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Laser photodetachment on a relativistic H ~ beam has revealed several series of resonances in 
which both electrons are excited. These "bound states in the continuum" appear as dips in the par-
tial production cross sections of various excited states of neutral hydrogen. We present here a de-
tailed account of the experimental observation of the resonances and the results of fits of the mea-
sured yields to sets of Fano profiles. A simple analytic formula for the energy-level spacing in this 
quantum-mechanical three-body system is verified. 

In this paper we report the observation of several series 
of high-lying Ip resonances in the photodetachment cross 
section of H -. The energy levels of these doubly excited 
states are shown to obey a simple and elegant analytic 
formula. We discuss here in greater depth the results 
presented earlier. I 

We begin in Sec. I with a short discussion of the physi-
cal nature of the resonances, before describing our experi-
mental technique in Sec. II. Section III presents the re-
sults of the data analysis. Details of the experimental ap-
paratus and of the data reduction are presented in the 
two appendixes. 

I. THEORY 

A. Autodetaching resonances 

One can think of the resonances in H -, such as the I P 
Feshbach and shape resonances associated with 
HO( n = 2 I. as having a core consisting of an excited hy-
drogen atom which is polarized by a second. outer. elec-
tron. This polarization results in a potential which sup-
ports one or more bound states. Upon the return of the 
core hydrogen atom to its ground state. the outer elec-
tron is ejected-hence the name "autodetaching." This 
basic system of a polarized excited core binding an outer 
electron is sometimes known as a "planetary" resonance. 
It should be noted that this simple picture. with an 
"inner" and an "outer" electron. is not always appropri-
ate to describe doubly excited states; this is the case for 
some of the states under study in this paper. 

B. Hyperspherical coordinates and ridge states 

The nonrelativistic Hamiltonian for the two-electron 
system with fixed nucleus is (in atomic units) 

(1) 

where the nuclear charge Z = 1 for H-. 'I' and '2 are the 
distances of the two electrons from the nucleus. and '12 is 
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the separation between the two electrons. 
We adopt the hyperspherical coordinates. defined as 

and 

(2) 

(3) 

(4) 

where r"r2 are the radius vectors of the electrons. and r 
represents a unit vector. 

In these coordinates. the SchrOdinger equation for the 
two electrons (with the nucleus fixed) is2 

1 
d2 5 d A2 2C 1-

d'lf2 + R d'R - 'R2 -R+ 2E ';'=0, (5) 

where A 2 is Casimir's operator 

, d ., , d Lr L~ 
A-=- ., , -sm-acos-a-+--,-+--;-

sm-a cos-a da d a cos-a sin-a 

(6) 

with eigenvalues ),,0 .. +4), where)., is an integer. The po-
tential energy of the system is V = C Iii, where 

C=-jf 1.1..+.1.. __ 1 
JI 

'I r~ 'I~ 

= __ 1 ___ 1_ + ___ --=-__ _ 
cosa sina ( 1 - sin2a cos8 ,) I 12 

I-

(7) 

This definition of C agrees with that of Lin,) but differs 
by a factor of - 2 from that of Macek2 and of an earlier 
work by Lin:' 

Since the hyperspherical radius 'If is simply a scale fac-
tor, the potential energy can be represented by C (some-
times known as the "effective charge"), which is a func-
tion purely of the hyperspherical angles 8 12 and a. It 
may therefore be plotted as a surface. as shown in Fig. I. 
The energy has minima at a=O and ti12; these give rise 
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FIG. I. Potential surface in hyperspherical coordinales at 
.R = I bohr. [Courtesy of J. Knudson: based on a similar figure 
by Lin (Ref. 4).] 

to the "valley states." for which one electron is close to 
the nucleus and the other is far away; this is a limiting 
case of the planetary resonances spoken of earlier. Singly 
excited states. in a system (such as helium) that supports 
them. would be valley states. 

There is a singularity when the electrons are coin-
cident. at u = 11' /4. 011 =0. In addition. there is a saddle 
point at u = 11' /4. 0 11 = 17, which lies at the back of a 
broad. fiat ridge; some states have a high probability den-

sity in this region of hyperspherical space-hence the 
nomenclature of the "ridge states" (see. e.g., Rau5 or 
Lin"!. At this saddle point, the electrons are equidistant 
from the nucleus and diametrically opposite one another. 
and their motion is strongly correlated; they therefore 
may lose their association with the parent hydrogen atom 
and become associated instead with the "grandparent" 
nucleus. 

A whole series of these "ridge" states exists; in the 
lower limit. they are just the so-called intrashell reso-
nances (both electrons occupying the same shell), charac-
terized as 2s 2p. 3s 3p, 4s4p •. " (see Sec. 10; in the 
upper limit. they result in the double-detachment process. 
The ridge resonance energies obey a Rydberg-type formu-
la which will be discussed in Sec. I E and again in Sec. 
III. 

The Schrodinger equation (5) is not completely separ-
able in hyperspherical coordinates. However, substitu-
tion of 

reduces it to 

I d2 J\2+¥ 2C I ---, + ,+--2£ "'=0. dR- ]f- 'R 

The wave function'" can then be expanded3•4 as 

11.'= 1: dljJ('R ,n )FjJ('R )/(.R 511sinu cosu) . 

" 

(8) 

(9) 

(to) 

The so-called channel fu nctioll dI) Ii'. n) satisfies the 
differential equation 

I de Li L~ J 
nl 1--, ..... --,-+-.-,- ..... 2lfC dI,<R,fi) 

11 d u- cos-u Sln-U ' 

= V,,( If )dI,,(R,n). (Ill 

and the hyperradial function F" ( R) satisfies the coupled 
equations 

I dd~l - V,,( If)+ 4~2 + WjJjJlR l+2£ IF" 
+1: W,I\.(]f)F, =0 , (12) 

where the coupling terms Ware defined as 

WjJ:' = 2(dljJ i d~ lib,.) d~ +(dljJ I d~21d1,.)· (13) 

At this stage, all of the nondiagonal coupling terms WjJ" 
are usually neglected; the resulting equation, 

I d" I I d:R 2 -U,,('R)+ 4lf2 +W""liil+2£ FjJ=O, (14) 

is known as the "adiabatic approximation." The second-
order diagonal term WjJjJ Lii) is included in this approxi-
mation. although it is usually dropped in the Born-
Oppenheimer expansion for diatomic molecules. 

Each resonance series and its adjoining continuum are 
jointly called a "channel," each channel (designated by a 
set of parameters p) being characterized by the eigenval-
ue U jJ ( 'f() and its eigenfunction dljJeR, n l. 

C. Classification of doubly excited states 

Having seen the origin of the potentials U jJ ('R), we 
shall next consider the designations of the different chan-
nels p. We begin in Secs. I C I and I C 2 with the simple 
+ -- -0 designation (which primarily describes radial 
correlations), before looking at the more complete 
K -T- A classification in Sec. I C 3. 

1. + -- -0 classification 

Following the discovery of autoionizing resonances in 
helium,t> Cooper, Fano, and Prats' developed a notation 
to describe doubly excited states. If the electrons were 
independent, with, say, one of the pair being in a 2s or 2p 
state, a series of excited states would arise from the other 
being in any of the higher states, n. As the electron 
correlations are very strong, however, linear combina-
tions of these states are appropriate as a first approxima-
tion. So, for example, the wave functions '" for the 
I p( S = O. L = 1 ) resonances at the HO( n = 2) threshold in 
H - may be approximated in terms of the single-particle 
wave functions u (n,f), by 

I 
--;=- [u ( 2s )u ( np ) ± u ( 2;> )u ( ns l] , 
V2 

represented more simply as 

(IS) 
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2snp±2pns . 1\ 6) 

In this case. the only -t- state supported IS the so-called 
"shape" resonance [named for the curious shape, with 
three classical turning points. of the potential curve 
U,,('f() that binds it], represented by 2s2p. On the other 
hand, an entire series of - resonances is believed to be 
supported. The only one of these to have been observed 
so far~ is the first in the series. the Feshbach resonance 
represented by 2s 3p - 2p 3s. Its first recursion should 
occur approximately I meV below the n = 2 threshold. 

In addition to the + and - channels, Ip n =2 states 
may be formed from linear combinations of np and nd 
wave functions, but in this case the potential of the re-
sulting "pd" or "0" channel is entirely repulSive. so no 
bound states are supported. 

As we mOve to higher excited states, more such linear 
combinations become available to form Ip states. The 
potentials UI!.('/f) for n =2-11 are shown by Sadeghpour 
and Greene,Q who also isolate the lowest + potentials 
and show the levels of the first resonance in each of these 
channels. These lowest + channels are also emphasized 
in Fig. 2, which shows potential curves lO for n =4-9. 
Two-electron excitations into the + channels are expect-
ed to occur more strongly than into the channels by one 
to two orders of magnitude, I I since the potential curves 
U ... (if) are more attractive at small 'R and allow both 
electrons to overlap with the ground state far better than 
do the U _ (JI ) curves. 

In addition to emphasizing the lowest + potential 
curve in each channel, Fig. 2 also highlights a potential 
curve-the fourth 7+ curve-that may suppOrt a shape 
resonance just above the n =7 threshold. At the time of 
writing, it is not yet certain whether such a resonance is 
in fact bound here, but if it is it would be very broad, and 
probably rather weak, as it is associated with the fourth 
+ series. It may mix with the lowest 8+ Feshbach reso-
nance, which also lies right at the n =7 threshold. 

Classifying the wave functions with + or - quantum 
numbers, which emphasizes whether the two electrons 
approaching the nucleus are in phase or Out of phase 12_ 
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FIG. 2. Potential curves converging on the n =4 to 9 thresh-
olds of HU

• (Courtesy of H. Sadeghpour.) 

and thus whether the wave function vanishes (for -lor 
not (for -t-) at r! =r:-is of course still an approxima-
tion. In fact, Eq. (\ 5) should be a sum over all angular-
momentum components '1,'1 that can add to a total 
L = I. 1.1 The hyperspherical calculations, however, treat 
the different channels (+. -, and pd) independently. by 
omitting the coupling terms Will [Eq. (\3)], and this 
seems to work well. The potential curves shown in Fig. 2 
do not in fact cross one another. When they get very 
close, the coupling strength between them shows a sharp 
spike. and they repel one another. The region where this 
occurs is known as an "avoided crossing." From the cou-
pling strength, one can tell if the two curves are decou-
pled enough to simply assume that they cross. In fact, 
t he reason that the 2 + potential is repulsive at large:li is 
that the + and - channels interact strongly enough to 
repel one another, so the + channel is pushed up (and 
supports the shape resonance) and the - channel is 
pushed down. As n increases, the avoided crossings be-
come sharper and sharper, and the approximate + and 
- quantum numbers become more and more exact. 

2. M~chan;cal analog 

It is helpful to consider a simple classical model to ex-
plain the difference between the radial correlations of the 
electron pair for the + and the - types of resonance. 
Developing a model suggested by Cooper, Fano, and 
Prats/ Bryant proposed a mechanical analog based upon 
the "Newton's cradle"-the popular set of steel balls 
suspended, just touching, in a row, often used to demon-
strate resonant behavior in classical mechanics. This 
model consists of just three such balls, the central one be-
ing extremely massive Ito represent the proton) relative to 
the outer pair (the electrons), as illustrated in Fig. 3. 
There are two resonant modes of oscillation; the outer 
pair of balls may move either in the same direction 
(correlated motion), which results in a very long-lived res-
onance, Or their motion may be "anticorrelated," which 
produces a short-lived resonance that begins to decay im-
mediately, as the balls do not hit the central sphere simul-
taneously. These represent, then, the Feshbach ( - ) and 
shape (+) resonances, respectively. This analogy may be 
carried a stage further, as, in an external field, the outer 
electron in a - -type resonance would see a shielded nu-
clear potential, and so would be more susceptible to de-
tachment, whereas for the +-type resonance both elec-
trons would see the full nuclear charge when distant from 
the nucleus. Thus, the shape resonance, normally short-
lived (and therefore broad), remains unaffected until rela-
tively high fields are imposed, and in contrast the long-
lived Feshbach resonance is quenched in modest fields. 14 

"+" " " 

L 6~ L tL 
FIG. 3. "Newton's cradle" model of two-electron resonances. 
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3. K -T - A classification 

An independent-particle: model would represe:nt the: 
two-electron wave function as :nl/l.n:I:.L.S.;;-). where 
Land S are the: total angular momeOlum and spin. re-
spectively. and ;;- is the parity. Herrick and Sinanoglul~ 
introduced mixings of II and ': within a given n l ,n1 and 
replaced 'I and I~ with two new quantum numbers K and 
T. Each doubly excited state is then represented by 
quantum numbers ;n.m,K,T.L,S,1T"). where m and n are 
the principal quantum numbers of the outer and inner 
electrons, respectively. n is therefore the hydrogenic 
threshold below which the resOnance lies. The intrashell 
resonances, the lowest of any given series, have the two 
electrons occupying the same shell. so m = n. 

The numbers K and T arise from group theoretical cal-
culations. K is related to (-COseI 2 ), where el2 
represents the angle between the radius vectors of the 
electrons; the larger the positive K. the closer is 
( - coset2 ) to unity. K may be considered as a (bending) 
vibrational quantum number. T. on the other hand, mea-
sures the projection of the total angular momentum L 
onto the interelectron axis. and as such describes the 
orientations between the orbitals of the two electrons; 
thUS, T =0 implies that the orbitals lie in the same plane. 
T may be considered to be a rotational quantum number. 
K and T, therefore. describe the angular correlations of 
the system. lb According to Herrick and Sinanoglu, 
T =0, I, ... ,min(L,n -I) (although T =0 is forbidden 
for states where the parity 1T" = ( - I )L ... 1 ). and 
K =n -T-I,n -T-3 •...• -In -l-T). 

The lowest Ir + channels have the maximum possible 
K within a given n manifold, namely n - 2. and also have 
T = I. In addition. Lin l2 introduces a quantum number 
A to describe radial correlations. A is allowed the values 
+ I, - I, and O. A state with A = + I would have an an-
tinode for the hyperspherical angle a [of Eq. (3)] at about 
a=1T"14; a state with A = -I would have a node there. 
This designation coincides with the + or - classification 
of Cooper. Fano. and Prats. States that have neither 
node nor antinode are assigned A =0, and their charac-
ters are similar to singly excited states. A may also be ex-
pressed in terms of the other quantum numbers:1 If 
K >L -no then A =1T"( -I )S+T; otherwise, A =0. In ad-
dition. states with L > 2( n -} ) must have A =0. 

D. Recursion formula 

Having established the nature of the potentials U (:R). /. 
let us now consider the energies of the bound states that 
they support. 

Gailitis and Damburg 17 have shown that. as the hyper-
spherical radius If - ex:. the potential U,/'I( I-which is 
just the interaction energy of an electron in the field of an 
excited hydrogen atom-takes the form (in eV) 

U,.(!fJ--R [~+~ I, n - If-
(17) 

where R is the Ireduced-mass) Rydberg energy, 13.5984 
eV Inot to be confused with the hyperspherical radius R), 
and the hydrogen atom is in state n. This is the long-

• 
range dipole potential that binds series of the so-called 
Feshbach resonances lof both,.. and - character) below 
the: hydrogemc threshold in que:stion. as we have di5" 
cussed in Se:c. I C I for n = 1. The positions Ek and 
widths f k of successive resonances within such a series, 
converging on the threshold at energy E = E - R In: 

• '1 I 

(where E, is the double-detachment threshold energy. 
14.3526 eV) should then obey the simple recursion formu-
la 

En -Ek 2".la r k ----=e n= __ 
En-Ek _ 1 fk+1 • 

(18) 

where k = m - n + I is the "number" of the resonance in 
the series. and 

a =(a _1.)1/2 
" ".& • 

(19) 

We shall refer to an as the dipole parameter of the 
relevant photoionization channel. The values of a" may 
be calculated very precisely, and are listed for + chan-
nels in Table I; they may also be calculated approximate-
ly from the formulasCl 

a + =3n 2 - 23n +..l..+ 1 
n 3 3n 

for the lowest + series, and 

- -3 2 23n + 7 a - n --- --
n 6 6n 

(20) 

(21) 

for the lowest series. These approximations difrer 
from the exact values by less than 0.3%, as shown also in 
Table I. The series are expected to terminate only when 
the resonances are separated from the threshold by an en-
ergy equal to the relativistic splitting of the hydrogenic 
levels. 

Calculations lO have shown that a strong series of +-
type resonances lies below each hydrogenic threshold 
from n = 3 upwards. (The series of Feshbach resonances 
believed to lie below n =2 is a - series.! Sadeghpour 
and Greene have to date carried their hyperspherical cal-
culations up to the n = 12 hydrogenic level. 'I 

TABLE I. Theoretical values of the dipole parameter a: . 
The thresholds in each case are those to which the resonances 
converge-e.g .• the resonances in the n =4 continuum are asso-
ciated with the hydrogenic n = 5 threshold. 

Hydrogenic 
threshold n a: (theory) an- (formula 2.201 

3 5.22 5.22 
4 18.46 18.50 
5 37.70 37.80 
6 62.95 63.11 
7 94.20 94.4.' 
8 131.45 131.75 
9 174.70 175.70 

10 223.96 224.40 
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E. Recursions of series: the "2~ formula" 

Since the resonances are associated with the neutral 
hydrogenic thresholds. which themselves have an (ap-
proximate) energy dependence 

E=E-Rln! " , (22) 

(where E, is again the double-detachment threshold ener-
gy), it is natural to wonder if the entire series of reso-
nances themselves might obey such a recursion relation. 
The so-called "modified Rydberg" formula 

E=E, -2R(Z-U): (23) 
(n -IJ)-

for the lowest resonance in each series has been discussed 
by various authors, for example Read,ls Rau.I'I and Moli-
na;20 the form essentially arises from the assumptions (i) 
that each electron partially screens the other from the 
charge of the nucleus, reducing the Coulomb potential 
outside the core from Z Ir to (Z -u )/r, where u is a 
screening parameter, and Iii) that the stronger non-
Coulombic potential experienced by an electron that 
penetrates the core may be parametrized by a quantum 
defect IJ. 

The formula may be obtained by considering the ener-
gy spectrum produced by the hyperspherical potential 
[see Eq. (7)J expanded about the saddle point (recall from 
Sec. I B that the lowest resonances in each + series, the 
intrasheU resonances, essentially reside at this point). 
The expansion gives, in atomic units,21.18 

V= ~ [-Zo-Za(1T14-a)2+Zg(1T-012)2] , (24) 

where 

Zo=2V'2(Z-f) , 

Za=3 V 2(Z - IT) , 
and 

and of course Z = I for H -. A first approximation to the 
states localized around a=rr/4. Ol:=r. is to retain only 
the "hyperspherically symmetric" part in ZOo However, 
because the saddle is so flat, even a small energy-level 
spacing implies a significant extension in a and 012 away 
from the saddle point; in other words, the wave function 
does not lie entirely on the ridge, but resides partially in 
the valleys. The quantum defect compensates in some 
ways for this "core" effect. It is introduced, together 
with the screening parameter, by inclusion of the Za and 
ZIJ terms in the expansion. 

Sadeghpour and Greene9
• 10 have fit the screening pa-

rameter u and the quantum defect IJ to their own calcula-
tions of the energies of the lowest + Ip resonances in the 
n = 3, 4, and 5 series. By combining the results with the 
dipole recursion formula and the Rydberg formula, they 
have produced an analytic expression for the energies of 
all of the + -type I P resonances in H - associated with all 
of the hydrogenic thresholds, 

R 
E(n.ml=E,--, 

n-

-~~'" -Ift/l'lll 
+2R e I I 0.70784 I 

2n: (n +0.377)2 • 

(25) 
where n is the principal quantum number of the hydro-
genic threshold in question, m =n,n + I,n +2, ... , and 
an is the dipole parameter belonging to channel n. The 
first two terms are the usual Rydberg series for the hy-
drogenic thresholds (22), The term in large parentheses is 
the difference between these thresholds and the lowest 
resonance in each series as given by the modified Rydberg 
formula (23). This difference is multiplied by the factor 

-'mm -nl/a 
e - " to satisfy the dipole scaling law (8). No-
tice that the quantum defect IJ is unusual in that it is 
negative-this may suggest a different origin than the 
postulated "core effect." Sadeghpour and Greene refer to 
Eq. (25) as the "two-electron formula," or, more simply, 
the "2e formula." 

For future convenience, let us now define 

l1=(Z-U)! , (26) 

so that in this case 11=0.70784. 

F. Cross-section structure ia the resoaaace rep. 

So far, we have discussed the nature of the doubly ex-
cited states, the different ways of classifying them, and 
the relationships between their energy levels. We con-
clude Sec. I by considering how the resonances might 
affect the continuum photodetachment cross section, and 
what kind of structure we might therefore expect to see 
as we "tune" a laser through the resonance energies. 

If we represent the amplitude of a resonant state as 

a Fourier transform into the energy domain gives 

W (E) = ia r!2 (28) 
R E -Eo+ir 12 

where r.=~,E=~w,anda=2A~/r. 
This in turn leads to the usual Breit-Wigner formula 

for the cross section of a resonance, 

U=I/t*W= a::r::/4 
IE _Eo)2+ r2 /4 • 

(29) 

where a constant of proportionality is included in the 
normalization. 

If, however, the resonance lies in a continuum, then 
the total amplitude W, becomes instead 14 

w =b + ae,er 12 
( E -Eo+ir 12 ' 

(30) 

where b is the continuum amplitude and tb is the phase 
difference between the resonance and the continuum. 
This leads easily to 

=b 2 + a 2+ 2abl E coSt/J+sintb) 
U , • E-+ I 

(31) 
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where E=2(E -E,. liT. 
If the resonances overlap one another. 11 is necessary to 

add their amplitudes before calculating the intensity Ii'- 1/'. 
and thus one obtains 

ar,or 12 
Ii', = b + 2 E - Eo + i r /2 (32) 

(A summation index j is here implied but suppressed on 
the amplitude a. width r, phase tho and energy E., of the 
resonancesl. The continuum background. here represent-
ed as b. also rna ... be a function of the photon energy. 
When fitting to this model. it was assumed that b had a 
linear dependence on energy. 

Equation (31) shows that the shape of the resonance 
depends on the phase th between the resonance and the 
continuum. The resonances in question here are interest-
ing in that the phase difference with the continuum is 
close to 180°-they therefore appear as dips rather than 
peaks. The dips found below n = 3 by Hamm et aJ. ~~ are 
in fact combinations of a dip and a peak, suggesting that 
the phase difference with the continuum is close to 90°; 
the n = 2 Feshbach resonance appears as a peak (al-
though it is believed to have a dip associated with it), in-
dicating that it is nearly in phase with the continuum in 
this model. 

It is interesting to speculate that if we could somehow 
separate out the excited states before they were to decay, 
perhaps by laser excitation to a higher resonant state, the 
measured partial cross sections would then be from con-
tinuum production alone, and the dips should disappear. 
This is similar to determining which slit a photon went 
through in a double-slit experiment, which destroys the 
interference pattern. 

With a surprising amount of algebra, (31) may be cast 
in the more common form2.1 

_ (q +E)2 
a-ah+a" , 

1 +E-
(33) 

usually known as a Fano line shape. Note that b 2=;=a h' 

since as E-OC, a-a,,+ab; this would seem to imply 
that the resonance contributes a term a" to the continu-
um background even infinitely far from the energy Eo of 
the resonance. Let us therefore redefine a h' 

a/>-.ah -a~ , (34) 

so that the continuum amplitude far from the resonance 
is just a h • The resonance is then "decoupled" from the 
continuum, and the Fano line shape becomes 

- I (q +E)2 - 1 a-ab+aQ , 1. 
I +E-

(35) 

A series of such line shapes that do not overlap would 
then be represented by 

I (q +E)2 I a=ah+~a" , -1 , 
~ I+E-

(36) 

where again it is worth emphasizing that the a b defined 
here is slightly different from that defined by Fano. 

The shape of the resonance, determined by th in (31), is 

70 I 

u;- 60 f--'c r-::l 50 
.ci r ... 
ns 

40 r ~ -c: 
0 :;: lOt (,,) 

" fJ) 
20 , fI) 

fI) L. 
0 I ... 10 (.) 

0 
13.80 13.85 13.90 13.95 14.00 

Photon Energy (eV) 
FlO. 4. Dips in the H- continuum below HO(n =6). Thresh-

old energies are 13.8084 e V for n = 5 and 13.9746 e V for n = 6. 

correspondingly contained in the asymmetry parameter q 
(33l. This is defined as 

(<I>! Tid (37) 

where (<I>I Tli) is the transitiOft' probability from the H-
ground state i to the resonance, and ('III Tli) is the t~an
sition probability from the ground state to the contl?u-
urn. Since the overlap of the resonance wave functIon 
with the ground state is expected to become very close to 
zero for high-lying resonances, q -0, and the resonances 
should appear more and more like pure dips. 

Earlv evidence for both the dipole recursion formula 
and f~r the diplike structure of high-lying resonances 

. 24 came from the first double-detachment expenment. 
when dips were found in the n = 5 continuum. as shown 
in Fig. 4. 25 The scan was at coarse resolution •. and the 
third dip was only represented by a single data pOlOt. 

II. EXPERIMENTAL TECHNIQUE 

The experimental apparatus. of which there .is a 
schematic diagram in Fig. 5, is described in AppendIx A 
Some familiaritv with the material therein is assumed iT: 
this section. which aims to outline the principles underly· 

FlO. 5. Apparatus for high-lying resonances search. 
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imt the experiment and the procedures followed during 
th~ data taking. A detailed descriptIOn of the apparatus 
and of the procedure followed in acquiring data is pub-
lished elsewhere.:h 

A.Oveniew 

The experiment described here is the latest In a series 
of studies of H- that have been carried out at the Los 
Alamos Clinton P. Anderson Meson Physics Facility 
(LAMPF), a linear accelerator that provides a beam of 
H- ions at energies up to 800 MeV (11=0.842). LAMPF 
is uniquely suited to such studies, since the relativistic na-
ture of the beam provides two extremely powerful tools. 
First, and foremost, is the relativistic Doppler shift. As 
the H - ions are moving at relativistic velocities. making 
t hem intercept a laser beam of laboratory photon energy 
£0 at a varying angle a changes the barycentric photon 
energy £ according to the formula 

£=£oy(I+{3cosa) , (38) 

where {3=v Ie and y =( 1-/f)-1/2; a=O when the beams 
meet head on. The enormous range of tuning-over a 
decade for an 800-MeV beam-is otherwise totally out of 
the question for any lasers available either now or in the 
foreseeable future. Coupling this tuning ability with 
available lasers, from CO2 through the various harmonics 
of a Nd:Y AG (where Y AG is yttrium aluminum garnet) 
to an excimer ArF, any photon energy from 0.03 eV up 
to 21 e V is attainable. This is a perfect match with the 
energy range of interest for H -, from welJ below the 
single-electron photodetachment threshold, right through 
the resonance region and up beyond the double-
detachment threshold. 

The second important feature of the LAMPF beam is 
the relativistic transformation of electromagnetic fields. 
A modest transverse magnetic field B 1 in the laboratory 
becomes a substantial electric field, of strength 

Fl =y/3eB t (39) 

(51 units), in the rest frame of the ions. It is extremely 
difficult to apply such strong fields in a normal laboratory 
environment, especially to charged particles, as the 
several MV Icm that have been applied here. Thus. this 
technique allows the study, for example, of the quenching 
of resonances in extremely strong dc fields. 

In order to study the high-lying resonances in H - , 
which. as has been indicated earlier, lie at energies of 
10-14 eV -in the far-uv region-the fourth harmonic of 
our Nd:YAG laser (£0=4.6595 eV) is Doppler-tuned to 
excite the transition 

(40) 

where the principal quantum number n of the hydrogen 
atom is typically between four and eight, and the ~ sign 
indicates that the atom may, instead, be excited to any 
state lower than n. with the electron carrying off the ex-
cess energy. The asterisk (*) indicates that the electron 
in the atom is excited. 

As the angle a between laser and particle beams be-
comes smaller, and the photon energy correspondingly 

higher. successively hIgher n states are produced. If. 
however. the photon energy should match that of a reso-
nance in the H - cOntinuum. then the process 

(411 

may also take place. The amplitudes for excitation of the 
neutral hydrogen atom via production of the doubly ex-
cited resonant state H - * - [Eq. (41)] and that of direct ex-
citation [Eq. (40)] will add coherently, resulting in struc-
ture on the continuum cross section as discussed in Sec. 
IF. 

Let us consider a photon with a Doppler-tuned energy 
sufficient to detach the second electron from the H- ion 
and to excite the remaining hydrogen atom into the state, 
say, n =4. There is a large probability that it will, in-
stead, eject the outer electron and leave the neutral hy-
drogen in n = I, 2, or 3. If we wish to see structure in the 
HO (n =4) production continuum, it is essential that we 
discriminate against this background. 

It is here that the transformation of (laboratory frame) 
magnetic fields into (barycentric framel electric fields be-
comes important, for, by applying a field of -4000 G, 
the corresponding field of 1.9 MV /cm in the ion's rest 
frame is sufficient to strip the electron from HOe(n =4), 
while leaving unaffected those atoms in n ~ 3. The pro-
tons resulting from this so-calJed field ionization are mag-
netically separated from the remaining neutral and posi-
tively charged particles, giving a clear signal of the pro-
duction ofHo-(n =41. 

We might expect, then, that as we increase the 
barycentric photon energy, starting from that needed to 
produce ~e( n ::: 3), we should see a staircase-type struc-
ture, as shown in Fig. 6(a), with the onset first of n =4 
production, then of n = 5. 6, and so on. (This figure also 
includes a linear dependence with energy of the continu-
um cross section.! In addition, by reducing the magnetic 
field to the pont where it is no longer able to strip 
HO* ( n = 4), but is able to strip HO* (n ~ 5), we should 
again see a staircase structure, but this time beginning 
with the onset of n = 5 production. Thus, we have the 
means to isolate and study a single channel at a time. 
This iterative process is repeated for successively higher n 
states until the signal becomes so small that it is impossi-
ble to discern the structure above the background noise. 

The interference in the cross section. due to the 
coherent addition of amplitudes for the production of the 
HO* continuum and the H - - * resonance (see Sec. I Fl, re-
sults in a series of "dips" in each HO*( n) channel, as 
shown schematically in Fig. 6(b), becoming progressively 
narrower and closer together as they converge on the 
HO*( n + 1 ) threshold. The object of this experiment is to 
characterize these dips. measuring their positions and 
widths. and to compare them to the many predicted Ip 
resonances in H - . 

B. Energy calibration 

Transitions between excited states of neutral hydrogen 
are used to determine the energy scale. A neutralizing 
thin foil is used to produce excited HO atoms; scanning 
the magnetic field of an electron spectrometer shows us 
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the distrihution of high-lying excited states. If a magnet-
Il: field of ::::: 130 G is then applied (before the laser in-
teracllon regIOn). these high-lying states will be field ion-
ized. and no longer detectable by the electron spectrome-
ter. The laser-particle beam intersection angle may then 
he swept until the spectrometer. set at the appropriate 
field. once again detects high-lying states. this time pro-
moted from lower excited states by the laser. For exam-
ple. if the spectrometer is tuned to detect. say. the state 
n = 14. and the magnet has stripped all of the foil-
produced atoms in the state n = 14. then the spectrometer 
will detect nothing until the laser angle is set to the tran-
sition from n = I to n = 14 (or n =2 to 14, etc.J. The an-
gular spacing between several such hydrogen lines tells us 
which lines we are looking at, and therefore where to ex-
pect other structure. The n = 2 Feshbach resonance pro-
vides another important energy reference point. Instru-
mental resolution may be determined from the widths of 
the hydrogen lines and of the Feshbach resonance. 27 

The angular spacing between these hydrogen lines may 
appear to vary slightly from that expected for two 
reasons; firstly, if the laser is not properly aligned. it will 
"wander" as the intersection angle is varied; and second-
ly. runout in the bearings on the belt drive system will 
cause a sinusoidal variation from linearity in the encoder 
readout itself. As the structures under observation here 
all lie within a very small angular range. however. these 
variations are not generally a problem. A longer-term 
drift may be caused by a change in the frequency of the 
laser itself. by up to a wave number. This (systematic) 
shift in energy scaling is not apparent in any of the data. 
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FIG. 6. Expected staircase structure of continuum. (a) 
without resonances. (b) showing dip resonances. 
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FIG. 7. Laser-particle beam timing overlap. with relative po-
sitions of data and background gates. 

C_ Taking data 

During a run. the laser-particle beam interaction will 
take place at a number (usually 1(0) of different intersec-
tion angle settings. Signals are collected at each angle 
setting for a certain amount of time. determined by in-
tegrating the H - current detected by a Faraday cup in 
the beam stop. At each laser shot. the integrated signals 
from the detectors are recorded on magnetic tape; at the 
end of each angle. the computer calculates the sum, the 
mean, and the standard deviation of the mean of these 
signals, writes the results to a data file. and records such 
information as the angle-encoder setting, magnetometer 
readings. and so on. It also generates histograms of sig-
nal versus angle number. Fast electronics, discussed in 
Ref. 26. are used to synchronize the laser pulse with the 
particle beam, and to digitize the signals from the detec-
tors (see Fig. 7.) 

III. RESULTS AND ANALYSIS 

In this section we discuss the results of the data fitting 
under various constraints. Of these results. we shall place 
particular emphasis upon the fitted energies of the reso-
nances. since several theoretical calculations of these en-
ergies are available. We shall find that we are unable to 
discriminate between the different theoretical approaches 
at this level of precision. but that the simple analytic "2e 
formula" [Eq. (25)), with the parameters 11 [Eq. (26)) and 
J.l [from Eq. (23)) determined by a fit to the data. is able to 
predict the energies as well as any of the ab ;n;I;O calcula-
tions. 

A. Fitting the data 

All of the data collected and analyzed are displayed 
elsewhere;26 the procedure followed for data reduction is 
discussed in Appendix B. The data for each hydrogenic 
continuum channel stlJdied (n = 4. 5. 6. 7) were combined 
to produce one set of data for each channel. displayed in 
Figs. 8Ia)-8(d). Each contains at least three prominent 
resonances, which seem to converge on the next higher 
threshold (n = 5,6,7,8, respectively). These resonances 
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appear primarily as dips, although there is still evidence 
of some asymmetry-the Fano q parameter [Eq. (37)] is 
in each case close to Zero. Figures S(a)-8(d) also show 
the results of the fits to sets of Fano profiles. 

As explained in Appendix B, the data set for each 
channel was fit first to a set of independent resonances, in 
which the probability amplitudes w, were added (in case 
of overlap) before calculating the cross section (1 = w· w 
(see Sec. I Fl. The amplitude for the continuum back-
ground was allowed to be a linear function of energy. 
When the fitted widths indicated that there was in fact no 
significant overlap, sets of standard Fano profiles were 
used for the fitting. The sets of resonances were then fit 
to the dipole recursion formula (18), both with the dipole 
moment an as a free parameter and with it fixed at the 
value predicted by theory. 

Theoretical considerations suggest that the asymmetry 
parameter q and the amplitude (1 Q of the Fano profiles 
(35) should be constant (or nearly so) throughout the 
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series of resonances.~8 Fits were also performed. there-
fore. with these constraints. 

For each fit. a value is given for t-squared per degree 
of freedom ( t= Iv, or reduced t=" Confidence levels (CL; 
defined as the probability of t~ exceeding its calculated 
value) are also given where they exceed 0.01 %: however, 
with - 100 data points, the confidence level drops off ex-
tremely rapidly for ¥~ Iv> I. 

A Gaussian width corresponding to our resolution of 
8.3 meV has been convolved into each fit. The energy 
scaling and resolution were determined from the posi-
tions and widths of the n = 2 Feshbach resonance and of 
several hydrogen lines, as outlined in Sec. II C. and the 
absolute uncertainty in energy is less than 1 MeV (with a 
relative uncertainty between points of less than 0.2 MeV). 
This is sufficiently small that no energy uncertaiDty has 
been introduced into the fits. Of course, the energies in 
the unconstrained fits are free to "float," whereas those in 
the dipole-formula fits are tied to the threshold energies; 

+ 
(b) 
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FIG. 8. Partial pholodetachment cross sections of H - . showing production of neutral hydrogen in (a) n ~ 4 (,,2 Iv=O. 97, CL is 
55%); (b) n ~ 5 (X2 Iv= I. 85, CL is 0.01 %); (c) n ~ 6 (\,21\'=0.88, CL is 73%); and (d) n ~ 7 (X2 Iv=O. 98, CL is 50%). Instrumental 
resolution is 8.3 meV. Threshold energies as follows: n =4, 13.5054 eV; n =5, 13.8084 eV; n =6, 13.9746 eV; n =7, 14.0748 eV; 
n = 8, 14.1398 eV. The solid lines are fits to sets of Fano profiles (see textl. 
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hut allowing an energy uncertainty in the dipole fits doe~ 
not produce a consistent offset -either in magnilUde or 
in sign-for the different channels. and does not bring 
about a large reduction in r::. and so the energy scale was 
fixed at its independently measured setting. The number 
of free parameters is in any case already prohibitive. 

throughout. the cross sectiOn of the continuum back· 
ground a f, being assumed to vary linearly with pholor 
energy. The conditions under which the fits were per 
formed are as follows. 

(a) Positions of the minima. read from the data files. 
(b) Unconstrained fits: parameters allowed to vary free· 

Iy. B. Positions and widths of the resonances 

The fitted positions and widths of the resonances are 
given in Table II. Sets of Fano profiles were used 

(c) Fits to dipole series [Eq. (18)]; dipole parameter all 
allowed to vary as a free parameter. Only the first reso· 
nance in each series is given. as the remainder are definec 

Between 
thresholds 

4 and 5 
5 and 6 
6 and 7 
7 and 8 

Between 
thresholds 

4 and 5 

5 and 6 

6 and 7 

7 and 8 

Between 
thresholds 

4 and 5 
5 and 6 
6 and 7 
7 and 8 

Between 
thresholds 

4 and 5 
5 and 6 
6 and 7 
7 and 8 

Between 
thresholds 

4 and 5 
5 and 6 
6 and 7 
7 and 8 

TABLE II. Positions and widths of resonances. 

(a) Positions of observed minima, by eye 

13.682 
13.879 
13.997 
14.076 

Position 
(eV) 

13.68580) 
13.7708(3) 
13.7919(11) 
13.8812(3) 
13.9379(2) 
13.95571ll 
13.96281ll 
14.0024(7) 
14.0456(7) 
14.0558(2) 
14.0802(10) 
14.1132(2) 
14.1171(3) 

Position (eV) 

13.769 
13.936 
14.039 
14.109 

(b) Unconstrained fits 
Width 
(meV) 

21.5(5) 
14.1(7) 
14.3(7) 
11.6(8) 
8.2(5) 
5.5(13) 
1.0(4) 

12.4(13) 
4.9(9) 
0.9(2) 
3.1(12) 
1.39(4) 
1.13(6) 

13.794 
13.955 
14.057 
14.121 

l'~/v 
(ell 

0.97(55%) 

1.85(0.01 %) 

0.88(73%) 

0.98(50%) 

Ic) Dipole series fits: unconstrained On 
Position Width 

leVi (meV) an 

13.6864(1) 21.4(2) 31.3(2) 
13.881711 ) 13.6(1) 47.5(3) 
14.0016(3) 8.9()) 73.7(13) 
14.08{)()(9) 4.0(1) 110.1(46) 

(dl Dipole series fits: an from theory (Table II 
Position Width 

(eV) (meV) a. 

13.6879()) 21.1(1) 37.70 
I 3.88 I 5()) 14.0()) 62.95 
14.0020(4) 11.6(17) 94.20 
14.0829(8) 4.0(3) 131.45 

(e) Dipole series fits; an from theory; const q,a Q 

Position Width 
(eVI (meV) X21v 

13.6878(4) 19.8(7) 8.4 
13.8826(4) 11.6(6) 5.9 
13.9995(6) 14.0(14) 2.6 
14.0813(3) 4.0(2) 2.9 

13.966 

X~/v 

leLl 

2.8 
2.7 

1.5(0.7%) 
1.5(1.5%) 

X21v 
(el) 

4.9 
5.6 

1.7(0.06%) 
1.6(0.4%) 

q 

0.32(2) 
0.40(3) 
0.10(4) 

-0.09(4) 
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bv the recursIOn formula. 
"Id) As for ICI. but with the dipole parameter a., fixed by 

theorv (see Table Il. 
(e) "As for id). but with the values of the parameters q 

and (fa assumed constant throughout the series of reso-
nances. 

Uncertainties in the fitted parameters are given in 
parentheses. and correspond to the change in. the last 
significant digit required to increase the total y- by one. 
This is a standard approach. although it clearly becomes 
invalid if r" Iv differs significantly from unity. 

The position of the resonance at the n = 7 threshold 
may be subject to additional uncertainty since it does not 
appear as a full dip; in other words, only half of the 
profile can be seen. There may also be a shape resonance 
at the n = 7 threshold (see Sec. I C 1) interfering with it, 
although if it is there it should be weak. 

C. Comparison of energies and widths with theory 

We compare here the fitted energies and widths of the 
resonances with several theoretical predictions. We begin 
in Sec. III C 1 with the theoretical predictions for the en-
ergies of the lowest resonances in several different series, 
and we compare these numbers with the resonance ener-
gies found from the unconstrained fits. to see if we are ob-
serving resonances from more than one series in each 
continuum. Following this, we compare the fitted ener-
gies with the energies expected in a single series in each 
continuum. where we find that the match is considerably 
better. In this paper, "energy" refers to the photon ener-
gy (in eV) needed to reach the state in question from the 
ground state. 

Section III C 2 discusses the fits to the dipole recursion 
formula. We then detour briefly in Sec. III C 3 to see how 
well the minima read from the data files, which we take 
as the locations of the resonances, match up with the di-

pole law. 
Section III C 4 shows a plot indicating the linear 

dependence of the energy of the lowest resonance in each 
series (below the double-detachment threshold) on the hy-
drogenic principal quantum number n [see Eq. (23)]; 
values are found for the screening and quantum-defect 
parameters (f and f.l. Section III C 5 uses these parame-
ters in the 2e formula [Eq. (25)] to predict the positions of 
allilowest series) + resonances from n = 3 to 10. 

Section III C 6 concludes the discussion of resonance 
energies with a brief summary. 

Section III C 7 compares the fitted values of the widths. 
already touched upon briefly in Sec. III B, with some 
theoretical predictions. 

1. Theory uenll.r Ill1cou,ra;IIM fiu 

Some theoretical predictions for resonance energies are 
given in Table III. In each case, these are the energies of 
the first ~nance in each series, the energies of the oth-
ers following from the dipole recursion formula. The cal-
culated values of Ho and Callaway,16 Ho,29 and of Koya-
ma, Takafuji, and Matsuzawa,JO were converted from the 
published energies in rydbergs (measured downwards 
from the double-detachment threshold, at 14.35262 eV) 
by using the infinite Rydberg constant R .. = 13.6OS 698 
eV. This should be appropriate for +-type resonances, 
where the nucleus IS "stationary" (see the classic:al analog 
of Sec. I C 21. The difference in photon energy in any case 
amounts to no more than 0.4 meV. 

The fitted energies (from the unconstrained fits) are 
also included in the table. It appears that the first reso: 
nance in the lowest + series of each channel matches 
fairly well. but no others do, indicating that we are just 
seeing that lowest + series. The calculated widths of 
some of the other series of resonances are sufficiently 
large that we might expect to observe them; the fact that 

TABLE III. Fitted photon energies of resonances (eV) vs calculaled values for lowest resonances-in- _. 
each series of (I) Ho and Callaway (Ref. 16) and Ho (Ref. 29), (2) Koyama, Takafuji, and Matsuzawa 
(Ref. 30), and (3) Sadeghpour (Ref. 10), Again. uncertainties in fitted parameters corresponding to 
A:t'~ = I are in parentheses. 

Between 
thresholds 

4 and 5 

Sand 6 

6 and 7 

7 and 8 

Fitted 

13.6858(3) 
13.7708(3) 
13.7919(1 I) 

13.8812(3) 
13.9379(2) 
13.9557( 1) 

13.9628(1) 

14.0024171 
14.0456(7) 
14.0558(2) 

14.0802( 10) 
14.1132(2) 
14.1171(3) 

()) 

13.6846 
13.7574 

13.8798 
13.9202 
13.9710 

14.0008 
14.0254 
14.0544 

Calculaled 
(2) 

13.6809 
13.7381 
13.7675 
13.7831 

13.8794 
13.9148 
13.9270 
13.9432 

13.9991 
14.0245 
14.0391 

(3) 

13.6857 
13.7369 
13.7703 

13.876 
13.9196 

13.9996 

14.0783 
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we do not Implies that the resonances are weak. i.e .. that 
(T J is small. 

Table IV lists the measured reSOnance energies-again 
from the unconstrained fits- and compares them with 
the calculated values of the lowest + resonance series in 
each channel. The calculations are from Sadeghpour. JO 

and include both precise calculations using quantum-
defect theory and I!stimates from the 2e formula [Eq. 
(25)]. using his values of the parameters 11 [Eq. (26)] and J.I. 
as discussed in Sec. I E. The match in this case is obvi-
ously (qualitatively) extremely good throughout the entire 
range of energies studied. indicating that the structure 
that we see is due almost entirely to the lowest + series.<I 

2. Dipole recursion formula fits 

The fits with energies and widths constrained to the di-
pole scaling law [Eq. (1S); cases (el. (d). and (e) in Sec. 
III B] have a much higher 1'~. and therefore appear to be 
considerably poorer descriptors of the data than the un-
constrained fits. However. the fitted energies of the reso-
nances match the unconstrained fits very closely-within 
just a few meV in each case, as shown in Table IV. The 
widths do not match as well. as will be seen later. 

According to a quantum-defect picture. the dipole scal-
ing law holds exactly only if several short-range parame-
ters are constant. One might infer from the fits, and par-
ticularly from the extremely large 1'2 values obtained 
when q and (Ta are held constant. that these parameters 
vary weakly with energy. 

II appears. then. that the dipole scaling law is not quite 
exact. At this level of precision. however. it could be that 
the baCkground continuum is not well represented by the 
linear energy dependence of this model. or else that other 
resonances are altering the cross section slightly. It is in-
teresting to note that in each case. when the dipole pa-
rameter a" is allowed to vary, the value obtained is 
significantly lower (by some 16-25 %; see Table III than 
the theoretically calculated value. 

J. Minima "by eye" versus recursion formula 

Returning to the tOp of Table 11. we have the positiqr:s 
of the minima of each reSOnance (as read from the data 
files) listed. If the parameter q were constant over the 
range of the series. the resonances would all have the 
same shape; if. then. the dipole recursion formula holds. 
we would expect that any set of equivalent points on the 
set of Fano profiles. and not just the centroids, should 
obey the same recursion formula. Testing this with the 
calculated values of an (Table II. we find a reasonably 
close agreement: the recursions of the first minima are in 
each case not more than a few MeV from the observed 
values. They are. however. outside the uncertainty limits. 
bearing in mind the 1 meV precision of the energy scale. 
This again suggests that either q is not quite constant, or 
that the dipole scaling does not quite work precisely, or 
both. 

4. Lowest resonance in each series 

According to the modified Rydberg formula (23), the 
energies of the lowest resonance in each series (as mea-
sured downwards from the double-detachment threshold) 
should be proportional to l/( n -J.I. )2. Thus, a plot of 
(£,-£)-112 versus n should-and indeed does-yield a 
straight line. as shown in Fig. 9. The energies used are 
those from the unconstrained fits [case (b) in Sec. III B]. 
Included in this plot is the first of the dips below n =3. at 
12.650(4) eV.22 The n =2 shape resonance is not includ-
ed since its structure is different from the other lowest + 
resonances, which are all Feshbach-type resonances. 

The fitted line is 

(£,-£ )-112=0.0765(22)+0.2299(5)n 

=0.2299(5)[n +0.333( 10)] , (42) 

where as usual the uncertainties are given in parentheses. 
For this fit. the l-meV absolute energy uncertainty was 
added to each of the fitted uncertainties listed in Table II; 
the reduced 1'2 was then 0.7S. with a 50% confidence lev· 
el. 

T ABLE IV. Fined photon energies of resonances in eV; (I) unconstrained fits, (2) dipole formula fits 
vs calculated values (Ref. 9), using (I) quanJum-defecl theory, (2) Ihe 2e formula [Eq. (25)). 

Between Fitted Fitted Calc. Calc. 
thresholds (I) (2) (J) (2) 

4 and 5 13.6858(3) 13.6879(1) 13.6857 13.6868 
13.7708(3) 13.7661 13.7730 13.7650 
13.7919(11) 13.7934 13.7963 13.7930 

5 and 6 13.8812(3) 13.8815(1) 13.8760 13.8792 
13.9379(2) 13.9326 13.9347 13.9316 
13.9557(1) 13.9558 13.9575 13.9553 
13.9628(1) 13.9662 13.9671 13.9660 

6 and 7 14.0024(7) 14.0020(4) 13.9996 13.9989 
14.0456(7) 14.0369 14.0382 14.0352 
14.0558121 14.0551 14.0566 14.0543 

7 and 8 14.0802(10) 14.0829(8) 14.0783 14.0783 
14.1132(2) 14.1071 14.1064 14.1044 
14.1171(3) 14.1291 14.1217 14.1195 
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FIG. 9. A plot of the energy below the double-detachment 

threshold of the first resonance in each series. (E, - E) I,: vs 
the principal quantum number n. Error bars are too small to be 
visible on this scale. 

5. The 2e formu/" 

As discussed in Sec. I. the 2e formula [Eq. (25)] 

12~2 - (n ':Jl)2 
R -Zmm -n Iia 

E(n.m)=Er--z +2R e " 
n 

(43) 

was fit to calculated energies of the lowest resonance in 
the hydrogenic n = 3, 4. and 5 channels. giving values of 
0.70784 and -0.377 for the two parameters .,.,= (Z _q)1 

anci Jl. respectively. We can instead fit it to our measured 
resonance energies. 

The 2e formula contains two assumptions-namely, 
the modified Rydberg formula for the lowest resonance in 
each series [Eq. (23)], and the dipole scaling law [Eq. 
(18)]. Fitting all of the resonances to the combined for-
mula does not tell us which of the two formulas. if either, 
is at fault. and so has no value beyond the fits already 
performed on the formulas individually. We have al-
ready established that the dipole recursion formula is not 
exact (although it does seem to be a good qualitative 
predictor of the energies); building it into the fit. without 
allowing for the fact that it is an approximation (perhaps 
by increasing the error bars of all resonances beyond the 
first in each channel to a few meV) just weights the fit 
artificially in favor of the channels with more reSonances 
(and therefore against the n = 3 dips). 

The most sound approach. then. is to fit just the first 
resonance in each channel-which of course we have al-
ready done in Sec. III C 4. The fitted line of Eq. (43) 
translates to values of .,., and Jl of 0.6957(301 and 
-0. 333( 10), respectively. Using these values, we may 
then predict (from the dipole recursion formula) the posi-
tions of the resonances. and since we have weighted the 
n = 3 resonance appropriately, along with those of chan-
nels n = 5 to 8, we may expect that the formula will hold 
over a wider energy range. 

The predictions of the resonance energies are listed in 

Table V. beside the measured energies. Uncenainties in 
the calculated energies. which are listed for the first reso-
nance in each series. are from the uncenainties in the 
fitted parameters .,., and 1-'. and so are not independent of 
the uncertainties listed for the measured energies. 

A comparison of the measured energies with the 2e
formula predictions reveals that the energy of the second 
resonance in each series is consistently underestimated by 
5-9 meV. 

Figure 10 shows the 2e-formula predictions and the 
measured data for comparison. The data points are large 
enough to include the error bars. The ordinate is 
(E, -E)-1/2, following the format of Sadegbpour and 
Greene;9 this effectively expands the energy scale-the 
few meV difference between the data and the curve for 
the second resonance in each series would be almost in-
visible on a normal scale covering the 1.5-eV range from -
the lowest n = 3 to the highest n = 8 resonance. The 
abscissa indicates the principal quantum number m of tbe 

TABLE V. Fitted photon energies of resonances in eV (from 
unconstrained fits) vs calculated values from the 2e formula [Eq. 
(25)]. using the best fil to the lowest resonance in each channel 
The uncertainties in the calculated values arise from the uncer-
tainties in the fitted parameters ." and Jl and are therefore not in-
dependent of the uncenainties in the measured enerJies. The 
thresholds n are those to which the rrson"nf.YS con~rge. 

Threshold 
n 

3 

4 

5 

6 

7 

8 

9 

10 

Fitted 
(eV) 

12.65()(4) 
12.837(4) 

13.6858(3) 
13.7708(3) 
13.7919(111 

13.8812(3) 
13,9379(2) 
13.9557(1) 
13.9628( Il 
14.0024(7) 
14.0456(7) 
14.0558(2) 

14.0802( 101 
14.1132(2) 
14.1171(3) 

Calc. 
(eV) 

12.6494(126) 
12.8302 
12.1410 
12.1416 
13.3448(64) 
13.4665 
13.4944 
13.5008 
13.6874(8) 
13.7652 
13.7931 
13.8031 
13.8809(25) 
13,9324 
13.9557 
13.9662 
14.0008(18) 
14,0362 
14.0548 
14.0645 
14.0801(13) 
14.1055 
14.1201 
14.1286 
14.1354( 101 
14.1541 
14.1657 
14.1729 
14.1754(8) 
14.1896 
14.1988 
14.2049 
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FIG. 10. The 2e-formula fit to the energies of the lowest res0-

nance in each series (those lying on the dashed line). 

outer electron; m ==" for the lowest resonance in each 
series (the intrasbell resonances). Obviously, the curves 
have no physical meaning between integer values of m. 
The dashed line, on which the intrashell resonances lie, is 
exactly equivalent to the line of Fig. 9. Note that just two 
free parameters determine IllI of tbe curves shown. 

6. S"mlllll'7 of comptlriMm of ."na/a IIII,Ia t118'7 

The energies of tbe lowest resonances in each series 
seem to be well determined by a number of different 
theoretical calc~tions of varying complexity; disagree-
ments between calculations typicaUy amount to a few 
meV, and tbis is of the order of the differences between 
the calculated values and tbe experimentally measured 
values. The dipole recursion formula seems to bold ap-
proximately, as expected, witbin each series. The simple 
analytic 2e formula, based on tbis dipole scaling law and 
the modified Rydberg formula (23), predicts the positions 
of tbe resonances just as well as do any otlter calcula-
tions. Bearing in mind that each con~inuum partial cross 
section should contain many series of resonances, tbis re-
markably good match seems to indicate tbat the lowest 
+ series dominates every time, since otherwise the over-
lapping resonances would give a far more complicated 
spectrum. 

7. eomptlrUo" of mea,," lIIid,#U lIIi,Ia ,la8'7 

Table VI shows a comparison of the measured reso-
nance widths versus theoreticaJly calculated widths. The 
calculated widths are for the first resonance in each 
series, the remainder being given by the dipole recursion 
formula. . 

The width of the first resonance in each channel, from 
both the unconstrained fits and the dipole law fits, 
matches the calculated width (to within the error bars) if 
one assumes that the "uncertainty" in the calculated 
value is I in the last digit. Since the first resonance 
matches, subsequent resonances must match also for the 
dipole formula fits. Those of the unconstrained fits, on 
the other hand, seem to bear little relation to the widths 
expected from the dipole recursion formula, although 
there is a teneJency for them to narrow as the next thresh-
old is approached. 

TABLE VI. Filled widlhs of resonances in meV. (II uncon· 
strained fits, (21 fits 10 dipole series vs calculaled values (Refs. 16 
and 291. For the dipole-series fits and for the theorelical calcu· 
lalions, widths beyond the first are calculated from Ihe dipole ~ 

recursion formula. Widths considerably less than the 8-meV 
resolution may not be reliable. 

Between 
thresholds 

4 and S 

Sand 6 

6 and 7 

7 and 8 

Fitted 
(I) 

2I.S(SI 
14.1171 
14.3171 
13.0(31 
10.S(3) 
8.4(3) 
1.4(1) 

12.4U41 
4.9(91 
0.9(21 
3.)(11 
1.39(4) 
1.13(6) 

Resonance widths 
Fitted 

(21 Calc. 

21.1111 20 
7.S6 7.2 
2.7 2.6 

14.0(11 13 
6.3 S.9 
2.9 2.7 
1.3 1.2 

11.6(181 11.1 
6.1 S.8 
3.2 3.0 
4.0(3) 
2.3 
1.3 

The third of tbe resonances converging to " = 5 seeMS 
to have a rather large width. This may be due to the ex-
istence of a fourth resonance in the series, the possibility 
of whicb will be discussed in Sec. III D 3 below. 

With only four channels available for analysis, it is 
difficult to see any systematic trend of tbe widths. Those 
of tbe first resonances converging on tbe hydrogenic 
" =5, 6, 7, and 8 thresholds are 22, 13, 12, and 3 meV, 
respectively (from tbe unconstrained fits), and no pattern 
is obvious from these four numbers. Since the dipole re-
cursion formula appears to bold only approximately, pre-
cise calculations of widtbs of bigher resonances in each 
series would be useful, but these do not seem to be avail-
able currently. 

D. OtIaer,......eten 

In this section we give the fitted values of the Fano 
asymmetry parameter q, the resonance amplitUde Uti' and 
the amplitudes and slopes of the continuum background. 

For cases (b) and (d) as outlined in Sec. III S, i.e., with 
the unconstrained fits and the fits to a series with the di-
pole moment fixed by theory, the value for the parameter 
q is given in Table VII. These should, bowever, be treat-
ed with some caution, because the apparent shapes of the 
resonances, which is really what q is measuring,' are .. ' 
affected both by the shape of the underlying continuum 
(which bas been assumed to bave a linear dependence on 
energy) and by any other resonances that may be in the 
vicinity but which are not prominent enough to have 
been included in the fits. (It should be remembered that 
several series of resonances, of both + and - character, 
are expected in each channel, although the - resonances 
should not be significant.) Except for the first resonance 
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TABLE VII. Filled values of the asymm.:try parameter q for both unconstrained fits and for fits to 
dipole series of resonances. 

Unconstrained fits [as in Table IHb)j 
Between 

thresholds q, q~ q. q~ 

4 and 5 0.187(14) 0.323(7) -1.20( I J) 

5 and 0 0.262(4) 0.406(3) -0.064(13) -0.957(54) 
6 and 7 0.456(52) 1.23(21) 0.315(67) 
7 and 8 -0.09(15) 0.650< IS) -0.660(33) 

Dipole series fits [as in Table II!d)j 
Between 

thresholds q, q~ q) q. 

4 and 5 0.292(6) -0.08J(4) -0.193(21) -0.863(16) 
5 and 6 0.268(5) -0.038(8) -0.206(39) -0.51(10) 
6 and 7 0.360(32) 0.008(49) -0.391(49) -2.00(7) 
7 and 8 0.28(12) -0.18(7) -0.317(47) -2.0(3) 

in the n =5-6 channel, agreement between the different 
estimates of q is poor. 

The values of q for case Ie) in Sec. III B. where q and 
u are held constant. are given with the results in Table " , II; however, the extremely large values for the reduced r 
values show that the fits are extremely poor, and there-
fore that this model fails to represent the true structure. 
It will not be considered fUMher. 

2. Resonance amplitudes a. 

Resonance amplitudes u a are given in Table VIII. as a 
fraction of the fitted continuum amplitude A (see Sec. 
III D 3), for the unconstrained fits and for the fits to the 
dipole recursion formula. There does not seem to be a 
consistent pattern to these amplitudes. except that they 
tend to be close to 1.0. Physically. they cannot be larger 
than 1.0 if q =0. since this would imply that the dip is 
deeper than the continuum background (neglecting the 
contribution to the continuum background of the slope, 
discussed in the Sec. III D 3), This constraint. however. 
is not build into the fits. 

3. Background amplitudes and slopes 

For each series of Fano profiles. the continuum back-
ground U h (36) was modeled by a linear function of ener-
gy. 

(44) 

where En is the threshold energy (in eV) for the continu-
um channel in which the resonances are embedded -in 
other words, the n =4 threshold for the resonances con-
verging on n = 5, and so on. 

As discussed in Appendix B, an attempt was made to 
approximate the cross-section units to IJ-a ~ by using a 
I In) scaling law, and so the quoted units of continuum 
amplitude are IJ.O 5. Based on the scaling law and on the 
expected photodetachment cross section into n = 1, the 
expected continuum amplitudes are - 2102, 1076, 623, 
and 392 IJ-a 5 for the channels converging on n = 5, 6, 7, 
and 8, respectively. It should be noted, however. that we 

are really only listing relative cross sections. and the 
quoted units of IJ-a 5 should in no way be regarded as an 
absolute measurement. 

Table IX lists the amplitudes If and slopes B of the 
continuum background. Although the slopes are rela-
tively small, they appear to be essential to the fits. in that 
the reduced ~ values increase dramatically if the slopes 
are fixed at zero. The agreement between the uncon-
strained fits and the dipole scaling law fits is poor for 
both the background amplitudes and slopes (except for 
the background amplitude between the n =5 and n =6 
thresholds). 

E. Other possible resoaaaee structures 

We discuss here some structures that appear in the 
yield curves that may be due to resonances, but which are 
not as clearly defined as those discussed in the preceeding 
sections. 

1. The n =9 threshold + resonance candidate 

The fitted 2e formula predicts that the first + reso-
nance associated with the n =9 threshold will occur at 

TABLE VIII. Filled values of the resonance amplitude 0" as 
a fraction of the background amplitUde for (I) unconstrained fits 
[as in Table I1<b)j. and (21 dipole recursion fits [as in Table 
II(d)j. 

Between 
thresholds 

4 and 5 

5 and 6 

6 and 7 

7 and 8 

Resonance amplitudes o. 
(\) (2) 

0.948(14) 
1.124(40) 
0.845(45) 
0.951(12) 
1.034(8) 
1.424(6) 
1.277(5) 
0.621(43) 
0.517(57) 
4.4(8) 
1.4()(7) 
2.88(11) 
3.56(28) 

0.717(1) 
1.036(10) 
1.016( 11) 
0.881(9) 
1.1 17(24) 
1.090(33) 
0.95(13) 
0.72(6) 
0.76( 10) 
0.92(21) 
1.02(7) 
1.26(10) 
2.20(30) 
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TABLE IX. Filled value~ of thc continuum amplitude lin 
units of apprOlumately JlO i, I and slope lin Units of approximate· 
Iy JlO i.leV I for III unconstrained fits [as in Table IIlb)]. and 12) 
dipole recursion fits [as in Table IIldl]. See Sec. 111 D 3 for a 
discussion of the units. 

Between 
thresholds 

4 and 5 
5 and 0 
o and 7 
7 and 8 

Belween 
thresholds 

4 and 5 
5 and 6 
o and 7 
7 and 8 

Continuun:t amplitudes (units of JlU ;,) 
(\) 12) 

2074(22) 
)02 )(8) 
712(25} 
473(28) 

2398(5} 
1013(7} 
008(29} 
354()7) 

Continuum slopes (units of /-Laf,/eV) 
(\) (2) 

3975(65) 
I 858(39} 

-)665(53) 
- 538(416) 

3579( )7) 
539( IS} 

-)075(454} 
)676(353) 

14.1354 eV, just 4.4 meV below the n = 8 threshold. As 
such, it should decay into the n = 7 channel. The n = 7 
continuum fits discussed earlier were terminated at 
14.136 eV, since at this energy (with 8.3 meV resolution) 
the n = 8 production threshold should begin to inftuence 
the cross section. 

Inspection of the entire energy range, however, shows 
a dip just before the n = 8 onset. It is not a large dip, as 
the first resonances in each series have been in all other 
cases, but that may be expected of an n =9 threshold + 
resonance (9 + ) coupling to the n = 7 continuum. 

Figure II shows a fit of this entire range up to the 
n = 9 threshold. The parameters representing the first 
three resonances were held constant at the values previ-
ously found in the unconstrained fits. The amplitude and 
slope of the n = 7 continuum were allowed to vary, and 
the I In·1 scaling law was assumed to hold between the 
n = 7 and n = 8 continua. The fitting routine was then 
asked to find a resonance corresponding to the dip be-
tween 14.13 and 14.15 eV. It produced the following pa-
rameters, with a reduced \,1 value of 1.9: 

I I I 1 

.~ .'1' 600 t J 
I , f 

, I, lJ!"w~tr~ c 
.2 u 

f'! ~&~ ! I 

~ 400 ., ., 
0 ... 

(.) 

t .. 
~ 
iii 
'ii 200 
a: 

o 
14.075 14.1 14.125 14.15 14.175 

Photon Energy 

FIG. I\, HO(n =7,8) continuum production. 

E,,= 14.1429( I) eV . 

r=0.9(2) MeV • 

a,,=1.8(14} , 
q =0. 9)(8} , 

A =425(6)lla~ , 

B = 846( 110) lla~/eV . 

Again, the amplitude a a of the resonance is given as a 
fraction of the continuum amplitude A. The fitted width 
may be unreliable as it is much less than the instrumental 
resolution. As before (Sec. HID 3), although units of ""Q~ 
are quoted, A and B should not be regarded as absolute 
measurements. 

The centroid of the dip is not quite in the expected 
place, although there is undoubtedly interference between 
the n === 8 production threshold (which does appear to 
have a slightly delayed onset) and the resonance itself. in 
addition to any other resonances in the vicinity (from the 
8 + series!. It seems quite feasible that this shallow dip is 
in fact the first 9+ resonance. However. a fit to the 9+ 
series failed to find resonances in the right place for re-
cursions of this first dip (the best fit had X2 Iv= 3. 6). Fur-
ther investigation of this structure is highly desirable. 
Note that the continuum amplitudes for n = 7 and 8 
seem, at least visually, to match the I In J scaling law 
quite well. 

2. ,,=4 threshold dip 

There appears to be a shallow dip just above the n =4 
production threshold, centered at about 13.55 eV [see 
Fig. 8(a)]. This dip is not very well defined. and its shape 
is not consistent from run to run; however. it does appear 
to be present in all of the runs that cover the appropriate 
energy range. Its nature is unknown; a shape resonance 
is possible above n = 4, but if it exists it is expected to be 
extremely narrow. An alternative possibility is the "tail 
end" of a broad Feshbach resonance that is expected te 
lie below the n =4 threshold. III It was nOt included in 
this analysis because of its lack of consistency. 

3. Fourth n = 5 dip 

Most of the zero-field runs that cover the range be 
tween the hydrogenic n =4 and n = 5 thresholds show: 
small dip, or at least a plateau. just below the n = 
threshold (at 13.8084 eVI. It is generally within the nois( 
and often represented by a single data point, but it doe 
appear to repeat. It was not included in the fits becaust 
firstly, it is not well defined in any run; secondly. it is to 
close to the n = 5 threshold (bearing in mind that ou 
resolution is 8.3 meV); and thirdly, it is not clear that it I 

a resonance in its own right rather than just a return t 
the continuum level after a "dip-peak" asymmetric res< 
nance preceeding it. Obviously there would be litt: 
meaning to a fit of such a structure to four free parame 
ters. 
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TABLE X. Resonances in each senes. numbered from the 
lowest li.e .. as m -n ..,..1) that are quenched by a given electric 
field. Square brackets indicate that a given resonance. IS 
significantly suppressed ( - 50% reduction in depth of the dIp) 
but not fully quenched. 

Between Electric field (kV fcm) 
thresholds 12 25 63 87 

4 and 5 3 [2] 2 
5 and 6 3 2 
6 and 7 3[2] 2[1] 

F. Effects of electric fields 

Electric fields were also applied to the interaction re-
gion, to study the quenching of the resonances. The po-
larization of the light was a mixture (approximately 
50%-50%) of 11" and q (parallel and perpendicular to the 
field). The fields. perpendicular to the plane of interac-
tion of laser and particle beams. were produced by apply-
ing a potential difference between a pair of steel disks 
held I cm apart across the interaction region; the electric 
field F' in the barycentric frame is then r times the field 
F in the laboratory frame. (A fairly weak magnetic field, 
of strength B 1 =rfJF1/c, is also produced by the relativ-
istic transformation of the electric field; this amounts to 
no more than 250 G.l 

The data from the electric-field runs are displayed else-
where.26 The effects of the fields are twofold; firstly, to 
quench the resonances; and secondly, to shift the thresh-
olds downward in energy (and to change their shape). 

Table X indicates the resonances that are quenched in 
ghen electric fields. Background levels caused problems. 
and the quality of much of the data is not optimum. 
Nonetheless, the quenching process is clearly demonstrat-
ed for all but the very strongest resonance (the first in the 
series below the hydrogenic n = 5 threshold). There does 
not appear to be any appreciable change of shape (or shift 
in energy) of the resonances, as might have been expected 
from mixing. prior to the quenching. 

The threshold shifts, probably due both to field-assisted 
tunneling from the ground state of H" and to the chang-
ing of the threshold shapes by the linear Stark effect. are 
also visible in the data. Unfortunately the changing 
shapes of the threSholds, and the existence of structure 
below them. makes it difficult to pinpoint the onset of 
production. From a fairly clear step function at zero 
field, the threshold smears out into a slope as the linear 

TABLE XI. Downward shifts·in energy (meV) for the vari-
ous production thresholdS of neutral hydrogen. 

field S ThreShOld shifts (meV) 
Electric 

Threshold (kV fern) 25 63 87 

4 
5 
6 

30(5) 
35(10) 
35(10) 

45(101 
45(10) 

55(10) 
60(20) 

Stark effect splits the degenerate levels into the different 
parabolic substates. 

Table XI lists the approximate shifts in the threshold 
energy of n = 4. 5. and 6 as the electric fields are applied. 
These are measured from the base of the (Zero-field) step 
to the base of the (field-induced) slope. 

IV. CONCLUSION 

A century has passed between the first spectroscopic 
studies of atomic hydrogen and the current investigations 
of the negative hydrogen ion. Balmer discovered a sim-
ple recursion formula that predicted almost exactly the 
energies of the excited states of the hydrogen atom; now 
we are able to confirm a similar recursion formula for the 
energy levels of the doubly excited states in H -: 

R E(N,n)=E,- -2 
n 

+2R e -2IJim-IIl/a. 1_1__ 0.696 ]. 
2n2 (n +0.333)2 

(45) 

This semiempirical formula is not a firm theoretical pre-
dictor, but it is an extremely good qualitative guide to the 
energies of the observed resonances. 

The doubly excited states investigated in this study ap-
pear to be, in each case, series of Feshbach-type res0-
nances associated with the hydrogenic thresholds below 
which they lie. They are due entirely to electron correla-
tions. The good agreement with ongoing theoretical cal-
culations of their energies seems to indicate that we are 
observing the lowest-lying resonances of + character, 
and their recursions. The lowest lying in each series. for 
which m = n, is a so-called ridge resonance, for which the 
two electrons are entirely equivalent; the recursions 
represent a series of states which become increasingly 
"pIarfetary," as one electron with the nucleus forms a 
core about which the other orbits, until finally the limit 
of an excited hydrogen atom with the additional electron 
in the continuum is attained. 

Calculations of the widths of the resonances are not so 
abundant. but those that are available also seem to be in 
good agreement with the data. Calculations of the cross 
sections. however, appear to be nonexistent. This makes 
fitting the data to theory more difficult. since not only the 
nature of the resonances but also the form of the underly-
ing continuum in which they are embedded is unknown 
to us. 

Fits of the resonances that are unconstrained yield en-
ergies that are very slightly different (a few meV) from 
those fit to the dipole recursion formula (which is built-in 
to the 2e formula above), 

Ell -Ek r k _...;;.... __ =£211"/a= __ ; 

Ell - Ek + Irk + I 
(46) 

the quality of the latter fits are, however, considerably 
worse than those of the former. It is conceivable that the 
dipole recursion formula is not working precisely, but it 
also seems quite possible that the shape of the underlying 
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continua are being distorted by the presence of weaker 
resonances. 

The energy range included in this study was from the 
production threshold of HO( n =4) up to that of 
HO( n = 81. (Some data were taken up to the n = 9 thresh-
old. but the signals were too small and noisy to observe 
structure.) The region between n =7 and n =8 is of par-
ticular interest; the first resonance associated with n = 8 
lies right at the n = 7 production threshold. and so in 
channels higher than this the first resonance of each 
series should be "displaced" by a channel. Future ex-
plorations could also make the link with the previously 
studied resonances near the n = 2 and 3 thresholds. by in-
vestigating the region between n = 3 and 4. 
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APPENDIX A: EXPERIMEJ'ljTAL DETAILS 

The beamline equipment. illustrated in Fig. 12. in-
cludes apparatus for all of our current experiments. An 
overview is given here of each component. beginning with 
the characteristics of the H - beam itself. 

1. The H- beam and tbe high-resolution atomic beam facility 

The LAMPF linac provides a H - beam of 120 macro-
pulses per second. each lasting for up to 700 Ils. and each 
in its turn consisting of many micropulses spaced a 
minimum of 5 ns apart. The use of choppers allows con-
siderable flexibility in the spacing (and therefore intensi-
ty) of the micropulses. depending upon the needs of the 
users. 

The high-resolution atomic beam lHiRAB) experimen-
tal area at LAMPF is a dedicated atomic physics facility. 
Since the cross sections for atomic physics processes are 
extremely large in comparison with those of nuclear 
physics. very low beam currents are required. Because 
HiRAB was the primary user. the temporal structure of 
the beam was tailored to its needs. so the macropulses 
were compressed to just 500 ns instead of the normal 700 
Ils. The peak intensity of each micropulse was therefore 
higher, allowing the average current to be held corre-
spondingly lower. typically in the range I-50 pA. The 
kinetic energy of the beam was nominally 800 MeV. with 
our measurements27 yielding an actual value of 797.3±0.3 
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FIG. 12. Schematic diagram,gfbeamline apparatus. 

MeV mean kinetic energy, with a momentum spread 
op/p=5X 10- 4 • 

The divergence of the beam in the vertical direction 
may be limited, by dedicated strippers. to less than 10 
Ilrad. The necessity for extensive steering prohibits 
achieving a similar level of collimation in the horizontal 
plane. 

The HiRAB facility includes a large vibration-isolation 
slab. made of concrete on a bed of sand. Studies3! have 
shown this to be effective in considerably reducing 
motion from heavy plant operations going on elsewhere, 
although the optical tables showed an unfortunate ten-
dency to resonate at low frequencies. 

2. Nd:Y AG laser 

The resonant structures in the H - continuum lie at en-
ergies of 10.9-14 eV above the ground state. These high 
energies mean that, even with the Doppler-tuning facili-
ty. it is necessary to use ultraviolet photons. We used the 
fourth harmonic of a Q-switched Spectra Physics DCR-
2A Nd:YAG laser, which has a wavelength of 266.1 nm. 

The laser beam is 8 mm in diameter, with an estimated 
divergence of O.S mrad. The temporal structure of the 
laser pulse was monitored by a fast vacuum photodiode, 
the output of which was observed on a fast oscilloscope. 

The harmonics were separated by a quartz Pellin-
Broca prism on the optical table, the ultraviolet light 
then following the optical train via a succession of dielec-
tric mirrors and into the larger of the two scattering 
chambers. Transmitting optics were all made of fused 
quartz. 

The harmonic-generating crystals. in particular for the 
fourth harmonic. are sensitive to the angle of the incident 
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laser beam. The tuning of this angle was done by turning 
the ammonium dihydrogen phosphate harmonic-
generation crystals remotely with a pair of stepper mo-
tors. 

3. Foils 

Two specially designed vacuum boxes (known as the 
rotating-Joil box and the sliding-Joil box. described in de-
tail elsewhere2b) held our neutralizing foils. the majority 
of which consisted of vacuum-deposited carbon of 
thicknesses 15-300 Ilg/cm1. Steppermotor-driven actua-
tors allowed the foils to be remotely inserted to and re-
moved from the beamline. The foils were used to pro-
duce a HO beam for energy calibration. 

4. Big Chamber 

The Big Chamber is the first of the two laser-H--
beam interaction chambers. Inside it, a mirror system 
consisting of three (I-in. 45" angle-of-incidence) dielectric 
mirrors, is mounted on an optical bench; this in turn is 
attached to a turntable, allowing rotation in the vertical 
plane. The laser beam follows the axis of rotation-
horizontal, and perpendicular to the H- beam-into the 
chamber, where the first mirror deflects it to one side; the 
second mirror turns it to become parallel to the axis. and 
the third turns it in to the point where the axis of rota-
tion intersects the H- beam. Rotation of the turntable 
thus changes the angle of intersection of the laser and 
particle beams. providing Doppler tuning as illustrated 
schematically in Fig. 5. 

The turntable is belt-driven. The 0.5-in.-wide steel 
belt, made from 0.005-in.-annealed 304 stainless-steel 
shim stock cut to length and laser welded. passes around 
a 1.000-in. drive shaft. giving the turntable a 100to-1 
step-down gear ratio. The shaft. coupled to a vacuum 
feedthrough, is driven by a stepping motor (200 steps per 
revolution) via a 100: I gearbox. The motor takes a total 
of 2 X 105 steps per revolution of the turntable. which is 
equivalent to a step size of 31 Ilrad. 

A 14-bit encoder (BEl model 5V 242 BX). also coupled 
to the turntable by a steel belt. measures the angle with a 
nominal precision equal to the 31-llrad step size. In 
1988. the number of encoder steps for a complete revolu-
tion was measured, and found to be 198777.7. by aligning 
a mark on the turntable with the crosshair in a telescopic 
sight and turning the turntable until the mark lined up 
again. This figure implies an average of 552.16 steps/deg. 
but over any given region there will be some variation 
from this figure from bearing runout. Because the en-
coder makes 12.2 revolutions as the turntable turns 
around once. it is also necessary to specify the "sector," 
as measured with a potentiometer connected to the drive 
gearbox. to determine the angle absolutely. 

The Big Chamber was originally designed for rotation 
in the horizontal plane. However. the H- beam at the 
HiRAB facility may achieve a divergence in the vertical 
of better than 10- 5 rad; by turning the chamber on to its 
side and allowing the plane of intersection of the beams 
to be vertical also, the low divergence of the particle 
beam could be used to obtain the optimum resolution. 

An additional benefit was that the optical alignment was 
simplified considerably with the chamber On its side. 

A pair of polished steel plates with a I.OO-cm separa-
tion could be remotely inserted to surround the interac-
tion region. Computer-controlled high-voltage power 
supplies were used to provide an electrostatic field (up to 
100 kV Icm. barycentric frame" One of the plates also 
had a small fluorescent screen attached to aid in the 
alignment of the particle beam. 

S. Uttle Chamber 

A small scattering chamber was designed and built 
specifically for a multiphoton detachment experiment.32 

It is described in detail elsewhere.2b 

6. Electron spectrometer 

The electron spectrometer uses a magnet to steer elec-
trons out of the ion beam. through a very thin Havar 
window -and into a scintillator. However. sufficiently ex-
cited neutral hydrogen atoms are also stripped in the 
magnetic field (which is perceived as a strong electric 
field in their rest frame). The electrons produced are then 
steered into the scintillator. Thus. by changing the field 
of the spectrometer. we may detect either free-
"convoy" -electrons traveling along with the beam. or 
excited (Rydberg) HO atoms. The range of sensitivity of 
the spectrometer is from n = 10 upwards. If a slit is used 
to restrict the entrance aperture of the scintillator, the 
spectrometer may be tuned to be selectively sensitive to a 
particular excited state, although there is sufficient over-
lap of the magnetic substates that the peaks for n = 14 
and above tend to merge. The field in the spectrometer 
was computer-controlled, and was monitored by a Hall-
probe magnetometer. 

7. Magnets 

There were a number of magnets- present in the beam-
line; each is listed here with a short explanation of its 
purpose. 

(i) HiRAB steering magnets HISM2-X and -Yo These 
are just upstream of the HiRAB area; they are controlled 
from the central control room (CCR). in the first instance 
to steer the beam down our line during the initial tuning, 
and thereafter under our direction as required to make 
small corrections to the steering. The long lever arm be-
tween these magnets and the interaction region makes 
them ideal for displacing the beam while minimizing the 
angular displacement. to which the Doppler-tuning of the 
lasers is sensitive. 

(ii) Vertical steering magnet. Used in conjunction with 
HISM2Y, this allowed us to make essentially parallel dis-
placements of the H - beam. It also provided a much 
more flexible response to changing vertical steering 
needs. as it was controlled directly from the HiRAB 
counting house (as were the remaining magnets in our 
beamline). Another important function served by this 
and sweep magnet, together with the HISM2 magnets. 
was to steer the H- beam clear of the neutral hydrogen 
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and protons produced upstream by collisions with residu-
al gas. 

(iii) Sweep magnet. This magnet provided horizontal 
steering, and also separated the H - beam from the 
residual-gas stripped background beams. Located down-
stream of the foil boxes, it is also capable of field strip-
ping any high Rydberg atoms produced in the foil; so, if 
the laser is tuned to excite HOe(n =4) to HOe(n = 16), 
say, we can be sure that the HOe (n = 16) states we detect 
in the electron spectrometer are not foil produced. 

(iv) Ionization magnet. Designed to produce a strong 
horizontal magnetic field over a short region of space, 
i.e., a large B with a small J B·dl, this magnet could strip 
the electrons from laser-excited neutral hydrogen atoms 
of n = 6 and above, while minimizing the steering of the 
beam. It had a compensating pole piece to offset any 
steering that did take place; furthermore, because the 
field was horizontal, it steered only in the vertical plane, 
to which our detectors were not especially sensitive. 

(v) Bending magnets. These magnets performed the 
same function as the ionization magnet, but their higher 
fields (approximately 4 kG) allowed stripping of 
HO(n =4), Their residual fields were too large for the 
higher Rydberg states, and so they were removed from 
the beamline when necessary and the ionization magnet 
was used instead. 

(vi) Long Skinny magnet. In order to study the 
double-detachment threshold, a means of separating the 
signal protons from neutral hydrogen atoms without field 
ionizing the highly excited neutrals was required. A long 
magnet was therefore employed, the weak field of which 
could gently separate the three charge species. This mag-
net consisted of four copper rods running parallel to the 
beamline, each on the comer of a square concentric with 
the beam line as viewed in cross section; each rod, 21 ft 
long, carried a current so as to produce a vertical (up-
ward) magnetic field. The arrangement resembles an ex-
tremely stretched pair of Helmholtz coils, as illustrated in 
Fig. 5. In reality, background problems limited the 
threshold study, so this magnet was usually run at a fairly 
high current in order to maximize the separation of the 
three beams. 
As mentioned above, with the exception of the HISM 
steering magnets, all of these magnets, in addition to the 
electron spectrometer, were controlled from the HiRAB 
counting house. The latter two magnets-the Long 
Skinny magnet and the bending magnets-were powered 
by a Dual Transrex high current supply (up to 750 and 
500 amps, respectively). 

8. Detectors 

Photomultiplier tubes in combination with fast organic 
scintillators were used for detection of electrons, protons, 
and neutral hydrogen atoms. Both the H+ and HO detec-
tors were on actuators that allowed remote positioning in 
the transverse horizontal direction; in the case of the H + 
detector, the scintillator itself was in the vacuum, and a 
light guide passed through the vacuum seal to thepho-
tomultiplier. 

In anticipation of the need for a wide dynamic 
range-a single pulse might contain one signal panicle, 
or it might contain a hundred or more-highly linear 
phototubes (Amperex XP2203B) were obtained. Details 
of the tube and of the base circuit are published else-
where.2b 

The HO detector, which was outside the vacuum (the 
HO beam had to pass through a Havar window before 
reaching the scintillator), had a phototube at either end 
of the scintillator, one being kept at a higher voltage than 
the other to give a still wider dynamic range. 

9. BeuI-curreat mODi ton 

The photodetachment yield is obviously directly pro-
portional to the current of the H - beam; it is therefore 
important to monitor both short- and long-term ftuctua-
tions in the beam current. The primary normalization to 
beam current is done with a Faraday cup.33 The absolute 
charge-collection efficiency of this device is better than 
1%. A current digitizer (Ortec model CD 1010) emits a 
pulse whenever the cup collects 100 pC. During the ex-
periment, the angle of intersection of laser and panicle 
beam was changed whenever the number of such pul'S'es 
reached a preset figure. 

The Faraday cup measures integrated current, for on-
line normalization; however, it is also important to ac-
count for pulse-ta-pulse variations in intensity. For this 
purpose, we employ a fast ion chamber (FIC), which con-
tains three wire grids at high voltage in a hydrogen-filled 
container;.l4 as the beam travels through, the ions pro-
duced create a shower, generating a current which passes 
through a resistive load. A voltage-ta-frequency conven-
er then puts out a series of pulses that are counted by a 
scalar in a CAMAC crate to provide a measure of beam 
cW'rent on the time scale of a macropulse. 

In addition, a scintillator-phototube~c"'o"'i-"""b"'in-ation (the 
"paddle") allowed observation of individual micropulses. 
In the end, this latter method proved somewhat unreli-
able; we believe that the scintillator was unable to 
respond properly to, and may in fact have been damaged 
by, the full current of the H- beam, which was focused 
to a spot only 2-3 mm in diameter. However, it was still 
useful for providing timing information, and to confirm 
the presence of the micropulses. 

10. Vacuum Pamp5 and Gaqes 

In order to minimize backgrounds from collisional 
stripping of H - by residual gas, it was necessary to keep 
the pressure down to the 10-7_10- 8_ Torr range. Al-
though the only vacuum gauges available to us were cold 
cathode gauges, which were not capable of measuring 
below 10-7 Torr, fairly low currents in the three ion 
pumps in the line-one by the foil boxes, one on the Little 
Chamber, and one downstream of the skinny magnet-
assured us that the vacuum was in fact in the desired 
range. In addition, two cryogenic pumps were employed. 
also attached to the Little Chamber and to the beam pipe 
downstream of the skinny magnet. 
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APPENDIX 8: DATA REDUCTION 

1. Normalization or signals 

As discussed elsewhere,2b in order to obtain the relative 
cross section from the count rate, the signal must be mul-
tiplied by a factor of sina I( I + /3 cosa). However, in the 
case of the resonances, an alternative form of normaliza-
tion was available; the cross section for the production of 
the HO atoms stays relatively constant over the photon-
energy range under consideration, and so the HO signal 
automatically includes the normalizing factor, in addition 
to any ftuctuations that may be related to changes in the 
laser or in the particle beam. 

Before normalization to the HO signal could take place, 
it was necessary to subtract any backgrounds present in 
both the H+ and HO channels. This was sometimes 
difficult because, although several runs included signals 
taken at a few angles with the laser blocked, not all did; it 
was not obvious at the time that the background levels 
were changing, sometimes slowly drifting up or down and 
sometimes jumping. 

Each of the two signal channels (H+ and HO) had a 
backJl'Ound channel associated with it. By looking at the 
JiG signal for the periods where the laser was blocked, 
and comparing it with the average value for the HO back-
ground (i.e., data taken during the background gate), it 
was determined that the background count rate needed to 
be multiplied by 2.4±O.1 in order to make it compatible 
with the true background levels in the HO signal channel. 
The uncertainty in this ratio is a systematic error, and so 
is not included in the error bars, which are purely statisti-
cal, as discussed later. 

A similar subtraction of backgrounds was required 
from the H+ signal channel. The cross section, of course, 
dropped to zero below threshold, in which case the back-
ground level could be determined even when the laser 
was not blocked. The relevant ratio between background 
levels in the signal and background channels again ftuc-
tuated significantly, but the signal-to-background ratio 
was much smaller (often less than I), making these ftuc-
tuations more important. A different approach was 
therefore adopted here. First, a particularly "clean" run, 
where all conditions were stable throughout the run, was 
c~osen for each of the hydrogenic excited-state channels 
studied-n =4, 5, 6, 7, and 8. These runs also had to 
cover the entire energy range for the relevant channel, in-
cluding some data points below the threshold, for which 
the true Signals would be zero. (Many runs did not in-
clude such regions, and so did not have clearly defined 
background levels.) The background subtraction was 
done for each of these sets of data as for the HO signals, 
and the H + signals were then normalized to the HO chan-
nel for these runs. 

The "master" data files produced in this manner were 
used for scaling all of the other (zero field) runs, so that 
comparisons could fairly be made between runs taken at 
different beam currents, with different backgrounds and 
so on. Fitting of the the scale factors between the data 
sets allowed the background levels to be determined for 
those runs for which they would otherwise have been 

unobtainable. With the backgrounds subtracted, each 
run could then be normalized to its HO signal and scaled 
appropriately to produce the relative cross section. 

1 In J scaling 

The actual distribution of excited neutral hydrogen 
states is expected to obey a I In'' power law, where n is 
the principal quantum number. In other words, for every 
HO( n = 2) atom, eight HO( n = 1) atoms would be pro-
duced; for every HO( n = 3), 27 HO( n = 1) atoms and so 
on. (As the double-detachment threshold is approached, 
however, a Wannier-type power law, u a: (E, - E) 1.127 ... , 
where" E, is the double-detachment threshold energy, is 
believed to become dominant). Although no attempt was 
made at the time to determine the actual ratios of pro-
duction of the successive n channels, later analy.is shows 
production of n = 4 to n == 5 in the ratio of approximately 
1.35, and n =5 to n =6 in the ratio of 1.75; these are to 
be compared with the expected ratios from the 1 In 3 law 
of 1.95 and 1.72, respectively. This would seem to indi-
cate that the I In 3 law applies, but that the magnets were 
not perfectly efficient in stripping n =4; this is to be ex-
pected with a 4-kG field. 

The cross section for production of Jtl( n == I) in this 
energy range is approximately O.I3a~. On the basis of 
this, and the 1 In 3 law, a multiplicative factor was ap-
plied throughout each data file, so that the units labeled 
"arbitrary" in the figures showing relative cross sections 
versus energy should in fact be units of approximately 
lO-ba~. 

2. Calculatioll ud propaptiOll of ucel18illties 

Propagation of error bars was the cause of some con-
cern. Initially, when the backgrounds were subtracted, 
the uncertainties were added in quadrature; and when the 
normalization to the HO channel was done, the relative 
uncertainties were added, again in quadrature. Such is 
the normal procedure-for data that are independent. 
However, there are of course strong correlations between 
the ftuctuations in the H+ and HO signals-it is for this 
reason that we normalize to the HO channel in the first 
place. The error bars were therefore too large and need-
ed to be recalculated. 

The mean signal x per laser shot is simply given by 

l:x x=-
N' 

(B)) 

where N is the number oflaser shots (usually 100-200 for 
the Nd:YAG laser) per angle. The standard deviation of 
this mean is u, where 

2 = l:(x -x)2 
[ 1

112 

UJC N(N-l) 

(B2) 

Although of course the mean signal per laser shot is pro-
portional to the beam current (since the higher the 



P. G. HARRIS et al. 42 

current. the more photodetachments occur in each pulse). 
normalizing to the HO signal removes this dependence. 

Given some function S =S (x,y) the uncertainty in S-is 
obtained from the uncertainties 6x = U x' 6y = U y by a 
Taylor expansion of S evaluated at x .Ji: , I as 12 2 I as 12 2 I as II as I 2 O"s= ax u x+ ay uy+2 ax ay u xy · (B3) 

The third term accounts for correlations between the 
quantities x and y; it is generally close enough to zero to 
be ignored when x and yare totally independent, but in 
our caSe the signal and background channels will have 
correlated fluctuations if there are fluctuations tn the 
beam current, and the H + and HO signals will also have 
significant correlations if there are fluctuations in the 
laser power. The factor U ICy is calculated. in a manner 
analogous to U IC and U y. by the formula 

2 _ ~(x -.i)(y -1) 
u ICY - N(N-I) . (B4) 

In our case. S =x -Yo and the uncertainty in the net 
si~nal after background subtraction (in both the H+ and 
H channels) is 

us=(u;+u;-2U;y)lll, (BS) 

where x and yare the values from the signal and back-
ground channels, respectively. The normalization of the 
H+ signal S+ to the HO signal So. giving a total signal 
S + /0 =S + ISo. then requires further propagation of 
these uncertainties. thus [from Eq. (B3)] 

I U+/O 12 O"~ 0"5 u~o (B6) 
S+IO = S~ + S5 -2 S+So . 

The resulting error bars .represent the true statistical 
fluctuations in the signals. This method is in contrast to 
our usual procedure of estimating the number of particles 
in each pulse from a pulse-height analysis. and assuming 
Poisson statistics. where the mean fluctuation in the num-
ber of particles is simply equal to the square root of that 
number. Since the H'" detector did not give clearly 
resolved peaks for single. dOUble. triple. and other multi-
ple counts (the individual particle signals were too smam. 
it was impossible to calculate the multiplicity of hits. 

The error bars do not give any indication of systematic 
uncertainties. These would tend to smear out all of the 
error bars by the same amount. Since fitting routines as-
sume that the error bars represent only statistical fluctua-
tions. possible systematic errors-for example, uncer-
tainty in the overall background levels-have not been 
included. 

Once the data files from the individual runs had been 
prepared, they were binned together to produce the data 
sets seen in Figs. 8(a)-8(d). Within each bin. a weighted 
average was taken in the normal way. producing a net 
signal 

y 
~l/ul 

(B7) 

; 

with its standard deviation 

I I 11/2 
u= ~-2 

, 0"; 
(B8) 

The bin sizes were adjusted so that in each case the ener-
gy range covered included about 80-100 data points (just 
as the angular step size was adjusted during the actual 
runs for the same reason). 

3. Fittiag 

The fitting routine used here was MINUIT. 35 a powerful 
package developed at CERN. that uses several different 
methods to minimize a specified quantity; for this 
analysis, the quantity used was xl. defined as 

X2=~ I f(X)-.d;(X) 12 , (B9) 
; u, 

where d;(x) are the data points with uncertainties u; and 
fIx) is the function (with up to 30 parameters, up to 15 
of which may be varied at once) to which the data are be-
ing fit. 

In the case of the resonances on the continuum back-
ground. each resonance has an amplitude (see Sec. I F). 

;ar/2 (BIOI 

and a phase difference t/J with the continuum on which it 
lies. The amplitude of the continuum was modeled as 
linearly increasing with photon energy. Thus. the total 
amplitude for a series of n resonances is 

n iale /·" 
"',(E)=b+cE+ ~ ·+2(E-E )II' 

Ie-I' 0" Ie 
(Bll) 

where the factor of r n in the numerator of Eq. (B 10) 
has been included in the constant ale. The function fIx) 
is then given by the cross section (or intensity). 

f(x)=u(x)=",·", . (BI2) 

Usually, three resonances were used to model the data; 
because each has an amplitude. a phase. a width and a 
centroid, there would be 12 free parameters together with. 
another two for the continuum background and slope. 
When MINUIT had made reasonable estimates of the pa· 
rameters of the continuum and of the largest of the reso· 
nances, these could be "fixed" and a fourth resonance 
added in for "fine tuning." In no case were more than 
four dips visible in one channel. 

It emerged that the resonances were narrow enough (il; 
comparison with their spacing) that there was lit til 
danger of their overlapping; in this case, the intensitie 
could be added directly (rather than adding the ampli 
tudes), and so they were also fit to sets of the more stan 
dard Fano profile, 

l(q+£)2 I U=Ub+~UQ 2 -I . 
1+£ 

The U b here is a little different from that of the usu 
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Fano profile. since an extra (1 Q has been subtracted from 
it [see Eq. (34)], and it is also assumed to have a linear en-
ergy dependence. Note that there is a slight difference 
here from the "coherent amplitude" model. in which the 
amplitude of the background continuum was assumed to 
be a linear function of the photon energy [b +cE in Eq. 
(8 Ill). 

In addition. the widths and energies of each series of 
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