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THE METHOD OF AVERAGING IN BEAM DYNAMICS*

JAMES A. ELLISON' and H.-JENG SHIH
Superconducting Super Collider Laboratory,} 2550 Beckleymeade Avenue
Dallas, Tezas 75237

ABSTRACT

This paper introduces the method of averaging and applies it to several beam dynamics problems.
Averaging is an important tool in the rigorous study of ODEs with a small parameter, and it
leads to a systematic perturbation expansion complete with error bounds. First- and second-
order averaging theorems are presented and applied; in addition, proofs are included for the
interested reader. Resonance at first and second order is treated.

1. Introduction

Perturbation theory is an important tool in beam dynamics. Regular perturbation theory
is not satisfactory because of the existence of secular terms. Secular terms first arose in celestial
mechanics, and this led to long time perturbation techniques that eliminate secular terms and are
valid on longer time intervals. Examples are the method of averaging, multiple time scales,! and
" canonical perturbation methods?? (mixed generating function and Lie transformation). Here
we introduce the method of averaging and show how it applies in several not-too-complicated
examples of beam dynamics, both with and without resonance.

The method of averaging is an important tool in the rigorous study of differential equa-
tions with a small parameter. Since the publication of the now classic book by Bogoliubov and
Mitropolskii,! the literature on averaging has grown immensely. A good introduction can be
found in Murdock.! For additional background and results, the interested reader is referred to
the books by Sanders and Verhulst® and by Lochak and Meunier.5
’ At its heart, averaging is a transformation procedure leading to a systematic perturba-
tion expansion complete with error bounds on the difference between exact and approximate
solutions. In addition, it is a tool for proving properties of the exact problem based on properties
of the approximate problem; for example, existence of periodic solutions can be proved using
averaging together with the implicit function theorem, and the existence of invariant tori can be
proved using averaging together with the Moser twist theorem. In addition, averaging is very
robust as, for example, it applies to both Hamiltonian and dissipative systems.

In Section 2, we discuss both regular perturbation theory and the method of averaging.
We begin by discussing the Duffing equation and show how secular terms arise in regular pertur-
bation theory and show that the method of averaging circumvents this problem. We then prove
a first-order regular perturbation theorem and a first-order averaging theorem, which shows that
averaging gives results on longer time intervals than regular perturbation results. These theo-
rems make precise the statement that averaging is a long time perturbation theory. Basically,
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long time perturbation theories give results on time intervals of order 1/¢, where € is the size
of the perturbation. In Section 3, we discuss the basic equations of transverse beam dynamics
and show how the perturbed transverse beam dynamics equations can be transformed into a
standard form for the method of averaging. We also discuss how a simple resonance at the first
order can be treated using averaging.

In Section 4, we discuss several beam dynamics problems in the context of first-order
averaging: (A) a special class of perturbations that includes chromaticity, sextupole, octupole,

“and beam-beam perturbations; (B) 1-D sextupole near the 1:3 resonance; (C) the beam-beam
with z-y coupling; and (D) rf phase modulation with damping. In Section 5, we present a
second-order averaging theorem that improves the approximation on O(1/¢) time intervals. We
also present a theorem that extends the time interval of validity to O(1/€?) in a special case, and
we discuss resonances that appear at second order. In Section 6, we discuss several examples in
the context of second-order averaging: (E) 1-D sextupole (nonresonant); (F) 1-D sextupole near
the 1:4 resonance; (G) 2-D sextupole with z-y coupling (nonresonant); and (H) 1-D sextupole
with dipole ripple.

In Section 7, we make some concluding remarks and discuss extensions of the averaging
method. The extensions include higher-order averaging results, averaging theorems for stochastic
perturbations, and adiabatic invariant results in both the deterministic and stochastic cases. We
believe these extensions will prove useful in the study of beam dynamics, but we do not present
examples here.

2. First-Order Perturbation Theory
A standard test problem in perturbation theory is the Duffing oscillator:
i+y+e®=0, y(0) =y,  H(0)= o, (2.1)

where 0 < € « 1. This has a conservation law:

1., 1, 1,
L S S 2.2
E=si+5y"+ 7", (2.2)

and since € > 0, (2.2) defines a closed curve in the phase space for each £ > 0, and this implies
that all solutions of (2.1) are periodic. Regular perturbation theory assumes an expansion of
the solution of (2.1) of the form

y(t,e) =y Q@) + gV @)+ ... + y™ () + ... . (2.3)
Inserting (2.3) into (2.1) and equating powers of € yields
0(1):§?+y@ =0,  y90) =yo, §9(0) = 4o, (2.42)

O(e) : § +yM = @, y0(0) = §"(0) =0, (24b)

and so on. In fact, at every order n > 1 we obtain

i™ +y™ = £(yO@), ..., 5" D@),  ¥™(0) =™ (0) =0, (2.4¢)



which is a linear nonhomogeneous equation that can be reduced to quadratures. Thus, the
regular perturbation method is a linearization as it reduces the nonlinear problem (2.1) to a
sequence of linear problems. Solving (2.4a) and then (2.4b) with g, = 0 yields

1 1 3, .
y(t,€) = yocost + ey (—-3—2 cost + 3 cos 3t — gtsmt,> +..., (2.5)
where the tsint term arises because of the resonant forcing term in (2.4b) in an apparent
contradiction of the fact that all solutions of (2.1) are periodic. These are the so-called secular
terms that inspired a significant portion of modern perturbation theory. Even though regular
perturbation theory is qualitatively incorrect, it is quantitatively correct in the sense that for

every T' > 0 there exists a C depending only on T such that 'y(t,e) - y(o)(t)l < C(T)e and

Iy(t, €) — yO(t) - ey(l)(t)l < C(T)e* for 0 <t < T and for ¢ sufficiently small, and thus it does
give a good approximation on finite time intervals. We will prove the first inequality after a
brief discussion of the method of averaging.

The method of averaging circumvents the problem of secular terms and yields a result
on a longer time interval. One of the standard forms for the method is

z =€f(z,1), z(0,€) = 2, (2.6)
and the so-called averaged problem is
v = € f(v), v(0,¢€) = 2o, (2.7)
where
) = lim = [ f(o,t)dt
o) = Jim = [ fo,1)dt.
Under certain conditions on f, we can show that
|2t ) —v(t,e)] < C(@)e

for 0 < ¢ < T'/e and for € sufficiently small. Thus, one says that at first order regular pertur-
bation theory gives an O(e) approximation on O(1) time intervals, whereas averaging gives an
O(e) approximation on O(1/€) time intervals. Furthermore, averaging usually gives the “cor-
rect” qualitative behavior, although in general it cannot be extended to time intervals longer
than O(1/¢), as will be seen in the following example using the Duffing oscillator.

In order to apply averaging to (2.1) it must be put in the standard form. Using the
variation of parameters transformation,

y = ie'z —ie Tz, (2.8)

based an the solutions e and e~* of the unperturbed problem (2.1), we obtain (2.6) with

fert) = i [ 23e® + 32225 + 32922t 4 234t 1 (yo — Yo
s = - . R . 0 — ‘e .
2\ ~zett — 322z5e2t — 32122 — 232t )’ Yo + Yo

5 (2.9)



The averaged problem becomes

: 3, . 1 i ;
v = egvf'ul , v(0) = §(y0 — iyo) =: Ae™® (2.10a)

va(t) = vi(2). (2.10b)

Notice that one consequence of using the form (2.8) is that the solution of the averaged
problem comes in complex conjugate pairs. This can be of great practical advantage, as it is often
easier to use complex exponentials rather than cosines and sines. If the averaging approach is to
be fruitful, the averaged equations (2.10) must entail a simplification over the original problem,
and this is always the case in our experience. Here this manifests in the form of a conservation
law for (2.10a), namely

vi(t)vi(t) = v1(0)v}(0) = A?,

which allows the solution of (2.10a) by elementary means:

v1(t) = Aexp [z (egAzt + ¢)] . (2.11)
Using (2.8) this gives
y(t) = yo cos (1 + %eyg) t+ O(e), (2.12)

for o = 0 and for 0 <t < T'/e. If we restrict our attention to 0 < ¢ < T, then we can expand
in €, which yields the regular perturbation result (2.5) to O(e) as it must. Using the second-order
averaging procedure and Theorem 3 as discussed in Section 5, we obtain

y(t,e) = yo cos(w(e)t) + ey (—312- cos(w(e)t) + 3i2 cos (3w(e)t)) + 0(é?), (2.13a)
w(e) =1+ %eyg - '2—25%623;8 (2.13b)

for yo = 0 and for 0 < t < T/e. Expanding in € for 0 < ¢ < T yields the regular perturbation
result to O(e?), again as it must.

First-Order Regular Perturbation and Averaging Theorems

To make the above rigorous we state and prove a regular perturbation theorem and an
averaging theorem at first order. An understanding of the proofs of the theorems is not necessary
for understanding the paper; they are included for the interested reader.

For the regular perturbation result, consider the IVP

z = fo(z,t) + €fi(2,1), 2(0,€) = z, (2.14)

and let
V= fo(’v, t) ; 'U(O) =2Z2p0-. (215)



Theorem 1 (Regular Perturbation Theorem): Let fo(z,t) and fi(2,t) be locally z-Lipschitz on
an open set U C B? containing zg, continuous in z and t on U X B, and assume that the solution

of (2.15) ezists in U and on [0,T). Then there exist C(T) and eo(T) such that for 0 < € < € the
solution of (2.14) ezists in U on [0,T] and on this same time interval "z(t,e) - v(t)” < C(T)e.

Remarks:

(1) Here and in the following, || || will be a fixed vector norm.

(2) f(z,t) is locally z-Lipschitz on U if for every z € U there exists a neighborhood of 2
and a constant L such that ||f(z,t) — f(y,t)|| < L||z — y|| for all z and y in the neighborhood
and all t € B. It can be shown that this is equivalent to f being z-Lipschitz on every compact
subset of U.

(3) A sufficient condition for f(z,t) being locally z-Lipschitz is differentiability of f(z,t)
with respect to z on Y.

Proof: Let S = {v(t)|0 <t < T} and let U; be an open bounded set such that § C U; C
U, C U. Here U, denotes the closure of . Since fo(z,t) and fi(z,t) are locally z-Lipschitz on
U, fois z-Lipschitz on I with Lipschitz constant L, and f; is bounded on Z/; with bound M. Let
[0, B(€)) be the maximum forward interval of existence of (2.14) in U; and J = {0, 8(¢)) N [0, T.
Then subtracting (2.15) from (2.14), integrating, and using the triangle inequality yields

"z(t, €) — v(t)" < /ot fo(z(s,e),s) - fo(v(s),s) ds + e/ot fi (z(s,e),s)

L/Ot”z(s, €) — v(s)llds + eMt

ds

IN

for t € J. The Gronwall inequality (see Appendix) then gives
"z(t, €) — v(t)n < eMtert < eMTelT =: C(T)e,

for t € J. Choose C(T)eo(T) < dist (S ,0U;) and 0 < € < €, then z does not approach the
boundary of ¢, on J and the continuation theorem gives 8(¢) > T. Thus J = [0,T) and the
theorem is proven. a

Remarks:

(1) The continuation theorem states that either z(t,€) exists for all forward time in i,
or it permanently leaves every compact subset of U, as t /~ S(e).

(2) Writing (2.1) in the system form of (2.14) by defining (21,22) = (y,y) and then
applying the theorem yields the first result mentioned after (2.5). '

Next we state and prove a first-order averaging theorem for

z=¢€f(z,t), 2z(0,€) =2z (2.16)



and the associated averaged problem
V= ef(v)’ v(0,€) = 2, (2.17)

in the case where f is quasiperiodic; that is,

f(z,) = g(2,60)), (2.18)

where 0(t) = (wit,...,wit) and g(z,0) is periodic of period 27 in each component of § =
(61,02,...,6;). We basically follow the approach in Remark 3, p. 393, of Reference 7 and
Section VIIB of Reference 8. The w; are the base frequencies of the quasiperiodic function f(z,-),
and the Fourier representation of g will be written

9(2,0) = 3 gn(2) ™o (2.19)
rnezd
where m = (m;,...,my) is an integer vector and (m,6) = m;0, +. ..+ m0;. Thus we can write
flz,t) = 3 gm(2)imeit (2.20)
mezd
and
F(2) = = I l/Tf( £)dt (2.21)
f(z)—magm(z)_TE{)loT 0 2y ’ .
where
M = {m e z¥|(m,w) = 0} . (2.22)
We define the “guiding solution” by the e-independent IVP
du -
5 = f(), w(0) =z, (2.23)

and note that v(t, €) = u(et) is the solution of (2.17).
Theorem 2 (First-Order Averaging Theorem): Let f(z,t) be locally z-Lipschitz on an open

setU C €% containing zo, continuous in z and t on U X B and assume that the solution of (2.23)
exists in U on [0,T). Let S = {u(r)'O <7< T} and assume for z € S that

> 2||gm(2)|/[(mw)| < My < o0, (2.24)
meéM

and

Y 2| Dgn(@)|/|(m,w)| < M; < oo. (225)
mgM



Then there ezist C(T) and €o(T) such that for 0 < € < € the solution of (2.16) exists in U on
[0,T/€] and on this same interval "z(t €) — v(t, e).. < C(T)e.

Proof: Let U; be an open bounded set such that S C Uy C Uy C U, let [0,,5(6)) be the

maximum forward interval of existence of (2.16) in U;, and let J = [0,T/¢]N [0, ﬂ(e)). Let L be
the Lipschitz constant of f(z,t) for z € Uy; then for t € J,

/ot{f(v(s,e),s) — f(v(s,e)) }ds

Here we have subtracted (2.17) from (2.16), integrated, and added and subtracted f(v,s) before
using the triangle inequality. Let M3 be the bound for " f (v)" forv € S and M := My + M, M,T;

then we prove shortly that
| /Ot{f(v(s, €), s) - f(v(s, e)) }ds

for t € [0,T/€]. An application of the Gronwall inequality then gives

Hz(t, €) — v(t, e)” <eL /Ot"z(s, €) — v(s, e)" ds +¢€ (2.26)

<M (2.27)

”z(t, €) — v(t, e)" <eMexpelt < eMexp LT =: C(T)e

for t € J. Choose € such that C(T)e(T) < dist (S,dl), then z does not approach the
boundary of U; on J, and the continuation theorem gives 3(¢) > T'/¢ and the theorem is proven.
It remains to prove (2.27). The left hand side of (2.27) is given by

/ > gm v(s e)) eflmedagg

meM

t(m,w)t

E {gm(v(t,e)) —(—— / Dg, v(s e)) dv(s ) e t(mm’—) ds}

megm (m,w

_<_ M1 + €M3M2t S Ml + M2M3T = M,

where the equality follows from integration by parts and the first inequality from Eqs. (2.24),
(2.25), and (2.7). Equation (2.27) follows. o

Remarks:

(1) Notice there is one restriction on € given by € < ¢ < dist(S,dU;)/C(T).

(2) The idea of estimating (2.27) is due to Besjes; see References 7 and 8.

(3) Ideas of resonance and nonresonance in relation to this theorem will be discussed at
the end of Section 3. However, notice that (2.24) and (2.25) cannot be satisfied if g,, # 0 for
(m,w) = 0.



(4) More generally, an O(€?) term could be added to the rhs of (2.16). This would not
affect the averaged problem or the approximation.

3. Transverse Motion in Averaging Form

A basic problem of transverse beam dynamics in a storage ring is to understand the
motion defined by

"+ Ky(s)r = ehy(z,y,s), (3.1)
V' + Ky(s)y = ehy(z,y,s), (3.2)

for various perturbations h, and k, and for € sufficiently small. In order to proceed we need
to transform these equations to a standard form for the method of averaging. We will again
use variation of parameters, and for that we need to discuss the solution of the unperturbed
problem

"+ K(s)z =0, z(0)=z0, 2'(0)=zp, (3.3)

which can be written in system form as
’ To
z' = A(s)z, z(0) = ( ,) : (3.4)
Zo

where z = (z1,23)T = (z,2')T and A(s) = (—Ko(s) (1)) . Here K (s) and thus A(s) are periodic

with period C, the circumference of the storage ring. Two linearly independent solutions of (3.3)

are
VB(s) eV (3.5)

¥(s) = [ -ﬂ%t—)dt (3.6)

with Wronskian —2:, where

and B(s) is a solution of
268" — (B)* +4B°K = 4. 3.7)

We assume K is such that (3.7) has C-periodic solutions and take 8 to be C-periodic. Pre-
sumably it can be proven that (3.7) has a unique C-periodic solution, but uniqueness is not
necessary for our analysis. The tune v is defined by

oy = / Wdt $(C), (3.8)
and if we define ¢,(s) b
$(s) = ty(s) + 2708/C,, (3.9)

then ¥,(s) has period C and thus (3.5) is seen to be quasiperiodic with base frequencies w, :=
27/C and w, := vw, (periods C and C/v).



Choosing the right coordinates is a significant issue for perturbation calculations, and
here it is convenient to define the following fundamental solution matrix of (3.4):

e (®) e~ ()
¥(s) = +/B(s) ( , . ) (3.10)
-ﬁ—(l—;)(%ﬂ'(s) + z) e 5(18—)-(%[3’(3) - z) e~ )
Note that det U(s) = —2¢, that
1 (1p4 N\ o—iv ~iy
. -,3(_5) (Eﬂ (S) el Z) [ —€
Ui(s) = %,/ﬂ(s) ( : ‘ _ , (3.11)
—5t5 (38(s) +i) e o
and that the Floquet decomposition of (3.10) can be written by observation as
V(s) = U,(s) eBen | (3.12)

where ¥, is U with 9 replaced by %, and B is the diagonal matrix with diagonal elements +1.
We now consider the perturbed problem for (3.3), namely

" + K(s)z = eh(z,w1s,wss), z(0)=xo, 2'(0) =z, (3.13)

where h(z,6,,0,) is 2m-periodic in 6, and in 6,. Here 6, will represent perturbations with the
period of the lattice, and 6, will represent external periodic perturbations due to, for example,
power supply ripple. It is a simple matter to add more frequency components to h. In the
system form of (3.4) this becomes

2’ = A(s)z + eH(z,w18,wss), z(0) = (ZZ) : (3.14)

where H = (0,%)T. To put this in the standard form for the method of averaging we define a
transformation from z to z via

z=U(s)z. (3.15)
The IVP for z becomes )
, Ae'?
2’ =¢€f(z,8), 2(0)=2= e ) (3.16)
where cc denotes the complex conjugate of the first component,
f(z,8) = \I!‘l(s)H(\I!(s)z,wls,wgs) , (3.17)
and L i
Ae*® = 5,5[,'1/2 [.7:0 +1 (-é-ﬂ(',:vo - ﬂoxg)] . (3.18)

Equation (3.16) is in a standard form for the method of averaging.



Since U~1(s5)¥*(s) = ((1) (1)> and z is real, we have z; = 2z and fi(z,s) = fa(z,s)*.
Thus it suffices to work with

fi(z,8) = —%\/ﬂ(s)e'i'/’(’)h(x, w18, w3s), (3.19a)

where z on the rhs must be replaced by
r = 1/B(s) (ei'l’(’)zl + e"w(’)zg) . (3.19Db)

It is thus clear that we are dealing with f(z,-), which is quasiperiodic with base frequencies w;,
wy and ws. The averaged problem will be written

v = ef(v), v(0) = z, (3.20)

and the first-order averaging result of Section 2 now applies. Before presenting some examples
we briefly discuss resonance in first-order perturbation theory.

Nonresonance and Resonance at First Order

Let f(z,8) = g(z,w18,ws28,w3s) as in (2.18), then w = (wy,w2,ws). The case where f = go,
in (2.21), is called the nonresonant case, at first order. It is of practical significance to notice
that in this case, f(z) can be constructed by averaging over each “frequency” separately; that
is, f(z) is obtained by averaging g(z, 6;, 0., ;) over each 6; independently. Resonance is defined
as not nonresonant, or equivalently there exists nonzero m such that (m,w) =0 and gm # 0. In
the resonant case, it is often of interest to analyze the motion in a neighborhood of the resonance
rather than right on resonance. Let us fix w; and ws and suppose that (wy,w,,ws) is resonant
at wy = wqg := Ypws; that is, there exists a nonzero m such that myw; + mawqe + maws = 0. Let

Wy = wy + €a (3.21)

and define
fr(z,7,8) := g(z,w18,wyns + at,wss) . (3.22)

The quantity @ measures the distance from resonance and will be called the resonance parameter.
We now show that this case can be handled in the context of Theorem 2.
The IVP 2’ = €f,(z,€s,8), 2(0) = 2z can be written

2 = efi(z,7,8), 2(0)=2
™ = ¢ 7(0)=0, (3.23)

which is in the form of (2.16) with z replaced by (z,7)7 and f replaced by (fr,1)T. Averaging
does not change the 7-equation, and the averaged IVP can be written

v' = ef;(v,es8), v(0)= z, (3.24)



where
_ . 1 (T
fr(v, 1) = }EEOTA fr(v,7,8)ds,

and where it is important to note that both v and 7 are fixed in computing the average. It is
easy to see that the averaging theorem gives "z(s, €) —v(s, e)" < C(T)e on O(1/¢) s-intervals as
before.

4. Beam Dynamics Examples at First Order

Here we discuss four beam dynamics problems in the context of first-order averaging.

Example A: h(z,w;s) is a product.
Several problems in beam dynamics have the form
h(z,w:s) = d(z)e(s), (4.1)

where e(s) is C-periodic. For example,

35(s)2?, sextupole

D(1 — e==*/%%)e(s), beam-beam
h(z,wys) =

L(s)z, chromaticity

20(s)z?, octupole.

Thus from (3.19),
fi(z,8) = —-;—i\/ﬂ(s) e(s)e_i’b(’)d(x) . (4.2)

Expanding d in a Taylor series and using (3.19b) gives

d(z) = Y due” =Y B(s)"d, Y (2) PRV 2h 25, (4.3)

n=0 n=0 k=0
and thus L
 — ntl =~ (n (2k—n— s n—
Aess) = =3 55 (o) Fele) 35 () kom0t (4.4
n=0 k=0

Here we will consider the nonresonant case and treat the chromaticity, sextupole, octupole, and
beam-beam as special cases.

In the nonresonant case, we can average the terms in w;s and wes in (4.4) separately.

Note that wqs occurs only in the term 2% ~7~1)22 which has zero average unless k = a4l
Thus, the inner sum only contributes for odd n = 2l +1 and thus k¥ = I+ 1. The second average

with respect to uns then gives

fl(v) = —:rlz-i 3 (21+ !

daiy1 B(s)Fe(s) [vr|*vr =: iv(lva|)on, (4.5)
=0 l + 1



where

d -
= __Z (20+1)! 11(12_1:11) Bs)1e(s) A,

and we have used v, = vj. The averaged IVP becomes
= iey(|v )1, v1(0) = Ae, (4.6)

and the complex conjugate for v;. Note that « is real. It is easy to see that |v;| is conserved,
and the solution of (4.6) is therefore v; = Ae'(*¥(4)*+#) Under the hypotheses of the averaging
theorem, we have

z(s) = 2/B(s)Acos (z[)(s) + ey(A)s + qS) + O(e) (4.7)

for 0 < s < T/e. Thus to O(€) the motion follows the betatron motion with a tune shift of
eCv(A)/2x.
Since w; = vw;, the nonresonance condition is satisfied if (2k — n — 1)v is noninteger for
0 £ k £ n and all n such that d,, # 0. It is straightforward but cumbersome to derive conditions
on the Fourier coefficients of ,3(3)# e(s) e—n=1)¥s(*) 50 that (2.24) and (2.25) are satisfied.
In the sextupole case, f in (3.19) is given by

fi(z,8) = i[el(s)e""” 21 e_1(8)e™™ 2222, + e_3(s)e” ’3“’2’22] , (4.8a)

where

e(s) = —i—ﬂaﬁ(s)S(s)e"l%(’) =1 epe™’ (4.8b)

is C-periodic. It is easy to check that v(A) = 0 and thus f(z) = 0 if » and 3v are not integers.
Thus, if the conditions of Theorem 2 are satisfied, then z(s) = zo + O(€) and z(s) = ¥(s)z(s)
follows the betatron motion defined by (3.3) to O(¢) on O(1/€) time intervals. To satisfy the
conditions of Theorem 2, U can be any open set containing zp, and T any positive number.
Notice that S becomes a point and that (2.24) and (2.25) are satisfied if 3(s) and S(s) are such

that
E letnl
|n + €V|

for £ =1, —1, and —3. But since » and 3v are noninteger, this is satisfied if ", |es| < oco.
In the beam-beam case, it is reasonable to take e(s) = é,(s), where 6, is the periodic
delta function with period C. Then we obtain

_ D 2 —48,A%sin? @

“which checks with References 9 and 10. It should be pointed out, however, that the averaging
theorem does not apply in this case because the smoothness conditions on the vector field are
not satisfied. It would be interesting to extend the averaging error analysis to vector fields with
delta functions.




In the other cases we obtain the well-known results:

" _% (s)L(s), chromaticity
7 = — e
—2 B%(s)0(s) A2, octupole .

Example B: Sextupole near the 1:3 resonance.

We now consider the sextupole third-integer resonance. We know that f is easily com-
puted if 3v (and/or v) is an integer, but to make it more interesting we investigate the case of
near resonance, where

Wo = Wy + €a; 3(.020 = 31/0601 = Mw1 s (49)

where M is an integer but vy = M/3 is not. We follow the resonance discussion at the end of
Section 3. From (3.22) and (4.8a),

fri(z,7,8) = ie_3(s) e~ M*“12 739752 | zero s-mean terms.
Thus
F ~ —i3a7 2
frl(zaT) =tapme ' aTz2 y QM = €_3M,
and the averaged IVP becomes
v} = ieapp et
‘U(O) =20
vy = —teaj e ?,
or . .
v} = teapre My}, v1(0) = Ae*®.
These equations are nonautonomous but only in a trivial way. If we let v; = e’ (=29 (. then
¢ =ie [a( + aMC*Z] , ¢(0) = Ae*. (4.10)

It is easy to see that this equation has four equilibrium solutions, { = 0 and three others, as is
to be expected for the sextupole 1:3 resonance. Also (4.10) has a Hamiltonian type structure;
see (6.24). If we let { = X +¢Y and any = v + 16, with X, Y, v, and 6 real, then

dY 2 2 .
== [aX +v(X? - ¥?) +26XY]|, Y(0)=Asing, (4.11b)

where 7 = €s. These equations are autonomous and Hamiltonian and thus are easily analyzed
in the phase plane. Since

z =U(s)z ~ ¥(s) (e-ifw(x + iY)) ’

eies( X —iY)



we obtain
z(s,€) = z1(s, €) = 2¢/5(3) [X(es) cos (1/)(5) - eas) - Y(es) sin(¢(s) - eas)] +O0(e) (4.12)

as our complete approximate third-integer resonance solution on 0 < s < T'/e. Note that this is
the betatron motion with a frequency shift of Aw; = —ea and slowly varying coefficients defined
by the IVP (4.11).

To check the conditions of the theorem, we pick A, ¢, and T so that the solution of (4.11)
exists for 0 < 7 < T. Then U and U, are chosen appropriately. Equations (2.24) and (2.25) will

then be satisfied if el
€Etn _
En m <oo for £==1,

and

E lnleln)ul <oo for ¢=-3.
n#zM -

Again this will be true if 3, |e¢,;| < oo.

Example C: Beam-beam with z-y coupling.
The equations of motion (3.1) and (3.2) can be written in system form as
z' = A(s)z + eH(z,w;s), (4.13)

where z = (1,22, z3,24)7 = (2,2, y,y")7,

(Az(s) 0 ) 0 1
A(s) = y A:c.y = ’
0 Ays) (—Kz,y(S) 0)

and
H(z,ws) = (0, he(z1,23,w18),0, hy(z1, :1:3,w13))T . (4.14)
The variation of parameters transformation
¥.(s) 0
z = ¥(s)z, U(s) = (4.15)
' 0 Wy(s)
gives
2 =¢€f(z,8) = e\Il'l(s)H(‘Il(s)z,wls) =: €g(2, w18, w3, wys), (4.16)

where w, = 271, /C, w, = 27y, /C, and v, and v, are the z and y tunes. Now

fi(z,8) = —;—.\/ﬂ,(s)ef"‘b‘(‘)h,(:cl,:cs,wls),
fa(z,8) = _%,/ﬁy(s)e-‘%(’)hy(xl,$3,wls), (4.17)



where z, and z3 must be replaced by

€, = /5x(s) (e‘¢z(’)zl+e-"¢=(’)z2)

z3 = 1/By(s) (e"’/’!'(")zs + e_w"(’)a) . (4.18)
In the beam-beam
ho(z1,23,w18) = z1d(z1,23)e(s)
hy(z1,T3,w18) = z3d(z1,z3)e(s), (4.19)

where

d(zy,23) = D(z?+23)™ [1 - exp(—-(:vf + x%)/?az)]
= Y duaict, (4.20)
k=0

and the second equality defines the dy,. Combining (4.17)-(4.20) and using the binomial expan-
sion gives

k41 k +1 )
fl(z’s) = -3 Z dklﬂz 3) ,By(s)ze(S) Z ( m >Z;nz§+1—me‘(2m‘k'2)¢z(-’)
kl—O m=0

X Z ( ) 2525 el OO, (4.21)

n=0

and a similar expression for fs(z,s). In the nonresonance case, where we can average the terms

with wys, w,s, and w,s separately, the terms in the sum of (4.21) are zero unless k and ¢ are

even and m = %’—2 and n = %. Letting k = 2p and £ = 2q then gives

f-l(z) = é7z(|zll7 |z3|)z1 ’ (422)
where 0 .
oo ) = =5 3 (01 ]) (%) B A G AZAT,
and _
Fa(2) = im(al, zsl)2s (4.20)
where

Yy(Any Ay) = _% fo ” 2q( )(2; :11) BB ()7 os) AP AR (4.25)



The averaged equations become
v = ieve (il [vs])or,  ©1(0) = Age™*,
v = 1€y, (|v1|, |v3|)v3 , v3(0) = Ayer, (4.26)

and recall that vy(s) = vi(s) and vy4(s) = v3(s).
It is easy to check that |v;| and |vs| are conserved and thus the solution of (4.26) is

v(s) = Azei(c'vz(Az,Ay)H%) ,
va(s) = Ayeileonwldstyere,) (4.27)
and the averaging theorem gives
z1(s) = 2/Ba(s)As cos($(s) + €12(As, Ay)s + 62) + O(e)
z3(s) = 2y/By(s)Ay cos(vhy(s) + ey (A, Ay)s + 6y) + O(e), (4.28)
for 0 < s < T/e. Thus to O(e) the motion follows the betatron motion on O(1/e) s-intervals
with tune shifts that can be calculated from (4.23) and (4.25).

For the special case of e(s) = 6,(s—s3), where s; is the location of beam-beam interaction
and B.(sp) = By(ss) =: B, one can show that

D 2 2 e z? 4 y?
o) = =g o [ [t (S5

'Yy(AmAy) = 7:c(AyvAx)’

where z = 2A4,/B; sin 6, and y = 24,1/By sin b, in the integrand. This checks with References 9
and 10. Again, the averaging theorem does not apply in this special case because of the non-
smooth vector field.

Example D: Rf phase modulation with damping.

A recent experiment at the Indiana University Cyclotron Facility (IUCF) with electron
cooling showed that rf phase modulation near the 1:1 resonance leads to longitudinal beam
splitting. In Reference 11, we elucidate this by applying the method of averaging to a pendulum
equation with small damping and periodic forcing. This gives a detailed picture of the dynamics
in terms of a Poincaré map with two attractors. Here we summarize the perturbation part of
that paper.

The equation of motion for the longitudinal dynamics in the IUCF experiment is

¢+ 2aé + w?sin ¢ = 2a3h + 9, (4.29)



where w

P(t) = F:u_i sin(wmt + O)
is the phase modulation, ¢ the rf phase, o the damping due to the electron cooling, w, the
synchrotron frequency, and w,, the modulation frequency. Because we are interested in the
Poincaré map (PM) we change independent variable by

T=wnpt+ 0,
which gives the IVP:
2
1 a ., W . _ pWs a o
¢+ 2w—-m¢ + ) sing = Fw—m (2—wm cos T — sin 7') , (4.30)

Bro)=do, () =65,

The 7o-PM is then the map (¢o, ¢p) — (¢(Tg + 27), ¢' (10 + 27r)). Typical parameters for this
problem are w,, = 27(240) s7!, w, = 27(262) s7!, @ = 2.5 571, and F' = 0.0195. Numerical
experiments (as well as the experiment) indicate the existence of two attracting periodic orbits
in the dynamics of (4.30). In the 7o = —n/2 PM these appear as fixed points (FPs) at (¢., ¢,) =
(—1.1957,0.2146) and (0.119,0.0023).

We have found these stable FPs of the PM by numerically integrating (4.30) and following
two orbits until they settle down. It appears that each point in a region surrounding the FPs
limits on one of the two fixed points; however, the basins of attraction are not clear, as nearby
points can go to different attractors. Our goal is to explain this using the method of averaging,
which will interpret the complicated dynamics of (4.30) in terms of an autonomous system in
the plane. The autonomous system in the plane is easily understood in terms of its phase-
plane portrait, and the portrait characterizes the basins of attraction and elucidates the beam
splitting.

To put (4.30) in a form for the method of averaging we need to introduce scaling and
transformations. From the numerical experiments it appears that the effects of nonlinearity,
forcing, and damping are all important. If there were no forcing, (4.30) would be a damped
pendulum, and there would be only one FP at the origin, and it would be a stable spiral point.
(The FPs at (£m,0) are not in the region of interest.) If nonlinearity were not important we
could replace sin § by 6, but then again there would be only one FP, a stable spiral. The fact
that there appear to be asymptotically stable FPs shows that the damping is significant. We
will treat all three effects as perturbations and introduce a small parameter € in a way that
brings in each effect at the same order: ¢ = €'/2¢;, F = &/2F, and a/w, = €&. Here we assume
©1, F', and & to be O(1). Also because w,, and w, are close we expect a 1:1 resonance, and so
we take wn/w, =11+ 08 =1+ ¢, which yields

1 = e
@2 -1 + €g2(p,T) + €ha(g, 7, €), (4.31)

where g,(p,7) = +28p, + 203 — 2600, — Fsint and hy(p,T,€) = O(1), i.e., hs is bounded
as € — 0. With Ay = 0, this is just the Duffing equation with small damping, forcing, and



nonlinearity near resonance, an equation which has been extensively studied in the dynamical
systems literature (see References 1 and 12). If we use the previous parameters with F' = 1,
then € = 0.07239, & = 0.02098, 8 = —0.0840, and 3 = —1.1600.

Regular perturbation theory gives the O(1) periodic solutions of (4.31) as ¢; = r cos(r —
x) + O(¢€), where

&r—%ﬁ'cosx=0,

A 1 3 1 A,
: — 3z = 4.
Br + 6" 2Fsmx 0, (4.32)
which follows from the expansion ¢; = yo + € y1 + O(e?) and the removal of secular terms
from the y; equation since y; must be periodic. In the PM, periodic solutions are fixed points.
Solving (4.32) for the above parameters gives, in the coordinates of the PM,

(¢e _ [ —1.1905 0.1171) (1.0809)
¢'e) - ( 0.2292 )’ (0.0021 "\0.1877/°
Two correspond very well with the two apparent asymptotically stable FPs found by iteration,
and the other, we shall see later, corresponds to an unstable FP of the PM.

We now proceed, using the method of averaging, to find an approximation to the PM
for (4.30). The initial value problem for (4.31) can be written in vector form ¢’ = Jyp +

eg(‘P’T) + 62”’(9077-, 6), SO(TOa 7'076’ 6) = 63 where P = (,0(7', 7'0){, 6)7 J= (07 1; _11 0)) P = (‘Pl) 902)T’
g =1(0,92)T, and h = (0, hy)T. Defining z by the variation-of-parameters transformation,

o = ey, (4.33)

yields the IVP for z = z(r,70,¢, €):
' = ef(z,7,70) + €R, z(70,70,&,€) = £, (4.34)
f(z,7,70) = e/ T=)g(d(-m)g 1), (4.35)

and R = R(z,7,7o,¢€) defined analogously. We have introduced 7y in (4.33) so that in the 7o
section ¢ = x. This problem is now in a staridard form for the method of averaging. The
averaged problem is

v = Ef(U,To), 'U(To, TO,Ev 6) = 6, (436)

_ 1 2
flv,mo) = E;r-/c; flv,7,70)dr
(—ézvl — By, — (v + v, + %F cos To)

A A 1 17
—Gwy + fuy + 35(v + v3)vy — 3 F sinTg

A modification of Theorem 2 gives

z=v+e€P (v, T, To) + 0(62 + (1 — To)) (4.37)



for 0 < 7 — 7 < O(1/¢). Here z and v have the same arguments (7,7o,¢,€) and P(v,7,70) :=
i ( f(v,8,70) — f(v,To))ds. Note that this gives an improved approximation to Theorem 2
on O(1) 7-intervals but gives the same estimate on O(1/¢) intervals. This result is useful for

proving the existence of periodic orbits and invariant tori, as will be pointed out later, because
@(T0 + 270, 70, €, €) = (70 + 270, 70, €, €) + O(€¥n). (4.38)

That is, the PM is actually defined by the averaged problem to O(€?) instead of O(¢), as given
by Theorem 2. To see that (4.37) is to be expected, let w = v + eP(v, 7) where we suppress the
70 dependence. Differentiating along the solutions of (4.36) gives

w = (I + eDlP(v,‘r)) ef(v) + e(f(v,‘r) - f(v))
= ef(w,7)— e(f(w,r) - f(v,r)) + D1 P(v,7)f(v).

This yields w' = ef(w, ) + O(€?), which is O(e?) close to (4.34). Subtracting this from (4.34),
integrating, and applying the triangle and Gronwall inequalities gives (4.37). To make this
rigorous one would proceed as in the proof of Theorem 2. We will pursue this type of argument
in Section 5 when we discuss second-order averaging.

The equilibrium solutions of the averaged problem, v = v, are precisely those given
by (4.32). To see this, let vy, = rcosd and vz = rsiné; then f(v,, 7o) = 0 gives (4.32), with
X = 7o+ 0 (and (4.33), with z replaced by v., gives the periodic solutions obtained from regular
perturbation theory). Linearizing about the equilibrium solutions and solving the associated
eigenvalue problems gives the eigenvalues

()\1) _ (a+ib (a+z'c (—0.0369

Yy a—ib)’ a—z'c)’ 0.0335 ) ’

where a = —0.0017, b = 0.0389, and ¢ = 0.0822. Thus the linearization has two asymptotically
stable spirals and a saddle point. Since the equilibria are hyperbolic, (4.36) has the same
structure as the linearization near them. This is illustrated in Figure 1, where we show the
phase-plane portrait for 7o = —#/2. The four non-constant trajectories shown are the stable
and unstable manifolds of the saddle point. The manifolds were computed numerically, using
initial conditions near the saddle point on the eigenvectors: (—0.4411,1.0) and (0.0717,1.0).
The basins of attraction associated with the two attractors (one is shown by the shading) are
clearly defined by the stable manifolds. The evolution defined by (4.36) for an arbitrary initial
condition is now easily inferred.

The averaging theorem says the phase-plane portrait of (4.36) and the Poincaré section
of (4.31) will be close for € small (and n not too large). However, we can say more about the
original problem in terms of the PM: P, (£, €) := ¢(70 + 27, 70, &, €) = v(70 + 2, 7o, £, €) + O(€?).
For € sufficiently small, an application of the implicit function theorem shows that the PM has
fixed points O(€?) close to the equilibrium solutions of the averaged problem (and, of course,
FPs of the PM are periodic solutions of (4.31)). Since the equilibrium solutions of (4.36) are
hyperbolic, Theorem 4.1.1 in Reference 12 asserts that for ¢ small the phase-plane structure
persists in the PM (see also References 1 and 13). Thus we have explained the dynamics



of (4.30) in terms of the phase-plane portrait in Figure 1, and this in turn explains the beam
splitting in the IUCF experiment in terms of the two attractors of the averaged system and
their basins of attraction. We have taken 7 = —7/2 in Figure 1, but clearly the beam splitting
should not depend on a particular Poincaré section. In fact, the phase-plane portraits of (4.36)
for different values of 7o are obtained simply by rotation, since the coordinate transformation
w = e’/7v, which is a rotation, gives w = f(w, 7y + 7), as can be seen from (4.35).
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Figure 1. Phase-plane portrait of Eq. (4.36) for 70 = —7/2. See text for the parameters used.

Finally, we discuss the case a = 0 for F of Figure 1, which is relevant to the IUCF
experiment as well as to the Fermilab nonlinear dynamics experiment E778. In Figure 2(a) we
show the phase-plane portrait of the averaged system for 8 = —0.0840. The implicit function
theorem can again be applied to show that the equilibrium solutions correspond to periodic
solutions of (4.31). The persistence of the invariant circles for € small is a deeper result that
follows from the Moser Twist theorem if the frequency of the periodic solutions of the averaged
system as a function of action has a non-zero derivative at zero action. We have verified that
this is the case. Also there are two homoclinic orbits (dashed curves in Figure 2(a)), and these
presumably do not persist in the PM. The stable and unstable manifolds most likely intersect
transversely, with transcendentally small angle, giving rise to a thin stochastic layer. However,
this is very difficult to prove, as the literature on the rapidly forced pendulum, a prototype
problem, shows. (See, for example, Reference 14.)

As B increases from its value in Figure 2(a), a bifurcation to one equilibrium solution
occurs at 8 = B, := —3(v2F)¥3/8 = —0.0342. Figure 2(b) shows the phase-plane portrait
for B = . and indicates a cusp structure at the bifurcation point. Figure 2(c) shows the on-



resonance case (8 = 0), and all solutions are periodic. Again the Moser Twist theorem can be
applied to determine stability of the associated FP of the PM.
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Figure 2. As in Figure 1 for & = 0. (a) 8 = —0.0840; (b) f = 8. = —0.0342; (c) 8= 0.

5. Two Second-Order Averaging Theorems
We discuss second-order averaging for the IVP:
Z = ef(z,8) + €F(z,s), 2(0,€) = zp. (5.1)

Here f and F are defined on U x R, where U is an open subset of C? containing 2o, and are
quasiperiodic in s; that is,

f(z,8) = Z fn(z)ei(n’w)s’ (5.2)
nezd

F(z,8) = Y Ep(z)eitr)e, (5.3)
nezd

In what follows f and f will denote the average and zero mean parts of a quasiperiodic function
and Z f will denote the zero mean integral of a zero mean quasiperiodic function. Smoothness
conditions will be discussed later. We include F' for two reasons: (1) it is necessary in the
resonance discussions and (2) it is easy to handle and we obtain a more general result.

Our first goal is to understand a special class of solutions z(s, €) of (5.1) on O(1/¢) time
intervals in terms of a simpler autonomous system constructed from f and F. In addition,
we discuss an extension to O(1/€?) time intervals and resonance. Averaging is essentially a
transformation procedure that leads to a systematic perturbation expansion of certain solutions
of (5.1), and leads to better and better approximations on time intervals of O(1/¢) as discussed
in References 7, 8 and 15.

We look for a transformation

z=y+eP(y,s), P(y,0)=0$ (54)



quasiperiodic in s, which transforms (5.1) into the IVP
y = VO (y) +V(y,s) + H(y,s,¢),  y(0,€) = 20, (5.5)

whose solution we denote by y(s, ¢) and where we require V(y, s) to be quasiperiodic in s. The
averaging approximation will be given by

2(s,€) = w(s,€) 1= v(s,€) + eP(v(s, e),s) , (5.6)
where v is defined by the IVP
v = eV (v) + €V (v), v(0,€) = zp. (5.7)

Equation (5.7) is obtained from (5.5) by ignoring the O(¢®) term and replacing V by its average.
We will show, under suitable restrictions on f and F, that y(s,e) = v(s,¢€) + O(€?) umformly
in s on O(l/e) s-intervals. It will follow from (5.4) and (5.6) that z(s,€) = w(s,€) + O(€?)
uniformly in s on O(1/€) s-intervals; thus we have a second-order perturbation procedure based
on a solution of the autonomous problem (5.7).

To determine V), V, P and H we differentiate (5.4) along the solutions of (5.5) and
insert into (5.1) to obtain

[1 + eD, P(y, s)] [eV(l)(y) +€&V(y,s) + €H(y, s, e)] + eD;P(y,s)
= ef (y+ cP(y,9),5) + *F(y + €P(y,5), ) (58)

Here and in the following D! denotes the jth derivative of the ith argument, be it vector or
scalar. We now show that (5.8) determines the four unknown functions. Expanding f and F on
the right hand side of (5.8) by Taylor’s theorem, we obtain

f(y+€P(y,s),8) = f(y,5) + D1 f(y,8)P(y,3) + €p1(y, 5, €) (5.9a)

F(y + eP(y, s),s) = F(y, s) + €p2(y, s,€) . (5.9b)

These equations can be viewed as defining p; and p;; then under suitable conditions Taylor’s
theorem gives p; and p; as order one (in ¢) functions. Using (5.9) in (5.8) and equating powers
of € gives

VO (y) + D, P(y,s) = f(y,s), (5.10a)
V(y,s) = D1f(y,s)P(y,s) + F(y,s) — D1P(y, )V (y), (5.10b)
(1+ €Dy Py, s)) H(y,s,€) = =D1 Py, )V () + p1(y: 5, €) + pa(y,8,¢) - (5.10c)

Equations (5.10) are solved sequentially, treating y and s as independent variables. Since P is to
be quasiperiodic in s, D, P has zero s-mean; therefore, V(!)(y) must be the average of f (whence



the term “method of averaging”). Equation (5.10a) along with P(y,0) = 0 then determines P,
and V is then defined by (5.10b). Finally, H is determined by (5.10c) in combination with (5.9)
as long as 1 + €D, P is invertible. Thus, recalling (2.22), we have

VO@) = flo) = Y fulv), (5.11a)

neM

P(v,s) = /0 fo,t)dt= 3 fn(v)(,m,w),_l)

M in,w)
= Z fn( ) i(n,w)s +p('U), (51]_b)
M (n w)
V(v) = D f(v,s) P(v,s) — Dy P(v,s) VD(v) + F(v,s) (5.11¢)

— Z Z Dfnjm('v)fm(v) +DV(1)(v)p(v)—Dp(v)V(l)(v)+ Z I:"n(v)

nEM mgM i(m,w) neM

Here we have made use of the fact that

D, f(v,8)P(v,s) = Dy f(v,s)p(v) + Z (Z Df"jm(v)ffn(”)) pilnw)s

neZ® \mgM i(m,w)

We now have completely determined a candidate w for an approximate solution of the IVP (5.1),
namely,

z(s,€) >~ w(s,€) = v(s,€) + P (v(s €), e) (5.12)

where P is defined by (5.11b), and v(s, €) is the solution of the autonomous IVP (5.7) with V(1)
and V defined by (5.11a) and (5.11c).

In order to state the theorem that specifies the relation between z(s,€) and w(s,€), we
need some general conditions on f and F' as defined by (5.2) and (5.3). We make the following
rather mild assumptions:

(A) fn, D fn, D? fn, F,, and DF, exist on U, and for each compact subset K C U each of the
following series converge: Y. sup|D?f,(z)| and ¥ sup D¢ f,(z)/|(n,w)| for j = 0,1,2
neZd 2€K ngM zeK

and Y sup|D’F z)l for j =0,1.
sz z€K

(B) g(v, s) := V(y, s) satisfies (2.24) and (2.25), where V and thus V are defined by (5.10b).

(C) H is well-defined by (5.10c) and bounded on compact U; C U, where U, is defined in the
proof of the theorem.



Note that (A) implies that the rhs of the ODE in (5.1) is locally z-Lipschitz on ¢ and
continuous on U X B, hence the IVP (5.1) has a unique maximal solution in I.

An important concept in our theorem and its proof is the guiding solution,”® which is
defined by the e-independent IVP,

du =V (u), u(0) = 2p. (5.13)
dr

By (A), V® is locally Lipschitz on 2. Therefore, there exists a function T} : Y — (0, oc], such
that [0, 7Ti(20)) is the maximum forward interval of existence of the solution of the IVP (5.13).
Standard continuation arguments show that for T3(29) < o0, u(7) approaches the boundary of ¢
as 7 / Ti(z0). We can now state the basic existence, uniqueness, and approximation theorem
of second-order averaging.

Theorem 3 (Second-Order Averaging): Fizr zo € U and let T < Ty(20). Then there exist
positive numbers o = €o(20,T) and C(2,T) such that for 0 < € < ¢ and for 0 <t < T/e, the
IVPs (5.1) and (5.7) have unique solutions in U and

ll2(s,€) = w(s, )| < C€*.

Proof: Let § = {z € €|z = u(7),0 < 7 < T} C U be the compact set defined by the guiding
solution. Let U; and U, be open-bounded subsets of U satisfying

Scih CZ/—{1 C U, Caz cu.

The important point here is that there is a positive distance between the boundaries of these
sets. The proof has three steps, involving several restrictions on e: (i) v(s, €) exists uniquely in
U, for 0 < s < T/e and for ¢ sufficiently small; (ii) y(s,¢) as defined by (5.5) exists uniquely in
Uy for 0 < s < T'/e and for € sufficiently small and satisfies ||y(s, €) — v(s, €)]| = O(€?); (iii) z(s, €)
as defined by (5.4) and (5.5) is the unique solution of (5.1) in ¢ for 0 < s < T'/e and satisfies
|2(s, €) — w(s,€)|l < Ce?. The restrictions on € will be indicated in the proof, and the ¢, of the
theorem will be the minimum ¢ in the restrictions.

To prove (i) we first note that (A) implies that V is locally Lipschitz on U since D f, P,
F, D, P, and V) are. Therefore v(s, €) exists uniquely in ¢, on its maximum forward interval

of existence [0 [31(6)) A comparison of the guiding solution u with v obtained by subtracting

(5.13) from (5.7), integrating, using the triangle inequality, using the facts that V) is Lipschitz
and V is bounded on U, and applying the Gronwall inequality, shows there exists an €; such
that for € < €1, B1(€) > T/¢, and (i) is proved.

To prove (ii) we first note that by (A) P(y,s) is bounded on U,; thus there exists an
€2 such that for € < €3, y + €P(y,s) € U for y € Us; thus p; and p, in (5.9) are well-defined
on l(2 Since P is bounded, there exists an €3 such that for ¢ < €3, 1 + eDlP(y,s) is invertible
on U,; thus H is well-defined on U, by assumption (C). Thus the rhs of (5.5) is well-defined and

locally y-Lipschitz on U,, and we let [0, ﬂ(e)) denote the maximal forward interval of existence



of the unique solution of (5.5) in #; and J = [O,ﬂ(e)) N [0,T/¢€]. Subtracting (5.7) from (5.5),
integrating and using the triangle inequality gives

”y(s, €) — v(s, e)” < e/:llV(l)(y(t, e)) - V(l)(v(t, e))
+€ /;"V(y(t, e)) - V('v(t, e)) [: g(y(t, €), t)dt”

+63/;“H(y(t, €),t, e) dt. (5.14)

‘dt

|dt-}-e2

Using (B) and the result at the end of Section 2 gives

fo’g(y(t, e),t)dt" bounded on J, and

(C) gives H bounded on Uy; thus the last two terms in (5.14) are bounded by Me? on J for
some constant M. Letting L be the Lipschitz constant for V(1) and V on U, gives

"y(s, €) — v(s, e)" <M+ L+ €) /:“y(t, €) —v(t, e)” dt

for s € J. An application of the Gronwall inequality yields "y(s, €)—v(s, e)” < Mée®exp L(1+€)es

for s € J, and e restricted as above. Thus there exists an €4 such that for € < ¢4, "y(s, €)—v(s,€) "

is less than the distance between OU; and OU,. Therefore, y stays inside Uy, which by the
continuation theorem implies A(e) > T'/e. Thus (ii) is proved.
To prove (iii) we note from (5.4) and (5.8) that

2 = [1 + eP(y,s)] [CV(I)(y) + eV (y,s) + €H(y, s, e)] + eD2P(y, s)
= ef(y + eP(y,s),s) + 62F(y + eP(y,s),s) ,

and for y € Uy, y+€P(y; 8) € U, which proves the first part of (iii). Finally, “z(s, €)—w(s, e)“ <

”y(s,e) — v(s, e)“ +e€ P(y(s,e),s) - P(v(s,e),s) <1+ eL)lly(s,e) - v(s, e)“, where L is the
Lipschitz constant for P on U;. Thus, using (ii), (iii) is proved and this completes the proof of
the theorem with ¢, = Min(ey, €3, €3, €4). ]

Remarks:

(1) In summary, the solution of the IVP (5.1) is given by
z(s,€) = v(s,€) + eP(v(s, €), s) + O(éz) (5.15)

for € < € and O < s < T/e, where T is defined by the solution of (5.13) in 2/; P, V) and V
are defined by (5.11) and v(s,€) is defined by the IVP (5.7).



(2) In the case where f = 0, V) = 0, and V(v) = Di1f(v,s)If(v,s) + F(v,s) =

Dfn-m( )fm(v) + Z Ja »(v) . Thus, v is defined by
neEM,mgM (m w) neM

v = &V (v), v(0) = 2. (5.16)

The approximation for z is again given by (5.15).

(3) It is easy to see that the first-order averaging theorem in Section 2 is a special case
of the second-order theorem under sufficient smoothness. For example, when f = 0 we obtain
from Theorem 2 that z(s,€) = zo + O(€) for 0 < s < T/e, which is contained in Remark (2)
above, since v(s, €) changes by no more than O(e) on O(1/¢) s-intervals.

Averaging on O(1/€*) s-intervals

A natural question in averaging is when can results be obtained on time intervals longer
than O(1/¢). We now show this to be the case when f = 0. Our goal is to obtain an O(e) ap-
proximation on O(1/€?) s-intervals.

Here we define our basic approximation v(s,e) = u(e®s), where u is defined by the

e-independent IVP:

du
=V, u0)=z, (5.17)

which is (5.7) in scaled time. Using f = 0, (5.11c) becomes

V(u) = V{u,9) = Ds 7 (w, )27 (%,8) + F(u,5).

We make the same assumptions as in the previous theorem; thus, V is locally Lipschitz on I/
and there exists a function T3 : Y — (0, o0, where [0, T3(zp)) is the maximum forward interval
of existence of the solution of the IVP (5.17). Standard continuation arguments show that
for T5(z0) < 00, u(7) approaches the boundary of i as 7 / T3(25). We can now state the basic
existence, uniqueness, and approximation theorem on O(1/¢€?) s-intervals in this special case.

Theorem 4 (Second-Order Averaging for f = 0): Fiz 2o € U and let T < T3(z). Then
there exist positive numbers €9 = €5(20,1") and C(2,T) such that 0 < € < € tmplies that for
0 < s < T/, the IVP (5.1) has a unique solution in U and

ll2(s, €) — u(e®s)|| < Ce.

Proof: Let S = {z € €|z = u(7),0 < 7 < T} be the compact set defined by the approximating
solution (5.17), and let Z; be an open-bounded subset of U satisfying S C Uy C Uy C U. Also
the assumptions A, B, and C are in force.

The proof is quite similar to the proof of Theorem 3 and has two steps that involve
restrictions on e: (i) y(s,€) as defined by (5.5) exists uniquely in U; for 0 < s < T/e® and
for € sufficiently small and satisfies Ily(s,e) - u(623)|| = O(e) on the same interval; (ii) z as



defined by (5.4) and (5.5) is the unique solution of (5.1) in U for 0 < s < T'/e? and satisfies
"z(s, €) — u(ezs)" < Ce at each such s for e sufficiently small.

The proof of (i) is basically the same as the proof of (ii) in Theorem 3, except that
(1) V@ is missing in (5.14), and (2) the argument for the bound on the g term is different.
The latter uses the fact that y’ = O(€?) in the argument at the end of Section 2 to give the

boundedness of the g term on O(1/€?) s-intervals. Equation (5.14) then yields "y(s, €)—u(€e?s) ” <

Me+ Lé? f§|y(t,e) — u(e2t)” dt, and the result follows. The proof of (ii) is identical to the proof
of (iii) in Theorem 3. O

Remark: In summary, the solution of the IVP (5.1) is given by
2(s,€) = u(€®s) + O(e)
for € < g and 0 < s < T'/€?, where T and u are defined by the IVP (5.17).

Resonance at Second Order

We now consider the case of resonance at second order for (5.1) with F = 0 and (5.2)
with fo = 0. Recall that V(y) = Dy f(u,s)If(u,s), and we proceed as in the case of first-order
resonance near the end of Section 3. We suppose that D, f(y,s)Zf(y,s) has resonant terms
when w, = wy but f does not. As in the case of first-order resonance, we analyze the motion
in a neighborhood of wyo. Because we are at second order we let

wy = wyo + €2a,
and in analog with (3.22) define
fr(z,1,8) := g(2,w18,wz0s + at,wss) . (5.18)
The IVP (5.1) can now be written

2 =¢€f(z,7,9), 2(0) = 2o, (5.19a)

T'=é, 7(0) =0, (5.19b)

which is analogous to (3.23) and is in the form of (5.1) with z replaced by (z,7)7, f replaced
by (fr,0)7, and F replaced by (0,1)7. We now apply Theorem 4. Averaging does not change
the 7 equation (5.19b), and after solving the averaged equation corresponding to 7 the averaged

IVP can be replaced by

d
Eg =V(u,1), u(0) =2z, (5.20)

where

V(u,7) = Dy fr(u,7,8) I fr(u,T,s). (5.21)



Here the indicated averaging is taken over s with u and 7 fixed. Theorem 4 then gives
z(s,€) = u(e®s) + O(e) on O(1/€?) s-intervals. Theorem 3 can also be applied to give an
O(€?) approximation on O(1/¢), but we won’t pursue that here.

6. Beam Dynamics Examples at Second Order

Here we discuss four examples in the context of second-order averaging.

Example E: Sextupole with v, 2v, 3v, and 4v non-integers.

We now continue our discussion of the sextupole:
" 1 2
"+ K(s)z = 6-2-5(3):1: ,

z(0) = zo, '(0) = g, (6.1)

which began in Section 4. Letting z = (1, 2;)T = (z,2')T and z = ¥(s)z, we obtain # = €f(z, s),
2(0) = zp, where

fi(z,8) =1 [eﬂs)e“"”"zi2 + e_l(s)e'i@’Zzlzz + e_3(s)e’3i°’2’z§] , (6.2)
and

erls) = ~76Y7(s) ()6 =i T egne™n? (6.3)

as before. Clearly f = 0 for v and 3v non-integer. The second-order averaging Theorems 3
and 4 give

U(s)u(e?s) + e¥(s)P(u(e?s),s) + O(e?), 0<s<T/e
z(s,€) = ¥(s)z(s,€) = (6.4)
U(s)u(e?s) + O(e), 0<s<T/e.

Since f and F are zero, u and P are defined by

u e‘"‘
37 = V(u), u(0) =20 = (Acc ) , (6.5)
P(u,s) = [ f(u,t)dt = Tf(u,s) + p(u), (6.6)
and
V(u) := V®(u) = D1 f(u,5)Zf(u,9), (6.7)

where (6.5) is (5.7) with V(!) = 0 and with scaled time 7 = €?s, and (6.6) and (6.7) are obtained
from (5.11b) and (5.11c).
In the nonresonant case, where v, 2v, 3v, and 4v are non-integers the calculation in (6.7)
yields
Vi(v) = iyvivs, (6.8)



where v is a real constant. Before outlining the calculation of (6.8) we complete the discussion
of the approximate solution. The averaged IVP (6.5) becomes v| = iyviv}, v1(0) = Ae*® and its
complex conjugate. It is easy to check that vyv} is conserved; therefore,

vy(€s) = Aexpi(e27A2s + ¢) . (6.9)

Thus, we obtain from (6.4) that
z(s) = z1(s) = 24/B(s)A cos('q[)(s) + 2yA%s + qS)
+?12-e B(s)A? /03 B*%(r)S(r) [sin(ib(T) + ¥(s) + 262y A%s + 2¢) (6.10)

+2 Sin(—’(/J(T) + 1/)(3)) + sin(-—31/)('r) + ¥(s) — 2e?yA%s — 2¢)] dr + O(é?),
for 0 < s < T/e and

z(s) = 2y/B(s)A cos(d)(s) + e2vA%s + ¢) + O(e), (6.11)

for 0 € s £ T/e*. In (6.10) notice the tune shift correction in the first term, but also notice
that a consistent expansion to O(e?) on 0 < s < T'/e must also include the second term. Even
though the tune shift correction is only O(€) on O(1/¢) s-intervals, it is needed to obtain the
O(€?) approximation. In (6.11) the tune shift can be ignored on O(1/¢) s-intervals because
the approximation is good only to O(€). These results should be contrasted with the octupole,
where the tune shift becomes important when s is of the order of the reciprocal of the octupole
strength and there apparently is no result analogous to (6.11).
To compute V;(2) we note from (6.7) that

Vi(z) = %é%ﬁzfl(z,s) + gf—: (Th(z9), (6.12)

where we have used the fact that Zf5(z,s) = (l' fi(z, s))*. These averages require averages of
are(s) = ek(s)e”‘“’"’l'(eg(s)e““”’)

= Skt il(nn)wr+(ER)wns

= an:I Tan + ) e . (6.13)
Notice that e_,(s) = e,(s)*, which implies that e}, = e_x _, and ax,(s)* = a_k,—n(s). Also note
that £ and £ will be £1 or +3. Now we have assumed that f = 0, and so v and 3v must not
be integers; thus, the denominators in (6.13) are nonzero and the aj, are well-defined, assuming
Yonn' |€knll€ens| is finite. Furthermore, £ + k can take the values +2 and +4, and thus if 2v and
4v are not integers we can do the w;s and w;s averages in (6.13) separately, which yields

0, L# —k

Tt = o 0= —k, (6.14a)



where

7=Z—Eﬁ—=izkwabﬁk (6.14b)
k ~ nw; + kwy w57 n+ vk - )

is real and k and £ take the values £1 and +3. Multiplying out the terms in (6.12) and making
use of (6.14) yields (6.8) with v = —64; — 27s.

In the case where S(s) = So6p(s), es(s) = —%ﬂgﬂSo 8,(s) and exn, = — 2By’ *So; that is,
the latter is independent of both k£ and n. From (6.14b),

1 _ B3Ss

_ 1 3g2
Y = 160’2w1ﬂ°s°;n+ku =350 cot mkv (6.15)
and thus
= —ﬂgsg [3 cot mv + cot 3mv]
7= " 16C '

In addition, the integral term in (6.10) can be evaluated. Again it should be pointed out that
the averaging theorems do not apply for delta function perturbations.

Example F: Sextupole near the fourth integer resonance.
Here we consider the sextupole in the neighborhood of the fourth integer resonance. Let
Wy = wag + €2a; 4wqyp = 4vpwy = Muwy, (6.16)

where M is an integer, but v = M/4, 2y = M/2, and 3y = M/3 are not. We follow the
resonance discussion at the end of Section 5. From (5.18) and (6.2),

fr(z,7,8) = i[el(s) €407 19722 4 e_y(8) €700 79720 25 + e_3(s) e 3H20° e“'3‘"z§] , (6.17)

which is similar to the equation after (4.9). Equation (5.21) (see also (6.12)) now becomes

Vi(z,7) = Qfl%izﬂl'fl(zﬁ,s)+a—ﬁ%£ﬁ(1fl(z,r,s))*

= I+1I, (6.18)

where 7 is as before the zero mean integral with respect to s (holding 7 and z fixed) and the
average is with respect to s (holding 7 and z fixed). If we replace w, by wg in (6.13) and define

Ykt by

Akl =: 1Ykt (6.19)
then 4%, = —v_k_1, the nonzero vs are vk, 71,3, Y-1,-3, ¥3,1, Y-3,—1 and
Ye,—k = Yk
N3 = —EM =—72-3,
n (n + 3vp)wy ' (6.20)
Y =—2 S Monlin —YIa-1>

(n + vo)wy



where < is defined by (6.14b). It is straightforward to calculate I and I] as

I = (~4a;3(s) — 2a_11(s)) 2822 — 2a_1 _a(s) e~ 23

II = (4a_1,1(s) + 2a_3,3(s)) 22zy +2a_3_1(s) e~ *723,
and thus _
Vi(z, 1) = i('yzfzz + ae"”‘”zg) , (6.21)

where v = —6v; — 273 as in Example E, and o = —2v_;,_3 + 27_3-;. The averaged IVP now
becomes . .
vy = ezi['yv’l“vf + aeH “"vfa] ,  v1(0) = Ae?, (6.22)

where 7 is real and « is in general complex. As in the third integer resonance case, this can be
. il . .
made autonomous by the transformation v; = e™*¢%*(, which gives

¢ =ilal + 90+ ], ((0) = Ae®. (6.23)

This is analogous to (4.10) and it is easy to see that this equation has five equilibrium solutions,
¢ = 0 and four others, as is to be expected for the sextupole 1:4 resonance. The IVP (6.23) is
equivalent to

(@OH(,C)

C, = ac* ’
' . 2 0H((, ("
™= —-262——%{&2 , (6.24)
where ] ] 1
H((,(") = ag¢" + 57(CC")? + 7a7¢t + 7a¢™. (6.25)

It is easy to check that (6.25) is a conservation law for (6.23). If we let ((s) = %(X(ezs)+iY(ezs))
and H(X,Y) = H((,¢*) then (6.24) becomes

ax _ _om
dr =~ 9y’
a _ oH
dr =~ 08X’

These are real, Hamiltonian, and easily analyzed in the phase plane in analogy to the situation
in the 1:3 resonance of Example B. Finally we apply Theorem 4 to obtain

emio (X (2s) + 1Y (¢%5))

cc

z(s) = ¥(s)z(s) = W(s)( ) + O(e) (6.26)



for 0 < s < T'/€%, which gives

z1(s) = 24/8(s) [X(ezs) cos (d)(s) - ezas) —Y(é) sin(t/)(s) - e2as)] + O(e)

(6.27)

on the same s-interval. An improved approximation on the shorter interval [0,T/€] can be

obtained from Theorem 3, as in Example E, by including the P function.

Example G: Sextupole with z-y coupling.

The equations of motion for the coupled sextupole can be written
z' = A(s)z + eH(z,w13),
where z = (21, Z2, %3, 24)T = (z,2',y,y')T and
1 T
H(z,ws) = (0, ES(S)(mf —z2),0, —S(s)wlmg) .
The variation of parameters transformation

U,(s) 0
z = ¥(s)z, U(s) = ( )
0 Uy (s)

gives
2 =¢€f(z,8) = e\Il'l(s)H(\Il(s)z,wls) =: €g(z,w18,wsS,wys) ,

where w, = 27v,/C and v, and v, are the  and y tunes. Now
2 .
filers) = —5/Ble)S(s)e 40 (e - o2)
; :
fs(z,8) = 5‘\/,33,(8)5(3)6—"&”(3).'1713}3 ,

where x, and z3 must be replaced by

Ty = B=(s) (ew’(s)zl + G—M’(’)Zz)

3 = /By(s) (e"""(’)z3 + e“"’”(’)z4) .

This gives

fi(zs) = z’[el(s)e"‘“”z;"+e.l(s)e~"w=’2z1z2+e-3(s)e-*3~=szg

(6.28)

(6.29)

(6.30)

(6.31)

(6.32)

(6.33)

4+ d_ya(s)e i emnde 2 4 d_ ) o(s)eT " 22324 + d_l,_z(s)e-‘(“'=+2%)’z§] (6.34a)



and

f3(2, S) = 2 [dl,o(s)e"“’”zlza + dl’_g(S)ei(‘%—zwy)sZIZ‘;

+d_10(s)e™" "2 25 + d_l,_g(s)e"‘(“”+2‘“”)’zgz4} . (6.34b)
Here the e, are defined by (6.3), and

1 .
dkl(s) = ZS('S)IBy (3),6;/2(3) et (K¥zp(s)+yp(s))

= Z dklm eimwls .
m

Since z; = z; and 2] = z3, fa(z,3) = fi(z,3)* and fi(2,8) = fs(z,s)", and it is easy to check
that f =0 if v, 3v,, and v, £ 2v, are non-integer.

Before proceeding, however, we analyze the v, + 2v, near-integer resonance. Recall the
resonance discussion at the end of Section 3 and the 1:3 resonance in Example B. Letting
Wp = Wy + A€, Wy = Wy, + Gy€, Wy, = VgyW1, Wy, = Vy,w1, Where vy + 21, = M (an integer),
Vzo, 3Vzo, and vz, — 2vy, (nonintegers) gives w, + 2w, = Mw, + ae. The averaged vector field
becomes

frl(z, T) = i d_l'_z(s)e—thls e—ia‘l'zz

fra(z,7) = i2d_; _;(s)e-Mwrs ¢=i07 4,5, (6.35)
and the averaged equations become
v = ieyye o),
vy = ie2ype T olvl, (6.36)

where vy = d_;,_2,m and may be complex. Letting v; = €9¢*(; and vy = e~*%¢%(3 autonomizes
as in Examples B and F, giving

G = ief—aG + 77
G = ieals + 2vm GGl (6.37)

Letting ¢; = %(Xl +2Y;) and (53 = %(X2+z'Y2), (6.37) is transformed into a two-degree of freedom
autonomous Hamiltonian system which can be analyzed using the standard techniques for such
systems. Theorem 2 is then applied to obtain the approximation.

In the nonresonant case P is easily constructed as [ f(z,7)dr and the averaged problem
becomes

v o= EV(v),

v(0) = z0=(Ase®, cc, Ay, cc)” (6.38)



where

V(z) = D1 f(2,8)Tf(z,8). (6.39)

To calculate V; and V5 we proceed as in Example E. For example, V; is found from (6.39) by
0fi(z,s)
] .

4
averaging Y.
ging i= azJ

and die, after (6.34) and the fact that fi(z,8) = fi(z,s)* and fu(z,s) = fa(z,s)*. Because of
the nonresonance condition the only terms that appear in V;(z) are 222, and 212324 and in V3(2)
are 212323 and 2z2z4. After considerable computation, we find

Zf;(z,s) using (6.34), the nonresonance condition, the definition of dj,

vy = i€ ('yxlvl|2 + 'yc|v3[2) v, v1(0) = Age'e

vy = i€ (’yc|v1|2 +.7y|v3|2) vs, v3(0) = Ayei‘i’” (6.40)

where 4, = 4 as given after (6.14b), the coupling constant, 7., is given by

4 Re [el,ﬂdI,O,n] |d—1,2,—n|2 |d--1,-2,n|2
Ye = — Z 2 +
w1 5 n+ v n+v,—2vy, n—y,—2y
and \
ﬂyy -— _..2_. Z 4 |d1,0‘n|2 + |d11_2yn|2 _ |d—'ly—2’nl .
w5 n+v, n4v,—2v, n-—-v;—2y,

Since vz, v, and v, are each real, it is easy to see that |v;| and |v;| are conserved in (6.40) and
thus

n(e) = Acexpli(€lAl +vADs +62)]

w(s) = Ayexpli((redl +%4Ys +4y)] (6.41)

and the approximation can be constructed as in (6.4), noting that (6.5) is in the scaled time
whereas (6.38) is not.

In the case of “thin” sextupoles distributed around the ring, S(s) can be represented
by a sum of delta functions. This case has been treated by Collins, Ng, and Ohnuma (see
Reference 16), and we are now in a position to compare results.

Example H: Dipole ripple and sextupole (nonresonance).

In this section, we extend the result in Example E to include dipole ripple. This problem
was also discussed in Reference 17, where another standard form of the method of averaging
was used. The perturbation term % in (3.13) in this case can be written

h(z,w18,w3s) = hy(z,w18) + h(ws,wss), (6.42a)



where

1
hs(z,w18) = ES(s)xz, (6.42b)

hr(wys,w3s) = Ar(s) cos (w;;s + a,(s)) , (6.42¢)

and w3 = vwy, with v, = f,/fo and f; is the beam frequency and f, the ripple frequency. Thus,
the first component of f(z,s) in (3.16) can be written as

f1=f.91+fr1a (643)

where f;1(2,s) is given by (6.2) and
fri(z,8) = ir(s) [e‘“'(’)e'i(“’2_w3)’ + e_i“'(’)e'i(“’2+w3)3} , (6.44)

where i
r(s) = —Zﬁllz(s)e'i‘bp(’)A,(s) .

We assume v, 3v, and v, & v are nonintegers; thus f = 0 and the second-order averaging
Theorems 3 and 4 give (6.4)—(6.7) as before. Making use of (6.43), (6.7) becomes

V(2) = D1fu(2,8)Ifs(2,8) + D1fs(z,8)1f:(s), (6.43)

since D1 f;(z,8) = 0. The first term was computed in Example E, and the second term is zero
if v, & v is noninteger for £ = 0,2,4. To see this, notice that f, contains the terms e*i1+2*
for £, = 1,3 and f, contains the terms e~*«2¥%2)s  apd products of these must not give e*M«1*
for integer M. Therefore, V(2) is as in Example E, where it is defined by (6.8), (6.14b), and
¥ = =671 — 27s.

Thus by Theorem 4, the ripple effect is at most O(€) on O(1/€?) s-intervals and does not
affect the approximation given by Theorem 4 in (6.4b) and (6.11). However, the effect of the
ripple does enter through the P function,

P(z,8) = P,(2,8) + P.(2,8) = /08 fs(z,t)dt + /Oa fe(z,t)dt. (6.46)

Equation (6.11) doesn’t change, and

\/ B(s) [ew(’)Pﬂ(s) + e"""(’)Pﬂ(s)]

must be added to (6.10). This term can be written

B(s)!/? /0 " BY2(t) A, (1) sin ((s) — (2)) cos(wst + e (1)) dt, (6.47)

and this completes the approximation.



In the delta function case, where S(s) = Spb,(s—so) and A(s) = A.6p(s—s,), we obtain
a simple expression for v as discussed in Example E. In addition we obtain

(Bre,s) = =2 3/25"{ 1 (smstiton) 5~ 7 i(inettnton) g €
s/l 9 - -

vye Z ——— 4 2v,05€

o n+v —~ n-v

+v§e—3i(wzs+¢p(so)) Z -cinw_l(:é—_si)_}
n — v

n

B2, i(wastp(s0)) € E—0) —i{wastvip(s0)) €85
B g S e lomewin) 22
. 13v{f—6o)
+v§e—3t(wzs+¢p(so)) ;Tc%;;} , (6.48)
where 0 = wys = 27s/C, 0y = w189, and 0 < () < 27, and
P _ 1 1/2 *i(¢p(9r)+w26) i(ar+was) et (s—r)
(Pe)(z,8) = _8_7rﬂ’ Are “1° Xn: n4v—v
inwy (s—sy)
—i{artwszs) e
te ; n—v,— 1/}
_ _i' g1/ A,e“(%("’*“’”)
ei[(u—u,)(0—9,-)+a,-+u,-€] ei[(u+vr)(9—9r)—ar—ur9]
X 1 — ei2m(v—vr) + 1 — ei2m(v+vr) (649)

7. Conclusions and Discussions

We have presented first- and second-order averaging theorems in the quasiperiodic case
and applied these theorems to several beam dynamics problems. We have indicated how the
conditions of the theorems can be satisfied in some of the examples, but a more detailed study
of this is necessary. Furthermore, the theorems do not apply in the case of delta function per-
turbations, and this seems like a good problem for future work. We have selected a variety of
problems. In the first-order case, Example A discusses a fairly general situation that includes
chromaticity, sextupole, octupole, and beam-beam perturbations. Example B shows how near
resonance fits into the averaging framework and the resonant normal form appears quite natu-
rally. Example C is a higher-dimensional problem that illustrates the treatment of transverse
coupling in the important beam-beam case. A final first-order example involves longitudinal
beam dynamics in the case of rf phase modulation and electron cooling. This illustrates the



robustness of the averaging method, as the system is dissipative and thus non-Hamiltonian.
Furthermore, we indicate how the averaging theorems can be used to prove the existence of
periodic solutions and invariant tori.

In the second-order case, Example E illustrates the method on the sextupole, a standard
beam dynamics example; Example F illustrates near resonance at second order, and again the
resonant normal form appears quite naturally. Example G is a higher-dimensional example, the
sextupole with transverse coupling. We had hoped to compare these results with the work of Ng,
Collins, and Ohnuma,® but there wasn’t time. Finally, in Example H, we discuss the important
case of the combined sextupole-dipole ripple calculation that we had investigated previously.!”
Regular perturbation theory was discussed, primarily to make clear the meaning of averaging
as a long time perturbation theory.

Another example in the spirit of this paper is the work of Reference 18. The authors
study the evolution of an ensemble of forced duffing oscillators as a model for a beam with
nonlinearity and dipole ripple. They consider the case when the external frequency is near the
linearized natural frequency, and nonlinearity and forcing are small. They argue, based on the
method of averaging, that the beam equilibrates in a coarse-grained sense, and they calculate
the equilibrated beam characteristics from the averaging approximation. A loose end in this
paper, in the context of averaging, is that the averaging results are on O(1/¢€) or O(1/€?) time
intervals, whereas “equilibrium” considerations may require longer times. (Mathematically, of
course, equilibrium is an infinite time concept.)

In any perturbation problem there are two important choices: the starting coordinates
and the method. We think that in our transverse motion examples, we have chosen the optimal
coordinates for calculations, and we are grateful to Kummer!® for pointing these out to us. Not
only do these coordinates considerably simplify the calculation of averages, they also make it
possible to determine the approximations by consideration of one-half of the vector field.

As mentioned in the introduction there are several long time perturbation procedures
from which to choose. All legitimate ones should lead to the same asymptotic expansions,
although Murdock’s thoughtful remarks on pages 14-15 of Reference 1 are significant; further-
more, it should be remembered that asymptotic approximations are “valid for small ¢,” but
how small is usually a difficult question. Our emphasis in the examples has been to obtain
complete approximate solutions along with error estimates. We are in the process of deepening
our understanding of the other methods so that we can make detailed comparisons; however,
at this point we make the following tentative remarks. The advantages of averaging are that:
(1) it is robust in the sense that it can handle any problem the other methods handle as well as
other problems. For example, canonical perturbation theory cannot handle dissipative systems,
whereas averaging can; (2) it is set up for an easy return to the original variables. Tune shifts
are a consequence of the calculation but not the primary focus. If tune shifts are the primary
focus, then other methods are most likely better, particularly as the order increases; (3) it is set
up for ease in error estimation.

The disadvantages of averaging are: (1) the problem needs to be put into a standard form
for the method. Example D used scaling in combination with variation of parameters, whereas
the other examples used just variation of parameters; (2) bookkeeping may be cumbersome.
At first order all methods are easy. At second order, the easiest method is probably the one
of greatest familiarity. At higher order, other methods may be easier. We hope to do a de-



tailed comparison of averaging with other methods in the future. For example, in Hamiltonian
problems canonical perturbation methods have the advantage of working on the Hamiltonian
(a scalar) rather than the vector field, and this is a considerable simplification. What is not
clear to us, however, is the level of difficulty in going back through the transformations to find
the approximation in the original variables and the level of difficulty in setting up for the error
analysis. Perhaps a good test case would be the 1:5 sextupole resonance, which appears in
third-order perturbation theory.

We now indicate some extensions of the type of averaging results presented in this paper
in the context of '

i = ef(,t,w) = e[ f(z) + p(z, ) + g(z, t,w)] (7.1)

Here p will be deterministic with zero t-mean and ¢ will be stochastic with zero stochastic mean
and satisfy a so-called mixing condition that specifies the rate at which ¢(z,t,w) and ¢(z,s,w)
become independent as [t — s| grows. We use the symbol w to denote a random function, as is
standard in probability and stochastic processes. The unperturbed problem will be v = ef(v),
and thus p and ¢ will be viewed as perturbations. In a future publication we hope to explore
applications of these results in the beam dynamics context, although some discussion of this can
be found in the context of longitudinal beam dynamics with rf noise.?®

We first consider the deterministic case when ¢ = 0. All our examples were of first- and
second-order averaging, and the first extension is to nth-order averaging. This is discussed in
References 7 and 8 and fully reveals averaging as a systematic perturbation expansion yielding an
O(€*) approximation on O(1/¢) time intervals. In general, it is difficult to obtain approximations
on longer intervals although in the case where f = 0 it is fairly straightforward, as discussed
in Section 5. Usual proofs of averaging theorems use the Gronwall inequality, and the error
bounds contain a factor of expC(e)t. C(e) is O(e) unless f = 0, thus giving error bounds
that are transcendentally large (and thus useless) at times larger than O(1/¢). For f = 0,
C(e) = O(€?), and this allowed the extension to O(1/€?) time intervals.

If the unperturbed problem has an invariant, then it may be possible to obtain a result
on an interval longer than O(1/€) even though f # 0. More specifically, if I(z) is an invariant or
family of invariants for the unperturbed problem, that is, if I'(z) f(z) = 0, then under suitable

conditions y(t,€) = I (z(t, e)) evolves approximately according to an ODE,

J = epu(J) (7.2)

on O(1/€?). This is a special case of a more general stochastic theorem proved in Reference 21.
The following example taken from that reference illustrates this:

3.31 = €T3
3 = —€U'(z1) + e(x? cos At + Aasin At), (7.3)

where U(z,) is a bowl potential and a and A are constants. Let I(z) be the action of the
unperturbed problem; then y(J) = —aJ and the theorem of Reference 21 gives



I(x(t,€)) = Ip exp(—ae?t) + o(1) (7.4)

for 0 <t < T'/€?, where o(1) denotes a function that goes to zero as ¢ goes to zero.
In the stochastic case of (7.1), Khas’minskii?> proved that under suitable conditions

z(t, €) = u(et) + eYo(et,w), (7.5)

where u(t) is defined by v’ = f(u), u(0) = zq, Yo(7,w) is a Gauss-Markov process defined by
the It6 stochastic differential equation

dYy = Df (u(r))Yodr + o(u(r))dW,  Y5(0) =0, (7.6)

where W = W(7) is standard Brownian motion and ¢ is determined from the stochastic
perturbation q. The approximation in (7.5) is in the sense of weak convergence;?® that is, if

Y(r,w) = (x(r/e, €) — u('r))/\/E then Y converges weakly to Yy as € — 0 for 0 < 7 < T. Note

that the scaling makes this an approximation on O(1/e) t-intervals. If f = 0 then Khas’minskii®*
also proved that

z(t,€) & Xo(’t,w), (7.7)

where Xo(7,w) is a Markov process defined by the Ité stochastic differential equation
dXo = b(Xo)dr + 0(Xo)dW (7.8)

and the approximation in (7.7) means that z(7/€?,¢) converges weakly as € — 0 to Xo(7,w) for
0 £ 7 £ T. The functions b and o are defined in Reference 24. Note that this scaling makes
this an approximation on O(1/€?) t-intervals. These theorems are also discussed in the book by
Freidlin and Wentzel.?® '

Cogburn and Ellison? extended the latter result to the case where f # 0 by showing
that if I(z) is a suitable vector of invariants of the unperturbed problem, then under suitable
regularity and ergodicity conditions

Z(r,w,€) = I(x(‘r/cz, e)) (7.9)

converges weakly to a Markov diffusion process for 0 < 7 < T. As before, this scaling gives an
approximation on O(1/€2) t-intervals. In Reference 26, a related phase randomization result on
O(e~*/3) t-intervals is discussed.

To make the stochastic results more concrete, consider

iy = €[-U'(z)+ P(z1,t) + Q(z1,t,0)] , (7.10)

vhere U is a symmetric bowl type potential so that all solutions of the unperturbed problem
are periodic. Then Khas’minskii’s result?? is

z(t,€) 2 u(et) + VeYo(et,w), 0<et <T, (7.11)



where u(7) is defined by u} = ug, uy = —U'(uy), and Y5(7,w) by

0 1 0 0
dYo = Yodr + dW, Ye(0)=0, (7.12)
-y

(ur(7)) O 0 /C(wua(7))

where C(z,) = }ﬂ%fg Jr E(Q(wl,t)Q(xl,s))dt ds. Thus on O(e™!) t-intervals z follows

the deterministic and periodic unperturbed motion with an O(y/e) Gauss-Markov correction.
While (7.11) is probably not valid on longer intervals, Reference 26 obtains a result on O(e~*/3)
t-intervals. Basically it says that under a nonlinearity assumption the process becomes uniform
on thin energy shells at O(e~%/3) times; that is, in action-angle variables the angle has become
randomized. Let J(h) be the unperturbed action as a function of energy, h(z) = 122 + U(z,),
and 6 the angle canonically conjugate to J. Then it is shown for 0 < €/t < T that

1. the action J (h (a:(t, e))) behaves like Brownian motion and changes in action are o(1) as

€ — 0, and

2. the angle behaves like
0(t,€) = 0 + etQ(Jo) + O ('3, w)

where O(1,w) is Gauss-Markov with zero mean and covariance E(@(Tl),@(Tg)) = 212(31; —

1)V (Jo)? 0*(Jo), Jo is the initial action, (J) is the frequency of the unperturbed oscillator,
and

o2(J) = 2rQ(J) 142 /0 * \/U(a(J)) — U(zy) C(z,) dz; .

If '(Jo) # 0, then the second result gives uniformity on thin energy shells. This phase random-
ization can also occur in a coarse-grained sense without the stochastic perturbation, as discussed
in References 18 and 27. Because 6 is now approximately uniform, it is possible for the action
to be approximately Markovian. In fact, the theorem in Reference 21 gives that the changes in
action remain small until O(e~?) times, and at these times changes can be O(1), and the action

behaves like a Markov diffusion process. More specifically, J (h (x(r /€2, e))) converges weakly
on 0 < 7 < T to a Markov diffusion process Zy(7,w) defined by

dZo = }L(Zo)dT + O'(Zo)dW ,

where o2 is defined above and u(y) = L -Lo%(y).

8. Acknowledgements

Thanks to Yiton Yan for inviting us to speak about the method of averaging in the
SSCL Accelerator Physics Seminar Series; it was the genesis of this paper. Thanks also to Mike
Syphers for his support of this work and Sylvia Lee for her expert and tireless preparation of
this manuscript. One of us (JAE) acknowledges many enjoyable discussions on resonance and



perturbation methods with Martin Kummer, as well as the general enthusiasm of Leo Michelotti
for nonlinear dynamics, beam dynamics, and modern perturbation theories. Thanks also to
Brenda Ramsey, Liana Baritchi, and Cameron Owen of SSCL and Bill Gordon, Alex Stone, and
Ellen Goldberg of UNM for helping this work to go forward at a critical time. Finally, this work
is dedicated to the dreams of what might have been—and to those who came to Dallas, full
of enthusiasm, and who devoted a significant part of their lives to the manifestation of those
dreams.

9. References

1.
2.

3.

10.

11.

12.

13.
14.

15.

16.

J.A. Murdock, Perturbations: Theory and Methods, Wiley, New York, 1991.

L. Michelotti, Intermediate Classical Mechanics with Applications to Particle Accelerator
Physics, Wiley, New York, 1994.

R.D. Ruth, “Single Particle Dynamics in Circular Accelerators,” in Physics of Particle
Accelerators, edited by M. Month and M. Dienes, AIP Conference Proceedings 153, 1987.
N.N. Bogoliubov and Y.A. Mitropolski, Asymptotic Methods in the Theory of Nonlinear
Oscillations, Hindustan Pub. Corp., Delhi, 1961.

. J.A. Sanders and F. Verhulst, Averaging Methods in Nonlinear Dynamical Systems,

Springer-Verlag, New York, 1985.

P. Lochak and C. Meunier, Multiphase Averaging for Classical Systems, Springer-Verlag,
New York, 1988.

J.A. Ellison, A.W. Séenz, and H.S. Dumas, “Improved nth order averaging theory for
periodic systems,” J. Diff. Fq., 84 (1990), p. 383.

A.W. Saénz, “Higher-order averaging for nonperiodic systems,” J. Math. Phys. 32, 2679
(1991).

D. Neuffer and S. Peggs, “Beam-Beam Tune Shifts and Spreads in the SSC,” SSC-63,
April 1986.

G. Lépez, “Head-On and Long Range Beam-Beam Tune Shifts Spread in the SSC,” SSCL-
442, May 1991.

J.A. Ellison, H.-J. Shih, and M. Kummer, “Theoretical study of longitudinal beam splitting
and related phenomena,” Phys. Rev. E 49, 2484 (1994).

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurca-
tions of Vector Fields, Springer-Verlag, New York, 1986.

J.K. Hale, Ordinary Differential Equations, Wiley-Interscience, New York, 1969.

J.A. Ellison, M. Kummer, and A.W. Saenz, “Transcendentally small transversality in the
rapidly forced pendulum,” J. Dyn. Differential Eq. 5, 241 (1993).

H.S. Dumas, J.A. Ellison, and A.W. Sdenz, “Axial channeling in perfect crystals,
the continuum model and the method of averaging,” Annals of Physics, 209 (1991),
pp. 97-123.

K.Y. Ng, “Simple Derivation of Distortion Functions,” Fermilab-FN-586, March 1992;
T. Collins, Proceedings of the 1984 Summer Study on the Design and Utilization of the



17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

Superconducting Super Collider, Snowmass, Colorado, 1984; S. Ohnuma, Proceedings of the
Conference on the Interactions Between Particle and Nuclear Physics, Steamboat Springs,
Colorado, 1984.

H.-J. Shih, J.A. Ellison, M. Syphers and B.S. Newberger, “Emittance growth due to dipole
ripple and sextupole,” Proceedings of the 1993 IEEE Particle Accelerator Physics Confer-
ence, DC, 3588-3590.

T. Sen, J.A. Ellison, S.K. Kauffmann, “Collective behavior of an ensemble of forced duffing
oscillators near the 1:1 resonance,” SSCL-Preprint-561, 1994, submitted for publication.
M. Kummer, private communication.

H.-J. Shih, J.A. Ellison, B.S. Newberger, and R. Cogburn, “Longitudinal Beam Dynamics
with RF Noise,” Part. Accel. 43, 159 (1994).

R. Cogburn and J.A. Ellison, “A stochastic theory of adiabatic invariance,” Commun.
Math. Phys. 149, 97 (1992).

R.Z. Khas’minskii, “On processes defined by differential equations with a small parame-
ter,” Theory Prob. Appl., 11 (1966), pp. 211-228.

S.N. Ethier and T.G. Kurtz, Markov Processes Characterization and Convergence, Wiley-
Interscience, New York, 1986.

R.Z. Khas’minskii, “A limit theorem for solutions of differential equations with random
right-hand side,” Theory Prob. Appl., 11 (1966), pp. 390-406.

M.IL Freidlin and A.D. Wentzell, Random Perturbations of Dynamical Systems, Springer-
Verlag, New York, 1984.

R. Cogburn and J.A. Ellison, “A Four-Thirds Law for Phase Randomization of Stochasti-
cally Perturbed Oscillators and Related Phenomena,” to be published in Commun. Math.
Phys.

J.A. Ellison and T. Guinn, “Statistical Equilibrium, Planar Channeling and the Continuum
Model,” Phys. Rev. B 13, 1880 (1976).

10. Appendix—Gronwall Inequality

If g(t) is non-negative, and continuous and satisfies

gt) Satbt—to)+L [ * g(s)ds (A1)

for a, b non-negative, and L positive, then

g(t) < (G, + %) eL(t—to) - % < [a + b(t — tO)] eL(t‘tO) , (A2)

for t > to. The second inequality in (A2) follows from the rather crude estimate 1 — e~Z{(!-%) <
L(t — to). To obtain the first inequality let R(t) denote the rhs of (Al). Then

R'(t)=b+Lg(t)< b+ LR,



which is equivalent to

d/ _re- —L{t-
E(e L(t to)R(t)) S be L(t to).

Integrating over [to, ] gives
et R(t) —a < %(1 - e_L(t’t")) ,

where we have used R(to) = a. Since g(t) < R(t), (A2) follows.



