237

December 1991

SSCL-SR-1182

t Operated by the Universities Research Association, Inc., for the U.S. Department of Energy under Contract
No. DE-AC35-89ER40486.

CONTENTS

FIGURES .. v
1.0 INTRODUCfION ... 1

1.1 Computing Strategy .. 1
1.2 PDSF Design Concept. ... 1
1.3 Functional Model ... 2
1.4 System Software ... 2

2.0 WORKSTATION ALLOCATION SYSTEM (WASH) ... 4
2.1 Requirements .. 4
2.2 Design Goals .. 5
2.3 Implementation ... 5

2.3.1 WASH Reconfigurability ... 6
2.3.2 Workstation Selection .. 6
2.3.3 Violation Detection and Reporting .. 6
2.3.4 Reason for Single Point of Entry .. 6

2.4 Conclusions .. 6

3.0 CONSOLE CONCENTRATOR (Conch) ... 6
3.1 Requirements .. 7
3.2 Design Goals .. 7

3.2.1 Accessibility ... 7
3.2.2 Monitoring .. 8
3.2.3 Conformance to Standards ... 8

3.3 Implementation ... 8
3.3.1 Server Process .. 8
3.3.2 Client .. 8

3.4 Client-Server Interface ... 9
3.5 Combining Conch with X Windows: the Operator Interface 9
3.6 Conclusions .. 9

4.0 PDSF SYSTEM DATABASE AND THE POLLING SySTEM 9
4.1 Requirements .. 9
4.2 Design Goal .. 10

4.2.1 Expandability of Database Services ... 10
4.2.2 Flexibility of Data Collection ... 10
4.2.3 Simplicity of System Administration ... 11

iii

4.3 Implementation ... 11
4.3.1 The System Database ... 11
4.3.2 Relation of the PDSF Subsystems to the Systems Database 12
4.3.3 The SQL Executor Servers ... 12

4.4 SYSPOLL, the Polling Subsystem ... 12
4.5 SYSMAP, System Mapping Utility ... 13
4.6 Conclusions .. 14

5.0 DATA MANAGEMENT SYSTEM (OMS) ... 14
5.1 Design Goals .. 14
5.2 Implementation ... 14

5.2.1 Buy vs. Build .. 14
5.2.2 Implementation Overview .. 15
5.2.3 Use of Databases .. 16
5.2.4 Communication .. 16
5.2.5 Scheduling .. 16

5.3 Conclusions .. 16

6.0 ROBOTAPE .. 17
6.1 Overview .. 17
6.2 Implementation ... 17
6.3 Conclusions .. 17

7.0 TIlE MESSAGE SySTEM .. 17
7.1 Overview .. 17
7.2 Implementation ... 17
7.3 Conclusions .. 18

8.0 TIlE NETWORK QUEUING SYSTEM (NQS) .. 18
8.1 Overview .. 18
8.2 Implementation ... 18
8.3 Future Changes ... 18

9.0 CONCLUSIONS ... 18
REFERENCES .. 19

iv

FIGURES

1. Physics Detector Simulation Facility Network ... 3
2. PDSF System Software Organization ... 4
3. Workstation Allocation System (WASH) ... 5
4. Conch .. 7
5. System Database ... 10
6. Data Management System ... 15

v

1.0 INTRODUCTION
The Superconducting Super Collider Laboratory (SSCL) has been established to design, build,

maintain, and operate the SSC-a high-energy, subatomic particle accelerator that will be used in basic
research to learn more about the fundamental nature of matter and energy. When completed in 1999, the
SSC will be the most powerful sub-atomic particle accelerator in the world. It will propel two beams of
protons in opposite directions at velocities near the speed of light before colliding them in huge detector
halls. There the debris from these collisions will be recorded so that scientists may study the results to
learn more about fundamental particles and the forces of the universe. The energy of the proton collisions
will be so great that it will recreate conditions that may have prevailed near the very moment of the
creation of the universe-the moment of the "Big Bang."

Large and costly detectors will be constructed during the next few years to study the interactions
produced by the SSC. Efficient, cost-effective designs for these detectors will require careful thought and
planning. Because it is not possible to test fully a proposed design in a scaled-down version, the adequacy
of a proposed design will be determined by a detailed computer model of the detectors. Physics and
detector simulations will be performed on the computer model using a high-powered computing system at
the Physics Detector Simulation Facility (PDSF).

The SSCL has particular computing requirements for high-energy physics (HEP) Monte Carlo
calculations for the simulation of SSCL physics and detectors. The numerical calculations to be
performed in each simulation are lengthy and detailed; they could require many months per run on a V AX
lIngO computer and may produce several gigabytes of data per run. Consequently, a distributed
computing environment of several networked high-speed computing engines is envisioned to meet these
needs. These networked computers will form the basis of a centralized facility for SSCL physics and
detector simulation work. Our computer planning groups have determined that the most efficient, cost-
effective way to provide these high-performance computing resources at this time is with RISC-based
UNIX workstations.

The modeling and simulation application software that will run on the computing system is usually
written by physicists in FORTRAN language and may need thousands of hours of supercomputing time.
The system software is the "glue" which integrates the distributed workstations and allows them to be
managed as a single entity. This software is written by the Systems Development Group of the Physics
Research Division.

1.1 Computing Strategy
The SSCL has adopted a computing strategy that is intended to provide the greatest amount of low-cost

computing power for as many users as possible. By acquiring open systems and conforming to industry
standards, the SSCL has been successful in acquiring and integrating heterogeneous networks of
commercially available computers. Thus far, this strategy has worked well for several reasons. First, we
have been able to ride the crest of the RISC/UNIX wave by being able to select the best price/
performance offers available. We are not "locked into" a single vendor-proprietor solution. Second, multi-
vendor computing environments enhance competition. The SSCL, as well as other government and
private institutions, has benefited from the dramatic reduction in the cost of RISC power brought on, in
part, by competition in the market. As a result, we are able to integrate multi-vendor solutions by
requiring industry-standard interfaces, communication, format, and protocol, and the commonality of
UNIX.

1.2 PDSF Design Concept
The type of computing done at the PDSF varies at each stage of the project. Because of the workload

requirements in compute power and data I/O, the design must provide flexibility of resources. In
particular, the computing facility must provide computing resources for on-line, off-line, and modeling

and simulation needs for HEP. At this time, our immediate focus is on providing the simulation resources
necessary to design the SSC detectors.

In the same way that a large supercomputer consists of multiple functional units, the PDSF is also
subdivided by function. A key element in the design of a distributed computing environment for the
PDSF has been the separation and distribution of the major functions. The facility has been designed to
separate batch processing from interactive processing, as well as to separate the file and tape storage
functions. By distributing these functions, it is often possible to provide higher throughput and resource
availability. Similarly, the design is intended to exploit coarse-grained (event-level) parallelism in a
distributed environment.

1.3 Functional Model
The facility operational requirements were broken down into three major functional subsystems:

• a networked front-end for interactive usage,
• a fIle server, and
• a "ranch" of parallel, batch-processing, computing servers.

Each of the distributed subsystems is networked by a high-speed fiber, distributed-data, interconnect
(FDDI) network.

It is intended that interactive and batch processes not be commingled (Figure 1). One of the goals of
the PDSF is that the front-end/file server systems be able to access-independent of the batch
processors-both disk and tape resources containing batch job output. Access to disk by multi-ported
drives and tape by multi-headed robot-based systems has accomplished this goal, and is, therefore,
reflected in the system design.

1.4 System Software
The system software provides the support for the various functions of the PDSF. It is the foundation

upon which the interactive processing and batch processing are built. In addition, it is responsible for
managing the resources of the PDSF. This management function is based on infonnation which is global
to the PDSF.

Figure 2 shows the system software, which consists of several subsystems. The subsystems are the
workstation allocation system, the console concentrator, the batch system, the distributed processing, the
database, the message system, the data management system, the polling system, and the system map.
Each subsystem satisfies one of the design requirements of the PDSF.

For this reason the batch system is implemented using NQS from COSMIC, the database is based on
Sybase from Sybase, Inc., and the distributed computing software is Cooperative Processes Software
(CPS) from Fennilab. A goal of the project is to use commercially available software where possible. The
subsystems, which were created or extensively modified by the Systems Development Group, are
discussed in this paper.

The case tool "Software through Pictures" (StP) from IDE is used for software design. StP provides a
clear and systematic way to document the system requirements and design. It also assists us greatly in
dealing with the interaction among various components of the system.

2

SPARe .1It1an2 SPARe IllIon2 SPARe ._2 SPARe IIItIan2 SPARe _",,2
dbO wsO ws1 ws2 ws3 ws4

FDDI WAN

Figure 1. Physics Detector Simulation Facility Network.
TIP-02356

\
ph Jeq uest

workstation

TIP-02357
Figure 2. PDSF System Software Organization.

2.0 WORKSTATION ALLOCATION SYSTEM (WASH)
The PDSF system is comprised of three major subsystems: a networked front-end for interactive usage,

a ranch of parallel batch-processing compute servers, and the file servers. The function of the front-ends
is to provide the user with a dedicated resource in order to give instantaneous (or near instantaneous)
response to facilitate interactive use.

Unfortunately, there is only a finite number of front-end workstations. Furthermore, there are more
users than workstations. Therefore, each user cannot have a completely dedicated resource. The goal of
the Workstation Allocation System (WASH) is to intelligently choose a workstation for each login
request in order to provide the best possible interactive environment to each user.

2.1 Requirements
WASH cannot require any software to be exported to the user's remote machine. The user must be able

to access PDSF via standard login commands commonly found on UNIX computers: telnet, rlogin, and
dlogin.

4

2.2 Design Goals

WASH was designed to meet four goals:
• Reconfigurability. WASH must accommodate configuration changes. Occasionally,

selected worKstations are taken off-line, and conversely, new worKstations are added for
use. The impact on WASH must be minimized.

• Limits Support. WASH must support a variety of limits, such as the number of
concurrent PDSF logins per user, the number of concurrent PDSF logins per group, and
the maximum number of users per workstation.

• Violation Detection and Reporting. WASH must detect violations of the login
procedure to PDSF (a user gaining access to PDSF without using WASH). These
violations are reported to systems personnel for appropriate action.

• Special Support for Systems Personnel. WASH must allow systems personnel to gain
access to the PDSF without enforcing the normal limits or violation-reporting
procedures.

2.3 Implementation
The implementation of WASH is fairly simple. Users gain access to the PDSF via rlogin, telnet, or

dlogin to a host named "PDSF." The local password file on host PDSF has the W ASH process as each
user's login shell. This provides a simple means to invoke WASH for each user.

The WASH process, in tum, queries the database to determine the best machine for assignment. The
database contains information concerning number of users on each worKstation and system load per box
obtained from the polling daemons (see Section 4.) The database also contains all limit information (see
Section 4.2), which is to be applied to the selection process. After the best machine is chosen, WASH
performs an rlogin to that machine. At this point, the user's login shell is determined by the Yellow
Page (YP) password file (Figure 3).

I
ph_response

t---- invoke ---__ I

TIP-02358

Figure 3. Workstation Allocation System (WASH).

5

2.3.1 WASH Reconfigurability
Because changes in the configuration of the PDSF are not uncommon, WASH was designed to

facilitate such changes. In the event that an interactive workstation requires maintenance or is being
reassigned a different function, a simple change to the database prevents WASH from choosing that
workstation for any subsequent logins. Conversely, workstations can be added to the PDSF through a
simple database change that places them in the WASH pool of available workstations.

2.3.2 Workstation Selection
Following is a summary of the heuristics used by WASH to select a workstation for assignment:
• Choose the machine with the lightest load.
• If a tie exists, choose the machine with the fewest number of users.

The initial heuristics were acUJally reversed from this (choose fewest users; if tie, choose lightest load).
This choice was due to the initial design, which called for only interactive use of the front-end
workstations. However, as the PDSF evolved, the front-end workstations began to be used for some
batch-processing as well. Thus, a workstation might have no users, but could be heavily loaded with batch
jobs. This resulted in the aforementioned change in heuristics.

2.3.3 Violation Detection and Reporting
A daemon runs on the PDSF host to detect and report any violations of the WASH system. If any user

(other than users designated as systems personnel) gains access to the PDSF by any means other than
WASH, that user is detected and a report is generated listing the offender. This report is reviewed by the
Operations Group, and appropriate action is taken.

2.3.4 Reason for Single Point of Entry
Since the user issues a login request directly to the PDSF host, a communication channel is set up

between the user's workstation and the PDSF host. It would be non-trivial to redirect subsequent
communications directly to the WASH-chosen workstation. This fact, coupled with the requirement not to
export any software for the user, mandates a single point of entry for WASH.

There are some problems associated with this approach. The PDSF host constitutes a single point of
failure for the PDSF, and the number of processes on the PDSF host is necessarily quite large as a
function of the number of interactive PDSF users. On the positive side, the approach is very simplistic in
nature, providing a very effective implementation.

2.4 Conclusions
The WASH process has been quite successful from the outset, fulfilling all design goals in the initial

release. Only minor changes related to changes in the PDSF operational model have been implemented.
WASH will continue to evolve as the PDSF changes through future configurations.

3.0 CONSOLE CONCENTRATOR (Conch)
Workstations are characterized by bitmapped displays that are controlled by display servers. However,

to bootstrap the system-that is, to start the system for the very first time--one needs access to a control
terminal. Such a terminal is usually called the console. In a distributed environment such as PDSF, there
are many workstations, most of them headless (without monitor and keyboard). To manage such a
cOnfiguration of headless workstations, all the consoles must be directed to a single workstation with a
reasonably large bitmapped display. In this section we describe the requirements and design for one such
console concentrator named "Conch" (Figure 4).

6

TIP-02359

Figure 4. Conch.

Conch was originally written by Neal Ziring of Washington University to run on V AX computers running
4.2BSD flavor of UNIX. It was extensively modified at SSC. Most of the modifications were designed to
make the system operational on SunOS 4.1.1 and to utilize an X-Windows based front-end so that any
workstation on the networlc could be used to monitor the facility. An operative is therefore able to move
around many different locations. Conch has a client-server architecture. The server manages the
specialized hardware, client, and features such as connect, conversation, and close.

3.1 Requirements

• The server cannot depend on Ethernet, since network problems could isolate or bring
down a worlcstation. Thus an extra RS232 serial connection will be provided between
every managed worlcstation and the workstation on which Conch runs.

• The managed workstation cannot have a display or a keyboard. This is because there is
no easy way in UNIX at the present time to take console input from two sources
(keyboards).

• The system should be able to monitor worlcstations from different vendors, at least the
ones currently in the facility: SUN SPARC Station 2 .

• The software cannot take advantage of vendor-specific system monitoring facilities,
such as Syslogd.

3.2 Design Goals
3.2.1 Accessibility

• It should be possible to reboot any worlcstation selectively, enabling one to multiplex
one keyboard among all the managed workstations.

7

• The server should be able to communicate with serial ports and networlc ports so that its
services are available to a client running on another worlcstation.

• The system should be able to scale, which requires the server to know the configuration
of the networlc. It must not interfere with another server's domain.

3.2.2 Monitoring

• It should be possible to monitor the facility from any worlcstation on the networlc with a
bitmapped display (so-called Console Concentrator Host).

• All messages written to each console must be logged. This helps identify and solve
problems reported by users and by machine hardware and software.

• All the managed worlcstations should be continuously monitored.

3.2.3 Conformance to Standards

• The system will be operational under X Windows so that each managed worlcstation can
be monitored in its own window.

• The system will use the widely available 4.3BSD socket library for interprocess
communication (IPC).

3.3 Implementation
3.3.1 Server Process

The server implements the hardware-specific sections of the system and listens for a connection
request over RS232 lines. In the current implementation, select(2) system call is used to accomplish this.
The server also maintains a log file for each managed worlcstation. Any message that arrives is logged
into the log-file, enabling us to capture every character written to the console.

The server also provides a call-up service used by clients to connect to a specific managed workstation.
For example, the reboot client uses this connection to send a break character to the managed workstation,
which places it in the boot prompt. The server has one socket that can be used by clients operating on the
networlc. The server provides a configuration service akin to the turncoat. The characteristics of the
managed worlcstation's console described here include baud rate, log file name, and frequency of placing
a time stamp into the log-file.

3.3.2 Client
A client is an user's agent modeled afierTelnet. It obtains the services provided by the Conch server in

a palatable fonn and provides a tenninal session with a managed worlcstation. A client is a separate
process; several clients can run simultaneously. Using this feature we are able to monitor the facility
continuously by attaChing an interactive client program to initiate and manage console connections.

By arranging to display the message from a managed worlcstation to the tenninal as well as to the file,
we can continuously watch the facility and also maintain a log of messages.

The client nonnally perfonns the following functions:
• Remotely reboot a selected managed workstation.
• Establish a tenninal session with a selected worlcstation.
• Continuously watch for messages written to the console port.
• Monitor the health of a worlcstation and report the console's status to operator for further

action.

8

3.4 Client-Server Interface
The bsd socket library, which is a de facto communication standard, is used for inter-process

communication system calls. Server and client processes use this interface to initiate connection, to
request service, and to send and receive data among them.

3.5 Combining Conch with X Windows: the Operator Interface
We have designed an icon-based operator interface to monitor the facility. Each managed workstation

is represented as an icon on a canvas. Using a pointing device, an operator can open an icon to display the
messages originating at the console of the selected workstation.

An alert feature is also provided. When any managed workstation is isolated or down, the icon changes
color, indicating an alanned condition. Two levels of severity are currently available: red represents a
severe alarm, and yellow represents a console message. Ping is used to detennine the health of the
workstation. When there is no answer, it represents a severe fault; a delayed answer represents a yellow
alarm.

3.6 Conclusions

• The Console Concentrator program enables an operative to monitor and control a
network of headless workstations from a single location.

• By combining an X-Window-based operator interface with Conch, this single location
can be configured to be relocated geographically. Furthennore, by running the operator
interface concurrently on several workstations, a mirror effect can be created wherein
the facility is monitored from several locations.

• Without Conch, the only methods available to start up a workstation are by using power-
on reset or by connecting a VT100 tenninal/keyboard. Neither of these methods is
desirable.

• Conch has successfully monitored a network of 28 SUN workstations in the PDSF for
more than six months. Feedback from operators is encouraging.

4.0 PDSF SYSTEM DATABASE AND THE POLLING SYSTEM
The PDSF system database and the polling subsystem are responsible for providing infonnation that is

crucial for PDSF subsystems to run on the network. Major PDSF subsystems-those that take care of
network batch job queuing, workstation allocation, and data management-are integrated through the
system database (Figure 5).

4.1 Requirements
To eliminate the burden of maintaining database connectivity and portability, the use of a commercial

database with networking capability is introduced. The database package from Sybase, Inc., was chosen
for its client/server architecture, query perfonnance, and availability on major hardware platfonns. The
Sybase database resides on a designated workstation that acts as the database server. The polling software
runs on all PDSF workstations for data collection.

SYSMAP is a utility that integrates infonnation in UNIX administration files with the database. It must
run on the yP master server, which is also set up as a trusted host to all workstations on the PDSF
network.

9

4.2 Design Goal
The design goal for the PDSF system database and polling subsystem is to provide expand ability of

database services, flexibility of the data collection process, and simplicity of system administration in
relation to the database and UNIX systems.

4.2.1 Expandability of Database Services
Database services should be extendable to all existing and future workstations on the PDSF network.

SQL executor services are designed to make database queries on behalf of all workstations.

4.2.2 Flexibility of Data Collection
Data collection should be flexible and easy to maintain. Polling software promotes easy maintenance

by collecting system data from the output of UNIX commands such as ps, w, and who, and by providing
infonnation regarding running processes, system loads, login users, and fIle system consumption.

The database tables are designed to reflect most of the fields, so the work for parsing of command
output may be minimized. In the attempt to provide polling flexibility, there is a local ASCII polling
schedule associated with each polling daemon on the workstation. This schedule may be tuned for best
polling result.

pdsCdatabase

work station

TIP'()2360

Figure 5. System Database.

10

4.2.3 Simplicity of System Administration
SYSMAP, the system mapping utility, automates user/group administration procedures, which updates

UNIX user/group administration files and their associated database tables.

4.3 Implementation

4.3.1 The System Database
The system database contains infonnation that reflects system activities such as user processes, login

users, and file system consumption.
There are eight tables in the system database:

USERS
Contains user id, user name, home directory, back door privilege, and resource allotment. There is one
record for each user account.

GROUPS
Contains group id and resource allotment. There is one record for each group account.

WORKSTATION
Contains workstation id, workstation name, network site, net address, status, hardware architecture,
etc. There is one record for each workstation.

WAS
Contains time stamps for users who log in to PDSF via WASH, the legitimate path to the network.
There is one record for each user who logs in to PDSF.

LOADS
Contains system load of the workstations. System up time, number of login users, and CPU load
average in 1-15 minutes are included. There is one record for each workstation.

PS
Contains user processes running on the workstations. Process id, process name, owner name,
associated tty, status, duration, and start time are included. There is one record for each process on all
workstations.

DF
Contains disk file systems physically connected to the workstations. Disk partition, mount point,
capacity, and availability are included. There is one record for each file system on all workstations.

WHO
Contains login users on the workstations. User name, associated tty, and login time are included. There
is one record for each login user on all workstations.

Each workstation on the network has a unique workstation id assigned to it. This id number is the most
often used search key in referencing the PDSF system database.

11

4.3.2 Relation of the PDSF Subsystems to the System Database
Each subsystem of PDSF obtains a cenain kind of system infonnation from the system database. The

following list describes the association of PDSF subsystems and their related database infonnation.

WASH-WORKSTATION ALLOCATION SYSTEM
WASH obtains system load infonnation to satisfy a login request on workstation assignment. System
load also provides infonnation to balance workstation assignments.

SYSMAP-SYSTEM MAPPING UTILITY
SYSMAP makes queries for infonnation regarding running processes, login users, workstation inet
address, and file system usage.

NQS-NETWORK QUEUING SYSTEM
NQS uses woIkstation id as a unique identifier to keep track of job queues for each woIkstation.

DMS-DATA MANAGEMENT SYSTEM
DMS queries the database for the status of processes that are making direct connection with the data
management system.

A sanity check daemon may be invoked occasionally to guard security by comparing users in the WAS
table against those in the WHO table in order to identify those who gained access to the PDSF
illegitimately.

4.3.3 The SQL Executor Servers
In addition to the database server software provided by Sybase, Inc., there is a layer of client/server

structure added to the PDSF database system. This structure, called the SQL executor service, is devised
to extend database service to all workstations on the network.

There are several SQL executor daemons running on the database server machine to execute SQL
requests on behalf of clients on the network. These SQL executor daemons may be classified into two
different categories: TCP/IP-based and UDP/IP-based. Choice is made according to the client's
application.

Applications such as NQS, SYSMAP, WASH, and DMS that require reliable communication with the
database use the TCP/IP-based executor. Polling daemons that .constantly update database tables channel
through the UDP/IP executor to achieve time and network load efficiency.

This SQL executor implementation has two advantages:

• It makes system expansion cost-effective by eliminating database client licensing issues.
• It provides heterogeneous connectivity between database client and database server.

Because the SQL executor is not a replacement for a real database server, its functionality is not as
robust. However, for applications on the PDSF system, the limitation of robustness is offset by the
advantage of cost efficiency in system expansion.

4.4 SYSPOLL, the Polling Subsystem
Systems infonnation is gathered by the polling subsystem SYSPOLL and is sent to the database via an

SQL executor service. Infonnation collected by the polling daemons includes running processes, login
users, disk file system usage, and workstation workload of the network. Such infonnation coincides with
the UNIX commandps, who, df, and w, respectively.

12

A SYSPOLL daemon and a local poll schedule reside on every workstation of the PDSF network. Poll
daemons are alerted according to the schedule of poll frequency for each type of infonnation.

Under the PDSF network environment, each type of workstation serves a designated purpose. The
polling schedule is designed to be flexible so that the frequency of polling may be tailored to meet the
designation of each workstation.

There are four types of workstations in the current PDSF system setting: the dataserver, the front-end
workstation, the batch range systems, and the special-purpose servers. Their polling considerations are as
follows:

• A dataserver is much more concerned with the file system usage than with the user
processes.

• A front-end workstation's system load infonnation is essential for detennining user
login allotment.

• A batch range system emphasizes background jobs (processes) submitted by users
through NQS, the Network Queuing System.

• A console concentrator and a database server are special-purpose workstations
designated for console monitoring and database storage only. They are not so much
concerned with system infonnation.

Based on this designation of workstations, the polling schedule may be tuned to gather infonnation more
frequently about system load on front-end workstations, about file system consumption on dataservers,
and about user processes on a batch range. On the other hand, the polling schedule may be turned off on
console concentrators and database servers.

In the PDSF system database, each workstation is assigned a unique id, called wsid. Systems infor-
mation stored for each workstation is associated not with its name, but with its wsid for speed and space
efficiency.

UPD/IP protocol is chosen for communication between SYSPOLL and the SQL executor server.
Because of the polling system's constant and periodic activity, occasional lost data is not a major concern.

4.5 SYSMAP, System Mapping Utility
The SYSMAP utility takes advantage of the system database to assist system administrative personnel

in maintaining the system and monitoring its activities. The availability of system infonnation in the
database eases the monitoring task.

SYSMAP automates procedures to add/delete users and groups on the PDSF system. User and group
infonnation is obtained from the system administrator via a self-explanatory interface, then is sent to
various destinations. SYSMAP also modifies the UNIX system files, updating the system database,
pushing yP to the network, and executing script to set up the user directory along with initial user files.

SYSMAP enables users to check on processes, login users, system loads, and file system usage of all
workstations on the network. Users may also look at the picture of a particular object in a selected range
of workstations, thereby detennining which workstations a particular user has logged in. Illegitimate
background jobs running on a workstation designated for interactive use can be easily spotted by using
SYSMAP. Because data integrity and accuracy are important for SYSMAP data query, TCP/IP protocol
is chosen for communication with the SLQ executor server.

13

4.6 Conclusions
So far, all pieces of the polling subsystem work properly. However, for the sake of portability, the

network communication port may be used with a higher network platfonn such as Remote Procedure
Call (RPC) instead of using a low-level socket.

Enhancements such as an alarm system that reports and handles critical system conditions and an x-
Window based graphic user interface environment may be added later to provide ease of services to the
physicist/User community.

5.0 DATA MANAGEMENT SYSTEM (DMS)
Physics processing can be characterized by consumption and generation of large amounts of data. It is

not uncommon for one application to consume several megabytes of data and to produce a similar volume
of data. With a number of applications of this type running concurrently, it is clear that on-line disk
storage must be supplemented by off-line tape storage. For the POSF system, an 8-mm tape robot system
was initially chosen to provide tape storage because of its compactness and low cost.

The OMS software is designed to deemphasize the importance of tape access in physics processing,
enabling the user to concentrate on the data but not on the particular storage medium on which it resides.
OMS serves a two-fold purpose: to manage the means of data transfer and to provide a catalog service for
the data sets transferred between disk and tape. The strategy is to use commercial software where
available and appropriate.

5.1 Design Goals
Design of the OMS was undertaken with these goals in mind:

• Reconfigurability. OMS must accommodate changes in the tape robot and/or tape drive
configurations. Individual robots or drives may be deleted or added. Additionally, new
robots or drives may be of different types. OMS should also allow use of these different
devices.

• Fair scheduling. OMS should provide fair scheduling to all users, ensuring that one user
is not allowed exclusive use of the system at the expense of all others. Further, OMS
should ensure that all requests are eventually serviced.

• Optimal performance. This goal is somewhat in conflict with the goal of fair
scheduling.

• Guaranteed integrity of data to the maximum extent possible. This goal also poses
some conflicts, but this consideration must override all others.

5.2 Implementation
5.2.1 Buy vs. Build

Our original effort was to detennine whether any existing commercial software would satisfy the
requirements of OMS. Two candidates included in our considerations were UNITREE from General
Atomics, and Fatman from Fennilab. For a variety of reasons outside the scope of this paper, neither of
these was deemed suitable for the task at hand.

The decision was therefore made to develop the software at the SSCL. At the same time, we have
continued to monitor the market for suitable commercial software. In the event that we find a worthwhile
candidate, we will evaluate our options.

14

5.2.2 Implementation Overview
OMS is implemented as a set of daemon processes and user-callable routines from a OMS library

(Figure 6). A summary of the major components follows.
• The primary OMS daemon is the data set daemon (datasetd). It receives requests from

OMS clients and requests for work to perform from drive daemons (see below), then
essentially acts as a matchmaker between these client and drive requests.

• Each tape drive has an associated drive daemon (drived). These processes are the
workhorses of OMS. They receive low-level tape requests (Le., load a tape, unload a
tape, position a tape, read a specific file from a tape, or write a specific file to the tape).

• User applications link in a library of FORTRAN-callable routines. These routines are the
user's means of issuing requests to OMS.

• A tape robot daemon provides low-level robot functions (Le., load, unload, list of
volumes in a robot, list of volumes in a drive). These functions are used internally by
OMS and are not exported to the user.

message

dms
database

\
/

r------ robot_response ------,
,...------ robot_command -----,

drived_response

drived
command

L...-____ roboccommand -----'
L...-____ robocresponse ____ ---'

Figure 6. Data Management System.

15

message

message

5.2.3 Use of Databases
As mentioned in the introduction, one of the primary functions of OMS is to provide a catalog service

for the data sets. This requires long-tenn storage, quick infonnation retrieval, and relational infonnation
to be derived from the data. The Sybase database already chosen for the main system database (Section 4)
provides an ideal solution to this problem.

The database is used to store all static infonnation pertaining to OMS. This also facilitates recovery
from a system crash and adds to system reliability. Standard sequel queries are used to place data into and
retrieve data from the database.

5.2.4 Communication
The bsd socket library is used for inter-process communication (IPC). TCP/IP is used to guarantee

reliable delivery of infonnation between processes.

5.2.5 Scheduling
The major goals of OMS scheduling are to:

• guarantee that every request will eventually complete
• provide "fair" sharing between users
• provide optimal (or near optimal) perfonnance.
Unfortunately, these goals often conflict with one another. In particular, the latter two goals often

contradict each other. The scheduling heuristics were designed with each goal in mind. Following is a
summary of the heuristics currently in use:

• If requests are pending for a volume which is already loaded in a drive, and these
requests want either to read a file which is forward from the current tape position or to
append a fIle to the end of the volume, leave that volume in the drive and service
requests in order of request position.

• Otherwise, choose the volume for which a request has been pending for the longest time,
load that volume, and again service requests for that volume as above (lowest positioned
request for that volume to highest positioned request for that volume).

Seek time is a major consideration for 8-mm tapes. For the 8200 drives we are currently using, the seek
rate is 2.5 megabyteS/second. Therefore, to seek to the end of a tape takes approximately 20 minutes.
Clearly, from a perfonnance standpoint, once a tape is loaded and has moved forward on the tape, it is
preferable to service forward requests now rather than rewind and unload the tape, reload it later, then
reseek back past where the tape was previously positioned.

At the same time, since the tapes have a finite capacity, either the end of the tape will be reached or no
more requests will be pending for that volume. Then the user who has been waiting the longest will get
his volume leaded. This seems to be a fair compromise between perfonnance and "fair" scheduling.

5.3 Conclusions
The initial reaction from users has been positive, and we are refining the software based on some

earlier suggestions. The OMS has been operational for approximately seven months. However, since the
POSF is a new facility, the initial number of users has been relatively low. Additionally, the user
applications are still being tested and are not, therefore, producing the amount of data that will ultimately
be produced. These conditions have resulted in minimal need for off-line storage.

As the number of users increases, we expect to see continual increases in the use of OMS. In fact,
based on the projected load on the system, it is anticipated that the use of 8-mm tapes for off-line storage

16

will be abandoned in favor of more advanced technology. Since this was anticipated from the beginning
of OMS, the software was designed to easily support a change in hardware configuration.

Additional plans include adding another layer above the existing routines to provide UNIX-like access
to the data set files and adding the capability of performing traditional back-ups with the tape robots.

6.0 ROBOT APE
6.1 Overview

Robotape is a series of library routines used to control a pair of Summ us 8-mm tape robots. Rather than
include all the required code in OMS, it deals with tape volume names, drive names, and robot names,
and requests juke-box services from robotape.

6.2 Implementation
Robotape is a series of library routines, a central robotape daemon, and a daemon for each system

which has juke boxes connected for use by robotape. The library routines make calls on the robotape
daemon for service, and robotape daemon passes that request to the appropriate system for execution on
the proper juke box. Requests are handled concurrently and are executed in parallel to the greatest extent
possible without collisions.

6.3 Conclusions
The performance of 8-mm tape is not expected to meet the anticipated needs for rapid transfer of the

large amounts of data expected to be handled by OMS. Thus, we anticipate that other types of tape juke-
box systems will need to be supported, possibly in addition to the existing 8-mm systems. With the
current implementation of robotape, this modification should be relatively straightforward. The major task
will be to write a new juke-box daemon containing the device-specific instructions for the new robot. The
main robotape daemon will require few changes, all of which should be relatively minor.

7.0 mE MESSAGE SYSTEM
7.1 Overview

There was a need to easily request services, advise of problems, and send messages to the POSF
operation staff by means of various programs. The ability to receive a response from the operator would
also be useful in determining when the services had been completed.

The typical methods of solving this problem were found to be inadequate. With several operators
working on different systems in different lab areas, none of the typical solutions made it easy to obtain a
reply unless it was known in advance where the message should be sent.

7.2 Implementation
The message system consists of some daemons. a C library, and some executable commands. One

system acts as a central message facility and runs daemons to collect messages and responses. Systems to
which messages are to be delivered need to run a daemon for that task. Systems that will submit messages
may do so with the library call or with executable commands. but they need no additional daemons. None
of these routines requires special permissions such as root or remote login. but delivery of messages does
require normal file-write capability to the listed printers or terminals.

A configuration file on the central message system lists the desired destinations of operator messages.
Messages can be written to printers or users. or mailed to mailboxes; the message is sent to all listed
destinations. The file can be changed "on the fly" by any standard text editor such as vi.

17

7.3 Conclusions
As the message system has only recently been developed, it has received little use so far. However,

existing packages such as DMS and robotape will soon be making use of it.

8.0 THE NETWORK QUEUING SYSTEM (NQS)
8.1 Overview

The PDSF environment was originally designed to handle batch-processing on a few multiprocessor
"batch ranch" computers with the interactive users on several front-end woIkstations. In this environment,
a method was needed for submitting large compute-bound jobs to the batch ranch systems and obtaining
the results. NQS (by Sterling Software for NASA, available from COSMIC) was chosen for this task.

8.2 Implementation
Currently, the batch ranch systems have queues for short, moderate, and long jobs. The front-end

systems have pipe queues to submit jobs to each queue on each batch-ranch system. Once a job has been
submitted to a pipe queue, NQS starts the job on the batCh-ranch system. When the job is completed,
NQS returns the results of the job along with any error messages; it can notify the user of completion if
desired. Other utilities in NQS can track or remove jobs or perform other queue-management tasks.

8.3 Future Changes
Thus far, NQS has been used as distributed with minor bug fixes. However, the PDSF system will soon

be redesigned from a "batch-ranch" processing environment to a "compute-server" environment. When
this change takes place, it will no longer be practical to have a couple of queues for each compute engine;
the resulting number of queues would be overwhelming, and load-balancing would be a manual act on the
user's part.

To solve this problem, we are looking at modifying NQS to create a "generic" queue capability. Jobs
submitted to this queue would be shipped out to a range of systems for execution on an automatically
load-balanced basis. Although similar in concept to the CERN enhancements to NQS, the method used
for load-balancing may be different. One possibility would be to use parts of Customs (by Adam de Boor,
UC Berkeley, with enhancements by Jeff Oark, Honeywell Systems Research Center), along with
loading data currently collected by the PDSF polling routines. The advantage of this approach over a
simpler round-robin scheduler is its ability to account for system-loading from other sources such as
interactive users or other non-generic batch queues.

9.0 CONCLUSIONS
The PDSF as shown in Figure 1 was in the final testing stage during the week of March 11-15, 1991; it

is now fully operational. Users have found the facility fairly easy to use. They have judged the task of
transferring from the Sun front-end to the SOl back-end to be not difficult, they have found the facility to
be fairly accessible over the network, and they have seen that CPS parallel jobs on the batch ranch work
quite well. Nevertheless, a number of problems have been found, and a number of tests need to be carried
out to help us understand how well the system is functioning. Testing and introduction of improvements
are now underway.

18

REFERENCES

M.G.D. Gilchriese, ed., "Report of the Task Force on Computing for the Superconducting Super
Collider," SSC-N-579, December 1988.

L. Price, ed., "Report of the SSC Computer Planing Committee," SSC-N-691, December 1988.
F.E. Paige, "SSC Physics Benchmarks," in the Proceedings of the Workshop for SSC Detectors,

Tuscon, AZ, February 1990.
I. Hinchliffe, "Benchmark Physics for an SSC Detector," in the Proceedings of the Workshop on

Physics andDetectorSimulationsforSSC Experiments, Dallas, TX, January 1990, p. 445.
L.R. Connell, "High Energy Physics Computing at the SSCL," presented at the 9th International

Conference on Computing in High Energy Physics (CHEP91), Tsukuba, Japan, March 1991.
L.R. Connell, ed., "Physics and Detector Simulation Requirements," SSCL-259, March 1990.
F. Canninati, "Inttoduction to Vector Computing forHEP Applications," in the Proceedings of the

Workshop on Physics and Detector Simulations for SSC Experiments, Dallas, TX, January 1990,
p.283.

M. Goossens, "FATMEN, Distributed File and Tape Management System, the Complete Reference,"
CERN, Geneva, Switzerland.

"Functional Specification for UniTree Central File Manager," General Atomics, San Diego, CA.
"ACP Cooperative Processes User's Manual," Fennilab Computer Research & Development

Department, Batavia, IL, July 1990.
B.A. Kinsbury, '''The Network Queuing System," Sterling Software, 1121 San Antonio Road,

Palo Alto, CA, 1986.

19

