
Physics Research Integrated 
Development Environment 

(PRIDE) 

Superconducting Super Collider 
Laboratory 

SSCL-Preprint-S42 
December 1993 
Distribution Category: 414 

J. Burton 
L. Cormell 





SSCL-Preprint-542 

Physics Research Integrated Development Environment 
(PRIDE)* 

J. Burton and L. Connell 

Superconducting Super Collider Laboratoryt 
2550 Becldeymeade Ave. 
Dallas, TX 75237, USA 

December 1993 

·Presented at the Third International Workshop on Software Engineering Artificial Intelligence and Expert 
Systems for High Energy and Nuclear Physics. 
tOperated by the Universities Research Association, Inc., for the U.S. Department of Energy under Contract 

No. DE-AC35-89ER40486. 





PHYSICS RESEARCH INTEGRATED 

DEVELOPMENT ENVIRONMENT 

(PRIDE) 

Jackie Burton, Larry Cormell 
Superconducting Super Collider 

2550 Beckleymeade A venue 
Dallas, TX 75237-3997 

ABSTRACT 

Past efforts to implement a Software Engineering approach to High Energy Physics computing 
have been met with significant resistance and have been, in many cases, only marginally 
successful. At least a portion of the problem has been the lack of an integrated development 
environment, tailored to High Energy Physics and incorporating a suite of Computer Aided 
Software Engineering tools. The Superconducting Super Collider Physics Research Division 
Computing Department is implementing pilot projects to develop just such an environment 

1. Introduction 

Software Engineering (SE) technology continues to evolve in the direction of a coherent, 
integrated environment based on the complementary principles of Object Orientation (00) and 
the Open Systems Environment (OSE). The unique teaming of physicists from both the 
Solenoidal Detector Collaboration (SDC) and the Gammas Electrons and Muons (GEM) 
collaboration with the Physicists and Software Engineers of the Physics Research Division 
(PRD) Computing Department (PRCD) at the Superconducting Super Collider Laboratory 
(SSCL) to develop such an environment, the Physics Research integrated development 
environment (PRide), portends a remarkable new phase in software development for High 
Energy Physics (HEP). It promises: 1) improved productivity in the development of software; 2) 
greater accuracy and reliability of the software; and 3) quicker turn-around time for both the 
results of analysis and for the implementation of new software tools/versions. 

2. An Historical Perspective 

Previous efforts to introduce structured SE techniques into the realm of HEP have met with, 
at best, mixed results. The adoption of formal SE methods by experimental high energy 
physicists has proceeded very slowly. Several recent articles by Loken l , Knobloch2, and Nash3 
provide interesting discussions of this lack of formal SE in HEP. It does seem strange that 
scientists in a field that constantly pushes the envelope by demanding the state of the art in 
cryogenics, electro-optics, structural materials, electronics and certainly computing hardware 
would not demand the same of SE. There are a number of historical, philosophical, and even 



emotional reasons for this bias against, or at least reluctance to SE methods. While a discussion 
of this reluctance would probably be an excellent topic for a panel discussion, it is beyond the 
scope of this paper. We simply note in passing that structured analysis/structured design 
(SNSD) methodologies were introduced in the early '70s and have been used successfully 
throughout the software industry since that time to reduce development time and costs and to 
improve product quality. 

Despite this apparent bias against SE, several HEP experiments have recently made use of 
SE methodologies. The most notable are DO and ALEPH. Both of these experiments have had 
considerable benefit from their use of SE methods and tools. The software developers in these 
experiments basically followed the classical life cycle or waterfall development plan4 employed 
SNSD formalism5, and embodied their design in data flow diagrams (DFD) ala DeMarc06. 

The DO collaboration used SNSD methodology in the initial design and implementation of 
their software. DFDs and their associated data dictionaries were the primary tools used to 
develop the DO software models. These along with structure charts and state transition diagrams 
provide the basic design, description and documentation of the DO software system 7. At the time 
that DO began developing their software they were not able to obtain adequate computer-aided 
software engineering (CASE) tools to maintain their design and diagrams. 

ALEPH has made extensive and effective use of DFDs throughout the life cycle of their 
software development effort8. In addition the ALEPH collaboration has introduced data 
modeling and data base techniques to provide organization for their analysis tasks. ADAMO 
(Aleph DAta MOdel) was developed by the Aleph collaboration where it is used in several 
programs including detector description, data acquisition, event reconstruction and display, data 
analysis and group administration9. ADAMO includes the elements of an entity-relationship 
(ER) model in a form suitable for HEP computing. Entity-relationship diagrams were drawn to 
provide graphical descriptions of the data structures and the relationships among them. Data 
dictionaries as derived from the DFDs were generated and maintained. A CASE tool from 
Tektronix was used to automate the process of drawing and updating the diagrams. 

The ALEPH collaboration found several advantages to using SNSD methods and CASE 
tools: 

• There is a common/uniform style of work throughout the development effort. 

• The extended analysis phase had a very positive aspect because it led to the clarification, 
documentation and easy communication of concepts and ideas to other colleagues. 

• The design documentation was available before coding began, providing a powerful means 
to describe abstract details. 

• The top level breakdown and organization of the design permitted partitioning of the work 
among several independent teams. 

• Frequent walk-throughs and reviews for verification and validation provided increased 
quality assurance in the final products. 



Thus far, those high energy physicists who have used SE methods and CASE tools have 
primarily followed waterfall development efforts with some rapid proto-typing and feedback 
(modified waterfall). The waterfall method can be quite effective, especially for fairly well 
defined, closed-end applications. However, for many problems, such as those typically 
encountered in HEP, the solutions can not been written in closed form at the beginning of the 
project. The input requirements and desired output may change during the development cycle. 
In these cases, the formalism of the waterfall method may be too rigid. Newer methods have 
attempted to address the need for dynamic flexibility within the development effort. Several of 
these include Dearnley and Mayhew's model lO, Boehm's spiral development model11, and other 
variants of iterative prototyping methods12 13 14 15. There is no single silver bullet16. Each 
software project is unique with its own set of user requirements, desired level of quality 
assurance, available resources, deliverables and schedules. The development approach, 
planning, and design methodology must be tailored accordingly. In the end there is still no 
substitute for careful planning, lots of thinking, and plenty of hard work. 

3. On-Going Efforts 

Despite the limited success of previous efforts, there is still an awareness of the need for a 
better way to develop software. Numerous efforts are under way to incorporate sound software 
engineering techniques into HEP software development efforts in order to take advantage of 
rapidly changing hardware and software technologies. Several papers were presented at this 
conference last year on this topic including: 1) a proposal by F. Bruyant to design a coherent 
software framework for future HEP experiments; 2) a report by P. Kunz on SLAC B efforts to 
utilize Object Oriented Programming (OOP), C, C++ and UNIX; 3) a report by DUff and Lourens 
on a formal specification language for Object Oriented Design (OOD); 4) a report by A. Nilsson 
on an event generation toolkit in C++; 5) a report by C. Arnault on the use of OOA for the 
Delphi Online Event Display; and 6) a report by J. D. Shiers on HEPDB 17. There are additional 
examples, all pointing to the conclusion that HEP software development is moving inexorably to 
an integrated, software engineering approach to solving the problems of HEP data capture, 
storage, filtering, reconstruction and analysis. 

4. The SSCL Computing Environment 

The SSCL PRCD, SDC and the GEM collaboration are in a unique position to take 
advantage of the leap in computer engineering efficiency and potential for improvement in 
software development cost-to-benefit ratios which presents itself with the implementation of an 
integrated software engineering development environment based on 00 and OSE concepts. The 
lack of legacy constraints of outdated hardware, uncontrolled software and immovable 
bureaucracy provides the opportunity to plan and implement the most cost effective, 
scientifically feasible solution for the long term. Cost, resource and schedule constraints add to 
the attractiveness of alternative solutions 

The viability of the utilization of scalable, loosely coupled networks of workstations as 
proven by the SSCL Physics Detector Simulation Facility (PDSF) argues successfully for the 
implementation of an open systems concept18. The need for the integration of a variety of 
analysis tools developed and used by physicists around the world with the latest commercial off 



the shelf (COTS) SE tools points out the need for an applications programmer interface (API) 
within some integrated environment. 

In the past, physicists have been able to rely on "free" manpower resources in the form of 
post-docs and graduate students. The scale and longevity of the efforts at the SSCL limit the 
effectiveness of such resources. The limited budget and resources allocated to PRCD and the 
collaborations for computer and software engineering makes it an imperative that alternatives be 
identified. The extensive requirements by both of the collaborations coupled with these limited 
resources begs for the implementation of reusable code and the sharing of resources to the 
maximum extent possible without endangering the integrity of either of the collaboration's 
experiments. 

The long time scale for completion of the SSCL as well as the anticipated duration of each 
of the detector experiments requires the ability to provide technology forecasts beyond 
reasonable expectations of accuracy. As such, the implementation of interim software solutions 
must maximize the ease of modification, expansion and seamless replacement of the components 
of the environment. That is, software tools or sets of tools should be readily replaceable by newer 
versions or even new tools with minimum impact on the end user, the physicist. 

5. The Beginnings Of PRide 

The unique environment at the SSCL set the stage for an unprecedented combination of 
physics collaborations and laboratory computing department resources. Recognizing the need 
for an innovative solution to the problems of insufficient funding, limited personnel resources 
and tight schedule constraints, PRCD has long championed a confederated approach to 
maximizing commonalty in the solutions to the computer engineering and software development 
problems facing the collaborations l8 . The SDC Computing subgroup took the first steps 
towards such an environment by inviting members of the GEM collaboration computing 
subgroup to an SDC computing subgroup workshop at Fermi National Accelerator Laboratory 
(FNAL). Attendees left with a conviction that there was some common ground. 

In May, 1993 an SDC computing workshop hosted by Rice University l9 featured full 
participation by both GEM collaboration computing subgroup members and members of PRCD. 
An effort was made, at that time, to establish and prioritize software development requirements 
shared by the two collaborations. Among those prioritized requirements were a requirement for a 
software framework environment and for an integrated Computer Aided Software Engineering 
(CASE) environment. 

Subsequently, the first joint computing subgroup workshop was held at the SSCL20. At 
that time, a brief definition of each of the proposed joint projects was provided by the PRCD 
Computer Engineering Group. In addition, a detailed explanation of CASE and the integrated 
software engineering environment was presented. The presentation included a brief proposal to 
develop the PRide. More importantly, PRCD, the SDC and the GEM computing subgroups 
agreed to develop a Memorandum of Understanding for management of joint projects between 
PRCD and the two collaborations21 . The Experimental Computing Management Committee 
(ECMC) was established to oversee initiation, assignment prioritization and allocation of 
resources to projects. Alternative approaches for the prioritization and resource allocation 
process were discussed and initial drafts were developed for the procedures by which joint 
projects would be initiated, approved, prioritized, managed and have resources assigned from 
PRCD and the collaborations22 23 24. In addition to the need to identify projects, priorities and 



how resources were to be shared, the intent of this effort was to prevent the development of a 
client server relationship in which PRCD received requirements from the collaborations and 
returned with a complete system some time later that might or might not fulfill those 
requirements. 

6. Framework Software 

Among the first projects initiated by the ECMC was an effort to develop a standardized 
environment for joint off-line computing applications software to be known as the 
FRAMEWORK software. The concept of the FRAMEWORK software had grown out of the 
previous SDC core software efforts25• The FRAMEWORK software was seen as necessary to 
provide support to the various tools, utilities, application programs and subroutines that will be 
developed by the two collaborations. 

7. PRide Reference Model Selection 

Integral to the ECMC FRAMEWORK software development project was the requirement to 
develop an integrated software development environment, the PRide. In fact, the FRAMEWORK 
software can be seen as a component of PRide itself. It should be noted that the purpose of the 
reference model is to describe environments that support projects that engineer, develop or 
maintain computer based systems. It is explicitly aimed at establishing a conceptual basis for an 
environment, not at establishing any particular environment product. There is no part of the 
reference model that involves choosing a standard toolset. That is the purpose of the PRide 
development effort. 

Evaluations of various reference models for integrated environments, including the Portable 
Common Tools Environment (PCTE)26, the Reference Model for Frameworks of Software 
Engineering Environments27, and the POSIX Open Systems Environments. POSIX model seeks 
to define the open systems environment. The NISTIECMA reference model domain is the PSE 
frameworks that support software engineering. 

These reviews led to the evaluation selection of the Next Generation Computer Resources 
(NGCR) program Project Support Environment (PSE) reference model for the initial attempts to 
define and model the PRide. The domain of the NGCR model encompasses each of the other 
standards and more in an attempt to establish a conceptual base for an environment. 

8. NGCRPSE 

The NGCR PSE reflects the aspects of a large collection of existing environment efforts and 
models. These include the Software Technology for Adaptable and Reliable Systems (STARS) 
program, the National Institute of Standards and Technology (NIST) Integrated Software 
Engineering Environments (lSEE) working group, the European Computer Manufacturers 
Association (ECMA) TC33 Task Group on the Reference Model, the United States Air Force 
Software Life Cycle Support Environment (SLCSE) project, Honeywell's Engineering 
Information System (EIS) program, the Conceptual Environment Architecture Reference Model 
(CEARM) effort, and the standardization committees within the Institute for Electrical and 
Electronics Engineers (IEEE) and American National Standards Institute (ANSI) for POSIX and 
for CASE Tool Integration Models (CTIM)28. 



The approach of the model is comparable to the POSIX OSE and the NIST/ECMA 
Reference Model for Frameworks of Software Engineering Environments. The model 
incorporates the two different domains of interest of these environments: 1) the Open Systems 
Environment of Posix; and 2) the NIST/ECMA PSE frameworks that support software 
engineering. 

Since both of these efforts developed independently, there are some minor discrepancies 
between them that are being resolved within the two affected agencies29. For example, the 
Network services described in POSIX are included in the Object Management Services 
Distribution and Location service and in the replication and synchronization service. Additional 
areas of interest are incorporated as well. For instance, it has been proposed that the 
NIST/ECMA Framework's Presentation service be revised to accommodate some of the 
emerging technologies in the area of Audio and Video Processing Service. 

9. Case Tools 

Before we look at the PRide, it is worthwhile to look at what CASE is in order to relate it to 
the PRide. We will discuss CASE in terms of the standard industry classification of Upper, 
Lower and ICASE or Integrated CASE. Upper CASE tools are those which support the initial 
phases of a software development project, to include systems analysis and trade-off studies. 
Upper CASE tools are generally selected to support the software development methodology 
selected by the organization such as SAiSD or one of the varieties of Object Oriented (00) 
Analysis (OOA) and Design (OOD) such as ShiaerIMellor30 or Rumbaugh3I . Lower CASE 
traditionally includes more programming specific tools such as editors, compilers, linkerlloader, 
debuggers, restructures and other programming aides. ICASE tries to integrate all of the CASE 
tools into a coherent whole. 

Examples of CASE tools may include products as simple as code editors like TECO, Vi, 
eve ,emacs, xed it, etc., debuggers or syntax checkers such as dbx, gdb or Kadb, or life cycle 
support products such as Cadre Technology's Teamwork or Interactive Development 
Environment's Software through Pictures which may provide some automated project 
management, analysis and design, quality assurance, configuration management and testing tools 
as well as code generation support. Generally speaking, CASE tools provide automated support 
for some or all of the following activities: 

• REQUIREMENTS MODELING USING DIAGRAMS - CASE tools in this area generally 
provide for initial graphic representation of the system, subsequent changes to and output 
of in-progress or completed diagrams. Object input validation and diagram manipulation 
rules are provided. It should be noted that graphic representations have not yet become 
standardized within the industry. 

• MODEL VALIDATION - Tools in this area check for model completeness, and identify 
inconsistencies or errors. Validation may be interactive, batch or both. 

• SPECIFICATION DEVELOPMENT - Tools in this category provide for the conversion 
of the initial model into preliminary and detailed design specifications. 



• DESIGN V ALIDA nON - Tools in this area check for design completeness, and identify 
inconsistencies or errors. At this time, most such tools are platform dependent. 

• CODE GENERATION - Tools in this category support the transformation of detailed 
design specifications into executable code. Again, code generators are typically specific to 

a single platform. 

• TESTING - Automated testing support includes both the automated generation of test 
plans and procedures and the exercising of the target system either directly or through the 
use of a simulation of the target environment. 

• PROJECT MANAGEMENT - These tools provide a framework for the recording of the 
work planned, the actual work done, and an assessment of the work to be completed. 

• DOCUMENTATION PRODUCTION - These tools provide for the automated generation 
of documentation, in a format based on site specific templates, from information provided 
by the specification models for both the requirements and the design. 

• RE-ENGINEERING OF EXISTING APPLICATIONS - These tools provide support for 
the automated documentation of existing code, the analysis of existing systems and the 
subsequent redesign/optimization of the existing systems either manually or 
automatically32. 

10. Description Of The Pride Model 

In the development of the PRide, we have chosen a course which seeks to optimize the 
advantages of CASE tool utilization by integrating them into a single, cohesive environment. 
Among the advantages identified for this type of integrated environment are: 

• The maintenance of a single set of object definitions, particularly data definitions, in a 
variety of development efforts. 

• The ability to maintain project continuity via the access of the same information from all 
phases in the development process. 

• The ability to identify targets for re-use and to re-use objects in different application 
development projects. 

• The ability to integrate project management, analysis, design, and development efforts to 
maximize the opportunities for the use of automated tools and to prevent the disconnects 
prevalent in other development environments which result in incorrect or missed 
requirements in the target implementation33. 

The PRide will provide services which will span the functionality of a populated 
environment. We define an environment to be a collection of software and hardware 
components, with a degree of compatibility sufficient to render these components harmonious. 



Services are defined as an environment's capabilities. Those capabilities which directly support 
an end-user are referred to as tools. The components that comprise an actual infrastructure are 
referred to as the framework. 

The Pride services will be grouped in different categories reflecting degrees of abstraction, 
granularity, or functionality. The highest level division classifies services either as end-user or 
framework services. End user services will be further subdivided into Technical Engineering, 
Technical Management, Project Management, and Support Services. The first three of these 
groups partition the execution of a project into engineering, management, and engineering 
management. The fourth group , Support Services, is, per the NGCR reference model, 
orthogonal to the other three, since it includes capabilities potentially used by all other users34. 
The logical relationship of these service groups is illustrated in Figure 1. Framework services 
form a central core with a potential relationship to all other services in the environment. Support 
services underlie all the other end-user services. The remaining groups provide an envelope 
around the framework services and utilize the support services. The boundaries do not explicitly 
indicate interfaces, as the representations are at the service groups level, not the services level. 
To emphasize this point, the service groups might be represented as in Figure 2. 

Technical 
Management 
Services 

An Illustration of 
Service Groups 

Technical 
Engineering 
Services 

Figure 1 

Framework 
Services 

Project 
Management 
Services 

Support 
Services 



Project 
Management 
Services 

Figure 2 

Support Services 

Technical 
Management 
Services 

Technical 
Engineering 
Services 

Framework Services 

Another Illustration of Service Groups 

Each of the end user service categories is further subdivided by engineering domain, user 
role, or life cycle phase. Technical engineering services are directed toward the technical aspects 
of project development. These services are organized by specific engineering domain. Tasks 
typically include designing and coding which require services such as compilation and testing. 
Technical management provides services that are closely related to engineering activities; these 
include services which provide a managerial complement to engineering activities in the areas of 
configuration management, reuse, and metrics. Project management services are relevant to the 
overall success of the SSCL. They include such things as scheduling, planning, and tracking 
overall progress of a project. Support services focus on tasks and activities common among all 
users of the PRide. They include a group of common services for information processing, as 
well as publishing, user communication, presentation, and administration services. 

The framework service categories include Operating System, Object Management, Process 
Management, Policy Enforcement, User Interface, Communication, Network, and User 
Command Interface services. 

Real software components span various service groups with many components considered 
to be end-user tools also providing capabilities properly regarded by the NGCR reference model 
as framework services. The model provides a common conceptual basis against which to 
examine these environmental implementations. The boundary between service groups, 
particularly the boundary between end-user and framework services is a dynamic one that 
changes over time. 

11. Development Of PRide 

The development of PRide is following an iterative multi-stage development path. Parallel 
efforts are underway at the SSCL to: 1) identify the current physics computing environment both 
within PRCD and the collaborations; 2) to establish an approach to developing framework 
services within the ECMC FRAMEWORK project35 ; and 3) to acquire, build and integrate 
components of the PRide through innovative acquisition techniques, including the utilization of 



Creative Research and Development Agreements (CRADAs) which would allow software 
developed by teams of PRCD engineers and commercial vendors to be made available at little or 
no cost throughout the collaborations. 

12. References 

1. S. C. Loken, Software Engineering: What Do Experiments Need?, Proceedings of the 
International Conference on Computing in High Energy Physics '92 (1992) 87. 

2. J. Knobloch, Reality of Software Engineering in High Energy Physics, Proceedings of 
the International Conference on Computing in High Energy Physics '91 (1991) 291. 

3. T. Nash, High Energy Physics Experiment Triggers and the Trustworthiness of 
Software, Fermilab-CONF-911270, August, 1991. 

4. W. W. Royce, Managing the Development of Large Software Systems: Concepts and 
Techniques, in the Proceedings of WESCON (1970) 

5. B. W. Boehm, Software Engineering, IEEE Transactions on Computing (1976) 1226. 

6. M. Paige-Jones, The Practical Guide to Structured Systems Design, Yourdon Press 
(1980). 

7. T. DeMarco, Structured Analysis and System Specification, Yourdon Press (1978). 

8. J. Linneman, et al., The Use of SNSD Methods in DO Software, Computer Physics 
Communications ~ (1987) 245. 

9. G. Kellner, Development of Software for ALEPH Using Structured Techniques, 
Computer Physics Communications 15. (1987) 229. 

10. S. M. Fisher and P. Palazzi, Using a Data Model from Software Design to Data 
Analysis: What Have We Learned? ,Computer Physics Communications Sl (1989) 
169. 

11. P. A. Dearnley and P. J. Mayhew, In Favour of System Prototypes and Their 
Integration into the Systems Development Cycle, The Computer Iournal22 (1) (1983) 
36. 

12. B. W. Boehm, IEEE Computer, 2! (1988) 5. 

13. B. Boehm, et al., Proto typing Versus Specifying: A Multiproject Experiment, IEEE 
Transactions on Software Engineering SE-IO (1984) 290. 

14. F.P. Brooks, No Silver Bullet: Essence and Accidents of Software Engineering, IEEE 
Computer, 20 (4) April 1987. 

15. K. S. Lantz, The Prototyping Methodology, Prentice-Hall (1986) 

16. J. L. Connell and L. B. Shafer, Structured Rapid Prototyping: An Evolutionary 
Approach to Software Development, Y ourdon Press (1989). 

17. In the Proceedings of the Second International Workshop on Software Engineering, 
Artificial Intelligence and Neural Networks in High Energy Physics. 

18. B. Scipioni, et.al., Physics Detector Simulation Facility Phase II System Software 
Description, Proceedings of the Conference on Computing in HEP, Annecy (1992) 
597. 



19. L. Connell, Experimental Systems Computing, SSCL-N-814, February, 1993. 

20. I. Gaines ed., Proceedings, SDC Computing Workshop, Rice University, May 17-19, 
1993. 

21. I. Gaines ed.l Proceedings, Joint GEM/SDC/PRCD Computing Workshop, 
Superconducting Super Collider Lbaoratory, July 1993. 

22. Memorandum Of Understanding, R40-000006 

23. Project Initiation, R40-000007 

24. SSCL PRCD PRACTICE #R40-000008 Project Assignment Plan. 

25. SSCL PRCD PRACTICE #R40-00009Project Execution Plan. 

26. S. Frederiksen, I. Gaines, L. Price editors, SDC Off-Line Software Concepts, version 
1, December 5, 1992. 

27. ECMA, Technical Report TR/55, European Computer Manufacturer's Association 
December 1991. 

28. NIST, Reference Model for Frameworks of Software Engineering Environments, NIST 
Special Publication 500-201, December, 1991. 

29. PSESWG, Reference Model for Project Support Environments, Next Generation 
Computer Resources Program, Project Support Environment Standards Working 
Group, United States Navy, March 1, 1993, 1m2. 

30. S. Shlaer, S.J. Mellor, Object Oriented Systems Analysis, Modeling the World in Data, 
Yourdon PRess Computing Series, Prentice-Hall, 1988. 

31. 1. Rumbaugh et.al., Object Oriented Modeling and Design, Prentice-Hall, 1991. 

32. PSESWG, Reference Model for Project Support Environments, Next Generation 
Computer Resources Program, Project Support Environment Standards Working 
Group, United States Navy, March 1, 1993,1m2. 

33. John Parkinson, Making CASE Work, NCC Blackwell Limited, 1991, pp37-38. 

34. ibid~. 

35. PSESWG, Reference Model for Project Support Environments, Next Generation 
Computer Resources Program, Project Support Environment Standards Working 
Group, United States Navy, March 1, 1993,~. 

36. Frederiksen, et. al. , FRAMEWORK Software Project Assignment Plan, SSCL, 
September 1993. 




