
Bridging Fortran to 
Object Oriented Paradigm for 

HEP Data Modeling Task 

Superconducting Super Collider 
Laboratory 

SSCL-Preprint-547 
December 1993 
Distribution Category: 400 

J. Huang 





SSCL-Preprint-547 

Bridging Fortran to Object Oriented Paradigm for 
HEP Data Modeling Task· 

J. Huang 

Superconducting Super Collider Laboratory t 
2550 Beckleymeade Ave. 
Dallas, TX 75237, USA 

December 1993 

'"Presented at the Third International Workshop on Software Engineering, Artificial Intelligence and Expert 
Systems for High Energy and Nuclear Physics, October 4-8, 1993, Oberammergau, Germany. 
tOperated by the Universities Research Association, Inc., for the U.S. Department of Energy under Contract 

No. DE-AC35-89ER40486. 





THIRD INTERNATIONAL WORKSHOP ON 

SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE AND 

EXPERT SYSTEMS FOR 

HIGH ENERGY AND NUCLEAR PHYSICS 

October 4 - 8. 1993 

OBERAMMERGAU. Oberbayem. Germany 

Under the Sponsorship of the 

GERMAN PHYSICAL SOCIEfY and 

EUROPEAN PHYSICAL SOCIEfY 





BRIDGING FORTRAN TO 

OBJECT ORIENTED PARADIGM FOR 

REP DATA MODELING TASK 

Jean Huang 
Superconducting Super Collider Laboratory, 

2550 Becldeymeade Avenue, 
Dallas, Texas 75237, USA 

jhuang@ssc.gov 

ABSTRACf 

Object oriented (00) technology appears to offer tangible benefits to the high energy physics (HEP) 
community. Yet. many physicists view this newest software development trend with much reserva
tion and reluctance. Facing the reality of having to support the exis~ physics applications. which 
are written in FORmAN. the software engineers in the Computer EnglDeering Group of the Physics 
Research Division at the Superconducting Super Collider Laboratory have accepted the challenge of 
mixing an old language with the new technology. This paper describes the experience and the tech
niques devised to fit FORmAN into the 00 paradigm. (OOP). 

1. Background 

Traditionally, physicists who design and implement particle physics experiment software use 
the FORTRAN language. While FORTRAN is well-suited to writing algorithms, its homogeneous 
elements of ARRAY and COMMON BLOCK are very inadequate for complex data structure de
sign. To compensate for the data-structuring deficiency in the FORTRAN language, the high en-

ergy physics (HEP) community has developed several solutions of their own. ZEBRA 1, the 

hierarchical structure; YBOS2, the list of banks; and ADAM03, the relational model, are among 
the most commonly used data-management systems. 

Since the 1980s, different approaches have been taken to implement the complex algorithm 
and data abstraction for physics application software. Instead of hanging onto the FORTRAN lan
guage with its constraint of old technology, groups of physicists have adapted the newest trend in 

the computer industry, the object oriented (00) approach. The PION project4 at CERN, has used 
Object Oriented Paradigm (OOP) techniques for a specialized graphics application; the SLAC Rea-

son projecf·6, has implemented a graphical interactive analysis environment; and recently the Gis

mo project7•8•9, originally developed on a NeXT computer using Objective-C, utilized OOP 
techniques. These projects were not only successful in testing the 00 technology, their works are 
having a significant influence in changing the way physics applications are designed and devel
oped. 

From the computing point-of-view, it is inevitable to seriously consider using object oriented 
technology if the tangible benefits offered by the computer industry are to be realized. The physics 



applications map quite well to the object oriented paradigm, since the original concepts are of an 
abstract nature; however, technology migration of any sort is a gradual process. It takes years to 
complete such a transition. Many physicists will continue to devote their energy to analyze HEP 
data using the Fortran language and will view this newest software development trend with reser
vation and reluctance. Facing the reality of having to support FORTRAN applications, the physi
cists and software engineers in the Computer Engineering Group (CEG) of the Physics Research 
Division (PRO) at the Superconducting Super Collider Laboratory (SSCL) have accepted the chal
lenge and have done some experiments that mix the old language with the new technology. 

The following sections describe various approaches to bridge the language to the object ori
ented paradigm, as well as lessons learned from the experiments. The experience will be applied 
to the data-modeling project, the objectives of which are to provide a data-modeling environment 
and to establish a standardized data model and its repository systems for supporting physics com
puting activities. 

2. Generic Interface Approach 

The fIrst experiment done by the PRO computer engineering group was the Object Class Li
brary for the SZ++ Package by Dr. B. Traversat. This package is an initial C++ version for hierar
chical data structure memory management services that was originally provided by the ZEBRA 
Management System. It organized ZEBRA banks into a double-linked list class, and further de
fined bank attributes through derived classes. The initial work started with six classes. Figure 1 
shows the inheritance of the classes. The following list is a brief description of each class: 

Double-linked List Base Class implements a generic double-linked list. 

Zebra Bank Base Class derived from the dblink. It adds basic ZEBRA bank information. 

bank _head Class derived from the bank class. It serves as a link point. 

bank...fix Class derived from the bank class. It implements a fIxed-size bank. 

bank _var Class derived from the bank class. It implements variable-size banks. 

SZ Class manages the entire event structure and implements the SZ API to Fortran. 

The organization of the data bank is separated from the design of the application programming 
interface. This approach leads to the design of a platform that spares the user from worrying about 
the underlying details of data-management systems. The following are the application interface 
subroutines of the SZ++ package for the Fortran language: 

szbini() initializes the SZ control structure. 

szjill() fills a bank. 

szget() gets bank value. 

szdrop() drops a bank. 

szsurv() displays structure of a bank. 

szshow() displays content of a bank. 



szexist() tests whether a bank tree name exists. 

sznum() returns the max bank number. 

szwipe() wipes out a bank. 

Although the SZ++ package provides a generic Fortran interface to the object oriented realm, 
due to its close relationship with the ZEBRA package, the design is very much bank-oriented. 

Figure 1: SZ++ Classes 

3. Ad Hoc Approach 

There are several projects in PRD that involve programs written in mixed languages of For
tran, C, and C++. They come in two different forms: the C or C++ main program calls Fortran sub
routines, or vice versa. These projects are usually concentrated on the database and graphical user 
interface designed for storing and retrieving data with a limited set of functionality. 

These projects were able to take advantage of the most updated computer technology of the 
databases and graphical user interface, but none of them put much consideration into providing a 
unified platform that would allow Fortran applications to work freely. Most of the time, a small 
modification in the header fIle structure requires changes to be made in the Fortran subroutine to 
reflect the mapping. This volatility renders impossible large-scale projects that require services for 
the general applications. 



Figure 2 shows the call pattern of the ad hoc approach. 

Physics Application Graphical User 
Interface 

j~ ~ 

" 
,~ 

Sophisticated Data Management 

Systems 

Figure 2: Ad Hoc Approach 

4. Bridging Concerns 

When bridging the Fortran language to the 00 paradigm, the major concern is how to com
municate with the more sophisticated data-structuring facility of a OO-suitable language. Both ge
neric and ad hoc approaches encounter problems related to naming of routines, parameter passing 
and call positioning: 

• Naming 
This problem is usually solved by adding an underscore to the subroutine names on the For

tran side. 

• Calling 
The concern is which language should be used for writing the main program, and its associ

ated linking considerations. 

• Parameter passing 
This deals with the matching between the scattered parameters of the Fortran and the at

tributes defined in a more sophisticated language. 
All the issues stated above are compiler-dependent. Porting software between systems may 

require some attention to the differences between compilers. According to the experience gained 
in experimental projects done in the Physics Research Computing Department (PRCD), it is not 
difficult to mix the Fortran language with C++ or C. 



5. Conclusion 

Lessons learned from these 00 experiments will be applied to the development tasks of the 
joint Data Modeling (DM) Project effort of the Gamma. Electrons. and Muons (GEM) Collabora
tion. Solenoidal Detector Collaboration (SDC). and PRCD. The purpose of the DM Project is to 
develop the standardized data-modeling environment and lIEP data models necessary to support 
computing activities of GEM and SDC. 

Since mixing the programming languages is not a difficult task. the future DM effort will fo
cus on the lIEP data-model design and a generic platform that provides data-access services to soft
ware developers. Eventually. this data-modeling environment. which also includes tools for data 

analysis. data design. and data definition. will be integrated with the SSCL FrameworklO Object 
Management Services environment and the Physics Research Integrated Computing Development 

Environment (PRIDE)l1. 
With the increasing complexity and advancing pace of computer technology. it is obvious that 

the tools and services provided by the DM environment will be acquired mostly from the computer 
industry. research. and academic institutions. Evidently. object oriented technology continues to 
gain momentum in setting the direction of today's computer software development. In order to take 
advantage of the technology offered by industry. the object oriented approach has been chosen for 
development work of the Data Modeling project. 

The C++ language will most likely be used due to its close relationship with the 00 technol
ogy and its wide acceptance by the software community. The development of computer technology 
in the physics community. however. is perceived in different shades of light. Changing from one 
programming language to another in a community with diversified awareness is a slow process. To 
best serve the GEM/SDC collaboration. an access mechanism that supports mapping of multiple 
programming languages. especially the Fortran language. is necessary until the majority has made 
the transition. 

6. References 

1. R. Brun. et al .• ZEBRA - Kernel Data Structure Management System. CERN Computer 
Center Program Library Long Write-Up. Ql00. 

2. David Quarrie. et aI .• YBOS programmers reference manual. Fermilab. CDF Note No. 
156. 

3. S.M. Fisher. The ADAMO data system. CERN/ECP/PT xx/yy ReaI ...• November 1991. 
4. J. Bettels and D. Myers. The PIONS Graphics System. IEEE Computer Graphics and 

Applications. Vol. 6. No.7 (July 1986). 
5. W.B. Atwood. et aI .• The Reason Project. SLAC-PUB-5242 (Apri11990) Up. 
6. Paul F. Kunz. Physics analysis tools. SLAC-PUB-5520 (Apri11990) IIp. 
7. W.B. Atwood. et aI .• GISMO: An object oriented program for high-energy physics event 

simulation and reconstruction. CERN Preprint ECP 91-15. 

8. W.B. Atwood. et al .• Gismo: C++ Classes for REP, C++ Report. March-Apri11993. 
9. W.B. Atwood. et aI .• The Gismo Project - C++ at work in htgh energy physics. 
10. S. Frederiksen. et aI .• Framework Software Project Assignment Plan and Framework 

Software Project Execution Plan. SSCL. PRCD R40-0000lO. 



11. J. Burton, et al., Physics Research Integrated Development Environment (PRIDE), pre
sented at the Third International Workshop on Software Engineering, Artificial Intelli
gence and Expert Systems for High Energy and Nuclear Physics, October 1993. 


