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Application of optimal control theory to optimize the parameters of the low-level rf beam 

control loops is shown for a low- and a high-intensity circular accelerator. The parameters are: 

synchronization phase error, beam position error, radial position error, cavity gap voltage error, 

cavity phase error, cavity tuning error, frequency of the rf system, amplitude of the generator 

current, phase of the generator current, and tuner bias current. The low-intensity machine is 

studied by considering the radial, synchronization, and beam phase loops and by ignoring the 

cavity dynamics. Later we include the cavity model and cover the dynamics of the accelerator 

system with amplitude, phase, and tuning loops. Flow charts of the computer program are 

shown to predict and shape the optimal gains starting from the specification on the parameters. 

The gains are implemented in a particle-tracking code, and with the closed loop system in 

operation the parameters are tested to be within specification. 

• Operated by the Universities Research Association, Inc., for the U.S. Department of Energy under 
Contract No. DE-AC35-89ER40486. 
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1 INTRODUCTION 

An important problem with low-level rf beam control in fast-cycling circular accelerators 

is to know the gains in various loops as the beam is accelerated. Most control analyses have 

been done using the classical approach (based on the single-input single-output method), 

although the control loops are highly coupled. Fiddling with them by trial and error during the 

operation of the machine has been the usual practice to improve the performance specifications 

of parameters. For example, varying the amplitude of the cavity voltage changes the 

accelerating bucket height, and varying the phase of the rf signal driving the cavity changes the 

energy received by the beam each time the beam passes through the cavity. Changing the gain 

in one of the loops-say, the cavity amplitude loop-or adding dynamics to it will invariably 

change the closed-loop properties of the whole system. In an isolated case, in the presence of 

only an amplitude loop (with the rest of the loops opened) the effects can be seen on the cavity 

voltage by looking at the voltage error. Compare this to a typical circular machine, where there 

are many loops in the low-level rf system that interact with one another in some way. Change in 

the dynamics of the amplitude loop alone may affect the dynamics of the phase loop. The 

challenge is: if the dynamics of one loop are changed, can we predict the change required in the 

other loops so that the parameters are within specification? The answer to this question can be 

"yes" provided the control system model, including the cavity dynamics, is known and some of 

the modem feedback control methods are used to predict the gains. Having to know the right 

gains in each loop is further complicated by the fact that the accelerating parameters are 

changing with time in a fast-cycling machine. For such complex problems modem optimal 

control approach is well-suited. 

Classical control approach is based on the single-input single-output method, which 

assumes a highly decoupled system. The modem optimal control theory can deal with the 

entire coupled system, since the physical system is described by a set of first -order differential 

equations embedded with control quantities having physical input points. Since most of the 
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beam and cavity dynamics are used in the model, decoupling of the system is usually not 

necessary. However, in a typical accelerator, the loop configurations have limitations due to 

the distributed nature of the cavities. Hence decoupling may still prove useful. Also, the 

optimal control method is well-suited on occasions where we may need to shape the state and 

control quantities: the amplitude and phase of the generator currents, cavity detuning 

functions, frequency and phase shift of the master oscillator, etc. 

The optimum control technique, also known as the linear quadratic regulator method, was 

recently applied to rf systems for circular accelerators at CERNl to optimize the injection of a 

high-intensity beam. The application of the optimum control technique has increased 

efficiency in industries such as petrochemical, steel, aircraft, and fusion research.2 When these 

techniques are applied to accelerators with proper knowledge of the model, we may get better 

capture and acceleration efficiencies. Since the optimum control technique is associated with 

the minimization of a prescribed performance function of the system, we need to formulate a 

function in terms of the quantities we need to minimize. Suppose we want to minimize the 

energy in a system where the energy is defined by the sum of the product of the state and a 

weighting factor, then minimizing the energy corresponds in some sense to keeping the state 

close to zero. In this paper we define the performance function in terms of the states: 

synchronization phase error, beam phase error, radial position error, cavity gap voltage error, 

cavity phase error, and cavity tuning error and control quantities: frequency of the rf system, 

amplitude of the generator current, phase of the generator current and the tuner bias current. 

Hence, in our system minimizing the energy leads to minimizing the states as well as the 

control quantities. We achieve this with feedback with right gains; while doing that, the loop 

stability is tested. 

We first show the application of the optimal control theory to a low-intensity circular 

machine in which only the global loops (radial, synchronization, and beam phase) are used. We 

later extend the techniques to include the global loops with the loops around the cavity: 
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amplitude, phase, and tuning. When the loops around the cavity are included, the system 

becomes a "fixed structure" because the loop configuration cannot be altered. This is due to the 

distributed nature of the cavities in a circular machine. The optimum control method assumes 

that the loop structure can be freely altered. We overcome this restriction by forcing some 

unwanted gains to zero, then recalculating those needed in the loop. The method is clearly 

described with a flow chart. The state-space model described in Reference 3 characterizes the 

low-level rf system. The optimal control techniques shown here can be extended to a more 

complex system with decoupling filters in some of the loops simply by modifying the state 

matrices. At the end a computer program will be able to predict the gains required in each loop 

as we fiddle with any of them. When the gains are implemented, the entire system will be 

stable, since the stability tests are carried out by taking the physical system into account while 

predicting optimal gains. 

2 LINEAR STATE-SPACE BEAM CONTROL MODEL 

A linear model for the beam control loops is derived in Reference 3 for an accelerator with 

one equivalent cavity system. Let the states be Xl = synchronization phase error, x2 = radial 

position error at high momentum dispersion region, x3 = beam phase error, x4 = cavity gap 

voltage error, Xs = cavity gap phase error, and x6 = cavity tuning error, embedded in a column 
T 

state vector, x = [Xl,X2,X3' ••• ,X6] • Here Tis usedtodefinethetransposeofamatrix. Also,let 

the control variables be u3 = frequency shift, u4 = generator current amplitude, Us = generator 

current phase, and u6 = tuning bias regulator current, embedded in a control vector 
T 

u = [0,0, u3' u4' ... ,U6] . If A is the system matrix and B the input matrix, then the state-space 

model is given by 

:!:=A~+B!!+4 

l = C~. 
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The output quantity defmed by the vector ~ is the product of the output matrix 

C = diag{ 1,1,1,1,1,1} with the state vector :!. For a fast-cycling accelerator, the 

disturbance matrix !l. is non-zero, since terms associated with the time rate of change of the 

cavity gap voltage, synchronous phase, steady-state generator current, and cavity tuning error 

effect the acceleration process. This matrix is deterministic since it can be compensated by 

choosing feedforward terms to the control quantities. The exact description of the model is 

summarized in Table I of Reference 3, which will not be repeated here for simplicity. To limit 

the complexity, we apply the optimal control theory at fIrst to beam control loops for 

low-intensity machines, where the cavity low-level rf feedback loops are considered fast 

compared to global loops and hence are ignored. Later we show the application of this method 

for a complete low-level rf system. 

3 LINEAR OPTIMAL CONTROL FOR LOW-INTENSITY OPERATION 

Here, when the radial loop, beam phase loop, and synchronization loops are connected to a 

common summing point as in Figure 1, the conventional optimal control techniques outlined 

in Appendix A are used to optimize the gains (see Table I for a state-space model of the 

low-intensity machine). For low-intensity machines, if we follow the loop confIguration of 

Figure 1, then the system structure has a dimension of three with the feedback control vector 
T T 

~ = [0, 0, U3] ,defmed by ~ = - k:!, where the state matrix is:! = [x I' x2' X3] ,and the gain 

matrix is k given by 

(2) 

The loop gains kl' k2' and k3 are specifIed for synchronization, radial, and beam phase loops, 

respectively. Our specifIed objective is to calculate the values for kI' k2' and k3 so that the 

system is driven along a three-dimensional optimal state trajectory such that a predefIned 

performance function is minimized. We will follow the exact procedure described in 
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Appendix A and show how kl' k2' and k3 can be evaluated at each point in the accelerating 

cycle. 

3.1 Peiformance Function 

In theory, there is no unique way of defining a performance function for a specific control 

problem with system dynamics described by state equations. We will formulate the trial 

performance function, J, with emphasis on the maximum control quantities and the maximum 

allowable deviations in states. To control the beam we would require the states Xl' Xl' and x3 to 

be maintained to within specific maximum values at a given time in the cycle. To achieve the 

specification on the state variables, we have a limited allowable deviation in the control 

variable u3' in Hz with the acceleration cycle time. Based on these constraints let us choose a 

performance function to weigh the state and control variables as follows: 

Tf 

J = ! f (,J{ Q! + !/R y}lt , (3) 

to 

where the weighting matrices Q and R are defined in Eqs. (A.2) and (A.3), respectively, and 

to and Ii are the initial and final time of the control process. Thus we have specified weights in 

Q for the controlled parameters (states) and weights in R for the frequency shift. Selection of 

these weights determines the time response of the overall control system. As we mentioned 

earlier, the quadratic form shown in Eq. (3) is not the only way, since it has the intuitive 

resemblance to least-squares: it corresponds in some sense to energy in the control system. In 

optimal control, since we are required to minimize J, which is constrained by the linear system 

dynamics as described by Eq. (1), a Hamiltonian system is constructed. By solving the 

Hamiltonian system, two important equations are derived: the optimal control, !! = !!opt, in 

terms of R, B,:! matrices, and a function, ~ matrix, which is a solution of the differential 

matrix Riccati equation as shown below: 
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M.0pt = - R -1 BT §.! = _ /s.0pt! 

- $.. = A T ~ + ~A - ~ B R -1 BT ~ + Q . 

The new time-varying gain matrix /s.0pt represents the optimal feedback gains: 

(4) 

(5) 

(6) 

Hence the optimal state trajectories are determined by substituting Eq. (4) in system Eq. (1) and 

using numerical methods to solve for !.<t). In the case where Tf - 00 in Eq. (3), /s.0pt is a 

constant matrix. Then the optimal trajectory is given by 

(7) 

where :!o are the initial values of the states at injection. Eq. (7) must be used when the 

parameters in matrices A and B are not time-varying. We describe below the essential steps 

involved in evaluating the optimal gains and the optimal states. 

3.2 Evaluation of Optimal Gain 

The optimal gain vector, /s.0pt, is solved by solving for the steady-state value of the 

differential matrix Riccati Eq. (5) for ql = 1, q2 = 1, and q3 = 1 for Q, and rl = 1, 

r2 = 1, and r3 = 1 for R at t = 0 in the acceleration cycle, and then substituting the results in 

Eq. (6). The steady-state value of matrix §. is obtained from the procedure described in 

Appendix A. The optimal gain matrix is substituted in Eq. (7) to solve for the optimal values of 

the states ~Pt. Now compare the calculated optimal states with the specifications for the states. 

If the values are greater than specified values, then change the scalar multipliers in the Q and R 

matrices in Eqs. (A.2) and (A.3) to higher than 1, and then solve for the optimal gain and 

optimal states. Compare the optimal states to the specified values again. If the states are still not 

acceptable, repeat the entire process for a new set of scalar multipliers. According to optimal 
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control theory (see how to select Q and R matrices in Anderson, Reference 4), by multiplying 

all the elements of Q and R by a larger and larger value, the state vectors will converge to a 

specified value. During the iterations we have kept the matrices A and B unchanged; these were 

computed once at t = 0 in the acceleration cycle. After we reach a compromise on the optimal 

quantities of the states and control vector, we can then go to a second time interval, t = 2 ms (or 

any other subintervals in the acceleration cycle), and compute optimal gains with a new set 

of values in A and B matrices. For each value of t = 0, t = 1 ms, ... , 50 ms, tabulate the optimal 

gain matrix. In this way we can calculate the time-varying gains during the entire acceleration 

cycle. In control literature this approach is also known as "gain scheduling" and is successfully 

applied in the aerospace industry. In Figure 2 a flow chart of the iteration steps is shown. 

Figure 3 shows the optimal gain profile with time. Figure 4 is plotted to show the state 

trajectories Xl' x2' and x3 when computed using Eq. (7) and the particle-tracking code. 

Figure 5 is shown to compare the control, !:!opt, when computed using Eq. (7) and the 

particle-tracking code. The dashed lines are not smooth since the time-varying gains have steps 

at I ms. However, while implementing the gains they can be computed at a much finer time 

interval. 

4 FIXED-STRUCTURE OPTIMAL FEEDBACK (HIGH-INTENSITY CASE) 

To illustrate the application of linear optimal control for machines with beam loading 

problems, we must consider the cavity dynamics and associated loops surrounding the cavity. 

When the cavity loops are considered, it becomes almost impossible to apply those techniques 

mentioned in Appendix A without considerable modifications. This is because it is normal 

practice with proton accelerators to have more than one accelerating cavity system, with each 

system having amplitude, phase, and tuning loops local to the cavities arranged to reduce beam 

loading transients on the gap voltage. The amplitude and phase control is done by modulating 

the phase and amplitude of the generator currents with fast phase and amplitude loops. The 

tuning is usually controlled by changing the bias current, which has inherent limitations on the 
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bandwidth due to slow tuners. These loops affect the amplitude and phase of the cavity gap 

voltage of each cavity as compared to the global beam control loops, since the global loops 

change the amplitude and phase of the voltage of the entire rf system together with respect to 

the beam. Hence, if we change the amplitude of the global rf signal alone, then the effective 

sum of all the cavity voltage changes, provided there are no local amplitude loops on each 

cavity. In other words, we cannot control the voltage on an individual cavity by 

amplitude-modulating the rf signal global to the ring accelerating system. By this we mean that 

although the individual cavity loops can be brought to one point to control all the states, the 

control will not be so effective. While applying optimal control techniques, we may need to do 

this depending on the solution of the optimal gain matrix, /fop" because of unwanted elements 

in the gain matrix resulting from the solution of the non-linear Riccati equation. The argument 

will be more clear when we look at the optimal solution by ftrst deftning the control strategy as 

below. 

Let the control vector for the loops shown in Figure 1 be defmed in terms of feedback gains 

and the state vector as follows: 

0 0 0 0 0 0 0 Xl 

0 
0 0 0 0 0 0 x2 

u3 kl k2 k3 0 0 0 
x3 

= (8) 
u4 

0 0 0 k4 0 0 x4 
Us 

0 0 0 0 ks 0 Xs 
u6 0 0 0 0 0 k6 x6 

The gain elements kl' k2' k3 correspond to global loops, and elements k4' ks, k6 correspond to 

local loops for an equivalent cavity system. The placement of these gains in Eq. (8) is based on 

the loop conftguration shown in Figure 1. In vector form Eq. (8) can be written as: 

!! = - If;! . (9) 
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Many elements of the gain matrix, !f, are set equal to zero to arrange the loop configuration to 

the form shown in Figure 1. If we compute the optimal gain matrix, !fop', by solving the Riccati 

equation using the method described in Appendix A, then the optimal gain matrix may come 

out with more than six non-zero elements, kI' k2' ... , k6' shown in Eq. (8). For example, if the 

element in the 4th row and 3rd column is non-zero, (k43), with a magnitude comparable to 

element k4' then the control u4 will be in the form u4 = - (k43X3 + k4X4). This means the 

amplitude of the generator current of one of the power amplifiers has to be modulated with the 

inputs from two states-namely, the beam phase error (x3) and the amplitude error (x4). It is as 

good as adding another loop on top of all the loops described in Figure 1. Thus the structure of 

the control loops is changed. To alleviate this problem, i.e., to fix the loop structure unchanged, 

we force the unwanted non-zero gain elements, such as k43 , from the optimal gain matrix to 

zero and then test for the stability of the loops. If the system is still stable we then recalculate the 

new optimal gains by solving the Riccati equation with the new set of forced gain matrices. In 

order to do this we need the Riccati Eq. (5) in terms of the gain matrix, !f. This can be done by 

using Eq. (6) and the differential form of Eq. (7) in the original Riccati Eq. (5), and then 

simplifying the matrix algebra. We get the new Riccati equation in terms of the optimal gain 

matrix !f0pt and system matrix A: 

We use Eq. (10) in place of Eq. (5) to compute the optimal gains for the fixed-structure loop 

configuration. As we said earlier, the fixed structure is due to the way the global loops are 

integrated with more than one cavity system. Otherwise, in the implementation of optimal 

control, if there is only one cavity we can compute the gains using conventional techniques 

(shown in Appendix A) even for heavy beam loading cases. 

Whilp. computing the optimal gain matrix, !f
0pt

, by forcing the unwanted gain elements to 

zero, we need to monitor the way the performance function, J, is behaving. In order to do this, 
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we have to define the performance function in terms of the optimal gain matrix. This is done by 

substituting the time domain state Eq. (7) and the optimal control matrix !:!opt = - ,!opt£'Pt in 

Eq. (3), and then simplifying: 

T 

J = t f {re-(d.-u")·nQ + (f")'K!"'][e-(d-/!!""l'J}dt . (11) 

to 

Overall computations involve several iterations, because for each set of forced gain matrices 

we need to observe the stability bounds and the way the performance function is behaving to 

reach a convergent optimal solution. Section 5 outlines the individual steps to determinine the 

optimal solution. 

5 DESCRIPTION OF THE METHOD 

Figure 6 is a flow chart of the computational steps outlined below: 

Step 1: Calculate matrices A and B from the machine parameters at, say, T = 1 ms, using the 

model summarized in Table I of Reference 3. 

Step 2: Assume some initial estimated gain values for kl' k2' k3, ... , k6 in the gain matrix in 

Eq. (8) so that the closed loop characteristic matrix, A - B !. is asymptotically stable. At this 

stage the stability can be checked by calculating the eigen values of the matrix, A - B !. and 

then observing whether all the eigen values lie in the left half of the s-plane. 

Step 3: Assume the Q and R matrix as follows: 
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q1 '1 

Q= 
--2 

0 R= 
--2 

(X1)m (U 1)m 
q2 '2 --2 ---r 

(X2)m (U2)m 
o 

0 q6 0 --2 

(X6)m 

(12) 

Step 4: Calculate the performance function, J, using Eq. (11). 

Step 5: Solve the Riccati differential matrix equation shown in Eq. (10). Use the steady

state value to determine the optimal gain matrix, !s.0pt, using Eq. (6). 

Step 6: If some of the elements other than kl' k2' k3, ••• , k6 in the gain matrix, !s.0Pt, are 

non-zero, then force them to be equal to zero. This is the constraint we have imposed on the 

gain matrix in order to retain the structure of the overall feedback system. 

Step 7: Check for stability by looking at the eigen values of the characteristic equation, 

A - B !s.0pt, using the forced gain matrix. If it is asymptotically stable, then compute the value 

of J by using Eq. (11) with the gain matrix as !s.0pt. Otherwise, change the gain matrix and go to 

Step 2. After obtaining J, compare the new value of J with that calculated in the previous 

iteration of this step. If the new value of J is lower than the previous value, then we are 

progressing toward an optimal solution. Then, repeat Steps 5 to 7 until the performance 

function J no longer differs from the previous iteration. In Figure 7 the normalized value of J is 

plotted at I ms for 20 iterations. It has converged to a steady value within 10 iterations. At this 

time in the iteration the performance function is minimal, and hence the forced gain matrix 

yields optimal state trajectories. 

Step 8: Calculate the optimal state trajectories and control quantities using Eqs. (7) and (8), 

respectively, by using the forced optimal gain matrix obtained in Step 7. If the states and 
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control quantities are not within the specifications, then change the weighting elements such as 

qt. q2"'" q6 and 71.72' .... 76 on appropriate elements of the weighting matrices Q and R in 

Step 3. Then follow Steps 4 to 8 until the states and control quantities are within the 

specifications. 

The process is continued through the whole acceleration cycle by increasing the time step 

in increments of 1 ms, 2 ms, 3 ms, and so on. In this way we can compute the optimal gain 

values so that the state trajectories are within the specifications in spite of the fixed loop 

structure. Figure 8 shows the time-varying optimal gains in all the loops; Figures 8( a-c) are the 

time-varying gains in the global loops when computed by including the cavity dynamics, 

which compares well with those shown in Figure 3. The optimal state trajectories and the 

control quantities are shown in Figures 9 and 10, respectively, for a short duration at the 

beginning of the acceleration cycle. The dashed lines are those obtained using the 

particle-tracking code that includes the cavity dynamics.5 The solid lines are the optimum 

trajectories obtained by numerically integrating the linear state-space modeL Both the solid 

lines and the dashed lines use the same optimal gains in the feedback loops. As we see from the 

plots, the transients do not compare very well due to the non-linearities we have ignored in the 

linear state-space model compared to the tracking code. A better comparison could be made in 

a real machine when it becomes available. Then we could see whether the optimal states can be 

predicted by merely solving the linear state-space modeL Clearly, there is an advantage if the 

optimal state trajectories compare very well with the real-world situation, since the control 

system time response can be shaped with off-line simulation iteratively by changing the 

weighting factors in the optimal function, J. The simulations will be close to the predicted 

optimal trajectories if the model we have used is accurate. On the whole, our predictions of the 

settling time of the transients are good. Also, the transients are predicted well some time after 

injection. 
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While designing the optimal gains, constraints may need to be introduced on some of the 

loop gains, depending on the practical limits of the rf system. Off-line gain shaping is helpful to 

get a priori information on the possible consequences on the beam if the same gains were to be 

used on the machine. Effectively, this approach boils down to investigating the control effects 

on the computer fIrst before trying on the real machine, rather than choosing to follow the 

classical trial-and-error approach of the past with lots of beam study time. At the end, both 

methods may very well give the same results! 

6 CONCLUSIONS 

The linear optimal control method is applied to a fast-cycling circular accelerator such as 

the Superconducting Super Collider Low Energy Booster. The predicted optimal state 

trajectories are compared with the particle-tracking code for a low beam intensity case (without 

the cavity model) and for a high beam intensity case (with the cavity model). Once the system 

model is known, the application of optimal control to the low beam intensity case is 

straightforward. But several alterations were required in the algorithm to consider loops 

around the cavity, since the distributed nature of the cavities in a circular machine does not 

allow flexibility to change the structure of the loops. 

The optimal control technique may become well-suited for calculating the gains to meet the 

specifIcations on different state variables. At this stage, the extent to which the optimal gains 

will help in optimizing the capture and acceleration efficiencies is unknown. There is, 

however, some indication in our limited simulation studies that the time-varying gains tend to 

give reduced beam phase oscillations. Since the approach is based on the total system 

description that includes accurate models of the cavity and beam dynamics, it may very well 

increase the capture, acceleration, and extraction efficiencies. The optimal part may not be that 

critical, but the ability of the control to deal with the entire mUlti-input, multi-output coupled 

system rather than the decoupled classical design practices may be of overall benefIt to the 

accelerator operation. Furthermore, the ability of the optimal control to guarantee stability of 
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the entire low-level rf system and still allow the flexibility to shape the gains and the control 

quantities may take precedence over the complexity of the technique. 

APPENDIX A 

A.I OPTIMAL FEEDBACK CONTROL 

In generating an optimal control, a function representing the ultimate system performance 

must fIrst be created. For example, in the low beam intensity case, the objective of the optimal 

control is to fInd the right frequency shift, ~ to keep the states xl' x2' and x3 under specifIed 

limits (or to reach zero), and while doing so to keep the frequency shift, ~ (quantifying control 

energy), to a value as low as possible. Under no circumstances is the system permitted to go 

unstable. One such performance function can be assumed in the following form: 

T, 

J = ! f (!T~ + !!TR!!)dt , (A. 1) 

to 

where Q and R are symmetric and positive defInite matrices, ;!T and !iT are the transposed 

matrices of the state and control quantities, and to and 1j are the initial and fInal times in the 

integral equation for the cost. The weighting matrices are defIned as follows: 

Q = diag{q;/(xi)~} 

R = diag{r;/(ui)~} 

i = 1,2, ... ,6 

i = 1,2, ... ,6 , 

(A.2) 

(A.3) 

where (Xi)m' i = 1,2, ... ,6, are the specifIed maximum values of the states and (Ui)m' i = 1,2, ... ,6, 

are the maximum values of the control variable. Arranging the elements inside the weighting 

matrices is purely optional and depends on fInal performance objectives. There is, however, no 

scientifIc method available to select an optimal performance function for a given system. 
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After having defined the performance function and Q and R matrices, the optimal control 

problem is to find the control vector ~ = ~opt such that when the control vector is applied to the 

system, it drives the system states described by the state Eq. (1) along a trajectory:! = ~Pt such 

that the performance function, J, over a specified time is minimal. One of the straightforward 

ways to minimize the performance function is to create a Hamiltonian: 

(A.4) 

The new function b T is the transpose of the matrix containing elements known as Lagrange 

Multipliers. This is an intermediate matrix used in the derivation of optimal control, ~opt. We 

do not need to compute it. The necessary condition for J to be minimal is derived from a Taylor 

series expansion,6 which is given by 

(A.5) 

aH = 0 = R u + BTf... 
aM. -- -- (A.6) 

aH = x = A x + Bu. ab - -- -- (A.7) 

Solving the three simultaneous Eqs. (A.5), (A.6), and (A.7) gives the optimal control in terms 

of Lagrange Multipliers: 

-1 T'\ M.(t) = - R B!::.. (A.S) 

Eq. (A.S), however, cannot be implemented. Hence, we substitute Eq. (A.S) into Eqs. (A.6) 

and (A.7) to get the following Hamiltonian system equation: 

(A.9) 
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This Hamiltonian system equation has a solution for ~ that can be assumed as 

(A. to) 

Substituting Eq. (A. to) into Eq. (A.9), we obtain 

(A.ll) 

This is a Riccati equation, and §.(t) will be its solution. Thus, if we can solve the Riccati 

equation, then the optimal control is given by 

(A. 12) 

where the feedback gain matrix kopt is given by 

(A. 13) 

The optimal gain is determined by solving the Riccati Eq. (A.ll) backward in time for §.(t) 

off-line, since the states are not required in Eq. (A. 11). Optimal performance function is 

obtained by substituting Eq. (A. 12) into Eq. (A. 1), which is given by 

(A. 14) 

A.2 SOLUTION OF RICCATI EQUATION 

The Riccati equation must be iterated backward in time.6 Since most Runge-Kutta routines 

work forward in time, we can use the following method to integrate Eq. (A. 11) by changing the 

time variable, t, to a new variable 't, which is 

't = Tf - t . (A.lS) 
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Then by differentiating Eq. (A. 15) with respect to time, t, and then substituting for dt = -d't in 

Eq. (A.11), we obtain the following Riccati equation: 

(A. 16) 

(A. 17) 

To solve the Riccati equation, integrate Eq. (A. 16) forward in time from t = 0 to t = 1j and then 

reverse the results to obtain ~(t), as in Eq. (A.I7). Only the steady-state solution of ~(t) is used 

in calculating the optimal gain. In Table A.I the computational sequence is summarized. The 

gain kopt(t) is computed for known values of A, B, Q, and R matrices at a given time in the 

accelerating cycle, each time by using the steady-state solution of §.(t). 

A.3 OVERALL LOOP STABILITY 

If the system is stabilizable7 and if we select Q so that (A, &) is observable,7 then the 

feedback gain k opt = k oPt( (0) = R -1 BT §.( (0) results in a stable closed-loop plant. Here, 

§.( (0) is a limiting solution of the Riccati equation. This statement is proved in Theorem 3.4-2 

of Reference 6. The limiting solution is nothing but the steady-state value of §.(t) obtained by 

solving Eq. (A. 11). For the Low Energy Booster we can never have the true optimal gains in 

practice, since the parameters will have changed before we have found a limiting solution of 

the Riccati equation. However, the feedback gains represented by kopt(t) give conditions close 

to the optimal situation. Hence this type of optimal control is also known as "suboptimal 

control." With these gains to keep the overall system stable, we have to carefully choose the 

weighting matrix Q so that (A, &.) is observable. 
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TABLE I. Linear state-space beam control model for low-intensity machine. 

:!=A!+B~ 

yS velocity of a synchronous particle 

Y T transition gamma 
T) S slip factor 

r rf frequency 

RS ideal radius 

W vS/c 

c speed of light 

E
S 

Energy of particle 2 .. 2 
liS A = (f}S)- r ~s 

all = vS 1 RS 

b31 = 231: 

x3 = ~<I>s 
u = ~fc 

19 



TABLE A.I. Closed-loop optimal control. 

Riccati Equation: 
. T -1 T & = A & + &d - &!1 R B & + Q 

§.(t) = &(Tf - t) 

Optimal Gains: 

Optimal States: 

Optimal Control: 

Optimal Performance Function: 

Jopt(t) = !:!T(t)§.(t):!(t) 

20 



FIGURE CAPTIONS 

FIGURE 1 Schematic loop diagram of low-level rfbeam control loops for the sse Low 
Energy Booster. 

FIGURE 2 Flow chart for calculating the optimal gains for low-intensity machines. 

FIGURE 3(a) Gain in synchronization loop with time. 

FIGURE 3(b) Gain in radial loop with time. 

FIGURE 3( c) Gain in beam phase loop with time. 

FIGURE 4(a) Variation of synchronization phase error with time. 

FIGURE 4(b) Variation of radial position error with time. 

FIGURE 4( c) Variation of beam phase error with time. 

FIGURE 5 Variation of control (frequency shift) with time. 

FIGURE 6 Flow chart to evaluate optimal gains for high-intensity machines. 

FIGURE 7 Normalized optimal function, J, at 1 ms. 

FIGURE 8(a) Gain in synchronization loop with time. 

FIGURE 8(b) Gain in radial loop with time. 

FIGURE 8( c) Gain in beam phase loop with time. 

FIGURE 8(d) Gain in amplitude loop with time. 

FIGURE 8( e) Gain in cavity phase loop with time. 

FIGURE 8(t) Gain in cavity tuning loop with time. 

FIGURE 9(a) Variation of synchronization phase error with time. 

FIGURE 9(b) Transients in radial position error. 

FIGURE 9( c) Transients in beam phase error. 

FIGURE 9(d) Transients in amplitude error. 

FIGURE 9(e) Transients in cavity voltage phase error. 
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FIGURE lO(a) Transients in frequency control. 

FIGURE lO(b) Transients in the amplitude of the generator current. 

FIGURE 1 O( c) Transients in the phase of the generator current. 
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LIST OF PRINCIPAL SYMBOLS 

(.)S quantity (.) of a synchronous particle 

(.)Opt optimal values of (.) 

(·)m maximum value of (.) 

J performance index 

Q weighting matrix for states 

R weighting matrix for control inputs 

x system states 

k gain matrix 

M. control inputs 

H Hamiltonian 

A costates 

~ solution of matrix Riccati equation 
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