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Abstract 

For a mixture of small and large component of gases, the large component is treated as 

an ideal gas. A dissipative model is proposed for the small component, and the thermo­

dynamic characteristics of the gas are derived through a statistical mechanical approach. 

The model requires for the small component to have a big dimension and its number of 

particles to be smaller than the large one. Using the associated partition function, the 

internal energy and the equation of state are calculated. The internal energy does not 

suffer any deviation from that of the two component ideal gas, but the equation of state 

deviates from that of the ideal gas for large values of the parameter which characterizes 

the dissipative model. 
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1. Introd uction 

Dealing with statistical mechanical problems [1] of systems in equilibrium, internal dissi­

pative models for internal particle collision systems are not used because it is thought that 

dissipation must be associated with systems out of equilibrium. Therefore, a time depe­

dent approach, Boltzman [2), Vlasov [3], or Fokker-Planck [4], is used to find the velocity 

distribution of the particles and the thermodynamic characteristics of the system. 

Recently, it has been demonstrated in a series of works, Lopez [5-10), that the Hamil­

tonian associated to a dissipative system does not necessarily have to be time dependent. 

Therefore, for an internal dissipative system having an associated time independent Hamil­

tonian which is a constant of motion of the system, it is possible to use the time independent 

approach and the usual statistical mechanic to find the thermodynamic characteristics of 

the system. This is the approach that will be used below in the study of a two-component 

gas system. 

If a closed system is composed of two kinds of non-interacting particles, except for 

collisions and with very marked differences in number, dimensions, and masses, then it may 

be thought that the heavy-gross small number of particles are moving through a very light 

medium formed by the other particles. This medium produces some type of frictional force 

as a consequence of the average collisions with the heavy-gross particles. Thus, making 

a model for this motion, a time independent Hamiltonian is given, and the canonical 

ensemble is used to find the thermodynamic characteristics of this system. This type of 

system may not be just a mathematical curiosity since for example, high energy particle 

multi wire proportional chamber detectors containing Argon (Ar) with small quantities of 

Freon (CF3Br) are normally used in laboratories [11,12]. In addition, the atmospheres of 

some of our planets [13] are highly rarified. A dissipative model may be useful in these or 

other cases where velocity depending frictional forces (dissipation) may appear. 
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2. Partition function, internal energy, and equation of state 

Assume a mixture of two types of particles, Nl small particles of mass ml and N2 big­

gross particles of mass m2, contained in a volume of dimension V. The small particles move 

freely except for collisions with the walls of the container. The big particles move through 

the dissipative medium formed by the small particles with no other forces acting on them. 

The number of big particles will be assumed smaller than the number of small particles so 

that the approach has some sense. Assume, in addition, that the dissipative force in any 

particular direction, i = x, y, z, is proportional to the square of the velocity component 

in that direction. Therefore, the Newton's equations of motions for these particles can be 

written as 

(1) 

and 

d
2 
q2ik (dq2ik ) 2 m2~ = -0 dt k = 1, ... ,N2 , (2) 

where qlij, q2ik, dQlij/dt, and dQ2ik/dt are the generalized coordinates and the velocity 

components of the small (1) and big (2) particles. 0 is the parameter which characterizes 

the dissipative force. The Hamiltonian for the small particles is clearly given by 

(3) 

As it can be shown [5], the constant of motion for the big particles can be expressed as 

(4) 

where V2ik represents the ith-component of the velocity of the kth-big particle. Using the 

formulation given in reference [6] for the classical mechanics, the Lagrangian expression 

for a single particle and component in terms of the constant of motion is given by 

Jv K(q,e) 
L( q, v) = v e de· (5) 
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Therefore, using (4) and the generalization of Eq. (5) to a multidimensional space [9], the 

following expression is gotten for the Lagrangian of the system (2), 

N2 3 1 
L2(q, v) = L L 2m2v~ik exp(2aq2ik/m 2) . 

k=1 i=1 

As a result, the generalized momentum and Hamiltonian follow, 

and 

(6) 

(7) 

(8) 

The Hamiltonian of Eq. (3) corresponds to a system of Nl particles moving freely in a 

container of volume V, meanwhile Eq. (8) is the Hamiltonian of a system of N2 parti­

cles moving in a dissipative medium. Knowing the Hamiltonian, the canonical partition 

function can be calculated from the known relation [1] 

z = 1 3N Jexp( -{3H)dqdp , 
Nl!N2!h 

(9a) 

where H is the total Hamiltonian, H = HI + H 2. h is the Planck's constant. N is the 

total number of particles, N = Nl + N2, and {3 is given by 

{3 = l/KT , (9b) 

where K is the Boltzmann's constant, and T is the temperature. The differentials dq and 

dp are defined as 
Nl 3 N2 3 

dq = II II dqlij II II dq2ik (9c) 
j=1 i=1 k=1 i=1 

and 
Nl 3 N2 3 

dp = II II dPlij II II dP2ik . (9d) 
j=1 i=1 k=1 ;=1 
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The spatial integration in Eq. (9a) is carried out over the volume V. Substituting Eq. 

(3) and Eq. (8) in Eq. (9a), and taking into consideration that many integrations are 

repeated in form, Eq. (9a) can be written as 

1 Nl 3 J 2 
Z = N 'N 'h3N II II exp( -(3Plij/2mI) dqIijdplij 

1· 2· . 1· 1 J= 1= 

N2 3 J 
x II II exp( -(3p~ik/2m2) exp( -2aq2ik/m 2) dq2ik dp2ik . 

k=I i=I 

(10) 

Performing the above integrations, the following expression for the partition function is 

gotten 

(11) 

The internal energy and the equation of state can be easily calculated from the relations 

(12) 

and 

p = ~ (BIog Z) 
(3 BV ' 

(13) 

where P represents the pressure of the thermodynamic system. Using the partition func­

tion (11) in Eq. (12) and Eq. (13), and making some rearrangements, the internal energy 

and the equation of state have the following expressions 

u= ~NKT (14) 

and 

(15a) 

where the function 'Ij; has been defined as 

1 aV-2/ 3 

'Ij;(V, a/m2) = V + m2[1 _ exp( _aVI/3 /m2)] (15b) 

As can be seen from Eq. (14) and Eq. (15a), there is no modification in the internal 

energy of the sytem with respect to the ideal gas. However, the equation of state suffers 
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a modification due to the dissipation in the system. This modification, however, is only 

noticeable for very unrealistically high values of a. On the other hand, it is clearly seen 

from Eq. (15b) that if the parameter a goes to zero, the following limit is gotten 

(16) 

That is, within this limit Eqs (2), (4), (6), (7), (8), (9), (12), and (16a) take their usual 

form for an ideal gas. For dissipation effects to become important in this model, the value 

of the volume and friction coefficients must be such that 

aVl / 3 

-- > 1. (17) 
m2 

In this case, the exponential term appearing in Eq. (15b) can be neglected, and the 

equation of state has the form 

(18) 

which can be written in terms of the component densities, nl = NdV and n2 = N2/V, as 

(19) 

From Eqs. (15a) and (19), it is clear that the system is not invariant under spatial divisions 

since the right hand of these equations depends on the density and the volume of the 

system, i. e., even if the density ratio n2/nl and the densities themselves are kept constant, 

the pressure of the system would depend on the volume of the system. 

3.0 Conclusion 

A model for an internal dissipative system of two-component gas has been studied. This 

model has meaning if it is possible to assume that one of the components is able to produce 

a classical frictional force on the other component, as an average effect. The justification 

for the canonical ensemble to be used comes from the Lioville's theorem and using the 

fact the Hamiltonian is independent of time and a constant of motion of the system. The 
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internal energy of the system (which is better called generalized internal energy since it is 

used in association to a dissipative system) has the same expression like that of an ideal 

gas, but the resulting equation of state differs from that of an ideal gas for high dissipation 

(if Eq. (17) is satisfied). The correct limit (ideal gas) is obtained when the dissipation 

parameters go to zero. 
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