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Periodicity of crossover currents in a Rutherford-type cable 

subjected to a time-dependent magnetic field 

ABSTRACT 

A. A. Akhmetov, 1 * A. Devred,1 and T. Ogitsu 1,2 

1Superconducting Super Collider Laboratoryt 

2550 Becldeymeade A venue 

Dallas, TX 75237, USA 

2KEK, National Laboratory for High Energy Physics 

1-1 Oho, Tsukuba-shi 

Ibaraki-ken, 305, Japan 

The behavior of Rutherford-type cables under a time-dependent magnetic field is 

studied. Existing models are extended describing the currents flowing through the resistive 

contacts at the crossovers between the cable strands by considering crossover current 

distributions which are not uniform along the cable axis. The generalized system of equations 

are applied to a few cases of practical interest and show that, if not uniform, the crossover 

current distribution is periodic, with a period equal to the cable pitch length. 





INTRODUCTION 

The response of homogeneous conductors to a time-dependent external magnetic field 

can be derived analytically only for simple geometries, such as infinite slabs or cylindrical 

bars.! More elaborate geometries usually require the application of sophisticated numerical 

methods.2 The problem becomes more intricate when considering heterogeneous conductors, 

such as superconducting multifilamentary composites. These composites consist of a large 

number of superconducting filaments embedded in a matrix of normal metal. Here, a time

dependent external field produces screening currents in both the superconducting filaments 

and the normal metal matrix.3 Over the years, a variety of models have been developed and 

numerous experimental studies have been carried out to determine the corresponding eddy

current distributions.3-6 

Another degree of complexity is added when considering the cables used in most of the 

superconducting magnets built today. These cables consist of a certain number of wires or 

strands, which are drawn from superconducting multifilamentary composite, and which are 

twisted or transposed together, as shown in Figure 1. The twisting or transposition results in 

a complicated network of superconducting paths (along the superconducting filaments of the 

wires) and of potentially low, resistive contacts, which are either distributed between adjacent 

twisted wires or localized at the points where transposed wires crossover one another. 

Through the resistive contacts, loops are formed between the cable strands where eddy 

currents can be generated when subjected to a time-dependent external field.7-9 These inter

strand eddy currents are superimposed to the previously mentioned intra-strand eddy 

currents, which are produced within each individual strand. Such cable geometry has at least 

one property of symmetry: the network repeats itself after a certain distance along the cable 

axis, called the twist or transposition pitch length. 

The present work deals with the so-called Rutherford-type conductors used in 

superconducting ,particle accelerator magnets. These conductors consist of a few tens of 
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strands, twisted together, and shaped into a flat, two-layer, slightly keystoned cable.IO,1l A 

model describing inter-strand eddy currents was fIrst developed for braided conductors.7 The 

model was later extended to Rutherford-type conductors. 12 In these references, however, the 

cable properties, the time-dependent external fIeld and the screening currents, which were 

allowed to vary across the cable width, were assumed to be uniform along the cable length. 

This paper presents a generalization of the existing models to cases where the screening 

currents are not assumed to be uniform along the cable length. 

CONDUCTOR MODEL AND BASIC EQUATIONS 

Following references 7 and 12, the N-strand Rutherford-type cable shown in Figure 1 

is described by the model circuit shown in Figure 2. In this model, the strands are assumed 

to be straight, except at the edges of the cable where they are bent in a hairpin-like manner to 

ramp from one layer to the other. Also, it is assumed that the only resistive contacts are at the 

crossovers between strands of the two layers. Thus, the smallest current loops, elementary 

loops, are constituted by two adjacent strands of one layer crossing over two adjacent strands 

of the other layer, as illustrated in Figure 3. 

Two indexes are required to properly identify the crossover contacts of the model 

circuit in Figure 2: one for rows, n, where 1 S n S N-l and one for columns, k, where 

k ~ 1. A row is defIned as a series of crossover contacts on a straight line parallel to the cable 

axis. A column is defmed as a series of crossover contacts on a zigzag line across the cable 

width. The rows are counted starting from the thin edge of the slightly keystoned cable. The 

columns are counted from left to right, starting from an arbitrary position along the cable 

axis. The current circulating in a given crossover resistance, rn,k, is referred to as in,k, and is 

counted positively when flowing from the bottom to the top layer of the cable (see Figure 3). 

The flux, CPn,k, through an elementary loop is reckoned by the indexes of the crossover 

resistance at its left-hand-side comer and is counted positively when penetrating the cable 



from the bottom (see Figure 3). For a given column of a N-strand cable, there are (N-l) 

crossover resistances, crossover currents and elementary loops. 

To determine the crossover currents, apply Faraday's law to the (N-l) elementary 

loops of the k-th column. For the loop at the cable thin edge, (see Figure 3(a», we get 

r1.k i1.k + r1.k+1 il,k+1 - r2.k i2.k 
dCP1.k = dt . (1) 

For the loops in the middle of the cable (see Figure 3(b», and for n even, 2 ~ n ~ N-2, we 

get 

dCPn k 
rn,k in.k + r n,k+1 in,k+1 - rn+1.k+1 in+1.k+1 - r n-1,k+1 in-1.k+1 = dr' 

while for n odd, 3 $ n ~ N-2, we get 

rn.k in.k + rn.k+1 in.k+1 - rn+1.k in+1.k - rn-1.k in-1.k 
= dCPn.k 

dt . 

For the loop at the thick edge of the cable, and if N is even, we get 

IN-1.k iN-1.k + IN-1,k+1 iN-1.k+1 -IN-2.k iN-2,k 

while if N is odd, we get 

d4>N-1.k 
dt 

. . . d4>N-1.k 
IN-1.k IN-1.k + IN-1.k+1 IN-1.k+1 -IN-2.k+1 IN-2.k+1 - dt 

(2) 

(3) 

(4a) 

(4b) 

The preceding equations express that the time-dependent magnetic fluxes induce 

electromagnetic forces that drive eddy currents through the resistive elements of the loops. 

The difference between Eq. (2) and Eq. (3) arises from the fact that the odd and even loops 

are positioned differently with respect to the columns of nodes. Eq. (1) is similar to Eq. (3), 

except that the bottom crossover resistance. rn-1.k. is missing. while Eq. (4a) and Eq. (4b) 
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are similar to Eq. (3) and Eq. (2), respectively, except that the top crossover resistances, 

rn+l,k or rn+l,k+h are missing. Conceptually, there is no difference between the case N odd 

and N even, except in the fonnulation ofEq. (4). 

By combining Eqs. (1) through (4a), it is possible to express the (N-I) crossover 

currents of the (k+ I )-th column as linear combinations of the crossover currents and of the 

time-derivative of the elementary fluxes of the k-th column. For N even, 

. rl k. r2 k . 1 
'1 k+ 1 = - -----=- '1 k + ---"""=-12 k + 

, rl,k+l' rl,k+l' rl,k+l 

d4>l,k 
dt 

1 (d4>l k + d4>2,k + d4>3,k ) 
+ r2,k+1 d/ dt dt' 

rn 1 k . rn.k. rn+1.k . 1 d4>n,k 
i k 1 - -. In-1,k - In,k + - - In+1,k + -- d ' 
n, + - rn,k+l rn,k+l rn,k+1 rn,k+l t 

for n odd, 3 ~ n ~ N-2, 

rn-2,k . rn-1,k . m,k . 
n,k+1 = In-2,k In-1,k + --In,k 

rn,k+l m,k+l rn,k+1 
rn+l,k . 

- k In+1,k m, +1 

rn+2.k . 1 (d4>n-1,k d 4>n k + In+2k +-- +' 
rn,k+l ' rn,k+l dt dt 

d4>n+l,k) 
+ dt ' 

for n even, 4 ~ n ~ N-4, 

i k - ':N-4.k i ':N-3.k i + TN-2.k . ':N-1.k . 
N-2, +1 - TN-2,k+l N-4,k - TN-2,k+l N-3.k TN-2,k+l IN-2,k - ':N_2,k+1'N-1.k 

(5a) 

(5b) 

(5c) 

(5d) 

+ 1 (d4>N-3,k + d4>N-2,k + d4>N-l,k ) (5e) 
TN-2,k+l dt dt dt' 

iN-l,k+l 
__ ':N-2 k . 1'N-1.k. _---=1=----_ dlPN-1,k 

• IN-2,k - - IN-l,k + -
':N-l,k+l ':N-l,k+l ':N-l,k+l dt 

(5f) 
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A similar set of equations can be derived for N odd. It follows from these equations that if 

the (N-I) crossover currents of a given column of the cable are known, the crossover 

currents of the subsequent columns can be deduced by recurrence. 

Below are a few simplified cases using the previously defined equations. 

MORGAN'S SOLUTION FOR THE CASE OF UNIFORM CROSSOVER 

RESISTANCE AND UNIFORM MAGNETIC FLUX 

Consider the case where the crossover resistance and the elementary magnetic flux vary 

across the cable width, but are uniform along the cable axis. Solve for the solutions of 

Eq. (5) satisfying the following equation: 

in,k+ 1 = in,k , for n, I :5 n :5 N-l. (6) 

In this case, the dependence of Eqs. (Sa) through (Sf) on the column number vanishes, 

and the system can be solved analytically: 

N-l 
. I L (N ) d4>p 
'1 = N Tl p=1 -p dt ' (7a) 

and 

n-l 
. Tl. I ~ ( ) d 4>p 'n = n - 11 - - £..J n-p dt ' 

Tn Tn p=1 
for n , 2 :5 n :5 N-I. (7b) 

(Note that Eqs. (7a) and (7b) apply for both N even and N odd.) 

The power, W, dissipated by the crossover currents per cable unit length is given by the 

following equation: 

(8) 

where L is the cable half pitch length. 
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Furthermore, assuming that the crossover resistances and the elementary fluxes are all 

equal, Eqs. (7) and (8) become 

. n (N-n) dCP 
l - --
n - 2 r dt' for n, 1 ::; n ::; N-l. (9) 

and 

W _ N2(N4_1) (dCP )2 
- 240 L r dt . 

(10) 

Considering that there are N(N-1) elementary loops per cable pitch length, an estimate 

of cP is simply given by the following: 

2h L 
cP = N(N-1) B, (11) 

where h is the cable width, and B is the supposedly uniform component of the magnetic flux 

density perpendicular to the cable. Combining Eqs. (10) and (11) results in the following: 

W = (N4_1)h2L (dB)2 = N2 h2L (dB)2 
60 (N-1)2r dt 60 r dt ' 

(12) 

where we recognize the expression given by Morgan.7 

It thus appears that in the case of uniform crossover resistance and uniform magnetic 

flux along the cable axis, Eq. (5) does have a solution which satisfies Eq. (6), i.e., such that 

the crossover currents are the same in every column of the cable. In practice, however, 

Eq. (5) has to be solved along with a set of boundary conditions, which, for a given column 

of the cable, may impose values of crossover currents which are different from that of 

Eq. (7). Then the problem has to be reconsidered, and a more general solution has to be 

determined. 
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GENERAL SOLUTION FOR THE CASE OF UNIFORM CROSSOVER 

RESISTANCE AND UNIFORM MAGNETIC FLUX 

Basic Equations 

Consider the case where all the crossover resistances are equal and where the 

elementary fluxes are uniform along the cable axis. For the sake of simplicity, also assume 

that N is even and M = NI2 is odd, and that the elementary fluxes are symmetrical with 

respect to the cable center line, i.e., 

«'l>N-n = 4'n for n, 1 ::; n ::; M. (13) 

Also, limiting the search for the solutions which satisfy 

iN-n,k = in,k, for n, 1 ::; n ::; M, (14) 

Eq. (5) can be reduced to the following system of M equations: 

. " 1 dtPt 
'1,k+1 = - '1,k + '2,k + -;:Tt ' (15a) 

. .... 1 (dd>1 dd>2 dd>3) 
'2,k+1 = - 'l,k + '2,k - '3,k + 14.k + -;: Tt + Cit + Tt ' (15b) 

. . . . 1 dd>n 
'n,k+1 = In-1,k -'n,k + In+1,k + -;:Tt ' 

for n odd, 3 ::; n ::; M-2, (15c) 
in,k+1 = in-2.k - in-1,k + in,k - in+1.k + in+2.k 

1 (dd>n-1 dd>n dd>n+1) 
+ -;: (It + Tt + dt ' 
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for n even, 4 =:;; n =:;; M-3, (15d) 

iM-1,k+1 = iM-3,k - iM-2,k + 2iM-1,k - iM,k 

1 (d~-2 dcJ>M-1 dcJ>M J 
+-; dt + dt + ~ , (l5e) 

. 2' . 1 d~ 
IM,k+1 = IM-l,k - IM,k + -; Ci't . (l5f) 

Matrix Notation 

The above system can be arranged into a more compact form by using matrix notation. 

Let ik and tl> designate the M-line, l-column matrices, defined as 

il,k 

hk 

h,k 

14,k 

io,k 

ik = i o+l,k 

iM-2,k 

iM-l,k 

iM,k 

(16) and 
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cfJ1 

cfJ1 + cfJ 2 + cfJ 3 

cfJ3 

cfJ 3 + cfJ 4 + cfJs 

cfJ o 

tl> = cfJ 0 + t/J 0+1 + cfJ 0+2 

cfJM -2 

cfJM - 2 + cJ>M-2 + cfJM 

cfJ M 

(17) 



and let A designate the square matrix of order M : 

A= 

-1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

-1 1 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 1 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 1 -1 1 -1 1 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 -1 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 -1 1 -1 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 1 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 2 -1 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 -1 (18) 

With these notations, Eq. (15) can be rewritten: 

• A . 1 dcI> 
Ik+ 1 = Ik + -;:- dt ' (19) 

where it clearly appears how the crossover currents of the (k+ 1 )-th column can be derived 

from the crossover currents of the k-th column. 

Periodicity of Solution 

Apply Eq. (19) recurrently. The values of the crossover currents of the (k+2)-th 

column are: 

• A • 1 dcI> A2 • 1 (A I dcI> 
lk+2 = lk+l +--d = lk +- + d) -d ' r t r t 

(20) 

where lei is the identity matrix of order M. 
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Similarly, for the crossover currents of the (k+p )-th column the values are 

• p • 1 p-l p-2 dq> 
lk+p = A lk + - (A + A + ... + A + Id) -d . r t 

(21) 

It is shown in the appendix that the matrix A defined by Eq. (18) is such that 

M 
A =-Id (22a) and (22b) 

where N = 2M is the total number of cable strands. Rewriting Eq. (21) for p = 2M and 

combining it with Eq. (22b) gives 

• • 1 2M-I 2M-2 dq> 
lk+2M = lk + -;: (A + A + ... + A + Id) dt . (23) 

Furthermore, from Eq. (22a) one has 

(24) 

where 0 designates the zero matrix of order M. 

Multiply Eq. (24) by AS 

A M+s + AS = 0, (25) 

and sum Eq. (25) for p between 1 and M-l: 

M-1 
~ M+s s 2M-I 2M-2 
k A + A = A + A + .. , + A + Id = O. (26) 
s=1 

Combining Eqs. (26) and (23) results in the following: 

(27) 

-12-



Eq. (27) shows that the crossover currents of the (k+N)-th column are identical to the 

crossover currents of the k-th column, whatever the actual values of the magnetic fluxes are, 

providing that they are uniform along the cable axis. The solutions of Eq. (15) are thus 

periodic, with a period equal to N. In more practical terms, this means that the crossover 

current between any two strands of the cable is the same after every pitch length. 

The only case considered is where N is even and M is odd, and where the magnetic 

fluxes and the crossover currents satisfy Eqs. (13) and (14). It can be shown either 

analytically or numerically that the preceding result also applies when there is no symmetry 

with respect to the cable center line, and it can be generalized to any case of parity of M and 

N. The solutions of Eq. (5) for a N-strand Rutherford cable, whose crossover resistances 

are equal and which is subjected to a uniform magnetic flux along its axis, are thus always 

periodic, with a period equal to N. 

As an illustration, the distribution of crossover currents along a 4-strand and a 

30-strand Rutherford-type cable are shown in Figures 4(a) and 4(b). For these calculations 

some arbitrary values of crossover currents were set for the first column, and the time 

derivative of the elementary magnetic fluxes were assumed to be either zero, Fig. 4(a), or 

uniform across the cable width, Fig. 4(b). All the curves are periodic and the period 

coincides with the number of strands. 

Discussion 

Let us now go back to the case considered by Morgan, and determine the solution of 

Eq. (19) which satisfies Eq. (6): 

• A. 1 del> 
Ik= Ik+-

r dt ' 
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which yields 

(29) 

Of course, it can be verified that the solution given in Eq. (29) is identical to the solution 

given by Eq. (7) in the case of a constant crossover resistance. 

Eq. (29) determines the only solution of Eq. (19) corresponding to a uniform 

distribution of crossover currents along the cable axis. If one column of the cable is such that 

the crossover currents are equal to the values given by Eq. (29), then, providing that r and <I> 

do not change along the cable axis, the crossover currents in all the columns are the same. On 

the other hand, if there is one column of the cable for which the crossover currents are 

different from the values given by Eq. (29), then the crossover current distribution cannot be 

uniform. However, in this case, the crossover current distribution is periodic with a period 

equal to the cable pitch length. 

Hence, for a Rutherford-type cable, whose crossover resistances are equal and which is 

subjected to a uniform magnetic flux along its axis, the crossover current distribution can be 

either uniform or periodic. In practice, the type of solution which takes place is determined 

by the boundary conditions at the cable ends. For cables of finite length, the boundary 

conditions are likely to force the crossover currents of the first and last columns to be 

different from the values given by Eq. (29), and the solutions are thus likely to be 

nonuniform. (Note: if the crossover current distribution is periodic, so are the power 

dissipated by the crossover currents in the crossover resistances and the resultant heating of 

the conductor.) 
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CASE OF UNIFORM CROSSOVER RESISTANCE AND NONUNIFORM 

MAGNETIC FLUX 

So far, we only considered cases where the magnetic flux varied across the cable 

width, but was uniform along the cable axis. In magnets, the magnetic flux penetration 

through the cable also depends on the position along the cable. This is the case in the ends of 

a dipole or a quadrupole coil, where the turns come out of the coil straight section and tum 

around. Consequently, the distribution of crossover currents has to be determined using 

Eq. (5). 

To understand what kind of crossover current distribution may result, once again 

consider the case where the crossover resistances are equal. Assume, however, that the 

magnetic flux is uniform across the cable width and that its time derivative varies along the 

cable axis according to curve 1 of Figure 5(a). This curve intends to simulate the actual 

magnetic flux profile seen by a half-tum (which consists of two ends and a straight section) 

of a long dipole or quadrupole coil. It can be divided into five regions: two regions of low 

and uniform magnetic flux, <Pe, corresponding to the curved parts of the coil ends; two 

regions where the magnetic flux rises sharply, corresponding to the region where the turns 

enter the coil straight section; and one region of large and uniform magnetic flux, <Pss, 

corresponding to the coil straight section. In addition, assume that the crossover currents of 

the first column satisfy 

. n (N-n) d<Pe 
I }- --n, - 2 r dt' forn, 1 :=;n:=;N-l, (30) 

which corresponds to Morgan's solution for the end regions. By recurrently applying 

Eq. (5), it is now possible to calculate the crossover currents in all the columns of the cable. 

Curves 2 and 3 of Figure 5(a) show the results of such a computation for the first and 

second row of a 4-strand cable. As expected, the crossover currents are uniform in the end 

regions, where Morgan's solution applies. They rise sharply in the intermediate regions, 
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where the time derivative of the flux changes rapidly, and they appear to be periodic, with a 

period equal to 4, in the central region corresponding to the coil straight section. This 

example clearly illustrates how an axial change in the magnetic flux forces the solution of 

Eq. (5) to switch from Morgan's solution to a periodic solution. 

Figure 5(b) presents a similar set of plots for a different profile of the time derivative of 

the magnetic flux. In this case, it is assumed that the time derivative of the flux increases 

gradually along the cable axis, and there is no central plateau. As for Figure 5(a), as soon as 

the time derivative of the flux starts to change, the crossover currents seemingly follow and 

their distribution begins to exhibit characters of pseudo-periodicity. 

The structure of Eq. (5) suggests that long and smooth nonuniformity of crossover 

resistance along the cable axis produces effects similar to that caused by nonuniformities in 

the magnetic flux, forcing the crossover current distribution to switch from uniform to 

pseudo-periodic as soon as the crossover resistance starts to change. Such kinds of 

nonuniformities are known to exist in the case in dipole or quadrupole coils, where the 

crossover resistances can be shown to vary from tum to tum. 12 

CONCLUSION 

A model was developed to determine the distribution of screening currents in a 

Rutherford-type cable subjected to a time-dependent magnetic field. It was shown that, for 

any section of the cable along which the magnetic flux and the resistive contacts at the 

crossovers between the cable strands are uniform, the currents induced in the crossover 

resistances are periodic with a period equal to the cable pitch length. Following Morgan it 

was reestablished that with the same assumptions and for a given proflle of magnetic flux 

across the cable width, there is one degenerated solution for which the crossover currents are 

uniform along the cable axis. This solution, however, can only take place if the cable is 

infinite or if the crossover currents at a given axial position of the cable are forced to assume 
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the appropriate values. Even if the degenerated solution is imposed on part of the cable, the 

occurrence of a nonuniformity in the magnetic flux or the crossover resistance forces the 

crossover current distribution to become periodic or pseudo-periodic. 
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APPENDIX 

Let us demonstrate by double recurrence on M, where M is odd, that the characteristic 

polynomial, PM. of the square matrix A of order M defined by Eq. (18) is 

for A, A E C. 

First verify this proposition for M = 3 and M = 5. For M = 3, Eq. (18) becomes 

resulting in the following: 

and 

o 
2-A. 

2 

o 
-1 

-I-A. 

]= _ .. 3_1. 

Similarly, a direct calculation allows one to verify that, for M = 5, 

Now assume that the proposition is true for matrices A of orders M-2 and M: 

and show that it implies that the proposition is also true for matrix A of order M+2. 

-19-

(AI) 

(A2) 

(A3) 

(A4a) 

(A4b) 



det 

Using Eq. 18 results in the following: 

PM+2= 

-1- A. 
-1 

0 

0 

0 

0 

o 
o 
o 

1 

1- A. 
1 

1 

0 

0 

o 
o 
o 

0 

-1 

-1- A. 
-1 

1 

1 

o 
o 
o 

0 

1 

1 

1- A. 
-1 

-1 

o 
o 
o 

0 

0 

0 

-1 

1- A. 
1 

o 
o 
o 

0 

0 

0 

1 

0 

-1- A. 

o 
o 
o 

0 

0 

0 

0 

0 

1 

o 
o 
o 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

1 -I-A. 

1 -1 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

1 0 

2-A. -1 

2 -1- A. 

(A5) 

By decomposing the above determinant along the frrst line, PM+2 can be expressed as a 

linear combination of determinants of order (M+l). In tum, the determinants of order (M+l) 

can be decomposed along either their frrst line or their first column and be expressed as linear 

combinations of determinants of order M. Reiterating the process two more times, it can be 

shown that 

(A6) 
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where P~~2 and P~~2 are two determinants of order (M-2) defined as 

1 1 0 0 0 0 0 0 

1 I-A -1 1 0 0 0 0 

0 1 -I-A 1 0 0 0 0 

p~)_2(A) = det ... (A7) 

0 0 0 0 1 -I-A 1 0 

0 0 0 0 1 -1 2-A -1 

0 0 0 0 0 0 2 -I-A 

and 

1 -I-A 0 0 0 0 0 0 

1 -1 -1 1 0 0 0 0 

0 1 -I-A 1 0 0 0 0 

(2) (A) 
PM-2 = det (AS) 

0 0 0 0 1 -I-A 1 0 

0 0 0 0 1 -1 2-A -1 

0 0 0 0 0 0 2 -I-A 

To determine P~~2 and P~~2' decompose PM following a process similar to the one 

described for PM+2' After two iterations, the result is 

PM(A) = - ( 1 + A) [P~~2(A) + pii_i(A) ] + A2 PM-2(A) (A9) 
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Let us now combine Eqs. (A6) and (A9): 

(AW) 

This equation shows how the characteristic polynomial of the matrix of order (M+2) is 

related to the characteristic polynomials of the matrices of order M and (M-2). Finally, 

replacing PM and PM-2 by their assumed expressions gives 

(All) 

where Eq. (AI) is recognized as written for a matrix ofthe order (M+2). 

We verified that Eq. (AI) is true for M = 3 and M = 5, and verified that if Eq. (AI) is 

true for matrices of order M and (M-2), it implies that it is also true for matrices of order 

(M+2). Hence, Eq. (AI) is true for all M odd. 

It follows from Eq. (AI) that the eigenvalues of the square matrix A of order M are the 

solutions of the equation 

A.M+I=O, (AI2) 

which correspond to the M-th roots of (-1). The eigenvalues of the matrix AM are thus all 

equal to (-1) and those of the matrix A 2M are all equal to 1, and result in 

M 
A =-Id (A13a) and (AI3b) 

-22-



REFERENCES 

* Now at the Research Institute for Superconducting Magnets, Kyushu University, 6-

10--1 Hakozaki, Hakozaki-ku, Fukuoka, 812, Japan. 

t Operated by the University Research Association, Inc., for the U.S. Department of 

Energy under Contract No. DE-AC35-89ER40486. 

1. R. M. Bozorth, Ferromainetism, (Van Nostrand, Princeton, 1951), p. 769 ff. 

2. J. J. H. Wang, Generalized Moment Methods of Electromainetics, (John Wiley, 

New York, 1991), p. 553 ff. 

3. M. N. Wilson, Superconductini Mainets. (Oxford University Press, Oxford, 1983). 

4. W. J. Carr, AC Loss and Macroscopic Theory of Superconductors, Gordon and 

Breach Science Publishers, New York, London, Paris, 1983). 

5. V. A. Altov, V. B. Zenkevitch, M. G. Kremlev, and V. V. Sytchev, Stabilization of 

Superconductini Mainetic Systems, (Plenum, New York, 1973). 

6. D. Ciazynski and B. Turck, "Theoretical and experimental study of the saturation of a 

superconducting composite under fast changing magnetic field," Cryogenics, 24, 507 

(1984). 

7. G. H. Morgan, "Eddy currents in flat metal filled superconducting braids," J. Appl. 

Phys., 44, 3319 (1973). 

8. V. E. Sytnikov and G. G. Svalov, "Coupling losses in superconducting transposed 

conductors located in changing magnetic field," Cryogenics, 29, 926 (1989). 

9. D. Ciazinsky, B. Turck, J. L. Duchateau, and C. Meuris, "AC losses and current 

distribution in 40 kA NbTi and Nb3SN conductors for NETIITER," IEEE Trans. Appl. 

Super., 3, 594 (1993). 

10. J. Royet and R. Scanlan, "Manufacture of Keystoned Flat Superconducting Cables for 

Use in SSC Dipoles," IEEE Trans. Mag., MAG·23, 480 (1987). 

-23-



11. D. Christoferson, D. Capone, R. Hannaford, R. Remsbottom. R. Delashmit, R. J. 

Jayakumar, G. Snitchler, R. Scanlan, and J. Royet, "SSC 40 mm cable results and 

50 mm design discussions," IEEE Trans. Mag .• MAG·27, 1881 (1991). 

12. T. Ogitsu, Y. Zhao, A. Akhmetov, and A. Devred, "Influence of cable eddy currents 

on magnetic field harmonics," KEK-Proc. 92-14, KEK National Laboratory for High 

Energy Physics, 23 (1992). 

-24-



Figure 1. Rutherford-type cable used in superconducting particle accelerator magnets. 
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T1P-04952 

Figure 2. Model circuit for a Rutherford-type cable subjected to a time-dependent magnetic 

field. 

(8) (b) 

T1P-04953 

Figure 3. Elementary loops of the model circuit: (a) at the thin edge of the slightly keystoned 

cable, and (b) in the middle of the cable. 
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Figure 4. Distribution of crossover currents along a Rutherford-type cable subjected to a 

uniform, time-dependent magnetic field: (a) case of a 4-strand cable, and (b) case of a 

30-strand cable. The crossover resistances are assumed to be equal. The curve numbers 

correspond to the cable row numbers. 
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Figure 5(a) and (b). Distribution of crossover currents along a 4-strand Rutherford-type cable 

subjected to a nonuniform, time-dependent magnetic field. Curve (1) shows the assumed 

profile of the time-derivative of the magnetic flux. Curves (2) and (3) show the resulting 

crossover currents in the first and second rows of the cable. The crossover resistances are 

assumed to be equal. 
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