
Comparative Performance Measures 
of Relational and Object-Oriented 

Databases Using 
High Energy Physics Data 

Superconducting Super Collider 
Laboratory 

SSCL-Preprint-546 
December 1993 
Distribution Category: 400 

J. Marstaller 





SSCL-Preprint-546 

Comparative Performance Measures of 
Relational and Object-Oriented Databases 

Using High Energy Physics Data* 

J. Marstaller 

Superconducting Super Collider Laboratory t 
2550 Becldeymeade Ave. 
Dallas, TX 75237, USA 

December 1993 

*Presented at the Third International Workshop on Software Engineering, Artificial Intelligence and Expert 
Systems for High Energy and Nuclear Physics. 
tOperated by the Universities Research Association, Inc., for the U.S. Department of Energy under Contract 
No. DE-AC35-89ER40486. 





COMPARATIVE PERFORMANCE MEASURES OF RELATIONAL AND OBJECT-ORIENTED 

DATABASES USING IDGH ENERGY PHYSICS DATA 

J. Marstaller 
Superconducting Super Collider 

2550 Beckleymeade Avenue 

Dallas, TX 75237-3997 

ABSTRACT 

The major experiments at the SSC are expected to produce up to I Petabyte of data per year. The 
use of database techniques can significantly reduce the time it takes to access data. The goal of this 
project was to test which underlying data model, the relational or the object-oriented, would be 
better suited for archival and accessing high energy data. We describe the relational and the object­
oriented data model and their implementation in commercial database management systems. To 
determine scalability we tested both implementations for lO-MB and lOO-MB databases using 
storage and timing criteria. 

1. Introduction 

Historically, analysis of High Energy Physics (HEP) event data from detectors has been done 
using a serial, tape-based approach. Database computing offers several advantages to the 
traditional approach in physics analysis: I) It may not be necessary to read an entire event into 
the computer, when only a few quantities are needed for a given analysis, thus reducing the lIO 
factor considerably. 2) Databases allow simultaneous access of the data. 3) Analysis of the data 
is immediate and interactive. 4) Data can be selected via simple queries using the standard query 
languages. 

The basis for the project described here is within the framework of the Petabyte Access and 
Storage project (P ASS).l The extent to which HEP can benefit from database technology is to be 
evaluated. A HEP database, using existing data from the Collider Detector at Fermilab (CDF), 
was designed to make initial performance measurements of a relational database management 
system (RDBMS) versus an object-oriented database management system (OODBMS). 
Approximately 1 GB of CDF data was taken and divided into 100 datasets to be stored on disk. 
A database requires the data stored to be put into some kind of underlying data model, which 
provides in tum some form of stable structures. The goal is to determine the data model that 
produces better results. 

2. Conceptual Design 

When designing a database, the first step is to collect user requirements. These requirements 
can be put into a high-level construct that provides a preliminary view of how the user perceives 
the database. This high-level model, the conceptual model, describes how the user, i.e., a 



physicist, conceives the domain area (HEP data). The conceptual data model was used as a 
means to produce a logical data model specific to the relational and the object-oriented 
implementation. A semantic data model, the entity-relationship (ER) model, was chosen to 
illustrate the conceptual design. An entity-relationship diagram is a graphical technique that 
depicts the enterprise being modeled as a collection of sets, relationships between the sets, and 
attributes associated with both entity and relationship sets. The most common extension to the 
ER diagram includes the abstraction concepts of aggregation and generalization. Aggregation 
abstracts a collection in such a way that objects (entities) are viewed as a single higher-level 
object. Generalization is a form of abstraction which captures the commonalties of objects 
(entities), while at the same time ignoring the differences. The extended entity-relationship 
model, (EER) model, is fairly simple to construct and has a reasonably unique interpretation. 
This inodel produced a diagram (Figure 1) which served as a means of communication among 
users and designers. The conceptual design ensured that no loss of information occurred, i.e., all 
entities mentioned in the data analysis tool2 were captured. 

Figure 1. Conceptual Design. 

3. Relational Design 

The next step in designing the data model is to create a logical data model. The logical model 
has constructs that are easy for the users to follow and yet still avoids physical details of 
implementation. It results, however, in a direct computer implementation, in this case in an 
implementation in the relational database management system. 

The EER model also depicts the logical data model. Figure 2 shows the partial model. The 
conceptual data model was used as a means to produce a logical data model specific to the 
relational and object-oriented implementation. The nature of the objects has an inherent 
hierarchical structure based upon level of details. To store this data in a traditional relational 
database, links need to be established between the objects to represent this hierarchy. Each run 
and event is given a unique identifier. Each child relation (such as "Tack," "Vertex," etc.) is 
augmented to include the primary key of its parent. In other words, any relation in the hierarchy 
must include the primary-key of its parent relation.3 This compares to data from computer-aided 



design application. This hierarchy was modeled using weak entities. Weak entities depend on the 
existence of other entities for their identification.4 The CASE tool we used, ERDRA W,5 uses 
non-directed edges, labeled ID, to show the dependency. The entity "Track" was modeled to 
reflect the CDF data. The entity "Track" is the generalization of two homogenous entities6 

"Defaulttrack" and "Otherversiontrack." The homogenous entities "Defaulttrack" and 
"Otherversiontrack" only contain the common attributes, whereas the generalization "Track" has 
additional attributes. ERDRA W provides the directed edges labeled "IS A" for illustration. 

10 10 
10 

DFlthltsO 

Figure 2. Part One of the logical design for RDBMS using ERDRA W notation. 

4. Object-Oriented Design 

The ultimate goal of the object-oriented data model design is to produce a system that 
consists of a collection of objects. The focal point of the design task is to determine and specify 
those classes that govern the structure and functionality of these objects. As in the relational 
design method, the key is to identify the abstractions that occur in the problem domain. 

Objects are concepts, abstractions, or things with crisp boundaries within the problem 
domain (HEP). An object class describes a group of objects with similar properties (attributes), 
common behavior (methods), common relationships to other objects and common semantics. A 
class can be viewed as a template, which specifies the intended purpose of the objects or as an 
abstraction mechanism. Once the object classes were established, we identified and recognized 
relationships that exist between the classes within the application domain (HEP). The main goal 



is to recognize patterns for aggregation, generalization, specialization or inheritance on both the 
object and the class level. This object-oriented logical data model was produced using OMTool.7 
OMTool follows the basic conventions for object model notation as described in Rumbaugh. 8 

Figure 3 shows the logical design for the OODBMS. The class "Event" is on top of the hierarchy 
and depending on the event the corresponding instantiations of the other classes can be found, 
i.e., "Hit," "Track," etc., have a relationship to "Event" so each of these classes is part of an 
"Event." The class "Particle" is modeled as an abstract class (one that has no direct 
instantiations). The subclasses of "Particle," the different types of particles, inherit all attributes 
from their superclass. 

Key: 

<> Aggregation 

.6. Generalization 

Association (Many) 

-0 Association (Zero or one) 

Association (Exactly one) 

Figure 3. Logical Design for the OODBMS using OMTool notation. 



5. Testing Criteria 

For the purpose of this project, we wanted to measure how well the underlying data model 
reflects and enhances the performance of the system. Our test measures response time, i.e., the 
real time elapsed, from the point a program calls the database system with a particular query, 
until the results of the query, if any, have been placed into the program's variables. 

There are two broad categories of performance measures: time and storage. We wanted to 
determine the storage efficiency of the database management systems; i.e., determine what 
fraction of a database is actual source data and what is database management overhead. We had a 
lO-MB and a l00-MB database and checked the size of the database dumpfiles on disk. 

We looked at only three time measurements: 1) the time it takes to create a database, 2) the 
time it takes to archive a database, and 3) the time it takes to complete the queries. All tests are 
run on disk resident databases. 

6. Results 

The goal of our test was to model a specific environment, the high energy physics 
analysis environment, and the aspects of how the two database systems are performing in this 
environment; therefore, a lot of time was spent in modeling the HEP data and reflecting this 
environment in the relational and object-oriented data model. All measurements are summarized 
in Figure 4. 

RDBMS OODBMS 

Storage: 8.4 MB 84MB 6.4MB 64MB 

Time: 
Populate 3:47.0 28:18.0 2:54.5 32:18.9 
Dump db 7.2 1:37.6 22.7 4:12.1 
Load db 27.8 5:33.4 22.7 4:12.1 
Query:vfit 24.4 36.0 15.5 44.9 

Figure 4. Time Measurements in min:sec. 1/10 sec. 

Storage: 
To measure the overhead of each database management system, we determined the size 

of the files to be archived. The relational database dumpfile is larger because it stores a self­
contained database that includes all of its pertaining information. The object-oriented database 
schema is not part of the size of the database file size recorded. For both database systems, the 
schema remains static throughout analysis. The schema must, however, exist prior to loading a 
database file into an existing healthy database. For the OODBMS, the schema files are of 
insignificant size, so we did not archive them with the database file. The OODBMS database file 
is approximately 25% smaller than the RDBMS database file. 



~ 
1. The first time measurement was to see how long it takes to create and fill (populate) a 

database for both database systems and both sizes (10 MB and 100 MB). The RDBMS showed 
much more consistent results in creating and loading both database sizes. When loading a 
relational database, only the actual data is loaded, whereas when loading an object-oriented 
database the pointers, or the paths, have to be loaded also. This reflects the time increase for the 
OODBMS. For 10 MB the OODBMS performed approximately 25% better than the RDBMS, 
however, for 100 MB the performance deteriorates and becomes approximately 12% worse than 
theRDBMS. 

2. Archiving the database files was the next time measurement recorded. For both 
DBMS, we used vendor-provided utilities to archive the datafiles. Archiving included loading a 
database file from disk and dumping a database file for storage. Both measurements are 
important when 1 GB of data is divided into separate datasets so that archiving can eventually be 
done in a distributed, parallel fashion. The RDBMS performed consistently better than the 
OODBMS. To retrieve a database file, the RDBMS requires approximately 18% less time for the 
10 MB and 24% less for 100 MB. To store 10 MB for the RDBMS it requires approximately 
31 % and for 100 MB 38% less time than for the OODBMS. 

3. For the query used as a test measurent, we selected a "track refitting" query. There are 
other physics query results,8 but the "refitting" query reflects a standard traversal over three quite 
large tables, five levels deep. The RDBMS scales up better, without optimization from the 
designer (25%). In the OODBMS, where the user has to take care of all query optimization, 
using such features as "path of," which will store a predefined indexed path for a query, the 
performance can be increased dramatically by implementing such changes. 

Both relational and object-oriented databases have their own inherent problems for the 
physics research community. Relational databases provide a simple way of extracting data with 
SQL, but all analyses must be done outside the database. In other words, for the algorithms there 
still needs to be a layer of application programs on top of the database. SQL does not have 
sufficient capabilities, such as recursion. This causes problems, such as the cost of writing 
application programs, the granularity of the data present in the programs and the impedance 
mismatch, however, this approach seems to be rather attractive to the physicists since most of the 
algorithms are already implemented in FORTRAN. Object-oriented databases, on the other hand, 
are less mature than relational systems and are more difficult to fine tune for performance. 

The grand picture is, of course, to develop a system that is very flexible, modular, 
scalable and distributed. It should, essentially, take data and process it into information, 
preferably visual information, so that the user can extract facts and make meaningful conclusions 
from that. Use of databases is essential for these projects, however, the design of such a database 
is not yet fully understood. The next-generation database application has little in common with 
current business data processing. Since a need for much larger, more complex datasets exists, 
new capabilities in areas such as type extensions, complex objects, rule processing and archival 
storage are required. 



This project was not designed to be "another" benchmark in the area of database 
comparison, therefore, traditional database benchmarks, such as "insert" were not measured. We 
wanted to show the performance characteristics of the database management systems in the 
application domain, i.e., high energy physics applications. The benchmarks designed for generic 
use and overall performance were applicable, but less desirable than designing specific tests. 

7. Acknowledgments 

This paper has been produced within the framework of the PASS project! at the SSCL. The 
author has participated in this project, designing and implementing the databases and creating the 
performance measures. She would like to thank Alain Gauthier for developing the "track 
refitting" query incorporating existing FORTRAN code. She would like to express special thanks 
to Ed May and Ute Nixdorf from the SSCL who were crucial to the success of this exercise. 

8. References 

1. E. May, D. Lifka, R. Lusk, L. Price, D. Baden, R. Grossman, C. T. Day, S. Loken, 
J. F. Mcfarlane, L. Cormell, P. Leibold, D. Liu, M. Marquez, U. Nixdorf, B. Scipioni, 
and T. Song, The PASS Project: Database Computing for the SSC, Proposal to the 
DOE HPCC Initiative, Argonne National Lab, 1991, unpublished. 

2. J. Marstaller, Comparative Performance Measures of Relational and Object-Oriented 
Databasesfor High Energy Physics Data, Baylor University, 1993, unpublished. 

3. E. F. Codd, Extending the Database Relational Model to Capture More Meaning 
ACM TODS (December) 1979. 

4. V. M. Markowitz, and A. Shoshanie, Representing Extended Entity-Relationship 
Structures in Relational Databases: A Modular Approach, ACM Transaction on 
Database Systems, 1992. 

5. E. Szeto, V. M. Markowitz, ERDRA W A Graphical Schema Specification Tool, 
Lawrence Berkeley Laboratory, 1990. 

6. V. M. Markowitz, and A. Shoshanie, Representing Extended Entity-Relationship 
Structures in Relational Databases: A Modular Approach, ACM Transaction on 
Database Systems, 1992. 

7. General Electric Company, OMTool. User Guide for Sun Microsystem Workstations, 
Pennsylvania, General Electric Company, 1992. 

8. J. Rumbaugh, et aI., Object-Oriented Modeling and Design, Prentice Hall, New 
Jersey, 1991. 


