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1. Introduction 

Little is known about form factors of local operators between a heavy meson like 

the B - with quantum numbers of a single heavy quark Q and a single light anti quark ij 

- and light pseudoscalar mesons like the 7r-J{-ry octet. Isgur and Wise have shown that 

heavy quark symmetries[l] relate several form factors[2], but nothing is known about their 

shape. Thus far all theoretical attempts to describe them are based on particular models 

of hadrons. 

Surprisingly one can calculate the shape of these form factors exactly in one specific 

limit. We show in this letter that when one takes the leading term in a large number 

of colors (Nc ) expansion and simultaneously takes the leading term in the heavy quark 

expansion and the chirallimit, then the form factors are a single pole for all momentum 

transfers t = q2, 

(1.1 ) 

The location of the pole is p,2 = p,~*, the squared-mass of the heavy vector meson which 

couples to the heavy-light current, 

(1.2) 

The constant residue C is completely determined in terms of the decay constant f B* and 

its coupling to a B-7r pair, gB*B7r. To quantify the accuracy of this approximation and the 

expansion around this limit requires substantial exploration. This is outlined below and 

further details will be reported elsewhere [3J. 

The most immediate application of this result is to the decay 

(1.3) 

which is the direct route to obtaining the elusive mixing angle IVubl of the CKM matrix 

of the standard electroweak theory from measurements of B-meson decays. Little data on 

this mode is available yet we may anticipate the eventual measurement of the shape of its 

form factor as the test of these ideas. 

For a thumbnail preview of the discussion below, here is the relevance of the three 

limits we consider: (a) in the heavy-quark limit, including l/MQ corrections, the Band 

B* fall into a nearly degenerate SU(2) multiplet; (b) in the chiral limit, the conserved 

current mixes these states and suppresses transitions between multiplets; and (c) in the 

large-Nc limit multiparticle intermediate states are suppressed. 
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2. Derivation of the form factor 

Consider the matrix element of a local operator O( x) with qUdntum numbers Q and ij: 

(7r(p')IO(O)IB(p)) . (2.1) 

For concreteness we shall speak specifically of the B -+ 7r transition. In fact 7r may 

generically stand for a light pseudoscalar meson, conveniently thought of as a qij bound 

state; and B is a ground state heavy meson, that is, the lightest with Qij quantum numbers. 

This matrix element can be written as a sum over tensor structures times form factors, 

i. e., functions of the invariant momentum transfer q2 = (p - pl)2. For example, the current 

in (1.2) defines two form factors, f+ and f-: 

(2.2) 

We evaluate the left-hand side by inserting a complete set of states which couple with 

the same quantum numbers as the current. In the large-Nc limit [4] the single-particle 

intermediate states dominate. If F( q2) is a form factor, then in the large-Nc limit 

(2.3) 

where the sum is over resonances Bn with masses /-In, and couplings fn and gnBrr to the 

current from the vacuum and to the B-7r pair, 

(2.4) 

Note that the sum over poles eq. (2.3) is very different from the statement of eq. (1.1) 

that a single pole term contributes: before specifying the residues the sum may be a quite 

general function. This generality is amply illustrated by the case of QQ charmonium-type 

states of heavy quarks where the residues of many states are large and rapidly varying[5]. 

The massive poles are required by the structure of excited states, yet confinement forbids 

the anomalous-threshold singularity at small q2 which ought to be present to describe the 

large size of a non-relativistic quark distribution. Hence the electromagnetic form factor 

is given by exactly such a sum of poles but with rapidly varying numerator coefficients. 

The form factor of heavy quarkonium is therefore never well-represented by a single term 

of (2.3), yet is a smooth function of q2 for all q2 < /-l6. 

2 



The lowest mass state in the sum (2.3) is either the ground state pseudoscalar meson B 

or the ground state vector meson B*, according to whether the local operator 0 has odd 

or even parity, respectively. It is obvious that this state dominates in the small kinematic 

regIOn 

(2.5) 

to show that this state dominates over a large range 01 q2 is a dynamical question that 

must be addressed by evaluating the behavior of the couplings In and gnB1r' This is the 

question which we take up here. 

As usual, the states Band B* have equal masses in the leading order in the I/MQ 

expansion; the leading correction is the familiar hyperfine interaction which introduces a 

spin-splitting, /-lB· - /-lB = O(I/MQ), while /-l~. - /-l~ = A5 independent of MQ in the 

large mass limit. 

We wish to show that III the leading order in the 1/ MQ expansion and the chiral 

limit mq --t 0 the couplings gnB1r vanish except for the case when n corresponds to the B* 

state. Then the general expansion (2.3) reduces to the form (1.1). 

Consider the how these same couplings arise in a different matrix element: let us look 

at the light quark axial current, 

(2.6) 

between the B state and the generic resonance Bn. In the leading order in the 1/ Nc 

expansion it is given as a sum 

(2.7) 

where £ runs over single particle states 7r(l) that are produced out of the vacuum by the 

light quark axial current, and Jle stands for its mass. 

In the chiral limit only the pion, £ = 0, contributes to this sum and the result IS 

proportional to the couplings of interest, (7r Bn IB). 

To demonstrate this let us show that, in the chirallimit, 

(2.8) 
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except for the pion. We need only consider the time component of the current in the rest 

frame of the state. In the chirallimit the axial current is conserved: 

Thus eq. (2.7) reduces to 

o = (0Iolla Il 171'(£)(O)) 

= P~ (01~1l171'(£)(0)) . 

= lit(Olao 171'(£)(0)) 

(B I IB) 
_ if rrP~ (71' Bin) 

n ao - 12 ' 
P 

when p' = O. Using conservation of all again gives 

This means that 

o = P~ (Bn laO IB) 

= ifrr(71'B nIB ) . 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

in the frame p' = 0, but this holds generally since the matrix element is a Lorentz scalar. 

To go from (71' Bn IB) to the form factors of B -+ 71' decay we now must specify the 

spin-parity quantum numbers of the state In). Consider first the case in which Bn is a 

scalar. The off-shell matrix element (71' Bn IB) can be characterized by a single 'form-factor', 

(2.13) 

We apply a standard dispersion relation to form factors f ±( q2), which are of the form (2.3), 

to replace the matrix elements in the numerator by their residue at the pole, q2 = Il~' Thus 

to evaluate f ±, only the value of the form factor on-shell is needed. But we have just shown 

above that 

(2.14) 

Hence scalar Qij excited states do not contribute to the resonant sum of eq. (2.3). 

Consider next what happens when Bn is a vector. The matrix element is 

(2.15) 

where E is the polarization vector of the state Bn and its vacuum coupling through the 

vector current is defined by 

(2.16) 
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The contribution to the B -> 7r form factors is then 

f (n)C 2) f - ng_ ftn 
+ - q2 - ft; 

f (n)( 2) 2 I 2 

f 
- -f (n)( 2)1 2 _ ng- ftn ftB ftn 

- - ng+ ftn ftn 2 2 
q - ftn 

(2.17a) 

(2.17b) 

The vanishing of (7rBnIB), eq. (2.12), for an on-shell Bn can now be applied to the form 

factors g± and therefore to f±. Nothing is learned about g+ since Bn is on-shell. It is easy 

to see in the Bn rest frame p = p' that 

(2.18) 

Let us restrict attention for now to the exact chirallimit in the heavy quark (infinite) mass 

limit. Then 

E' P = 1P1 cos e, 

where (J is the angle between the polarization and the momentum vectors, and is generally 

non-vanishing. But from the kinematics it is also true that 

for n = B* 
otherwise, 

(2.19) 

where we introduce the mass difference An == ftn - ftB for n =1= B* states, and take the 

large mass limit in the last equality. Therefore, in the combined limit, 

(2.20) 

The couplings to excited states thus go as g~n) '" V(11 MQ) -> 0 except for n = B*, for 

which g~B·) '" V(l). 

We thus obtain the advertised result that the form factor is given by the single pole: 

(2.21) 

The last relation follows since f _ satisfies 

f- = -f+ + [(1- ft~/ft~.)f+ + K], (2.22) 
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where K is an undetermined constant. Since we have taken the large mass limit, our form 

factors should satisfy the standard scaling laws 

and therefore the term in the square bracket in (2.22) can be neglected. 

Some remarks: 

(2.23a) 

(2.23b) 

(1) The choices made of particular reference frames were for convenience and not necessary 

to the derivation. One can obtain, for instance, the same result eq. (2.12) by taking 

the divergence on both sides of (2.7) and letting p,2 - 0: every term in the sum then 

vanishes except for the massless state. 

(2) Higher spin states can be readily incorporated into the discussion. A spin-t' meson is 

characterized by a totally symmetric traceless transverse t'-index "polarization" tensor, 

fJ.lI ... J.l(' The generalization of eq. (2.15) has then, on the right hand, a sum over form 

factors 

L g± ... ±fJ.ll···J.ll (p ± P')J.ll ... (p ± P')/-,l 
sign permuta.tions 

As in the vector case, we only learn about one form factor, namely g_ ... _. The rest 

of the argument is then just as before. 

(3) The large-Nc limit suppressed multiparticle intermediate states but not zero-particle 

intermediate states. Any contact term contribution to the form factor shows up as 

part of the constant K and is instead suppressed by a factor of l/MQ. 

3. Discussion 

We computed the hadronic form factor in the triple limit of large-Nc , heavy quarks, 

and chiral symmetry. We predict the weak decay form factor governing 130 --+ 71"+ e- De to 

be pole-dominated as in the result eq. (2.21) for all q2. Moreover, the two factors in the 

numerator, IB* and g(B*), can be roughly estimated at least by scaling measured values 

for charmed mesons using heavy quark symmetry. 

It is crucial to trace how the three limits (1/ N c --+ 0, 1/ M Q --+ 0 and mq --+ 0) entered 

our derivation, for the next goal must be to estimate the corrections and understand the 

approach to the limit. Is the result independent of the order of the limits? If not, what 

limit and approximations are appropriate? 
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There is a subtle issue in the ordering of the approach to the simultaneous l/MQ -+ 0 

and mq -+ 0 limits. In ref. [6], for instance, Isgur and Wise examined the effect of the B* 

pole on the B -+ 7r transition. They concluded that pole-dominance held only for a narrow 

kinematic region in contrast with our result. They relied crucially on taking the pion mass 

to zero first rather than, say, holding J-L7rJ-LB fixed. Consider small chiral symmetry breaking 

corrections to eq. (2.12): for infinitesimal m q , 

(3.1) 

where'f' is some function of the masses and the hadronic scale A, and mq'f' -+ 0 as mq -+ O. 

For an on-shell B* this implies 

(3.2) 

Therefore, the function 'f' has a finite limit as mq -+ 0 for MQ fixed (A is always fixed), 

while limMQ-+oo 'f' '" l/m q • 

Examples of such functions are easy to come by. A class of such functions is, for 

example, 

(3.3) 

for any n > 1. The expansion parameter around the point l/MQ = 0 is An+l/mq MQ. 
This type of expansion is familiar from calculations in chiral perturbation theory for 

heavy mesons, where one often finds[7,8J corrections to be functions of A6/ J-L7rJ-LB '" 

A~~D/m!/2 MQ. Just as the example eq. (3.3), the corrections computed in refs. [7,8J 

are not singular in either of the limits mq -+ 0 or 1/ MQ -+ 0, but the expansion parame­

ters for the expansions about mq =0 and l/MQ = 0 are the inverse of each other. We see 

that the large mass and chirallimits are inextricably coupled. 

Let us consider one of these calculations in some detail. Chiral perturbation theory 

can be used to predict the leading corrections to the form factors for semileptonic B -+ D 

or D* decays which are generated at low momentum, below the chiral symmetry breaking 

scale. Deviations from the predicted normalization of form factors arise from terms of order 

l/M~ in either the lagrangian or the current as dictated by non-perturbative physics, and 

there are computable corrections that arise from the terms of order l/MQ in the lagrangian 
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which enter at one-loop. Retaining only the dependence on the larger hyperfine splittings 

/:).D = J.LD· - ltD, the correction to the matrix elements at zero recoil are[7] 

where C and stands for tree level counter-terms and 

F x = 2 dz -100 z4 (1 1 ) 
( ) - 0 (z2 + 1)3/2 [(z2 + 1)1/2 + xJ2 z2 + 1 

(3.5) 

This matrix element has alternate, inequivalent expansions around the limits x = 0 and 

x = 00, which correspond to individually taking MQ - 00 and J.Lrr - 0, respectively. For 

small x, F(x) '"" x while as x - 00, F(x) '"" log x and this cancels the log singularity above. 

It is instructive to compare the behavior of g~B·) to that of the form factors of higher 

vector states, g~n). For these we expect a relation similar to (3.2), 

(3.6) 

where 'P is not necessarily the same function as above, but has the same properties. We 

therefore predict that at finite small mq one should find 

(3.7) 

Consider the strong decays of the excited states Di and D2 into the D or D* mesons 

and a pion studied in ref. [9], as well as the corresponding states where charm is replaced 

by bottom. In the notation of ref. [9] these strong decays are described in the combined 

heavy quark and chirallimits by the effective (chiral) lagrangian 

.cd = ~I Tr [HaTt (iDI-'!fi.)ba 15] + ~2 Tr [HaTt (iI,bAI-')ba 15] + h.c., (3.8) 
x x 

where TI-' and H are the spin supermultiplets containing the Di and D2, and D and D* 

fields, respectively, and AI-' is the axial vector field. It follows that in the large-Nc limit one 

must have hI + h2 '"" 0(1/ MQ). This is nontrivial information which is not automatically 

included in the effective lagrangian formulation. 

In contrast to the expectation that gB.B7r scales like M Q , it has been shown above 

that gB.Brr rv 1. Note that this is necessary if the form factors in eq. (2.21) are to scale 
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according to (2.23) over the whole kinematic range. Recall that IB* I"V Mh/2
, and consider 

the region of maximum momentum transfer q2 ~ q~ax = (flB - J1rr)2. In the chirallimit, 

(3.9) 

where the dots indicate contributions of states above the B*. As mentioned above, Isgur 

and Wise have argued that I ± should be pole-dominated in the proximity of q~ax in the 

chirallimit[6]. They observe that, were gB.Brr to scale like MQ, the B*-pole contribution 

would scale like M~/2, while other resonant contributions (and the continuum) would scale 

like M;j2 even if their couplings to the B-7r pair were to scale also as MQ. At least in the 

large-Nc limit, this is not the case at all. I± never violate the scaling laws (2.23), and pole 

dominance occurs because the couplings to higher resonances are suppressed by a power 

of MQ. 

The large-Nc expanSIOn was used twice to write matrix elements as discrete sums 

over single resonances, in eqs. (2.3) and (2.7). The essential point was not so much the 

precise form of the sum but rather the absence, or suppression, of smooth background 

contributions. We do know that the large-Nc limit appears at least as good for heavy 

meson as for light mesons [11]. 

It is tempting to conjecture that gB.Brr I"V 1 even at finite N c . This would avoid the 

contradiction with the scaling laws for I±. This scaling behavior of gB.Brr is important to 

applications where the naive scaling is used to compare Band D meson couplings. In the 

language of the effective chirallagrangian of ref. [10], the coupling 9 of the B-B* multiplet 

to the pion axial current scales like 1/ MQ rather than Mg. 

Both as a check on the assumptions discussed here and as a concrete laboratory for 

exploring the expansion around the limit we have analyzed the predictions of this work in 

the 't Hooft model, QeD in 1+1 dimensions to leading order in the large-Nc expansion. 

Details of this work will be extensively discussed elsewhere[3]. In this exactly solvable 

model, we have shown that the single pole picture is stable as one tunes the heavy quark 

mass down from infinity and independently stable as one tunes the light quark mass up 

from zero. In two dimensions there is no spin, of course, so there are no vector mesons. 

Instead the B-meson couples directly to the vector current and therefore plays the role 

of the B* -meson of the preceding discussion. We show precisely that the couplings gnBrr 

vanish as mq - 0 for n =I- B but not for n = B. Moreover, this single pole dominance 

holds for any heavy quark mass MQ. 
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It is apparent that the result can be generalized in several directions. For example, 

one may consider the form factor for a matrix element of a local operator between a 

pion and non-ground state Qif meson. Take, for example, the BI and B; mesons, which 

form a multiplet of heavy quark spin symmetry. The above result states that, modulo 

accidentally degenerate states, the form factors are pole dominated by a pole at the Bl or 

B; squared-mass. One may consider other states for which the conserved axial current is 

a good interpolating field, e.g., the Al pseudo-vector meson. Perhaps more interestingly, 

one may instead consider other conserved currents as interpolating fields. The first obvious 

candidate is the vector current if,l1q. This can be used as interpolating field for the vector 

mesons, like the p and K*. 

Acknowledgments: We are indebted to Sidney Coleman for an incisive question and 

comment which led to this work and we thank William Bardeen for helpful discussions. 
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