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Abstract 

The high luminosity Interaction Regions (IRs) are an important part of the 
lattice in colliding beam machines. The performance of the collider may depend 
significantly on the particular design of the IRs. In this paper we discuss the 
general principles of IR design and apply these principles to the design of the 
Superconducting Super Collider Interaction Regions. 

1 Introduction 

The requirement of higher luminosities in colliding beam experiments has led to the 
need for specially designed sections in the lattice of accelerators, called Interaction 
Regions (IRs). Within an IR, the two beams are brought to collision at an Interaction 
Point (IP). The layout of the IR must satisfy the specific requirements imposed by 
the experimental detector on the beam parameters at the IP. The particular design 
of the IR may vary depending on the type of machine (circular or linear, pp, pp, 
e+e-, etc.), the beam energy, the space available for an IR, etc. However, the most 
distinctive requirement for an IR optics is that it has to provide a beam size at the IP 
substantially different (either lower or higher) from that in the rest of the machine. 

*Operated by the Universities Research Association Inc., for the U.S. Department of Energy, 
under contract DE-AC35-89ER40486. 
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Many of the common features and problems in the design of an IR follow from this 
single requirement. These features and requirements are summarized below: 

• A strong final focus quadrupole system (usually triplet or doublet) has to be 
placed on either side of the Interaction Point to provide a desired beam size at 
the IP. 

• The final focus quadrupoles have to be common to both beams if the beams 
are to cross at a small or zero angle at the IP, and the value of the amplitude 
function there, (3*, is low. 

• The (3-function attains a very high value (3peak in the final focus quadrupoles. 

• The final focus quadrupoles must have a bore large enough to ensure a sufficient 
region of good field quality for the larger beam in these quadrupoles. The orbit 
displacement due to the crossing angle places even tighter tolerances on the field 
quality. 

• A much lower (3peak, and thus a different optical configuration, is required at 
the injection energy where the beam emittance is larger. 

• The transition from injection to collision optics, called the (3-squeeze, is accom
plished by changing the gradients of a set of tuning quadrupoles. 

• Large variations of the (3-function, other than in the final focus quadrupoles, 
should be avoided. 

• In pp-colliders the beams are brought into collision by use of a set of dipole 
magnets. A common dipole with large bore is required on either side of the IP 
to separate the beams. 

• The dispersion must be suppressed at the IP for two reasons: 1) to minimize 
the transverse beam size and thus maximize the luminosity, and 2) to avoid 
exciting synchrobetatron resonances that would reduce the beam lifetime [1]. 

• In all optical configurations the IR must be matched to the adjacent sections in 
order to avoid perturbation of the lattice functions in the rest of the machine. 

• Due to the high (3peak, the beam is very sensitive to any errors in the final focus 
region. This may require special corrections for these quadrupoles, namely 
nonlinear chromaticity correction, crossing angle correction, and correction of 
multi pole field errors in these quadrupoles. The IR optics should be designed 
to facilitate these corrections. 

Once the (3* at the IP has been chosen, it is desirable to have the bunch length crt 

smaller than (3*, to avoid the luminosity reduction due to a significant variation of 
the transverse size within a bunch at the IP. 

In addition to the above, the following considerations should be included in the 
IR design: 
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• The design should be flexible enough to provide a range of sizes for both beams 
at the IP as well as space for the detector in the event that experimental require
ments change. Preferably this should be achieved with only minor modifications 
of the IR optics. 

• The optics should be optimized in order to reduce the different types of magnets 
and other components in the machine. 

Examples of IR design are given, for instance, in References [2] and [3] for the 
existing proton machines Super Proton Synchrotron (SPS) at CERN and Tevatron 
at Fermi National Accelerator Laboratory (FNAL), and in [4] for the Large Hadron 
Collider (LHC), which is being designed at CERN. Earlier versions of the Supercon
ducting Super Collider (SSC) IR optics are described in References [5]-[11]. Similar 
approaches were used in the above cases to implement the optical features in the 
IR. One observes that problems in the IR design are usually caused by allocation 
of insufficient space for the IR or by additional constraints on the geometry of this 
section. It is therefore important that the geometrical layout of the IR be determined 
at an early stage in the design of the lattice. 

Our study of the Interaction Regions at the SSC has led to an improvement 
in the optical properties of the IR and an increased flexibility of the optics. The 
present design is also more stable with respect to the field errors in the final focus 
quadrupoles, the major sources of perturbation in the IR. Special optical features 
have been included into the IR lattice in order to meet the above requirements. The 
basic features of the design are: 

• The IR optics is antisymmetric about the IP in order to provide identical fo
cusing properties for both proton beams. Note that one beam, coming into the 
IR from one side, experiences the same sequence of focusing strengths as does 
the other beam coming from the opposite side. 

• Each half IR is divided into two major sections: 1) the 271" final focus section, 
and 2) the tuning section. This provides a two-step focusing of the beam at the 
IP and allows almost independent adjustment of each section. 

• The 271" phase advance final focus section covers the region from the IP to a 
secondary focal point (SF). It includes the final focus triplet quadrupoles and a 
region called the M = - I section. The latter is an insertion that does not affect 
the (3* value, but cancels the vertical dispersion at the IP. The whole section 
provides point-to-point focusing from SF to IP with a fixed transfer matrix and 
271" phase advance. It is important that the (1,2) coefficient of each 2 x 2 transfer 
matrix be zero for two reasons: 1) the phase advance across this section does not 
depend on the (3*, and 2) there is a constant linear transformation of (3-function 
from the SF to the IP. 

• The optics of the 271" section acts on the beam as a constant magnification 
telescope producing an image at the SF of the beam at the IP. The SF may be 
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useful for beam diagnostics, and protection collimators may be placed here 'to 
intercept particles that might otherwise strike the sensitive inner regions of the 
detector. 

• The final focus quadrupoles have constant gradients during the ,8-squeeze. The 
advantages of this are: 1) the squeeze can be done independently for each 
ring, and 2) additional eddy current field errors in these quadrupoles are not 
introduced during the squeeze. 

• There is enough free space between the IP and SF to allow the total space for 
the detector to vary from 41 m to 180 m. 

• The tuning section includes variable gradient quadrupoles to provide the 
,8-squeeze from injection to collision optics. It has a variable transfer matrix 
with fixed phase advance in any optical configuration. The latter is to keep 
constant (and optimum) the phase advance across half an IR and, hence, the 
phase advance from the IP to the local IR correctors located in the regions 
outside the IR. 

• Local chromaticity correction and crossing angle systems were assumed for the 
IR, with sextupole and quadrupole correctors located in the adjacent regular 
cells in the arcs. These correctors mostly compensate the effect of errors in the 
final focus quadrupoles. To optimize these corrections a specific value of phase 
advance across each half IR has been chosen. 

• An optimum, fixed phase advance has been chosen between the two IPs in each 
cluster in order to compensate the second-order chromatic effects produced by 
the high ,8peak final focus quadrupoles in the two IRs. 

Below we review the details of our solution, a shorter description of which can be 
found in References [12], [13]. 

2 IR Configuration 

There are four Interaction Regions in the SSC proton-proton Collider, located in pairs 
in the East and West clusters, respectively [11]. The goal for the East IRs is to provide 
a high value of the luminosity to a maximum of 1033 cm-2s-1 and, hence, a low ,8* at 
the IP. In the West IRs significantly larger space is required for the detectors. This 
is achieved at the cost of a higher value of ,8* and correspondingly lower luminosity. 

Figure 1 shows a vertical schematic view of a complete IR. Its total length is 
1890 m. The first beam goes along its beam line from the top left side of the picture 
to the bottom right, while the second beam starts at the top right and proceeds to the 
bottom left. They cross each other at the IP in the center of the IR. There are two 
IRs in the cluster separated by a short section with horizontal bending. Therefore, 
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the beams interchange their vertical positions twice while passing through both IRs 
and return to their initial vertical positions at the exit of the second IR. 

In Figure 1 the dipoles straddle the beam lines, the focusing quadrupoles are shown 
above the lines, and the defocusing quadrupoles below. In each ring, the optics is 
anti symmetric with respect to the IP. This means that the magnet locations have 
a mirror symmetry about the IP, but the field polarities are opposite for the corre
sponding magnets on the left and right sides of the IR. The optics is identical in both 
rings except that corresponding top and bottom quadrupoles have opposite focusing 
properties and corresponding vertical bending dipoles bend the beams in opposite 
directions. Each half of an IR is composed of the two major modules specified in the 
previous section. Taking into consideration the dispersion cancellation property, we 
can extend the number of the modules to three, which are located geometrically in 
different regions. Figure 2 shows the layout (not to scale) of half of an IR. The three 
modules are: 

• The final focus triplet located next to the IP and common to both rings. 

• The M = - I section placed in the region with a vertical separation of 45 cm 
between the top and bottom rings. 

• The tuning section located in the region of normal vertical separation of 90 cm 
between the rings in the Collider. 

Between the focusing modules there are vertical dipoles placed in two steps, which 
bring the beams into collision at the IP. 

3 Optical Modules 

3.1 Final Focus Triplet 

There are four quadrupoles in the triplet, which form a F3-D2-D2-F1 optical structure 
for a beam approaching the IP and a D 1-F2- F2-D3 structure for a beam leaving 
the IP. This combination is called a triplet because the two central quadrupoles are 
essentially one long quadrupole split into two for convenience of fabrication of these 
magnets. The separation of the quadrupoles in the triplet is very small compared to 
their focal length. This arrangement preserves the roundness of the beams better than 
a focusing doublet would, and provides a lower /3peak value as well. These quadrupoles 
and adjacent splitting dipoles BVlc are common to both rings. The proton beams, 
therefore, share the same beam pipe inside these magnets and, because of the opposing 
beam directions, they experience opposite magnetic strengths in each triplet magnet. 
With this constraint, the only way to have an identical lattice for the IR in both 
rings is to require optical antisymmetry of the whole Interaction Region. The triplet 
quadrupole polarities shown in Figure 1 correspond to the beam going from the top 
left side to the bottom right. Opposite polarities are implied for the second beam. 
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The luminosity at the collision point depends on the number of protons per bunch 
NB, the bunch spacing SB, the beam emittance t (unnormalized), and the value of 
(3* at the IP. For head-on collisions of equal round beams, the expression for the 
luminosity is 

(1) 

To achieve a high luminosity at collision, the beam cross section must therefore 
be squeezed to a very small size at the IP. This requires quite strong (i.e., long) 
triplet quadrupoles. The small beam size at the IP leads to a very large divergence of 
the beam throughout the region reserved for the detectors. The beam size therefore 
quickly increases with the distance from the IP and reaches an extremely large value 
in the triplet. For instance, in our solution with (3* = 0.5 m and L * = 20.5 m, the 
(3peak in the triplet at collision is about 30 times larger than that in the arcs, where 
L * denotes the distance from the IP to the first of the final focus quadrupoles. In 
turn, the beam divergence in the triplet becomes very small. As a result the beam 
becomes much more sensitive to the field errors in the triplet than in any other region 
of the machine. This occurs for the following reasons: 

• The larger beam in the triplet samples regions of higher multi pole field errors. 
This effect is amplified by large orbit displacements due to the crossing angle 
at the lP. 

• Any kick due to field errors results in a larger perturbation of the betatron 
motion because of the small beam divergence in the triplet. 

• Large integrated gradient over the length of the triplet. 

The first two points are a consequence of the very large (3-function values in the 
triplet. The scale of the effect of the triplets can be easily seen in the example 
of linear chromaticity at collision conditions. The linear chromaticity due to two 
triplets (8 quadrupoles) in one IR at (3* = 0.5 m is about 31 % of that due to the 
784 quadrupoles in the Collider arcs. Roughly, the effects of field errors in the final 
focus triplets are one to two orders of magnitude larger than those generated by errors 
in quadrupoles placed in the arcs. The effects of errors in the triplets will be discussed 
in more detail in Section 8. 

In the IR optics of other machines (see, for instance, References [2], [3], [4]) the 
gradients of final focus quadrupoles are changed during the (3-squeeze along with 
the gradients of the other tuning quadrupoles in the IR. In fact, the variation of 
the gradients in the triplets is very small, because the beam is specially sensitive 
to field changes in this region. For reasons mentioned in Section 1, we keep the 
triplets at constant gradients during the squeeze. Since the constraints require six 
tuning quadrupoles, freezing the three in the triplet requires three additional tunable 
quadrupoles. 

The accommodation of three extra quadrupoles in the lR requires an additional 
straight section region within the lR. Historically, this extra length was introduced 
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at first to allow later addition of a bypass section containing two extra IRs radially 
inward from the original outer IR pair. This combination of four IRs forms the so
called diamond bypass structure, which is described in Reference [11]. In this paper 
we do not describe the lattice of the inner bypass, assuming this to be a future upgrade 
of the lattice. 

In pp-colliders with multi-bunch beams, a non-zero crossing angle is introduced 
at the IP in order to avoid the large number of head-on collision points in the ex
perimental region, and to reduce the detrimental effects of long-range beam-beam 
interactions. This results in large orbit displacements in the final focus quadrupoles, 
which are up to 5mm in our case [14]. The nonlinear fields in these quadrupoles 
can then significantly affect long-term stability. Studies of the dynamic aperture [15] 
have shown that it is more important to have a large bore in the triplet than to re
duce the beam size by increasing the gradient. For the IR optics with the maximum 
/3peak ~ 9 km our choice is a bore of 5 cm for the triplet quadrupoles with a maximum 
gradient of about 191 T jm. This choice was based on cost rather than performance: 
5-cm quadrupoles had been developed for other uses in the SSC Collider. Studies 
showed that quadrupole bores between 6 and 7 cm would have provided superior 
performance [15]. 

3.2 M = -I Section 

The two beams circulating in different rings are brought into collision at the IP by 
use of a set of vertical dipoles. These dipoles, in turn, create a vertical dispersion "ly 
which, if not corrected, would propagate through the whole machine. For instance, 
the effect of uncorrected dispersion in one IR alone results in about 2.5 m of residual 
vertical dispersion in the Collider arcs at collision configuration, and this grows to 
6.4 m when dipoles from four identicallow-/3 IRs are included. 

To correct the vertical dispersion, the scheme of a two-step orbit change has been 
used for each half of an IR with a M = - I section between the steps. Optically, the 
M = - I section is composed of two identical FO DO cells with double quadrupoles and 
a phase advance of 90° per cell. The transfer matrix across this section is, therefore, 
the negative identity matrix, hence the name. The inclusion of this section does not 
disturb the /3-functions in the regions outside, but it does change the betatron tune 
by a half unit per section. 

The principal idea of dispersion cancellation is illustrated in Figure 3. There are 
two pairs of vertical dipoles on either side of the M = - I section. The first pair 
(BV2+, BV2-), of equal strengths and opposite polarities, changes the orbit of one 
beam by hI = 22.5 cm. The second pair, similarly arranged on the other side of the 
M = -I section, produces the same step h2 = 22.5 cm. The dispersion generated 
by each pair of dipoles follows the change of the orbit; hence, at the exit of the 
first pair it is equal to "lyl = hI, "l' yl = o. The slope of the dispersion at the exit 
being zero, the dispersion at the entrance of the M = - I section is the same no 
matter how far it is from the dipoles. In the M = - I section the dispersion follows 
free betatron motion and changes sign at the exit of this section: "ly2 = -"lyl = -hI, 
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7]' y2 = -7]' yl = O. It propagates unchanged up to the next dipole, then the second pair 
of dipoles (BVI +, BVlc-) deflects the orbit by h2 back toward the center, resulting 
in a complete cancellation: 7]y = 7]y2 + h2 = -hI + h2 = 0, 7]~ = O. 

The above scheme is a special case of a more general configuration with unequal 
steps hI =1= h2, in which the dispersion could be corrected using the following trans
formation instead of M = - J: 

(2) 

This section compensates any orbit perturbation due to systematic field errors in 
the vertical bend dipoles the same way it does the vertical dispersion. The important 
advantages of such a correction scheme are that it provides a local compensation of 
the dispersion, and it does not depend on the (3*. 

The only reason for including the M = - J section is to cancel the dispersion. 
Therefore, this section is made very short in order to reserve additional space for 
larger L * options of the IR. Its total length is about 150 m, which is significantly 
smaller than 360 m, the length of two standard arc cells producing the same phase 
advance of 1800

• Stronger quadrupoles are needed to provide the same focusing in 
a shorter distance; hence, double quadrupoles are used in this section. Compared 
to a FOFDOD option of the M = -J section, the FODO scheme reduces the total 
quadrupole length at the expense of a higher beta peak (1.3 km) in this region at 
collision. This is, however, much smaller than the main peak of 9.1 km in the final 
focus triplets. 

It is clear from the above consideration that the M = - J section can be placed 
anywhere between the two pairs of dipoles without perturbing the optics. In order 
to reduce the beta peak in this region and the IR chromaticity at collision, as well as 
to provide the most space for the detector, this section was moved as far as possible 
from the IP. 

Geometrically the M = -J section and adjacent vertical dipoles are located in 
the region with a separation of 45 cm. The small distance between the beams in this 
region requires a special 2-in-l magnet design for this section. The technical design 
and fabrication of this section are expected to be more complicated than those for 
the standard magnets. 

A configuration without the M = -J section has been studied [13], [16]. It could 
significantly reduce the total cost of the IR magnets and provide additional available 
space for the detector. In this case, however, compensating the vertical dispersion 
becomes quite complicated. The dispersion can be locally corrected by use of a set of 
skew quadrupoles located in the regions with dispersion, but the required strengths of 
these correctors significantly increase in the low-,B IR configurations. One possibility 
is to use such a scheme in a high-(3 option of the IR design. 
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3.3 Secondary Focus 

Another new feature of the present IR design is an inclusion of a secondary focal point. 
This point separates each half of an IR into two regions: 1) a tuning section with 
independent variable gradients, and thus with a variable transfer matrix, and 2) a 
central region (with constant transfer matrix and 27r phase advance) from the IP to 
SF, which includes the final focus triplet and the M = -J section. It is desirable that 
the phase advance across the constant transformation section be an integral multiple 
of 7r. In this case the optics of this section provides point-to-point focusing from IP 
to SF. It acts on the beam as a telescope and creates at the SF a magnified image of 
the beam at the IP. The advantages are that 1) the phase advance between the IP 
and SF does not depend on the (3*, and 2) there is a constant linear transformation 
of the {3-function and beam size from the IP to the SF. 

It follows from the optical symmetry that a SF exists in each half of an IR next 
to the outermost BV2 dipoles at a distance of ~ 541 m from the IP (see Figure 2). 

The transfer matrix between the IP and the SF is determined by the three 
strengths of the triplet quadrupoles and the length of this region. The distance from 
the IP to the triplet is not to be considered as a free parameter here, as it depends 
mostly on experimental requirements. The lengths of two triplet quadrupoles are ad
justed to create a phase advance of 27r between an IP and the SF in both planes. The 
length of the third quadrupole (the one nearest to the IP) is adjusted to minimize 
and, thus, to equalize the horizontal and vertical beta peaks in the triplet at collision. 
The transfer matrix from the secondary focus to the IP is, therefore, of the following 
form: 

[
!Eo 1 M - V {3sf 

- 0: S f {"ff;; 
V{3*{3sf V 7F 

(3) 

where the subscript sf denotes the betatron functions at the SF. There are no tuning 
quadrupoles between the secondary focus and the IP; hence, the coefficients of the 
above matrix are constant. This means a phase advance of 27r across this region for 
any initial {3-functions, and a constant magnification of the beam size from the IP to 
the SF: 

(4) 

For the low-{3 IR with L* = 20.5 m, the magnification msJ in the two planes is 4.6 
and 7.5, respectively. The x and y magnifications are exchanged on opposite sides of 
the IP due to the optical antisymmetry. 

There are not enough controls to ensure that the a-function at a secondary focus 
is zero. The minimum of the {3 location or the waist in the beam cross section is 
shifted away from the SF. The shift in a field-free region equals 

D.s = asf {3sf 
1 + a S f2 
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In this case /3sj differs from /3min by the following amount: 

/3sj - /3min 

/3sj 

It is seen from Equation (3) that asj is proportional to /3*: 

asj ex J /3* /3sj = msj /3*. 

(6) 

(7) 

Therefore, at collision conditions with low /3*, asj is small and the location of /3min 

is close to the SF. For the /3* = 0.5 m, the above shift .6.8 is (0.3 m, 2.7 m) in the two 
planes, and the difference between /3sj and /3min is less than 1 %. At injection, the 
waist in one plane is 55 m from the SF, while in the other plane it moves into the 
tuning section and effectively disappears. 

3.4 Tuning Section 

The tuning section covers the region from the beginning of the IR to the secondary 
focus. Its length is about 404 m. All the magnets in this region are separated vertically 
in the two rings by 90 cm, the same as in the rest of the Collider. The main purpose 
of this section is to bring about a smooth transition of the /3*, called a /3-squeeze, 
from an injection value of 7 m to 0.5 m at collision conditions. This is done by varying 
six independent currents in the tuning quadrupoles QL4, QL5, ... , QL9. Six controls 
are required to meet the following conditions: 

• A constant matched transfer matrix across the full IR during the transition. 

• A specific value of the /3-function at the IP. 

• Zero slope of the /3-function at the IP. 

• Specific values of phase advance across each half IR. 

The above conditions are satisfied by changing the transfer matrix across the 
tuning section, but keeping the transfer matrix from the SF to the IP constant. In 
particular, /3sj varies so that the /3-function at the IP obeys: /3* = /3sj /msl. 

The locations and lengths of the tuning quadrupoles have been adjusted in order 
to minimize the following: 

• The peak values of /3-functions in this region for a full range of tuning currents. 

• The range of the tuning currents during the /3-squeeze. 

• The total length of all tuning quadrupoles. 

• The number of quadrupole families with different lengths. 
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4 Optical Properties 

A primary goal is to design an IR configuration flexible enough to accommodate a 
range of achievable luminosities and detector configurations. Optically this requires 
that the design be compatible with a range of values for both (3* and the free space 
reserved for the detector. In this field-free region the (3-function changes quadratically 
with the distance s from the IP: 

S2 

(3 ( s) = (3* + (3* . (8) 

A lower value of (3* results in a larger beam divergence within the detector and, thus, 
in a larger (3peak in the triplets. The maximum allowed value of the (3peak determines 
the lowest feasible value of (3* and, thus, the maximum luminosity. The constraint that 
(3peak stays constant in all configurations requires that (3* increases as L * increases. 

A consequence of the low (3* and high (3peak values is that the phase advance 
between the triplet and the IP is very close to 7r /2 and it is practically unchanged 
across the triplet: 

fL- ds L* 7r 
flIP - fltrpl = Jo (3* + 8 2 /(3* = arctan (3* ~ "2 ' (9) 

for L * / (3* ~ 1. Because the phase advance is nearly the same for all quadrupoles in 
the triplet, the effect of their field errors is equivalent to the effect of a point source 
located 7r /2 in phase from the IP. The correction magnets, therefore, can be placed at 
optimum phase positions with respect to all triplet quadrupoles simultaneously, and 
can compensate their errors most effectively. 

For a high-(3* IR configuration (L * / (3* ~ 1), the phase advance between the triplet 
and an IP is very small; hence, both triplets have almost the same phase advance and 
their field errors act coherently. 

In our solution, the quadrupoles with variable gradient can be tuned to a min
imum (3* = 0.25 m for the IR configuration with L * = 20.5 m. However the larger 
value of (3* = 0.5 m is sufficient to achieve the design luminosity of 1033 cm-2s-1 

at collision optics. This corresponds to a (3peak in the triplets of 9.1 km, which is 
about the maximum value allowing a region of good field quality in the 5-cm-bore 
triplet quadrupoles. It is necessary to increase the triplet bore in order to achieve 
(3* = O.25m. 

Figure 4 shows the (3-functions and vertical dispersion rty across one IR at collision 
conditions with (3* = 0.5 m. The horizontal dispersion is cancelled everywhere in the 
IR by use of dispersion suppressors at the ends of the adjacent arcs. The total phase 
advance across the IR is flo = 3.375 X 27r in both planes. The distribution of the 
magnets is shown at the top of Figure 4. 

The maximum beam size in the triplets at collision with (3* = 0.5 m is 5.5 times 
larger than anywhere in the arcs. The contribution to the linear chromaticity from 
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both triplets is about -39 units compared with -124 units contributed by all quad
rupoles in the arcs. In the rest of the IR, however, the ;3-functions are suppressed to 
a moderate level by optimizing the locations and strengths of the IR quadrupoles. 

At injection energy the beam emittance is 10 times larger than at collision; thus, 
a much smaller ;3peak value is allowed under these conditions. The optimum value for 
;3* at injection is chosen to be 7 m, for which both the linear chromaticity of the IR 
and ;3peak are a minimum. The transfer matrix and the phase advance across an entire 
IR are the same for both collision and injection conditions. The lattice functions at 
injection are shown in Figure 5. 

The quadrupole doublet QL4 and QL5 provides the final focusing at the secondary 
focus. These quadrupoles can be either (F,D) or (D,F) in a given plane. The differ
ence is that one option gives larger beta peak within the tuning section at injection 
configuration, and the other at collision. We have chosen the second option in order 
to maximize the dynamic aperture at injection when the emittance is large. 

Due to antisymmetry, the sum of x and y phase advances across each half IR is 
fixed and equal to 

J1xl + J1yl = J1xr + J1yr = J10 , (10) 

where 

J1xl = J1yr = J11, J1yl = J1xr = J12, J11 + J12 = J10 , (11 ) 

and the subscripts I, r refer to the left and right half of the IR, respectively. How
ever, the values J11 and J12 can be adjusted by appropriate choice of the gradients of 
quadrupoles in the tuning section. In our design we have chosen the following values 
for the phase advance across half an IR: 

J11 = 1.875 X 27r, J12 = 1.5 X 27r . (12) 

Taking into account Equation (9) and phase advance of 90° per cell in the arcs, the 
above choice gives us a specific value of phase advance between the triplet and F or 
D quadrupoles in the regular cells in the arcs, viz. 

IIF _ II trpl = n ~ 
'-x'-x x 2 ' 

7r 
liD _ II trpl = n _ 
'-y'-y y 2 (13) 

where nx and ny are integers. These particular phase advances have been chosen to 
optimize the local correction systems for the IR at collision optics. Two correction 
systems for the IR have been designed, namely, the local nonlinear chromaticity 
correction system [17] and the crossing angle system [14]. Both of them use a set of 
correctors placed next to F and D quadrupoles in the regular cells adjacent to the 
IRs. With the above choice given in Equation (13), these correctors are at optimal 
positions to compensate for the perturbations generated in the triplets. 

There is a section of 7 regular half cells, named the hinge, that connects two IRs in 
the cluster. It contains horizontal dipoles that bend the orbit by :::::::: 40.5 mrad. These 
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dipoles are distributed so that the local perturbation of the dispersion generated by 
them stays within this section. The phase advance across the hinge is 0.875 x 27r; 
therefore, the phase advance between the IPs in the two IRs in the cluster is 7r /2 + 87r. 
The phase advance between any two equivalent points in the first and second IRs has 
this value if the optics of both IRs are the same. This choice of phase ensures that 
the j3-wave induced either by momentum offset or by systematic gradient errors in 
identical quadrupoles in the two IRs stays confined within the identical IRs. This is 
especially important for the low-j3 IR configuration because it significantly reduces 
the strong nonlinear chromaticity generated by the final focus triplets. 

With different values of 13* at the first and second IPs (asymmetric configuration), 
the phase advance between the equivalent triplets in two IRs is still 7r /2 + 87r, but 
the j3peak values are different. In this case, the chromatic and systematic gradient 
errors in the triplets are only partially compensated. To ensure compensation of the 
chromatic beta beat and associated nonlinear chromatic tune shift induced by the 
triplets in an asymmetric configuration, a local chromaticity correction system has 
been designed [17]. 

The whole cluster, which includes the two IRs, the hinge, the utility section, and 
the interconnect sections, has a unit transfer matrix. Hence, the idealized cluster 
does not amplify the effects of systematic magnetic errors in the arcs. 

5 Beta Squeeze 

As mentioned in Section 4, different optical configurations are required at injection 
and collision conditions. Injection optics is to be used at injection energy and while 
accelerating the beams. Shortly after the collision energy is reached, a smooth tran
sition to collision optics, called j3-squeeze, has to be made. Six independent gradients 
(currents) of the quadrupoles in the tuning section are simultaneously varied until the 
desired 13* at collision is attained. The optical requirements for the j3-squeeze have 
been indicated in Section 3.4. Figure 6 shows the variation of currents during the 
transition from 13* = 7 m to 13* = 0.25 m as a function of 13* with L * = 20.5 m. The 
transfer matrix across the IR and the phase advances across each half of an IR are 
kept constant between injection and collision configurations. This guarantees that 
the rest of the machine is unaffected in the absence of errors. 

Figure 6 shows that only the power supply across QL8 will have a large swing from 
injection to collision optics. The other quadrupoles may use weaker power supplies .. 
It is important that there be no reversal of polarity of any tuning currents during the 
j3-squeeze, which makes this procedure robust. 

Figure 6 also shows a slow change of the currents in the high-j3* part of the 
j3-squeeze and a fast change in the low-j3* part. The linear chromaticity of the IR 
behaves similarly during this transition. With linear dependence of 13* on time, this 
would result in a much larger rate of change of current dI / dt in the tuning quadrupoles 
and correction sextupoles at the end of the j3-squeeze than at the beginning. There are 
limitations on the maximum values of IdI/dtl in superconducting magnets. Therefore, 
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a nonlinear time dependence of 13* must be specified to make the variations of currents 
and the IR chromaticity more uniform with time. 

A qualitative solution for the time dependence of 13* can be found by a simple 
consideration of the IR chromaticity ~IR. At a 10w-f3* configuration we can roughly 
neglect the contribution to ~IR from the quadrupoles other than final focus triplets. 
Taking into account Equation (8) this leads to the following qualitative dependence: 

eIR(t) = -4
1 j 13K ds ~ 2-1 13K ds ex: f3peak(t) ex: f31( ) , (14) 
7r IR 47r trpl * t 

where K = B' / (B p), the gradient divided by the magnetic rigidity. 
Assuming a constant rate of change of ~IR with time, we find that 13* has to be 

an inverse linear function of time: 

(15) 

where the coefficients Al and Bl can be determined in terms of injection and collision 
values of 13* and the duration T of the f3-squeeze. This function, indeed, works quite 
well at low values of (3*, but less so at high values of (3*, where the above assump
tions (14) are not satisfied. A quantitative study showed that inverse quadratic and 
exponential functions lead to a satisfactory time dependence of the tuning currents 
and IR chromaticity in the full range of 13*: 

(3*(t) = A + B It + C t2 ' 
q q q 

(16) 

f3*(t) = Ae exp( -t/ Be) + Ce , (17) 

where A, B, and C are constant parameters. 
Taking the exponential function (17) as a basis and minimizing both the rate of 

change of current in the tuning quadrupoles and the rate of change of chromaticity 
through the IR leads to the following variation: 

f3*(t) = 6.8 exp( -t/20.36) + 0.2 . (18) 

The plot of tuning currents versus time with the above time dependence is shown in 
Figure 7. The duration of the squeeze is chosen to be T = 100 seconds, which is almost 
the least time consistent with magnet specifications for maximum allowed value of 
IdI/dtl; it is also the duration used at FNAL. It can be easily increased if necessary. 
Figure 8 shows the rate of change of current through each tuning quadrupole during 
the squeeze. 
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6 Different L* 

The experimental requirements are expected generally to be different in the four IRs 
in the Collider, and they might change in the future. Therefore, the IR optics should 
be flexible enough to meet different requirements, such as space for the detector and 
beam size at the IP. In the present solution, L * can be set to any value in the range 
between 20.5 m and 90 m by a simple modification. The IR configuration has been 
designed to provide sufficient free space between the M = - I section and the BY1 
dipole. To increase the value of L *, the triplet and adjacent pair of dipoles are moved 
together from the IP, by the required distance towards the M = - I section while the 
other IR magnets stay in the same positions. The lengths of the triplet quadrupoles 
are adjusted to: 1) keep the secondary focus at the same distance from the IP, and 
2) minimize /3peak in the triplet. As L* increases, the triplets get shorter because of 
the longer focal length. This is shown in Figure 9. 

For any given L *, we choose the lowest /3* at collision that corresponds to /3peak ~ 

9 km in the triplet. Consequently, /3* increases with L *. Its behavior is shown in 
Figure 10. Injection optics requires a minimum of both /3peak and chromaticity of the 
IR. 

It is clear that for a new L * the range of /3* values is changed. However, it can 
be shown that under the above conditions, the range of /3-functions at the secondary 
focus changes only slightly with L *, as long as the distance from the IP to the SF is 
large compared to the distance from the IP to the effective center of the triplet. This 
is important, because the range and behavior of the tuning currents stay almost the 
same for any L * < 90 m. Practically this means that for a new value of L *, the new 
range of /3* values has to be substituted in Figure 6, but the curves of tuning currents 
have to be adjusted very little. 

Table 1 shows the relevant parameters for the four values of L * chosen. The values 
of 34.55 m and 56.90 m were chosen because in these cases two of the quadrupoles in 
the triplet have the same length. The two smaller values of L * can be used for the 
low-/3 IRs in the East cluster, and the other two values might be used for the IRs in 
the West cluster. 

L* (m) /3* (m) Triplet Quad Lengths (m) 
Inj. ColI. QL1 QL2 QL3 

20.50 7.0 0.5 15.5650 11.8545 13.1715 
34.55 11.0 0.7 12.6064 11.1793 12.6064 
56.90 23.0 1.1 10.2948 10.2948 11.8835 
90.00 40.0 1.95 8.6890 9.4405 11.2051 

Table 1: Range of /3* and triplet quadrupole lengths for four values of L *. 
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The ,8-functions at collision and tuning currents for the case of the largest L * = 
90 m are shown in Figures 11 and 12, respectively. 

7 Magnet Parameters 

In the present design we use optimized, realistic parameters of the IR magnets. All 
the quadrupoles have 5-cm bore and maximum gradient of 191 Tim. The 5-cm-bore 
vertical dipoles are identical in design to the horizontal dipoles in the Collider. Only 
the dipoles BV1c located next to the triplets need the larger aperture of 8.7 cm to 
provide enough space for the separated beams. 

The lengths and positions of the quadrupoles in the tuning section and in the 
M = -/ section were optimized to reduce the total length of magnets and number of 
different quadrupole lengths. Excluding the triplets, there are only 3 different lengths 
of IR quadrupoles: 8.0m, 8.6 m, and 10.2m. 

The list of the magnet parameters for the IR configuration with L * = 20.5 m is 
given in Table 2, where the range of the gradient variation during the ,8 squeeze is 
listed for the tuning quadrupoles. This covers a range in ,8* of 7.0 m at injection 
down to a value of ,8* = 0.25 m at collision. The IR optics with other values of L * 
requires different lengths for the triplet quadrupoles, according to Figure 9. 

Name Length (m) Gradient (Tim) Bore (cm) 
Field (T) at 20 TeV Ic 

QL1 15.5650 190.885 5.0 
QL2 11.8545 190.885 5.0 
QL3 13.1715 190.885 5.0 
QL4 10.2 155.2-174.9 5.0 
QL5 8.0 143.2-175.5 5.0 
QL6 8.0 128.2-160.5 5.0 
QL7 8.6 159.0-181.1 5.0 
QL8 8.0 23.4-169.2 5.0 
QL9 10.2 103.4-176.1 5.0 
QV 8.0 190.885 5.0 

BV1c 15.8387 6.3997 8.7 
BV1 14.9280 6.7901 5.0 
BV2 12.4400 6.7901 5.0 

Table 2: Magnet parameters for the low-,8 IR: L* = 20.5 m. 
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8 Sensitivity to Triplet Errors 

The beam is specially sensitive to any errors in the triplet quadrupoles at collision 
conditions because of the high value of {3peak and the large integrated gradient of these 
quadrupoles. Compared to the regular arc quadrupoles, the {3-function in the triplets 
is up to 30 times larger, and each triplet quadrupole is more than twice as strong. 

The errors can be in the quadrupole fields or in their alignments. Errors in the 
gradient give rise to a {3-wave and a dispersion wave, and also change the tune of 
the machine. Multipole errors can change the widths of the nonlinear resonances and 
affect the long-term stability. The nature of the alignment error determines what 
parameters are affected. We list them below: ~(3, ~D, and ~v represent the change 
in {3, the dispersion function, and the tune, respectively. 

• Transverse Misalignment:::} Closed Orbit Distortion, ~D. 

• Longitudinal Misalignment :::} ~(3, ~D, ~v. 

• Rotational Misalignment about a transverse axis :::} Closed Orbit Distortion, 
~D. 

• Rotational Misalignment about the longitudinal axis:::} Change in the Coupling. 

The effect of triplet errors is more complex compared to those in other quadrupoles, 
because the triplets are common for the two beams. Therefore, the errors affect both 
beams at the same time. First of all, the effect on each beam is different because of 
opposite focusing strengths seen by the two beams in a particular triplet quadrupole. 
Secondly, the crossing angle generates large orbit displacements in the triplets, which 
are different for the beams, thus resulting in larger multi pole errors. 

Rather than present a comprehensive study of the above effects in this section, we 
merely want to emphasize the importance of the control of the triplet errors and the 
need for their corrections. These problems are common for colliding machines with 
10w-(3 IRs because of the similarity of final focus regions in any design, and the effects 
are less pronounced for errors in the rest of the IR. In the following subsections we 
give some examples of the effect of triplet errors at collision compared to the effect 
due to regular arc quadrupoles. 

8.1 Gradient Errors 

For simplicity we will approximate the gradient errors by kicks due to thin quadrupoles 
and consider effects only to first order in the gradient error. Let ~q represent the 
change in inverse focal length of a quadrupole with length L due to a gradient error 
~B', i.e., 

~B'L 
~q = (Bp) 
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(Bp) is the magnetic rigidity factor, which at sse collision conditions is 66712.8 T-m. 
The change in the tune is 

/lv = /3o/lq 
47r ' 

while the maximum changes in the lattice functions are (see, e.g., [18]) 

/3o/lq 
2 sin 27rV 

J /30/3 ( s )/lq 
. Do. 

2 sm 7rV 

(19) 

(20) 

(21) 

Here /30, Do are the /3-function and horizontal dispersion in the quadrupole with the 
gradient error, while /3( s) is the /3-function at the location where the maximum change 
occurs. In Table 3 we compare the effects of gradient error in a triplet quadrupole 
of gradient 191 Tim, length 11.85 m, and /30 = 9 km with that in a quadrupole of 
gradient 221 Tim, length = 4.86 m, and /30 = 300 m, which is placed in a regular cell 
in the arcs. We assume a relative gradient error of 10-4 and a fractional tune equal 
to OA. 

I II Triplet Quadrupole I Regular Quadrupole I 
I /l11 II 2Axl0-

3 I 4xl0-
5 I 

(/l/3 I /3)max 0.026 0.0004 

Table 3: Comparison of the effects of a quadrupole gradient error /lB'1 B' = 10-4 in 
triplet and regular quadrupoles. 

For the particular quadrupole parameters and /3-functions, the effect due to the 
triplet quadrupole is about 63 times larger. The nominal horizontal dispersion Do in 
the triplets is suppressed; therefore, ideally there is no change of the dispersion due 
to triplet gradient errors. It could be generated mostly due to errors in the arcs. 

8.2 Misalignment Errors 

The following are examples of misalignment errors: 

• Transverse Misalignment (TM). The maximum closed orbit shift tmax due to an 
alignment error of /It in a quadrupole of length L is 

J /3 ( s ) /30 B'L 
tmax(s) = 2 . (B )/It , sm7rVt p 

(22) 

where t denotes either of the transverse directions x or y, /30 is the /3-function 
in the misaligned quadrupole, and /3( s) is the /3-function at the location of the 
maximum shift. Clearly, a misaligned triplet quadrupole produces about one 
order of magnitude greater orbit deviations than an arc quadrupole. 
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• Longitudinal Misalignment (LM). An error of this kind distorts the ,8-function 
and changes the tune. These changes depend on the ,8-functions at the begin
ning and the end of the quadrupole, ,8b and ,8e, respectively. For a longitudinal 
misalignment of ~s, these are given by 

(23) 

~1J = (24) 

There is also a dispersion wave generated by such a misalignment of a triplet 
quadrupole, but it will be a small effect for the reasons mentioned earlier. The 
above expressions show that the main effect is generated by the difference in 
values of ,8-functions at the two ends of the quadrupole. It is a small effect in 
the regular arc quadrupoles where ,8 is nearly symmetric around the quadrupole 
center. In the triplets the ,8-function may change significantly from end to end, 
so better precision is required for their longitudinal alignment . 

• Rotational Misalignment about a transverse axis (RTM). If a quadrupole is 
rotated, for instance, in the (x, s) plane, then a dipole field is created along 
the y axis leading to a closed orbit shift along the x axis. For an angular 
misalignment by ~()t in the plane (t, s), the maximum closed orbit shift is 

J ,8(s) B' 
tmax(S)~2' (B )I~()t. sm 7rlJt p 

(25) 

I is the following integral, 

1L /2 r;;-r:\ 
I = s V ,80 ( s) ds , 

-L/2 

where ,80 is the ,8-function within the quadrupole. Here we neglect the change 
of phase advance across the quadrupole, which is particularly very small in the 
triplets. The maximum of the orbit shift will occur when a focusing quadrupole 
is misaligned, in which case ,80 is 

,80(s) a cos 2VK s + b sin 2VK s + c 

a 1 [' '] 4VI< sin VI< L f3b - f3e 

b 
1 

2 sin VK L (f3e - f3b) 

c ,8b - (a cos VKL - bsin VKL), 

where J{ = B' /( Bp) and ,8L f3~ are the slopes of the ,8-function at the beginning 
and end of the quadrupole, respectively. The important coefficient is b, which 
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depends on the difference of the ,B-functions at the two ends. If b = 0, J ,Bo( s) 
is an even function of s and the integral I vanishes. In a regular quadrupole 
,Bb ~ ,Be and, consequently, such a rotational misalignment produces a small 
effect on the closed orbit. Within the triplet the greatest contribution will 
come from the quadrupole within which the ,B-function changes the most. The 
integral I can be evaluated numerically . 

• Rotational Misalignment about the longitudinal axis (RLM). The effect of such 
an error is to couple the x and y motions. The strength of the coupling can be 
measured by the minimum tune difference LlvdiJ between the two eigentunes. 
If the quadrupole is rotated by an angle Ll</J about the s axis, this difference is 
given by [18]: 

(26) 

,Bx, ,By can be taken as the average ,B-functions in the two planes within the 
misaligned quadrupole. Clearly a misaligned triplet quadrupole causes more 
than one order of magnitude greater effect than an arc quadrupole. 

Table 4 compares the effects of the above errors in a triplet quadrupole where 
the ,B-function reaches its peak value with that of an alignment error in a standard 
quadrupole in an arc cell. The fractional part of the tune is taken to be 0.4. 

Misalignment Error Effect II Triplet Quadrupole I Regular Quadrupole I 
TM (Llt = 1 mm) Orbit Shift 29.3 mm 2.5mm 
L!'1 (Lls = 1 mm) (Ll,B / ,B)max 9.6xl0-3 3x 10-5 

Llv 9xl0 4 4xl0 8 

RTM (LlOt = 1 mrad) Orbit Shift 7.3mm 5xlO 3 mm 
RLM (Ll</J = 1 mrad) LlvdiJ 6.3x 10-2 7xl0-4 

Table 4: Comparison of the effects of quadrupole misalignment errors. 

The orbit changes have been evaluated in the arcs. Within the triplets the shift 
will be up to 5.5 times larger than that in the arcs. The effect increases, if all the 
triplet quadrupoles in four IRs are taken into account. It is clear, therefore, that 
possible beam losses most likely will happen in the triplet area, where the necessary 
protection is required. 

The above results illustrate that especially the transverse and rotational misalign
ments of the triplet quadrupoles have to be controlled to a very high degree in order to 
avoid large perturbations on the beam. It is obvious that beam sensitivity to triplet 
errors increases at lower values of ,B*. 
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Figure 9: Triplet quadrupole lengths vs L *. 
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Figure 10: The lowest (3* vs L *: (3peak ~ 9 km. 
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Figure 11: Lattice functions in the medium-,8 IR at collision: ,8* = 1.95 m, L * = 90 m. 
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Figure 12: Tuning currents vs (3* for a medium- (3 IR optics: L * = 90 m. 
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